NUMBER SYSTEMS
[
1.1 Introduction

In your earlier classes, you have learnt about the number line and how to represent
various types of oumbers on 1l (see Fig. 1.1).
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Fig. 1.1 : The number line

Just imagine you start from zero and go on walking along this number ling in the
positive direction. As far as your eyes can see, there are numbers, numbers and
numbers!
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Fig. 1.2

Now suppose you start walking along the number line, and collecting some of the
numbers. Gel a bag ready to siore (hem!
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You mught begin with picking up only natural
numbers like 1, 2, 3, and 50 on. You know that this list
goes on for ever. (Why is this true?) So, now vour
bag containg infinitely many natural nombers! Recall
that we denote this collection by the svmbaol N.

Now turn and walk all the way back. pick up
zero and put it into the bag. You now have the
collection of whole numbers which is denoted by
the symbaol W,

Now, stretching in front of you are many, many negative integers. Put all the
negative integers into your bag. What is your new collection? Recall that it is the
collection of all infegery, and it i3 denoted by the symbol Z.

. comes from the

Avre there some numbers still lefl on the line? OF course! There are numbers like
1 3 —2005

Ao toreven

2 4 2006

. IFyou put all such numbers also into the bag, it will now be the
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eollection of rational numbers. The collection of rational numbers is denoted by Q.
‘Rational’ comes from the word ‘ratio’, and {) comes from the word ‘quotient’.

You may recall the definition of rational numbers:

A number 'r' is called a raronal number, if il can be written in the form E,

9
where p and ¢ are iniegers and ¢ # 0. (Why do we insist that g # 07)

Notice that all the numbers now in the bag can be written in the form -‘E- , where p

25
and ¢ are integers and g+ (. For example, =25 can be written a8 ——: here p =-23

1

and g = 1. Therefore, the rational numbers also include the natural numbers, whole
numbers and integers.

You also know that the rational numbers do not have a unigue representation in

the form £ . where pand g are integers and g # (. For example. s = % = -l = &
q 2 4 20 50

4
VR and so0 on. These are equivalent rational numbers (or fractions). However,

when we say (hat rg- is a rational number, or when we represent g- on the number
ling, we assume that ¢ # 0 and that p and ¢ have no common factors other than |
(that is, p and g are co-prime). S0, on the number line, among the infinitely many

fractions equivalent to <, we will choose — to represent all of them.

2 2
Now, let us solve some examples about the dilferem types of numbers, which you

have studied in earlier classes,

Example 1 : Are the following statements true or [alse? Give reasons for your answers.
(i)  Every whole number is a natwral number.

(i) Every integer is a rational number,

(iii) Every rational number is an integer.

Solution : (i) False, because zero is a whole number but not a natoral number,

]
(i) True, hecanse every integer m can be expressed in the form 1 and so iti= a
rational number.
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3
i) False, becaose E is not an inleger.

Example 2 : Find five rational numbers between | and 2.
‘We can approach this problem in at least two ways.

Solution 1 : Recall that to find a rational number hetween r and £, vou can add r and

r+s
5 and divide the sum by 2, that is lies between r and 5. So, E 15 a number

between | and 2. You can proceed in this manner to find four more rational numbers

511 13 7

between 1 and 2. These four numbers are — 1 E 3 — N :1_

Solution 2 : The other option is 1o [ind all the five rational numbers in one step. Since
we want five numbers, we write [ and 2 as rational numbers with denominator 5 + 1,

1= Eandz _12 . Then Iw{:lcthl.;Ir H 9 1[} d—l all rational
ie,l1= 6 6 VU can ¢ a 5" 6 ﬁ ﬁ an 6 are IO
bers be | and 2. So, the fi b : 4 > Sﬁﬂdll
o ; b Yooy R ¥ o
numbers een | an o, the five numbers are ﬁ 3 23 6

Remaari : Notice that in Example 2, you were asked to find five rational numbers
between 1 and 2. But, you must have realised that in fact there are infinitely many
rational numbers between 1 and 2. In general, there are infinitely many rational
numbers between any two given rational numbers,

Let us take a look at the number line again. Have you picked up all the numbers?
Not, yel. The fact is that there are infinitely many more numbers lefit on the number
line! There are zapz in between the places of the numbers you picked up, and not just
one or two but infinitely many. The amazing thing is that there are infinitely many
numbers lying between any two of these gaps too!

So we are left with the following questions: ﬁ} £ ¥

1. What are the numbers, that are left on the number
line, called?

2. How do we recognise them? That is, how do we
distinguish them from the rationals (rational
numbers)?

These questions will be answered in the next section.
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EXERCISE 1.1

15 zero a rational number? Can you write it in the form L « where p and g are integers
g

and g+ 07
Find six rational numbers between 3 and 4.

