| अनुक्रमांक | | | | | | मुद्रित पृष्ठों की संख्या : 11 | | | 11 | |------------|---|---|--|---|---|--|--|---|-----| | नाम . | ***** | ···v··· | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ********* | •••• | . 7.64 | • | • | ••• | | 15 | 51 | | | | | | 346 | (FT | ') | | | | | ٠. | 20 | 024 | Ļ | | | | | | | | | भौतिव | ह वि | ज्ञान | | | | | समय | r : <i>तीन</i> | घण्टे : | 15 मिनट] | | | | | [पूर्णांक : | 70 | | (viii, | प्रारम्भ
सभी
इस प्र
खण्ड
खण्ड
खण्ड
खण्ड
खण्ड
खण्ड
खण्ड
खण्ड | प्रश्न अ
श्न-पत्र
व अति
स लघु
स लघु
स य वि | | - खण्ड अ, खण्ड
प्रत्येक प्रश्न का 1
था प्रत्येक प्रश्न व
का है तथा प्रत्येक
का है तथा प्रत्येक
प्रत्येक प्रश्न के ध
ाया है । ऐसे प्रश्न | र ब, र
अंक
जा 1 3
प्रश्न र
प्रश्न र | खण्ड स, खण्ड द
है।
भंक है।
के2 अंक हैं।
के3 अंक हैं।
क हैं। इस खण्ड | | | | | | | | | ख | ग्ड अ | | | • | | | 1. | (ক) | कुल | | | | | ोमी त्रिज्या के गोलं
l 4 cm त्रिज्या के व | _ | 1 | | * | | (iii) | $40 \text{ V} \times \text{m}$ | | (iv) | $80~\text{V}\times\text{m}$ | | | | | | (ख) | (i)
(ii)
(iii)
(iv) | तिशील आवेश उत
केवल विद्युत क्षेः
केवल चुम्बकीय
विद्युत एवं चुम्बव
उपर्युक्त में से कोः | त्र
क्षेत्र
ठीय क्षेत्र दोनों | | | | - | 1 | 1 P.T.O. | | (ग) | निर्वात में संचरित होने वाली विद्युत-चुम्ब | | 1 | | | |-------|--------------|--|--|---|--|--| | | | $E = E_0 \sin(kx - \omega t), B = B_0 \sin \omega t$ | | _ | | | | | | (i) $E_0 k = B_0 \omega$ (ii) | $E_0B_0 = \omega k$ | , | | | | | | (iii) $E_0\omega = B_0k$ (iv | $E_0 B_0 = \sqrt{\omega k}$ | | | | | | (ঘ) | 1.2 अपवर्तनांक के पदार्थ से एक उभये
इसको 1.33 अपवर्तनांक वाले जल में डु
(i) एक अभिसारी लेंस की तरह
(ii) एक अपसारी लेंस की तरह
(iii) एक आयताकार गुटके की तरह
(iv) एक प्रिज़्म की तरह | त्तल लेंस बना है जिसकी दोनों सतह उत्तल हैं। यदि
बोते हैं तो वह कार्य करेगा: | 1 | | | | | (ङ) | समीकरण $E = pC$ में, $E - ऊर्जा तथा p$ | – संवेग है। यह समीकरण लागू होता है: | 1 | | | | | | (i) इलेक्ट्रॉन तथा फ़ोटॉन के लिए । | | | | | | | | (ii) इलेक्ट्रॉन के लिए परन्तु फ़ोटॉन वे | लिए नहीं । | | | | | | | (iii) फ़ोटॉन के लिए परन्तु इलेक्ट्रॉन वे | | | | | | | | (iv) न तो इलेक्ट्रॉन और न ही फ़ोटॉन | के लिए। | | | | | | (च) | p-n संधि में विसरण धारा का मान अपव | ह धारा से अधिक होता है, यदि संधि संयोजित है : | 1 | | | | | | (i) अग्रदिशिक बायस में | | | | | | | | (ii) पश्चिदिशिक बायस में | | | | | | | | (iii) बायस नहीं (unbiased) | | | | | | | | (iv) किसी में नहीं | | | | | | | | ख | ण्ड ब | | | | | 2. | (क) | विशिष्ट चालकता (ठ) एवं अपवाह वेग (| ${ m v_d}$) में संबंध के लिए समीकरण लिखिए। | 1 | | | | | (ख) | ऐम्पियर परिपथीय नियम का उल्लेख कीजि | ए । | 1 | | | | | (ग) | ग) 1 kWh का मान जूल में निकालिए। | | | | | | | (ঘ) | स्व-प्रेरकत्व का विमीय समीकरण निकालिए। | | | | | | | (ङ) | हाइड्रोजन परमाणु की आयनन ऊर्जा 1:
आयनन ऊर्जा क्या होगी ? | ·6 eV है । इसके इलेक्ट्रॉन की n = 2 अ वस्था में | 1 | | | | | (च) | एक तरंग के 'तरंगाग्र' की परिभाषा दीजिए | I | 1 | | | | 346 (| (FT) | | 2 | | | | 2 2 2 2 3 3 3. (क) दिए गए परिपथ में 10 Ω वाले प्रतिरोधक में प्रवाहित धारा का मान ज्ञात कीजिए जबकि स्विच S खुला हो तथा बंद हो । (ख) एकीकृत परमाणु द्रव्यमान मात्रक (amu) की समतुल्य ऊर्जा परिकलित कीजिए । (ग) एकसमान चुंबकीय आघूर्ण $(m_1=m_2)$ के दो चुंबक दिए गए चित्र की भाँति रखे हैं। यदि चुंबक A_1 के द्वारा बिन्दु P पर चुंबकीय क्षेत्र की तीव्रता 2×10^{-3} टेस्ला हो, तो दोनों चुंबकों के कारण P पर परिणामी चुंबकीय क्षेत्र की तीव्रता ज्ञात कीजिए। (घ) सिलिकॉन p-n संधि डायोड में, 20 V का अग्र विभव लगाने पर उत्पन्न अग्र धारा 10 mA हो, तो इसका अग्र प्रतिरोध परिकलित कीजिए । # खण्ड द - 4. (क) एकसमान विद्युत क्षेत्र में रखे वैद्युत द्विध्रुव पर लगने वाले बल-आधूर्ण का व्यंजक प्राप्त कीजिए । 