
233

Learining Objectives
	

After learning this chapter, the students
will be able to

•	 Understand the purpose of classes,
objects Constructors and Destructors

•	 able to construct C++ programs
using classes with Constructors and
Destructors

•	 Execute and debug class programs with
Constructors and Destructors

14.1 Introduction to Classes

	 The most important feature of C++
is the “Class”. It is significance is highlighted
by the fact that Bjarne Stroustrup initially
gave the name 'C with classes'. C++ offers
classes, which provide the four features
commonly present in OOP languages:
Abstraction, Encapsulation, Inheritance,
and Polymorphism.

14.1.1 Need for Class

	 Class is a way to bind the data and
its associated functions together. Classes
are needed to represent real world entities
that not only have data type properties but
also have associated operations. It is used to
create user defined data type

CHAPTER 14
Classes and objects

14.1.2 Declaration of a class

	 A class is defined in C++ using the
keyword class followed by the name of the
class. The body of the class is defined inside
the curly brackets and terminated either by a
semicolon or a list of declarations at the end.

Note

The only difference between
structure and class is the members
of structure are by default public
where as it is private in class.

class class-name
{
private:
	 variable declaration;
	 function declaration;
protected:
	 variable declaration;
	 function declaration;
public:
	 variable declaration;
	 function declaration;
};

The General Form of a class definition

•	 The class body contains the declaration
of its members (Data member and
Member functions).

Unit IV
Object Oriented
Programming with C++

Chapter 14 Page 233-248.indd 233 08-12-2021 21:59:03

234

•	 The class body has three access specifiers
(visibility labels) viz., private , public
and protected.

14.1.3 Class Access Specifiers

	 Data hiding is one of the important
features of Object Oriented Programming
which allows preventing the functions of
a program to access directly the internal
representation of a class type. The access
restriction to the class members is specified
by public, private, and protected sections
within the class body. The keywords public,
private, and protected are called access
specifiers. The default access specifier for
members is private.

The Public Members

	 A public member is accessible from
anywhere outside the class but within a
program.You can set and get the value of
public data members even without using
any member function.

The Private Members

	 A private member cannot be
accessed from outside the class. Only the
class member functions can access private
members.By default all the members of a
class would be private.

The Protected Members

	 A protected member is very similar
to a private member but it provides one
additional benefit that they can be accessed
in child classes which are called derived
classes (inherited classes).

Example

Keyword class intimates the compiler that it is a class definition

These are private access specifier members

These are protected access specifier members

That means these members cannot be accessed
from outside

These members also cannot be accessed from
outside

Members under this specifier can be accessed
from outside

}
}

Class name or tag name acts as a user defined data type. Using this,
object of the same class type will be created.

class student
{
private:
	 char name [10];
	 int rollno, mark1, mark2, total;
protected:
	 void accept();
	 void compute();
public:
	 void display();
};

Chapter 14 Page 233-248.indd 234 08-12-2021 21:59:03

235

Note

	 If all members of the class are
defined as private ,then the object
of the class can not access anything
from the class.

Activity 1
State the reason for the invalidity of the
following code fragment

(i) (ii)

class count
{
 int first;
 int second;
 public:
 int first;
};

class item
{
int prd;
 };
item int prdno;

14.1.4 Definition of class members

	 Class comprises of members.
Members are classified as Data Members
and Member functions. Data members are
the data variables that represent the features
or properties of a class. Member functions
are the functions that perform specific tasks
in a class. Member functions are called as
methods, and data members are also called
as attributes.

Example
Class result
{
Private;
	 char name [10];
	 int rollno,mark1, mark2, total;

Public:
	 void accept();
	 void display();
};

}
}

Member functions

Data members

Note

Classes also contain some special
member functions called as
constructors and destructors.

14.1.5 Defining methods of a class

	 Without defining the methods
(functions), class definition will become
incomplete. The member functions of a
class can be defined in two ways.

(1) Inside the class definition

(2) Outside the class definition

(1) Inside the class definition

	 When a member function is defined
inside a class, it behaves like inline functions.
These are called Inline member functions.

Note

If a function is inline, the compiler
places a copy of the code at each
point where the function is called at
compile time.