3 4
Find five rational numbers between g and E

State whether the following statements are true or false. Give reagons for your answers.
iy Ewery natural oumber is 8 whole number,
i} Ewveryinieger is a whole number,

tiii} Every rational namber is a whole number.

1.2 Irrational Numbers

We saw, in the previous section, that there mav be numbers on the number line that
are not rationals. In this section. we are going to investigate these numbers. So far. all

the numbers you have come across, are of the form £ where p and ¢ are integers
i q

and g = 0. So, you may ask: are there numbers which are not of this form? There are
indeed such numbers,

The Pythagoreans in Greece, followers of the [amous
mathematician and philosopher Pythagoras, were the [irst
la diseover the numbers which were not ralionals, around
400 BC. These nombers are called frrational numbers
(irrationals), because they cannat be wrillen in the form of
a ratio of integers. There are many myths sumrounding the
discovery of irational numbers by the Pylhagorean,
Hippacus of Crolon. In all the myths, Hippacus has an

unfortunaie end, either for discovering that JE it irrational

or for disclosing the secrel aboul V2 0 people outside the Pythagoras
secret Pythagorean sect!

Let us formally define these numbers.

P

A number °s’ is called irvarional, if it cannot be written in the form =~ , where p
q

and ¢ are integers and g = 0.
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You already know that there are infinitely many rationals. It turns out that there
are infinitely many irrational numbers too. Some examples are:

V2,3, JT5-m.0.10110111011110...

Kemark ; Recall that when we use the symbol J_ . We assume that it 15 the
positive square root of the number. So fg = 2, though both 2 and -2 are square
roots of 4,

Some of the wrrational numbers listed above are famuliar to vou, For example, you
have already come across many of the square roots listed above and the number 7.

The Pythagoreans proved that .f7 is irrational. Later in approximately 425 BC,

Theodorus of Cyrene showed that -4"5, -,,ﬁ -JE, \ﬁ, -,iﬁ, Jﬁ -JE Jﬁ -Jﬁj -.,I"'E
and .ulr‘ﬁ are also irrationals. Proofs of irrationality of ...E , ,E , JE , etc,, shall he

discussed in Class X. As to 7, it was kmown to various cultures for thousands of
years, it was proved (o be irrational by Lambert and Legendre only in the late 1700s.
In the next section, we will discuss why 0.101101110T1110... and 7 are irrational,

Letus return to the guestions raised at the end of
the previous section. Remember the bag of rational
numbers. If we now put all irrational numbers into
the bag. will there be any number left on the nomber
line? The answer is no! It turns out that the collection
of all rational numbers and irrational numbers together
make up what we call the collection of real numbers,
which is denoted by R. Therefore, a real number is either rational or irrational. So, we
can sav that every real number is represented by a unigue point on the number
line. Also, every point on the number line represents a unigue real number.
This is why we call the number line. the real number line,

In the 18705 two German mathematicians,
Cantor and Dedekind, showed that
Corresponding to every real number, there is a
point.on the real number line, and corresponding
o every point on the number line, there exists a
unigue real number,

R. Dedekind {1831-1914) G. Cantor (1845-1915)
Fig. 1.4 Fig. 1.5
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Let us see how we can locate some of the irrational numbers on the number line,

Fxample 3 : Locate v/2 on the number line,

Solution : It is easy to see how the Greeks might have discoversd © B
(2

J2 . Consider a unit square OABC, with each side 1 unit in length o7

(see Fig. 1.6), Then you can see by the Pythagoras theorem that (*——A

OB= P+ = /2 . How do we represent /2 on the namber line? Fig. 1.6

This is easy. Transfer Fig. 1.6 onto the number line making sure that the vertex O
coincides with zero (see Fig. 1.7).

Fig. 1.7
We have just seen that OB = f2 . Using a compass with centre O and radius OB,

draw an arc intersecting the number line at the point P, Then P corresponds to /2 on
the number line.

Example 4 : Locate f3 on the number line,

Solution : Let us return to Fig, 1.7.

W

K

Fig. 1.8
Construct BD of unit length perpendicular 1o OB (as in Fig. 1.8). Then using the

3
Pythagoras theorem, we see that QD = 1||(\-"5) +1 =43, Using a compass, with
centre O and radius OD, draw an are which intersects the number line at the point Q.
Then () corresponds o .JE .
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In the same way, you can locate J; for any positive integer n. after 4,||':tr —1 has been
located.

EXERCISE 1.2

1. State whether the following statements are true or false. Justify vour answers.
(i) Ewery irrational nomber ig a real number,

(i} Every point on the number ling is of the form m . where m is a natural number,
it} Ewery real number is an irrational number.