3 - (ख) 12 सेमी त्रिज्या के धारावाही वृताकार कुण्डली के केन्द्र में उत्पन्न चुंबकीय क्षेत्र B की तीव्रता 0.5 × 10⁻⁴ टेस्ला कुण्डली के तल के लम्बवत् ऊपर की ओर है । कुण्डली में प्रवाहित धारा के मान तथा दिशा का परिकलन कीजिए । - (ग) पूर्ण-आंतरिक परावर्तन तथा क्रान्तिक कोण क्या होता है ? प्रकाशिक तन्तु (Optical fibre) किस सिद्धान्त पर कार्य करता है ? 346 (FT) 3 P.T.O. (ध) दर्शाए गए परिपथ में. A तथा B के मध्य विभवांतर ज्ञात कीजिए । 3 .; 3 3 3 3 3 - (ङ) अन्योन्य प्रेरकत्व की परिभाषा दीजिए । सिद्ध कीजिए, हेनरी क्रां न्यूटन मीटर ऐम्पियर² - 5. (क) आदर्श अमीटर तथा आदर्श वोल्टमीटर का प्रतिरोध कितना होता है ? ऐमीटर तथा वोल्टमीटर को क्रमश: परिपथ के श्रेणीक्रम तथा समान्तर क्रम में क्यों जोड़ा जाता है ? - (ख) एक कुण्डली का प्रेरकत्व 0·4 हेनरी एवं प्रतिरोध 10 ओम है । यह 30 हर्ट्ज़, 6·5 वोल्ट के प्रत्यावर्ती स्रोत से जुड़ी है । इस परिपथ में व्यय औसत विद्युत शक्ति की गणना कीजिए । - (ग) मैक्सवेल की विस्थापन धारा की व्याख्या कीजिए तथा इसका समीकरण लिखिए। इसके एवं चालन धारा के बीच कलान्तर कितना होता है ? - (घ) प्रकाश का व्यतिकरण क्या होता है ? (i) संपोषी व्यतिकरण तथा (ii) विनाशी व्यतिकरण की दशाएँ दर्शाइए । ## अथवा प्रकाश के ध्रुवण से क्या तात्पर्य है ? पोलेरॉइड के सिद्धान्त तथा दो उपयोगों का उल्लेख कीजिए। (ङ) 2.5 eV के कार्य फलन वाले धातु में 4000 Å की तरंगदैर्घ्य का प्रकाश डालने पर उत्सर्जित फोटो-इलेक्ट्रॉन के अधिकतम वेग तथा रेखीय संवेग की गणना कीजिए। 6. स्थिर-वैद्युतिकी में गॉस नियम को लिखकर स्पष्ट कीजिए । इसकी सहायता में एकसमान आंबोशत पतले गोलीय खोल (आवेश = q तथा त्रिज्या = R) के कारण विद्युत क्षेत्र का मान (i) खोल के बाहर (ii) खोल के भीतर तथा (iii) खोल की सतह पर ज्ञात कीजिए । ## अथवा दिए गए परिपथ में निम्नलिखित की गणना कीजिए : - (i) परिपथ की तुल्य धारिता - (ii) 3 μF तथा 2 μF वाले संधारित्रों पर आवेश - किरण आरेख की सहायता से परावर्ती दूरदर्शी में प्रतिबिंब बनने की व्याख्या कीजिए । अपवर्ती दृख्शी से इसकी विशेषताओं की तुलना कीजिए । #### अथवा तरंगों के विवर्तन तथा व्यतिकरण में अन्तर स्पष्ट कीजिए । एकल झिरी विवर्तन प्रारूप का गुणात्मक अवलोकन कीजिए । हाइड्रोजन परमाणु के लिए बोहर मॉडल के अभिग्रहीतों को स्पष्ट कीजिए । हाइड्रोजन परमाणु के ऊर्जा स्तर n = 1 तथा n = 4 के बीच संक्रमण के संगत (i) उत्सर्जन तथा (ii) अवशोषण स्पेक्ट्रम में प्राप्त स्पेक्ट्रमी रेखाओं को दर्शाइए । #### अथवा नाभिक की बंधन ऊर्जा से क्या अभिप्राय है ? बंधन ऊर्जा प्रति न्यूबिलअनि की द्रव्यमान संख्या के संगत विचरण दर्शाइए । विखण्डन एवं संलयन अभिक्रियाओं की इस विचरण की महायता में विवेचना कीजिए । P.T.O. 5 5 5 5 Ü b 9. n-टाइप अर्धचालक की चालकता की गणना निम्नलिखित औकर्दा से की रूप चालन इलेक्ट्रॉमी का धनत्व # 8×1018 cm-3 कोटरों का घनत्व = 5 × 10¹² cm⁻³ इलेक्ट्रॉनों की गतिशीलता (mobility) = 2.3×10^4 cm²/V-% कोटरों की गतिशीलता (mobility) $= 100 \text{ cm}^2/\text{V}-\text{s}$ ## अथवा p-n संधि के निर्माण में हासी स्तर तथा विभव रोधक की व्याण्या की रूए । अर्पार्टायक बायस दया परचदिशिक बायस की दशा में दोनों में क्या परिवर्तन होता है ? Fi 1, # भौतिक स्थिरांक : इलेक्ट्रॉन का द्रव्यमान $= 9.1 \times 10^{-31} \, \text{kg}$ प्लांक नियतांक (h) $= 6.6 \times 10^{-34} \text{ J-s}$ प्रकाश चाल (c) $= 3 \times 10^8 \text{ ms}^{-1}$ रिडबर्ग नियतांक (R) $= 1.097 \times 10^7 \,\mathrm{m}^{-1}$ सिलिकॉन के लिए विभव राधक = 0.7 बोल्ट $\frac{\mu_0}{4\pi}$ $= 10^{-7} \text{ N/A}^2$ # (English Version) ## Instructions: - (i) First 15 minutes are allotted for the candidates to read the question paper. - (ii) All the questions are compulsory. - (iii) This question paper consists of five Sections Section A, Section B, Section C, Section D and Section E. - (iv) Section A is of multiple choice type and each question carries 1 mark. - (v) Section B is of very short-answer type and each question carries 1 mark. - (vi) Section C is of short-answer type-I and each question carries 2 marks - (vii) Section D is of short-answer type-II and each question carries 3 marks. - (viii) Section E is of long-answer type. Each question carries 5 marks. All four questions of this section have been given internal choice. You have to do only one question from the choice given in the question. - (ix) The symbols used in the question paper have usual meaning # Section A | 1. | (a) | Electric charges are uniformly distributed in a small volume. The flux of | |----|-----|--| | | | electric field through a spherical surface of radius 2 cm surrounding the | | | | total charge is 10 V \times m. The flux over a sphere of radius 4 cm will be : | (i) $10 \text{ V} \times \text{m}$ (ii) $20 \text{ V} \times \text{m}$ (iii) 40 V × m (iv) $80 \text{ V} \times \text{m}$ (b) A moving charge produces: (i) electric field only (ii) magnetic field only (iii) both electric and magnetic fields (iv) none of the above (c) An electromagnetic wave propagating through vacuum, described by $E=E_0\sin{(kx-\omega t)},\ B=B_0\sin{(kx-\omega t)}\ then:$ (i) $E_0 k = B_0 \omega$ (ii) $E_0B_0 = \omega k$ (iii) $E_0\omega = B_0k$ (iv) $E_0B_0 = \sqrt{\omega k}$ (d) A double convex lens is made of a material having refractive index 1.2. Both the surfaces of the lens are convex. If it is dipped into water of refractive index 1.33, it will behave like: (i) a convergent lens - (ii) a divergent lens - (iii) a rectangular slab - (iv) a prism (e) The equation E = pC, (where E and p are energy and momentum respectively) is valid: - (i) for an electron as well as for a photon. - (ii) for an electron but not for a photon. - (iii) for a photon but not for an electron. - (iv) neither for an electron nor for a photon. 1 1 1 1 1 - (f) Diffusion current in a p-n junction is greater than the drift current in magnitude: - (i) if the junction is forward biased - (ii) if the junction is reverse biased - (iii) if the junction is unbiased - (iv) in none of them ## Section B - 2. (a) Write the equation for relating relationship between specific conductivity (σ) and drift velocity (v_d). - (b) State Ampere's Circuital Law. - (c) Find the value of 1 kWh in Joule. - (d) Deduce dimensional equation of self-inductance. - (e) Ionising energy of Hydrogen atom is 13.6 eV. In a state where n = 2, what will be ionisation energy of its electron? - (f) Define 'wavefront' of a wave. ## Section C 3. (a) Find the current through the 10 Ω resistor when the switch S is open and closed in the given circuit. https://www.upboardonline.com (b) Calculate energy equivalence of unified atomic mass unit. 2 1 1 1 1 1 1 1 2 (c) Two magnets of equal magnetic moment $(m_1 = m_2)$ are placed as shown in the figure. If magnetic field intensity at P due to magnet A_1 is 2×10^{-3} Tesla, then find out total magnetic field intensity at P due to both the magnets. (d) In a Silicon p-n junction diode, for 20 V forward voltage the forward current produced