(2) Outside the class definition

	 When Member function defined
outside the class just like normal function
definition (Function definitions you are
familiar with) then it is be called as outline
member function or non-inline member
function. Scope resolution operator (::)
is used for this purpose. The syntax for
defining the outline member function is

Chapter 14 Page 233-248.indd 235 08-12-2021 21:59:03

236

Syntax

	 return_type class_name :: function_name (parameter list)
	 {
		 function definition
	 }

For example: Member function

Scope resolution operator

Data type of the member function

Class name / tag

void add :: display()

include <iostream>
using namespace std;
class Box
{
	 double width;		 // no access specifier mentioned
public:
	 double length;
 	 void printWidth()		 //inline member function definition
	 {
		 cout<<”\n The width of the box is...”<<width;
	 }
	 void setWidth(double w);		 //prototype of the function
};
void Box :: setWidth(double w)	 // outline member function definition
{
	 width=w;
}
int main()
{
Box b; 	 // object for class Box
b.setWidth(10.0);	 // Use member function to set the width.
b.printWidth();		 //Use member function to print the width.
return 0;
}
Output:
The width of the box is... 10

Illustration 14.1 Inline and Outline member function

Absence of access specifier means
that members are private by default..

Chapter 14 Page 233-248.indd 236 08-12-2021 21:59:03

237

Note

Declaring a member function having
looping construct, switch or goto
statement as inline is not advisable.

14.2 Creating Objects

	 A class specification just defines
the properties of a class. To make use of a
class, the variables of that class type have to
be declared. The class variables are called
object. Objects are also called as instance of
class.

For example

		 student s;

	 In the above statement s is an instance
of the class student.

	 Objects can be created in two
methods,

	 (1) Global object

	 (2) Local object

(1) Global Object

	 If an object is declared outside all the
function bodies or by placing their names
immediately after the closing brace of the
class declaration then it is called as Global
object. These objects can be used by any
function in the program

(2) Local Object

	� If an object is declared with in a
function then it is called local object.
It cannot be accessed from outside
the function.

include <iostream>
include <conio>
using namespace std
class add		
{

int a,b;
public:

int sum;
void getdata()
{

a=5;
b=10;
sum = a+b;

}
} a1;			 //global object
add a2;		 //global object
int main()
{
add a3; 	 // Local object
a1.getdata();
a2.getdata();
a3.getdata();
cout<<a1.sum;
cout<<a2.sum;
cout<<a3.sum;
return 0;
}
Output:
151515

Illustration 14.2 The use of local and
global object

ACTIVITY 2
Identify the error in the following code
fragment
class A
{
	 float x;
	 void init()
	 {
	 A a1;
	 X1.5=1;
	 }};
void main()
{ A1.init(); }

Chapter 14 Page 233-248.indd 237 08-12-2021 21:59:03

238

14.3 Memory allocation of objects

	 The member functions are created and placed in the memory space only when they
are defined as a part of the class specification. Since all the objects belonging to that class use
the same member function, no separate space is allocated for member functions when the
objects are created. Memory space required for the member variables are only allocated
separately for each object because the member variables will hold different data values for
different objects

include <iostream>
using namespace std;

class product
{
	 int code, quantity;
	 float price;
	 public:
	 void assignData();
	 void Print();
};
int main()
{
	 product p1, p2;
	 cout<<”\n Memory allocation for object p1 ” <<sizeof(p1);
	 cout<<”\n Memory allocation for object p2 ” <<sizeof(p2);
	 return 0;
}

Output:
 Memory allocation for object p1 12
 Memory allocation for object p2 12

Illustration 14.3 Memory allocation for objects

	 Member functions assignData() and Print() belong to the common pool in the sense
both the objects p1 and p2 will have access to the code area of the common pool.

Note

The members will be allocated with memory space only after the creation
of the class type object

Memory for Objects for p1 and p2 is illustrated:

Code quantity price Code quantity price{ {4 bytes 4bytes 4bytes

12 bytes 12 bytes

P2 objectP1 object

4 bytes 4bytes 4bytes

Chapter 14 Page 233-248.indd 238 08-12-2021 21:59:04

239

ACTIVITY 3
What is the size of the objects s1, s2?
class sum
{
	 int n1,n2;
	 public:
	 void add(){int n3=10;n1=n2=10;}
} s1,s2;

14.4 Referencing class members

	 The members of a class are referenced
(accessed) by using the object of the class
followed by the dot (membership) operator
and the name of the member.