2, Are the square roots of all positive integers ireational 7 I not, give an example of the
sguare rook of & number that iz a rational number,

3. Show how .,.,Irf_, ¢an be representsd on the nuwmber line.

4.  Classroom activity {Constrocting the *square root
spiral®) : Take a large sheet of paper and construct
the *square root spiral” in the following fashion. Start
with a point O and draw a line segment OF, of anit
length. Draw a line segment P P, perpendicular to
OP, of unit length {see Fig. 1.9). Now draw a line
segment PP, perpendicular to OF,. Then draw aline . .
segment P,P, perpendicular to OP,, Continuing in Fig. 1.9 : Constructing
this manner, you can get the line segmemt P P by sepuare rool spiral
drawing aline segment of unit length perpendicular to OP . In this manner, you will
have created the pommis P, P,.... ... .. and joined them to create a beautiful spiral

depicting +/2, /3, 4/, ..

1.3 Real Numbers and their Decimal Expansions

In this section. we are going to study rational and irrational numbers from a different

point of view. We will look at the decimal expansions of real numbers and see il we

can nse the expansions to distinguish berween rationals and irrationals, We will also

explain how to visualise the representation of real numbers on the number line using

their decimal expansions. Since rationals are more familiar (0 us, let us starl with
B BTN

them, Let us take three examples : FRrieT

Pay special attention to the remainders and see if you can find any pattern.



NumseR SY5TEMS 0

Example 5 : Find the decimal expansions of 1?, % and %
Solution :
{3.333... 0.875 0.142857...
310 BI7.0 7110
|8 64 7
10 (60 30
L 56 25
10 40 20
9 40 14
W 0 &0
9 56
_1 40
35
a0
49
1
Remainders: 1,1, 1,1, 1... Remainders : 6,4, 0 Remamders: 3,2,6.4,5, 1,
Divisor: 3 Divisor: 8 126451
Divisor: 7

What have you noticed? You should have noticed at least three things:
{i) Theremainders either become 0 aller o certain stage, or start repeating themselves.
(i) The number of eniries in the repeating string of remainders 15 less than the divisor

1 1
{in 3 one number repeats itsell and the divisor is 3, in -_;; there are six entries

326451 in the repeating string of remainders and 7 is the divisor).
(i} If the remainders repeat, then we get a repeating block of digits in the quotient

| 1
(for 3 3 repeats in the quotient and for ¥, we get the repeating block 142857 in

the gquotient).
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Although we have noticed s pattern using only the examples above, it is true for all
rationals of the form 5 (g #U). On division of p by g, two main things happen — either

the remainder becomes zero or never becomes zero and we get a repeating string of
remainders. Let us look al each case separately.

(ase (i) : The remainder becomes zero

T
In the example of —, we found that the remainder becomes zero after some steps and

8

7 | 639
the decimal expansion of Fi 0.875. Other examples are 3= 0.5, 550 = 2,556, [nall

these cases, the decimal expansion terminutes or ends alter a finite number of steps.
‘We call the decimal expansion of such numbers terminating.

Case (i) : The remainder never becomes zero

1
In the examples of 3 and 7 we notice that the remainders repeat after a certain

stage forcing the decimal expansion to go on for ever. In other words, we have a
repeating block of digits in the quotient. We say that this expansion is non-lerminating

1 1
recurring. For example, 3= 0.3333... und 7= 0.142857142857142857...

1 -

The usual way of showing that 3 repeats in the quotient of 3 is to write it as 3.
1 L

Similarly, since the block of digits 142857 repeats in the guotient of 7 we write = as
n.142257 . where the bar above the digits indicates the block of digits that repeats.
Also 3.57272... can be written as 3.572 . So. all these examples give us non-terminating
recurring (repeating) decimal expansions,
Thug, we see that the decimal expansion of rational numbers have only two choices:
either they are terminating or non-terminating recurring,

Mow suppose, on the other hand, on your walk on the number line, you come across a
number like 3.142678 whose decimal expansion is terminating or a number like
1.272727... that is, lﬁ . Whose decimal expansion is non-terminating recurring, can
you conclude that it is a rational number? The answer i3 yes!
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We will not prove it but illustrate this fact with a few examples, The terminating cases
are easy.

Fxample 6 : Show that 3.142678 is a rational number. In other words, express 3.142678
in the form mg.whemp and g are inlegers und g # U.

Solution : We have 3.142678 = ?Hﬂ +and hence is a rational number,

Now, let us congider the case when the decimal expansion is non-terminating recurting.

Example 7 : Show that 0.3333...= 0.3 can be expressed in the form % . where p and

g are integers and ¢ # 0.

