CHAPTER 10

REFLECTION

Exercise 10.1

1. Find the co-ordinates of the images of the following points under reflection in the x-axis:

- (i) (2,-5)
- (ii) $\left(\frac{-3}{2}, \frac{-1}{2}\right)$
- (iii) (-7, 0)

Solution:

The co-ordinates of the images of the points under reflection in the x-axis will be:

- (i) Image of (2, -5) will be (2, 5)
- (ii) Image of $\left(\frac{-3}{2}, \frac{-1}{2}\right)$ will be $\left(\frac{-3}{2}, \frac{1}{2}\right)$
- (iii) Image of (-7, 0) will be (-7, 0)

2. Find the co-ordinates of the images of the following points under reflection in the y-axis:

- (i) (2, -5)
- (ii) $\left(\frac{-3}{2}, \frac{1}{2}\right)$
- (iii) (0, -7)

Solution:

The co-ordinates of the images of the points under reflection in the y-axis will be:

(i) Image of (2, -5) will be (-2, -5)

- (ii) Image of $\left(\frac{-3}{2}, \frac{1}{2}\right)$ will be $\left(\frac{3}{2}, \frac{1}{2}\right)$
- (iii) Image of (0, -7) will be (0, -7)
- 3. Find the co-ordinates of the images of the following points under reflection in the origin:
- (i) (2,-5)
- (ii) $\left(\frac{-3}{2}, \frac{-1}{2}\right)$
- (iii) (0, 0)

The co-ordinates of the images of the points under reflection in the y-axis will be:

- (i) Image of (2, -5) will be (-2, 5)
- (ii) Image of $\left(\frac{-3}{2}, \frac{-1}{2}\right)$ will be $\left(\frac{3}{2}, \frac{1}{2}\right)$
- (iii) Image of (0, 0) will be (0, 0)
- 4. The image of a point P under reflection in the x-axis is (5, -2). Write down the coordinates of P.

Solution:

Given that (5, -2) are the co-ordinates of the image of a point P under x-axis.

Thus, the co-ordinates of P will be (5, 2).

- 5. A point P is reflected in the x-axis. Co-ordinates of its image are (8, -6).
- (i) Find the co-ordinates of P.

(ii) Find the co-ordinates of the images of P under reflection in the y-axis.

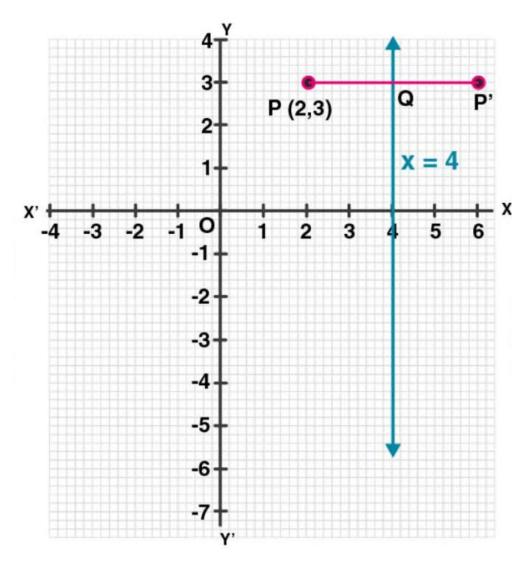
Solution:

- (i) The co-ordinates of image of P which is reflected in x-axis are (8, -6).
- (ii) The co-ordinates of image of P under reflection in the y-axis will be (-8, 6).
- 6. A point P is reflected in the origin. Co-ordinates of its image are (2, -5). Find
- (i) The co-ordinates of P.
- (ii) The co-ordinates of the image of P in the x-axis.