is 10 mA. Calculate its forward resistance. # Section D - 4. (a) Deduce the formula of torque on an electric dipole placed in a uniform electric field. - (b) The intensity of the magnetic field B due to a current-carrying circular coil of radius 12 cm at its centre is 0.5×10^{-4} Tesla perpendicular to the plane of the coil upward. Calculate the magnitude and direction of current flowing in the coil. - (c) What is total internal reflection and critical angle? What is the working principle of Optical Fibre. - (d) In the given circuit, find the potential difference between A and B. (e) Define Mutual Inductance. Show that $\frac{\text{Henry}}{\text{Meter}} = \frac{\text{Newton}}{\text{Ampere}^2}$ 2 2 3 3 3 3 - 5. (a) What is the value of resistance of ideal ammeter and ideal voltmeter? Why are an ammeter and a voltmeter respectively connected in series and parallel of the circuit? - (b) A coil has a resistance of 10Ω and inductance of 0.4 Henry. It is connected to an AC source of 6.5 V, 30 Hz. Find the average power consumed in the circuit. 3 3 3 3 3 3 5 5 - (c) Explain Maxwell's displacement current and write its equation. What is the phase difference between it and the conduction current? - (d) What is interference of light? Mention the condition for (i) constructive and (ii) destructive interference. ## OR What is polarization of light? State the principle and two uses of a polaroid. (e) Find the maximum magnitude of velocity and linear momentum of a photoelectron emitted when light of wavelength 4000 Å falls on a metal having work function 2.5 eV. # Section E 6. State and explain Gauss's law in electrostatics. Using it, find the electric field due to a uniformly charged thin spherical shell (charge = q and radius = R) at (i) external point of shell (ii) internal point of shell and (iii) on the surface of shell. #### OR Calculate the following in the given circuit: - (i) The equivalent capacitance of the circuit - (ii) The charge on 3 μF and 2 μF capacitors 7. Explain image formation in a reflecting telescope with the help of a ray diagram. Compare its qualities with a refracting telescope. 5 OR Explain the differences between diffraction and interference of waves. Observe qualitatively the diffraction pattern of a single slit. 5 8. Explain postulates of Bohr's model for Hydrogen atom. Show the number of lines in the (i) emission and (ii) absorption spectra of Hydrogen atom corresponding to transition between energy states n = 1 and n = 4. 5 OR What is meant by binding energy of a nucleus? Draw variation of binding energy per nucleon against the mass number. Discuss fission and fusion with the help of this variation. 5 9. Calculate the conductivity of an n-type semiconductor from the following data: 5 Density of conduction electrons = 8×10^{13} cm⁻³ Density of holes = $5 \times 10^{12} \text{ cm}^{-3}$ Mobility of electrons = 2.3×10^4 cm²/V-s Mobility of holes = $100 \text{ cm}^2/\text{V-s}$ OR Explain the depletion layer and potential barrier in the formation of p-n junction. How are both changing in the condition of forward biasing and reverse biasing? 5 ${\it Physical\ constants:}$ Mass of electron = $$9.1 \times 10^{-31}$$ kg Planck's constant (h) = $$6.6 \times 10^{-34}$$ J-s Speed of light (c) = $$3 \times 10^8$$ m/s Rydberg constant (R) = $$1.097 \times 10^7 \,\mathrm{m}^{-1}$$ $$\frac{\mu_0}{4\pi}$$ = 10⁻⁷ N/A²