Solution : Since we do not know what 0.3 is, let us call it ‘%* and so
x="T10.3333...
Now here is where the trick comes in. Look at
10.x= 10 % (0:333...) = 3.333...
Now, 3.3333...= 3 4+ x, since x =0.3333...
Therefore, 10k=3 +x

Solving for x, we get

e |

Or= 3. i@, x=

Example § : Show that 1.272727... = 1.27 can be expressed in the form g » Where p

and g are integers and g # 0.
Solution : Let x= 1.272727... Since two digils are repeating, we multiply x by 100 to
get
100 x = 127.2727...
So, 100x= 126+ 1.272727... =126+ x
Therefore, 100 & —x= 126, Le., 99x=126
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126 _14
9 11

1E., =
You can check the reverse that ﬁ =137:

Example 9 : Show that 0.2353535... = 0.235 can be expressed in the form g—

where p and g are integers and g = 0.
Solution : Let x = 0.235. Over here, note that 2 does not repeat, but the block 35
repeats, Since two digils are repeating, we multiply 1 by 100 to get

100 £ = 23.53535...

So. 100 x=233+0.23535...=23.3 +x
Therefore, 09 y= 233

i 00 y = —— ., which oi = 2—33
ie., x= 10 + W gives x = 990

234 —
Yoo can also check the reverse that ﬁ = 0.235.

So, every number with a non-terminating recurring decimal expansion can be expressed
in the form “f;‘i {g # 0), where p and g are integers, Lel us summarise our results in the

following form :

The decimal expansion of a rational number is either terminating or non-
terminating recurring. Moreover, a number whose decimal expansion iy
rerminating or non-terminaiing recurring is rational.

So, now we know what the decimal expansion of a rational number can be. What
about the decimul expansion of irrational numbers? Because of the property above,
we can conclude that their decimal expansions are non-terniinating non-recurring.

So. the property for irrational numbers, similar to the property stated above for rational
numbers, is

The decimal expansion of an jrrational number is non-terminating non-recurring.

Moreover, a number whogse decimal expansion is non-terminating non-recurring
is drrational,
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Reeall s = 0.10110111011110... from the previous section. Notice that it is non-
terminating and non-recurring. Therefore, from the property above, it is irrational.
Mareover, notice that you can generate infinitely many irrationals similar to 5.

What about the famous irrationals .2 and n? Here are their decimal expansions up
to a certain stage.

J2 =1.4142135623730950488016887242096...
m =3.14159265358979323846264338327950)...

22 22
{Note that, we often take T asan approximate value for m, but T # T )

Over the years. mathematicians have developed various techniques to produce more
and more digits in the decimal expansions of irrational numbers. For example, you
might have learnt to find digits in the decimal expansion of ,E by the division method.
Interestingly, in the Sulbasutras (rules of chord), a mathematical treatise of the Vedic
period (800 BC - 300 BC), vou find an approximation of .JE as follows:
st l+[lxi)-[ixlx1)=1.414215ﬁ.
3 14 3 M 4 5

Notice that it is the same as the one given above [or the first five decimal places, The
history of the hunt for digits in the decimal expansion of & is very intercsting.

The Greek genins Archimedes was the first to compute e
digits in the decimal expansion of ©. He showed 3. 140845 “g
< ft < 3.142857. Aryabhatta (476 — 5530 AD), the great N

Indian mathematician and astronomer, found the value
of 7 correct to four degimal places (3.1416). Using high .
speed computers and advanced algorithms, © has besn ?_;
computed to over 1.24 trillion decimal places! ) '

Archimedes (287 BCE - 212 BCE)
Fig. 1.10

Now, let us see how to obtuin imraional numbers.

1 2
Example 10 : Find an irrational number between 7 and 7

1 —_— ) m———
Solution : We saw that 7= 0142857 . So. you cuan easily calculate %ﬂ 0.285714 .

1 2
To find an irrational number between ; and ? we find a nomber which is
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nan-lerminaling non-recurming lying between them, Of course, you can find infinitely
many such numbers,

An example of such a number iz 0.150150013000150000...

EXERCISE 1.3

Wriie the following in decimal Torm and say what kind of decimal expansion each
has ;

) 36 I
i 06 (it} m (i 4‘3‘
cra o . . 329
(iv) E (v} ﬁ' i) _4EID

P 33
You know that 7= 0142857 . Can vou predict what the decimal expansions of T3

4 3 6

:II;, 7 7 are, without aclually doing the long divizion? If 2o, how?

]
[Hint : Study the remainders while finding the value of 7 carefully.]