Solution:

The co-ordinates of image of a point P which is reflected in origin are (2, -5), then

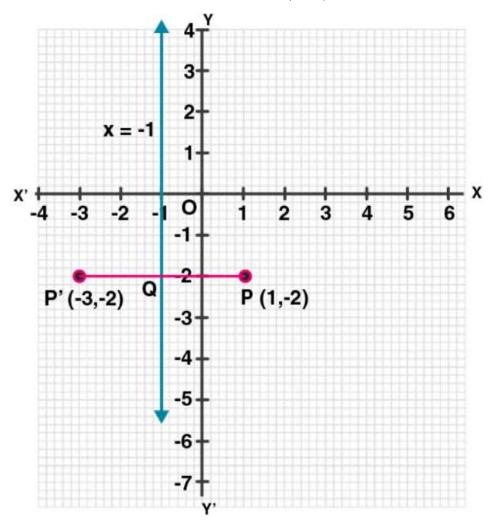
- (i) Co-ordinates of P will be (-2, 5)
- (ii) Co-ordinates of the image of P in the x-axis will be (-2, -5).


7.

- (i) The point P (2, 3) is reflected in the line x = 4 to the point P'. Find the co-ordinates of the point p'.
- (ii) Find the image of the point P (1, -2) in the line x = -1.

Solution:

- (i) The steps are:
- (a) Draw axis XOX' and YOY' and take 1 cm = 1 unit
- (b) Plot point P (2, 3) on it.
- (c) Draw a line x = 4 which is parallel to y-axis.
- (d) From P, draw a perpendicular on x = 4, which intersects x = 4 at Q.

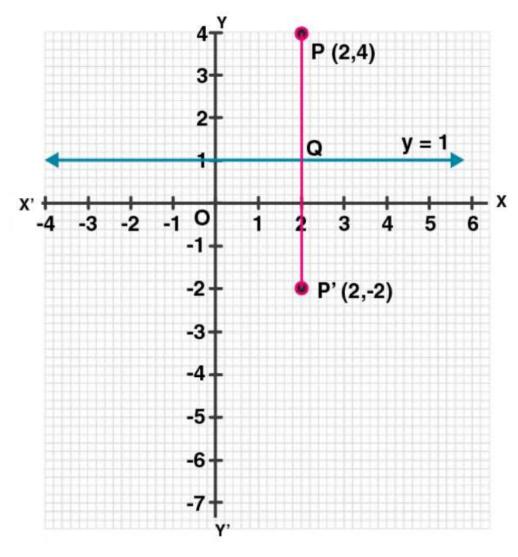

(e) Produce PQ to P', such that QP' = QR. Thus, P' is the reflection of P in the line x = 4Hence, the co-ordinates of P' are (6, 3).

- (ii) The steps are:
- (a) Draw axis XOX' and YOY' and take 1 cm = 1 unit
- (b) Plot point P (2, 3) on it.
- (c) Draw a line x = 4 which is parallel to y-axis.
- (d) From P, draw a perpendicular on x = 4, which intersects x = 4 at Q.
- (e) Produce PQ to P', such that QP' = QR.

Thus, P' is the reflection of P in the line x = 4

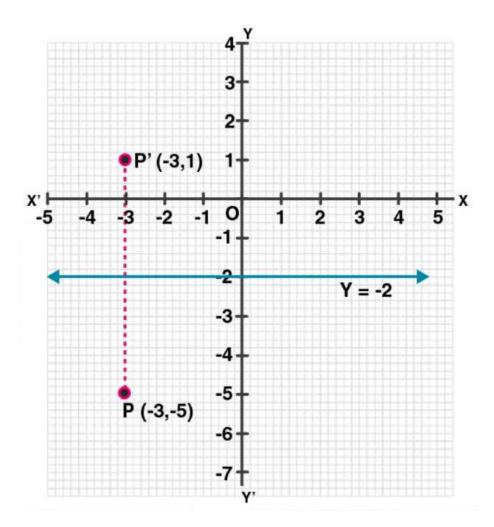
Hence, the co-ordinates of P' are (6, 3).

8.