The general syntax for calling the member
function is:

Object_name . function_name(actual
parameter);

For example consider the following
illustration

Stud . execute();

Member function
Dot operator
Object name

#include<iostream>
using namespace std;
class compute
{
 int n1,n2; 	 //private by default
 public :
 int n;
 int add (int a, int b)	 //inline member function

 {
 int c=a+b;	 //int c ; local variable for this function

 return c;
 }

}c1,c2;	
int main()
{
 c1.n =c1.add(12,15); //member function is called

 c2.n =c2.add(8,4);
 cout<<"\n Sum of object-1 "<<c1.n;
 cout<<"\n Sum of object-2 "<<c2.n;
 cout<<"\n Sum of the two objects are "<<c1.n+c2.n;

	 return 0;
}
Output:
 Sum of object-1 27
 Sum of object-2 12
 Sum of the two objects are 39

Illustration 14.4 C++ program to
illustrate the communication of object:

Note

Even an array of objects can be created for a class. It is declared and defined in the
same way as any other type of array.
Example :
student s[10];
Where student is the class name and s[10] is 10 objects created for the student class.

14.5 Introduction to Constructors

	 The definition of a class only creates a new user defined data type. The instances of the
class type should be instantiated (created and initialized) . Instantiating object is done using
constructor.

Chapter 14 Page 233-248.indd 239 08-12-2021 21:59:04

240

14.5.1 Need for Constructors

An array or a structure in c++ can be initialized during the time of their declaration.

For example

struct sum
 {
	 int n1,n2;
 };
class add
 {
	 int num1,num2;
 };
int main()
 {
	 int arr[]={1,2,3}; //declaration and initialization of array
	 sum s1={1,1}; //declaration and initialization of structure object
	 add a1={0,0}; // class object declaration and initialization throws 	
								 compilation error
 }

Member function of a class can access
all the members irrespective of their
associated access specifier.

	 The initialization of class type object at the time of declaration similar to a structure
or an array is not possible because the class members have their associated access specifiers
(private or protected or public). Therefore Classes include special member functions called as
constructors. The constructor function initializes the class object.

14.6 Declaration and Definition

	 When an instance of a class comes into scope, a special function called the constructor
gets executed. The constructor function name has the same name as the class name. The
constructors return nothing. They are not associated with any data type. It can be defined
either inside class definition or outside the class definition.

Example 1:

#include<iostream>
using namespace std;
class Sample
{
	 int i,j;
 public :
	 int k;
 Sample()
 {
 i=j=k=0; //constructor defined inside the class
 }
};

 Illustration 14.5 A constructor defined inside the class specification.

Chapter 14 Page 233-248.indd 240 08-12-2021 21:59:04

241

14.6.1 Functions of constructor

	 As we know now that the constructor is a special initialization member function of a
class that is called automatically whenever an instance of a class is declared or created. The
main function of the constructor is

1) To allocate memory space to the object and

2) To initialize the data member of the class object

	 There is an alternate way to initialize the class objects but in that case we have to
explicitly call the member function.

14.7 Types of constructors

There are different types of constructors.

•	 Default Constructors

	 A constructor that accepts no parameter is called default constructor. For example in
the class Data, Data ::Data() is the default constructor . Using this constructor Objects are
created similar to the way the variables of other data types are created. If a class does not
contain an explicit constructor (user defined constructor) the compiler automatically generate
a default constructor.

•	 Parameterized Constructors

	 A constructor which can take arguments is called parameterized constructor .This type
of constructor helps to create objects with different initial values. This is achieved by passing
parameters to the function.

Example :

Data :: Data(int,int);

•	 Copy Constructors

	 A constructor having a reference to an already existing object of its own class is called
copy constructor. It is usually of the form Data (Data&), where Data is the class name.