Express the following in the form Lg. , where p and g are integers and g2 0.
i 06 i 047 (i) 0,001
Express 0.99999 ., in the form % Are you surprised by your answer? With your

teacher and classmates discuss why the answer makes sense.
Whit can the maximum number of digits be in the repeating block of digits i the

|
decimal expansion of 17 ? Perform the division to check vour anawer.

Look at several examples of rational nombers in the form % {g=0), where p and g are

inlegers with no common factors other than 1 and having terminating decimal
representations {(exapansions). Can you guess whal properly g must satisfy?

Write three numbers whose decimal expansions are non-terminating non-recurring.

5 [
Find three different irrational numbers between the rational numbers :5; znid H .

Classify the following numbers as rational or irrational ;
i 23 ) .f225 (i 03796
(v} TATE4TR... {v) 1.101001000100001...
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1.4 Representing Real Numbers on the Number Line

In the previous section, you have seen that any
real nurber has a decimal expansion. This helps
us [0 represent it on the number line. Let us see
how,

Suppose we want to locate 2.665 on the
number line, We know that this lies between 2
and 3.

So, let us look closely at the portion of the
number line between 2 and 3. Suppose we divide
this into 10 equal parts and mark each point of
division as in Fig. 1.11 (i). Then the first mark to

Fig. 1.11

the right of 2 will represent 2.1, the second 2.2, and so on. You might be finding some
difficulty in observing these points of division between 2 and 3 in Fig, 1.11 (i}). To have
a clear view of the same, you may fake a magnifying glass and look at the portion
between 2 and 3. It will look like what vou see in Fig. 1.11 (ii). Now, 2.665 lies between
2.6 and 2.7. So, let us focus on the portion between 2.6 and 2.7 [See Fig. 1.12(1)]. We
imagine to divide this again into ten equal parts. The first mark will represent 2.61, the
next 2.62, and so on. To see this clearly. we magnify this as shown in Fig. 1.12 (i).

2

21352374 S26275529

.6

2.65

—
| Anl aa Zak L I dea dET s 1E9

3

2.7

W

(i)
Fig. 1.12

Again, 2.665 lies between 2.66 and 2.67. So, let us focos on this portion of the
number line [see Fig. 1.13(i)] and imagine to divide 1l again into ten equal parts. We
magnify it to see it better, ag in Fig. 1.13 (ii). The first mark represents 2.661. the next
one represents 2.662, and so on. So, 2.665 is the 5th mark in these subdivisions.
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2.6 2.7

2.65
| Tal 262261 164

266/ ... .67
| 26612 6632 663 1664 | 2,866 667 1 668 2668

I I I O O

i)

Fig. 1.13

‘We call this process of visualisation of representation of numbers on the number line,
throngh a magnifving glass. as the process of successive magnification.

So, we have seen that it is possible by sufficient successive magnifications to visualise
the position (or representation) of a real number with a terminating decimal expansion
on the number line.

Let us now try and visualise the position (or representation) of a real number with a
non-terminating recurring decimal expansion on the number line. We can look at
appropriate intervals through a magnifying glass and by successive magnifications
visualise the position of the number on the number line.

Example 11 : Visualize the representation of 5.37 on the number line upto 5 decimal
places, that is, up to 3.37777.

Solution : Once again we proceed by successive magnification, and successively
decrease the lengths of the portions of the number line in which 5.37 is located. First,

we see that 5.37 is located between 5 and 6. In the next step, we locate 5.37
between 5.3 and 5.4, To get a more accurate visualization of the representation, we
divide this portion of the number line inte 10 equal parts and use a magnifying glass to

visualize that 5.37 lies between 5,37 and 5.38. To visualize 5.37 more accurately, we
again divide the portion between 5.37 and 5.38 into ten equal parts and use a magnifying

glass o visualize that 5.37 lies between 5.377 and 5.378. Now to visualize 5.37 still
more accurately, we divide the portion between 5,377 an 5.378 into 10 equal parts, and
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visualize the representation of 5.37 asin Fig. 1.14 (iv). Notice that 5.37 is located
closer to 5.3778 than to 5.3777 [see Fig 1.14 (iv)].

54575459

535 ;;:-
| 53t5:2533334| s3g 537

L 111

5.37

5375
| FATI EATF 5371 5374 57 5.1“7;.'1"‘ _1"9
LI LI,
| {].'I.i}
i
1
i
i
1
i
]
5.377 15,378
: 53775 ] "
s:'n?] :Tﬂa 53T 53T
HRRER
< >
517 {iv)
Fig. 1.14

Remark : We can proceed endlessly in this manner, successively viewing through a
magnifying glass and simultaneously imagining the decrease in the length of the portion
of the number line in which 5.37 is located. The size of the portion of the line we
specify depends on the degree of accuracy we wonld like for the visualisation of the
position of the number on the number line.
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You might have realised by now that the same procedure can be used to visuakise a
real number with a non-terminating non-recurring decimal expansion on the number
line.

In the Light of the discussions above and visualisations, we can again say thal every
real number 5 represented by a unigue point on the number line, Furthern every
poini on the number line represents one and only one real number.

EXERCISE 1.4
1. Wisualise 3,765 on the number line, using successive magnification,

2. Visualise 426 on the number line, op to 4 decimal places.

1.5 Operations on Real Nuombers

You have learnt. in earlier classes, that rational numbers satisfy the commutative.
agsociative and distributive laws for addition and multiplication. Moreover, il we add,
subtract, muoltiply or divide (except by zero) two rational nombers, we still get a rational
number (that is, rational numbers are “closed’ with respect to addition, subtraction,
multiplication and division). [t twrns out that irrational numbers also satisfy the
commutative, associative and disributive laws for addition and multiplication. However,
the sum, difference, quotients and products of irrational numbers are not always

irrational. For example, {£)+(_ﬁj,(ﬂ)—(ﬁ)(ﬁ)(ﬁ] and % are

rationals.

Let us Took at what happens when we add and multiply a rational number with an
irrational number. For example, f3 is irrational. What about 2 + +f3 and 2./3 7 Since

V3 has a non-terminating non-recurring decimal expansion, the same is true for

e .,,ﬁ and 2\@ . Therefore, both 2 + .,ﬁ and 2'-.5 are also irrational numbers.

Example 12 : Check whether 7.5, —jug—r V2 + 21, n—2 are irrational numbers or

not,

Solution : ﬁ =2.236..., .JE =1.4142..., t=3.1415...
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7 75
5405

75
Then 7.5 =15.652..., e el

=3.1304...
-JE +21=224142....n-2 = L.1415..

All these are non-terminating non-recurring decimals. So, all these are irrational numbers.

Now, let us see what generally happens if we add, subtract, multiply, divide, take
square roots and even mth roots of these irrational numbers, where » is any natural
number. Let us look at some examples.

Example 13 : Add Z\E +5\E anid -JE —31@-
Solution : (EJE +5'-.E)+(~JE -3'\5] = (Zﬁ + 'U'E)'i* ("ml"i - 3'»5)
=2+DV2+6-D3=3/2+23

Example 14 : Multiply 6+/5 by 245 .
Solution : 645 x 245 =6x2x+f5 x5 =12x5=60

Example 15 : Divide S«fﬁ by ’Eﬁ.

Solution : ENI"T_E & 2\5 = % = .1...‘||r§

These examples may lead you to expect the following facts, which are true:

(i) The swn or difference of a rational number and an irrational number 13 irrational.

(i) The productor quotient of a non-zero rational number with an irrational number is
irrational,

(iii) IFwe add. subtract. multiply or divide two irrationals, the result may be rational or
irrational,

We now turn our attention to the operation of taking square roots of real numbers,
Recall that, if a is a natural number, then g = b means & = g and b > 0. The same
definition can be extended for positive real numbers.

Let & > 0 be a real number. Then fz = b means B =g and b > 0.

In Section 1.2, we saw how to represent .,..IrE for any positive integer n on the number
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line. We now show how to find .J; for anv given positive real number x geometrically.
For example, let us find it for x= 3.5, i.e., we find -J' 1.5 geometrically.

Fig. 1.15

Mark the distance 3.5 units from a fixed point A on a given line to obtain a point B such
that AB = 3.5 units (see Fig. 1.15). From B. mark & distance of 1 unit and mark the
new point as C. Find the mid-point of AC and mark that point as Q. Draw a semicircle
with centre O and radius OC. Draw a line perpendicular to AC passing throngh B and
intersecting the semicircle at D. Then, BD = E \ B
v b !

0 \
havednnﬂfurthecaatx:lﬁ,weﬂndﬂﬂz\E T . =B I O
(see Fig, 1.16). We can prove this result using the
Pythagoras Theorem. v 116

Notice that, in Fig. 1.16, A OBD is a right-angled triangle. Alsa, the radius of the circle
x+1

Maore generally, to find Jx , for any positive real
number x, we mark B so that AB = x units, and, as io
Fig. 1.16, mark C so that BC = 1 unit. Then, as we

is 5 Lnits,
+1
Therefore, OC = OD = OA = ‘.2 umits.
. _(m] _x-1
Now, OB = B )

So, by the Pythagoras Theorem, we have:

i by
BD? = OD? - OB = (‘;1] —[1;1] =2 _5.