	 A copy constructor can be called in meny ways:

1)	� When an object is passed as a parameter to any of the member functions

	 Example void Data::putdata(Data x);

2)	 When a member function returns an object

	 Example Data getdata() { }

3)	 When an object is passed by reference to an instance of its own class

	 For example, Data d1, d2 (d1); // d2(d1) calls copy constructor

Chapter 14 Page 233-248.indd 241 08-12-2021 21:59:04

242

#include<iostream>
using namespace std;
class Data
 {
 int i, j;
 public:
 int k;
 Data()
 {
 cout<<"Non Parametrerized constructor";
 i=0;
 j=0'
 }
 Data(int a,int b)
 {
 cout<<"Parametrerized constructor";
 i=a;
 j=b'
 }
 Data(Data &a)
 {
 cout<<"Copy constructor";
 i=a.i;
 j=b.j'
 }

	 void display() //member function
 {
 cout<< i<<j;
 }
 };
int main()
{
	 Data d1,d2(10,20),d3(d2);
 	 d1.display();
 	 d2.display();
 	 d3.display();
 return 0;

}

Illustration 14.6 Types of constructor

14.8 Invocation of constructors

There are two ways to create an object using parameterized constructor
•	 Implicit call
•	 Explicit call

Chapter 14 Page 233-248.indd 242 08-12-2021 21:59:04

243

14.8.1 Implicit call
	 In this method ,the parameterized constructor is invoked automatically whenever an
object is created. For example simple s1(10,20); in this for creating the object s1 parameterized
constructor is automatically invoked.
14.8.2 Explicit call
	 In this method ,the name of the constructor is explicitly given to invoke the parameterized
constructor so that the object can be created and initialized .
For example

simple s1=simple(10,20); //explicit call

	 Explicit call method is the most suitable method as it creates a temporary object ,the
chance of data loss will not arise.A temprory object lives in memory as long as it is being used
in an expression.After this it get destroyed.

14.9 Dynamic initialization of Objects
	 When the initial values are provided during runtime then it is called dynamic
initialization.

#include<iostream>
using namespace std;
class X
{ int n;
 float avg;
 public:
	 X(int p,float q)
	 { n=p;
	 avg=q; 	}
	 void disp()
	 { 	 cout<<"\n Roll numbe:- " <<n;
		 cout<<"\nAverage :- "<<avg; 	 } };
int main()
{
int a ; float b;
	 cout<<"\nEnter the Roll Number";
	 cin>>a;
	 cout<<"\nEnter the Average";
	 cin>>b;
	 X x(a,b); // dynamic initialization
	 x.disp();
	 return 0;
}

Output:
Enter the Roll Number 1201
Enter the Average 98.6
 Roll numbe:- 1201
Average :- 98.6

Illustration14.7 to illustrate dynamic initialization

Chapter 14 Page 233-248.indd 243 08-12-2021 21:59:04

244

14.10 Characteristics of Constructors

•	 The name of the constructor must be
same as that of the class

•	 No return type can be specified for
constructor

•	 A constructor can have parameter list
•	 The constructor function can be

overloaded
•	 They cannot be inherited but a derived

class can call the base class constructor
•	 The compiler generates a constructor, in

the absence of a user defined constructor.
•	 Compiler generated constructor is public

member function
•	 The constructor is executed automatically

when the object is created
•	 A constructor can be used explicitly to

create new object of its class type
14.11 Destructors

	 When a class object goes out of scope,
a special function called the destructor gets
executed. The destructor has the same name
as the class tag but prefixed with a ~(tilde).
Destructor function also return nothing and
it does not associated with anydata type.

14.11.1 Need of Destructors

	 The purpose of the destructor is to
free the resources that the object may have
acquired during its lifetime. A destructor
function removes the memory of an object
which was allocated by the constructor at
the time of creating a object.

14.11.2 Declaration and Definition

	 A destructor is a special member
function that is called when the lifetime
of an object ends and destroys the object
constructed by the constructor. Normally
declared under public.