This shows that BD = [y .
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This construction gives us a visual, and geometric way of showing that [y exists for

all real numbers x = (. If you want to know the position of .HI’: on the number ling,

then let us treat the line BC as the nomber line, with B as zero, C az 1, and so on
Draw an are with centre B and radiug BD, which intersects the number line in E

(see Fig. 1.17), Then, E tepresents '-G .

Fig. 1.17

We would like to now extend the idea of square roots to cube roots, fourth roots,
and in general nth roots. where n is a positive integer. Recall your understanding of
square roots and cube roots from earlier classes.

What is {fﬁ 7 Well, we know it has to be some positive number whose cube is B, and

you must have guessed .{f’_ =2. Let us try m . Do you know some number b such
that ¥ = 2437 The answer is 3, Therefore. 243 = 3.

From these examples. can you define #fz for a real number a > 0 and a positive
inleger n?
Leta >0 be a real number and # be a positive integer. Then ﬂg = b, if ¥ = g:and
b>0. Note that the symbol /" used in /2. I8, #fa . etc. is called the radical sign.

‘We now list some identities relating to square roots, which are useful in various
ways, You are already familiar with some of these from vour earlier classes. The
remaining ones follow from the distributive law of multiplication over addition of real
numbers, and from the identity (x + ¥} (x — ¥) =* — y*, for any real numbers x and y.

Let a and b be positive real numbers. Then

(M) Jab =+fafb {HJJ%=%
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i) (Va+ve)(Na-b)=a-b (v (a+b)(a-b)=a'-b
(v) (JE+J5](JF+JE)=&+ ad +lbc ++Jbd
i) (Va +B) =a+24ab +b

Let us look at some particular cases of these identities,
Example 16 : Simplify the following expressions:
@ (5+47)(2+5) @ (5+5)(5-+5)
(i) [vﬁhﬁ}z vy (VIT=~T) (VIT +47)
Solution : (i) (5+47)(2+4/5)=10+5V5 + 247 +35
@) (5+5)(5-+5)=5-(\5) =25-5=20
i) (v/3 + ﬁ]z =(.E)ﬂ +2J§ﬁ+(ﬁ]z =3+ 2421 + T=10+221
() (VIT ~7) (VT +47) = (VET) = (v7) =11-7=4

Remark : Note that “simplify” in the example above has been used to mean that the
expression should be written as the sum of a rational and an irrational number.

1
We end thiz section by considering the fellowing problem. Look at E Can vou tell

where it shows up on the number line? You know that it is irrational. May be it is easier
to handle if the denominator is a rational number. Let us see, if we can ‘rutdonalise’ the
denominator, that is, to make the denominator into a rational number. To do so, we
need the identities involving square roots. Let us see how.

1
Example 17 : Rationalise the denominator of E

1
Solution : We want to write _\E as an equivalent expression in which the denominator

is a rational number. We know that \f7 . /2 is rational. We also know that multiplying



MUMBER 8 Y5 TEMS 23

_\E by :E- will give us an equivalent expression, since -E = 1. S0, we put these two

facts together to get

1 -J'£
J_J_J_

In this form, it is easy to locate E on the number line, It is half way between 0 and
J2!

1
Example 18 : Rationalise the denominator of 2443

1
Solution : We use the Identity (iv) given earlier. Multiply and divide 243 by

1 _2-43_2-4
2-V3 toget 5 EX ST BT 4 =243,

5
Example 1% : Ralionalise the denomunator of JE _JEI

Solution : Here we use the ldenuty (iii) given earlier.

5 5 B+ _S(B45) (s
o B AR s () )

1
Example 20 : Rationalise the denominator of :
e 7432

1
Solution : = " = =
T+32 7+32 (7-3/2) 49-18 31
S0, when the denominator of un expression contains a term with a square rool (or
a number under a radical sign), the process of converting if to an equivalent expression
whose denominator is a rational number is called rationalising the denominator.

i L’?—aﬁ}_?—aﬁ_?—&ﬁ
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EXERCISE 1.5
1. Classify the following numbers as rational or irrational:
W7
W 2-45 (i) (3+w.-‘23)-42_3 i) -
il
1
Liv E (V) 2n
2. Simplify each of the following expressions:
i (3+~J’§][2+~E] i) [3+~J§]{3—J§)
2
iy (V5 +2) (i) (N5 —2) (V5 +42)
3. Recall, mis defined as the ratio of the cireomference (say ¢) of a civele to its diametar
C
isay ). Thatis, m= E This seems to contradiet the fact that m is frrational. How will
vou resolve this contradiction?
4, Represent %3 on the number line.
5. Rationalise the denominators of the fallowing;

| 1
] F () ﬁ_

&

1 1
i) B +2 {_ivj_ﬁ_z

1.6 Laws of Exponents for Real Numbers

Do you remember how to simplify the following?

@ 172:1P= (i) (547 =
il
{11i) % = (iv) TE 0=

Did you get these answers? They are as follows;
@ P 1P=17 (i) (5% =5"

23°

(i) S5 = 23 (iv) 7. 97 = 633
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To get these answers, you would have used the following laws of exponents,
which you have learnt in your earlier classes. (Here a, n and m are natural numbers.
Remember, a is called the base and m and n are the exponents.)

(i) a".a"=g"*" (i) (g™ = g™

(i) Z—: =d" ".m>n (iv) a®™b™ = (ab)”

What is (a)?? Yes, itis 1! So youo have learnt that () = 1, So, vsing (iii), we can
gel —- = a . We can now extend the laws 1o negative exponents 100,

So, for example :

@ 17 17*=177 :1%3_ () (57 =5*

-
i) —=23" ) (7797 =(63)7
Suppose we want o do the following computations:

ER LAY
@ 2.2 (i) [3’]

1
. Lo
() — (iv) 135 -17%

7!

THow would we 2o about it? 1t turns out that we can extend the laws of exponents
that we have studied earlier, even when the base is a positive real number and the
exponents are rational nurmbers. (Later you will study that it ¢an further to be extended

when the exponents are real numbers.) But before we state these laws. and to even
3

make sense of these laws, we need to first understand what, for example 42 is. So,
we have some work to do!

Tn Section 1.4. we defined gf for a real number a > 0 as lollows:

Let a > () be a real number and # a positive integer. Then {ll"_ =b, if"=aand
b =0,

1 i
In the language of exponents, we define 2fz = @". So, in particular, 32 = 2%,

3
There are now two ways o look at 42,
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& {1
41 =t [42J =2'1=S

2
]

42 = (43)5 = (64)

LR

=8

Therefore, we have the following definition:

Let @ = 0 be a real number, Let m and n be integers such that m and n have no
cominon factors other than 1, and 7 > 0. Then,

a" = ()m =&a"
We now have the following extended laws of exponents:
Let @ =0 be a real number and p and g be rational numbers. Then, we have

(i) a°.a%=a™ (i) (@®)" = a™
a? § . .
{iii) s a* (iv) a"t = (ab)*
(F
You can now use these laws o answer the questions asked earlier,
ER Ly
Example 21 : Simplify (i) 23 - 23 (i) ['3“]
?51 et
(iii) — (iv) 137 .17°
73

Solution :

11 Ay s Iy A
@ up=ptit=gp=00=2 () [35) =3

—ﬁ (L i] -5 P 1 1
i) ~-=7" V=71 =112 (iv) 13% - 175 = (13 % 17)8 = 2218
fl',ra'
EXERCISE 1.6
i3 L A
1. Find: (i) 641 (i) 32 {iif) 1253
i I 3 -1
2. Find: (i) 92 (i) 32° (i) 164 (iv) 125°%
i :
- ER Ly L N
3. Simplify: ) 23.25 @ () (i) — (v 72. 83

11*
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1.7 Summary

In this chapter, you have studied the following points:

1'

T‘

ﬁ'

.ui

A number r is called a rational nawmber, if it can be written in the form % . where pand g are

miegers aned g = 0.

Anumber s 15 called a rational number, if 1t cannot be written in the form % , Where pand
g are integers and g = 0.

The decimal expansion of a ratiomal number is either terminating of non-terminating recuming.
Moreover, a number whose decimal expansion is terminating or non-terminating recurring
i5 rational.

The decimal expansion of an irrational numbet is non-terminating non-recurring, Moreover,
& number whose decimal expansion is non-terminating non-recurring is irrational.

Al the rational and irratonal numbers malee up the collection of real numbers.

There 15 a unique real number correspanding (o every point on the number line, Also,
camresponding to each real namber, there is a unique point on the mumber line,

: ; " : ; : r
If 7 15 ratiomal and 5 is irrational, then r+ 5 and r— y are irrational numbers, and r5 and T are

rrrational numbers, F= (L

For positive real numbers g and &, the following identities hold

i @b =avb @ g%

i) (Va+vo)(Va ) =a-b v (a+b)(a—B)=a’~5
(v} {J;+'-.|'r5}1=a+ ab + b

a—b

Ja -5

l
To rationalise the denominator of = we multiply this by » whert a and & are
Ja + b

integers,

1 Let o > 0 be a real number and p and g be rational numbers. Then

i . d=gr (i) (g°)7 =0

. o "
(mth F=ﬂF ' {1¥) afb® = tab¥