#include<iostream>
using namespace std;
class simple
{
private:
int a, b;
public:
simple()
{
a= 0 ;
b= 0;
cout<< "\n Constructor of class-simple ";
}
void getdata()
{
cout<<"\n Enter values for a and b ";
cin>>a>>b;
}
void putdata()
{
cout<<"\nThe two integers are .. ";
cout<<<<a<<'\t'<< b<<endl;
cout<<"\n The sum = "<<a+b;
}
~simple()
{ cout<<”\n Destructor is executed ”;}
};
int main()
{
simple s;
s.getdata();
s.putdata();
return 0;
}

Output:
Constructor of class-simple
Enter values for a and b 6 7
The two integers are .. 6 7
The sum = 13
Destructor is executed

Illustration14.8 To illustrate
destructor function in a class

14.12 Characteristics of Destructors
•	 The destructor has the same name as that

class prefixed by the tilde character ‘~’.
•	 The destructor cannot have arguments
•	 It has no return type
•	 Destructors cannot be overloaded
•	 In the absence of user defined destructor,

it is generated by the compiler
•	 The destructor is executed automatically

when the control reaches the end of class
scope to destroy the object

•	 They cannot be inherited

Chapter 14 Page 233-248.indd 244 08-12-2021 21:59:04

245

•	 A class binds data and associated
functions together.

•	 A class in C++ makes a user defined data
type using which objects of this type can
be created.

•	 While declaring a class data members ,
member functions ,access specifiers and
class tag name are given.

•	 The member functions of a class can
either be defined within the class (inline)
definition or outside the class definition.

•	 The public members of the class can be
accessed outside the class directly by
using object of this class type.

•	 A class binds data and associated
functions together.

•	 A class in C++ makes a user defined data
type using which objects of this type can
be created.

•	 While declaring a class data members ,
member functions, access specifiers and
class tag name are given.

•	 The member functions of a class can
either be defined within the class (inline)
definition or outside the class definition.

•	 The public members of the class can be
accessed outside the class directly by
using object of this class type.

•	 A class supports OOP features
ENCAPSULATION by binding data and
functionsassociated together.

•	 A class supports Data hiding by hiding
the information from the outside world

through private and protected members.

•	 When a member function is called by
another member function of the same
class , it is calledas nesting of member
functions.

•	 The scope resolution operator (::), when
used with the class name depicts that the
members belong to that class as in class_
name :: function_name and only used
with the variable name as in :: s variable
–name , depicts the global variable.(the
one with file scope).

•	 When an instance of a class comes into
scope, a special function called the
constructor gets executed.

•	 The constructor function allocates
memory and initializes the class object.

•	 When an instance of a class comes into
scope, a special function called the
constructor gets executed.

•	 When a class object goes out of scope,
a special function called the destructor
gets executed.

•	 The constructor function name and the
destructor have the same name as the
classtag.

•	 A constructor without parameters is
called as default constructor.

•	 A constructor with default argument is
equivalent to a default constructor

•	 Both the constructors and destructor
return nothing. They are not associated
with any data type.

•	 Objects can be initialized dynamically .

Points to Remember:

Chapter 14 Page 233-248.indd 245 08-12-2021 21:59:04

246

3.	 A member function can call another
member function directly, without
using the dot operator called as

	 (A) sub function
	 (B) sub member
	 (C) nesting of member function
	 (D) sibling of member function
4.	 The member function defined within

the class behave like functions

	 (A) inline 		 (B) Non inline
	 (C) Outline 		 (D) Data
5.	 Which of the following access specifier

protects data from inadvertent
modifications?

	 (A) Private		 (B) Protected
	 (C) Public 		 (D) Global
6. class x
 {
	 int y;
	 public:
	 x(int z){y=z;}
	 } x1[4];
 int main()
 { x x2(10);
 return 0;}
 �How many objects are created for the above

program
	 (A) 10 (B) 14 (C) 5 (D) 2

7.	� State whether the following statements
about the constructor are True or False.

	 i) constructors should be declared in
the private section.

	 ii) constructors are invoked
automatically when the objects are
created.

	 (A) True, True		 (B) True, False
	 (C) False, True		 (D) False, False

Hands on practice:

1	� Define a class Employee with the
following specification

private members of class Employee
empno- integer
ename – 20 characters
basic – float
netpay, hra, da, - float
�calculate () – A function to find the
basic+hra+da with float return type
�public member functions of class employee
�havedata() – A function to accept values for
empno, ename, basic, hra, da and
call calculate() to compute netpay
dispdata() – A function to display all the
data members on the screen

Evaluation

SECTION – A
Choose the correct answer

1.	 The variables declared
inside the class are
known as

	 (A) data 			 (B) inline
 	 (C) method 		 (D) attributes
2.	� Which of the following statements about

member functions are True or False?
	 i) A member function can call another

member function directly with using
the dot operator.

	 ii) Member function can access the
private data of the class.

	 (A) i)True, ii)True	 (B) i)False, ii)True
	 (C) i)True, ii)False	 (D) i)False,ii)False

Chapter 14 Page 233-248.indd 246 08-12-2021 21:59:04

247

8.	 Which of the following constructor is
executed for the following prototype ?

	 add display(add &); 	 // add is
a class name

	 (A) Default constructor
	 (B) Parameterized constructor
	 (C) Copy constructor
	 (D) Non Parameterized constructor

SECTION-B

Very Short Answers

1.	 What are called members?
2.	 Differentiate structure and class though

both are user defined data type.
3.	 What is the difference between the

class and object in terms of oop?
4.	 Why it is considered as a good practice

to define a constructor though
compiler can automatically generate a
constructor ?

5.	 Write down the importance of
destructor.

SECTION-C
Short Answers

1.	 Rewrite the following program after
removing the syntax errors if any and
underline the errors:

	 #include<iostream>
	 $include<stdio>
	 class mystud
	 {	 int studid =1001;
		 char name[20];
	 public
		 mystud() 	 { }
		 void register ()
		 {cin>>stdid; gets(name);	 }
	 void display ()
	 {cout<<studid<<”: “<<name<<endl;}
	 }

	 int main()
	 { mystud MS;
	 register.MS();
	 MS.display();
	 }
2.	� Write with example how will you

dynamically initialize objects?

3.	� What are advantages of declaring
constructors and destructor under
public accessability?

4.	� Given the following C++ code, answer
the questions (i) & (ii).

class TestMeOut

{

 public:

 ~TestMeOut()	 //Function 1

 {cout<<“Leaving the exam hall”<<endl;}

 TestMeOut()	 //Function 2

 {cout<<“Appearing for exam”<<endl;}

 void MyWork() 	 //Function 3

 {cout<<“Answering”<<endl;} 	 };

	 (i) In Object Oriented Programming,
what is Function 1 referred as and when
doesit get invoked / called ?

	 (ii) In Object Oriented Programming,
what is Function 2 referred as and when
doesit get invoked / called ?

SECTION - D

Explain in detail

1.	 Mention the differences between
constructor and destructor

2.	 Define a class RESORT with the
following description in C++ :

		 Private members:
	 Rno // Data member to store room number

	 Name //Data member to store user name

Chapter 14 Page 233-248.indd 247 08-12-2021 21:59:04

248

	 Charges //Data member to store per day charge

	 Days //Data member to store the number of days

	� Compute()/*A function to calculate total amount

as Days * Charges and if the total amount exceeds

11000 then total amount is 1.02 * Days *Charges */

	 Public member:
	� GetInfo() /* Function to Read the information

like name , room no, charges and days*/

	 DispInfo()/* Function to display all entered

details and total amount calculated using COMPUTE

function*/

3.	 Write the output of the following
#include<iostream>
using namespace std;
class student
{
	 int rno, marks;
	 public:
	 student(int r,int m)
	 { cout<<"Constructor "<<endl;
	 rno=r;
	 marks=m;
	 }
	 void printdet()
	 {
	 marks=marks+30;
	 cout<<"Name: Bharathi"<<endl;
	 cout<<"Roll no : "<<rno<<"\n";
	 cout<<"Marks : "<<marks<<endl;
	 }
};
int main()
{
	 student s(14,70);
	 s.printdet();
	 cout<< "Back to Main";
	 return 0;
}

Reference:
(1)	 Object Oriented Programming

with C++ (4th Edition), Dr. E.
Balagurusamy,
Mc.Graw Hills.

(2)	 The Complete Reference C++ (Forth
Edition), Herbert Schildt.Mc.Graw
Hills.

Chapter 14 Page 233-248.indd 248 08-12-2021 21:59:04

	11th Std Computer Science_EM Chapter 14