- (i) The point P (2, 4) on reflection in the line y = 1 is mapped onto P' Find the co-ordinates of P'
- (ii) Find the image of the point P (-3, -5) in the line y = -2.

Solution:

- (i) The steps are:
- (a) Draw axis XOX' and YOY' and take 1 cm = 1 unit
- (b) Plot point P (2, 4) on it.
- (c) Draw a line y = 1 which is parallel to x-axis.


- (d) From P, draw a perpendicular on y = 1, meeting it at Q.
- (e) Produce PQ to P', such that QP' = PQ.

Therefore, P' is the reflection of P whose co-ordinates are (2, -2).

- (ii) The steps are:
- (a) Draw axis XOX' and YOY' and take 1 cm = 1 unit
- (b) Plot point P (-3, -5) on it.
- (c) Draw a line y = -2 which is parallel to x-axis.
- (d) From P, draw a perpendicular on y = -2, which meets it at Q.
- (e) Produce PQ to P', such that QP' = PQ.

Therefore, P' is the image of P whose co-ordinates are (2, -2).

9. The point P (-4, -5) on reflection in y-axis is mapped on P' on reflection in the origin is mapped on P". Find the co-ordinates of P' and P". Write down a single transformation that maps P onto P".

Solution:

Given, point P (-4, -5)

And, P' is the image of point P in y-axis.

Thus, the co-ordinates of P' will be (4, -5).

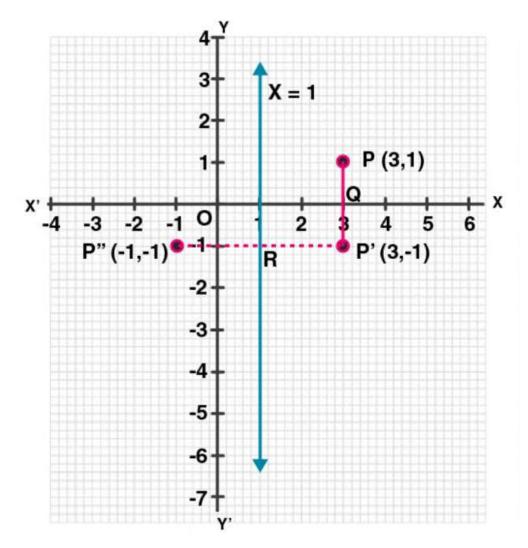
Again,

P" is the image of P' under reflection in origin.

Thus, the co-ordinates of P" will be (-4, 5).

The single transformation that maps P onto P'' is the x-axis.

- 10. Write down the co-ordinates of the image of the point (3, -2) when:
- (i) Reflected in the x-axis.
- (ii) Reflected in the y-axis.
- (iii) Reflected in the x-axis followed by a reflection in the y-axis.
- (iv) Reflected in the origin.


Solution:

The co-ordinates of the given point are (3, -2).

Now,

- (i) Co-ordinates of the image reflected in x-axis will be (3, 2).
- (ii) Co-ordinates of the image reflected in y-axis will be (-3, -2).
- (iii) Co-ordinates of the point reflected in x-axis followed by reflection in the y-axis will be (-3, 2).
- (iv) Co-ordinates of the point reflected in the origin will be (-3, 2).
- 11. Find the co-ordinates of the image of (3, 1) under reflection in x-axis followed by a reflection in the line x = 1.

Solution:

The steps are:

- (i) Draw axis XOX' and YOY' and take 1 cm = 1 unit
- (ii) Plot a point P (3, 1).
- (iii) Draw a line x = 1, which is parallel to y-axis.
- (iv) From P, draw a perpendicular on x-axis meeting it at Q.
- (v) Produce PQ to P', such that QP' = PQ, then P' is the image of P is x-axis. Then co-ordinates of 'P' will be (3, -1).
- (vi) From P', draw a perpendicular on x = 1 meeting it at R.
- (vii) Produce P'R to P'' such that RP'' = P'R.

Thus, P'' is the image of P' in the line x = 1

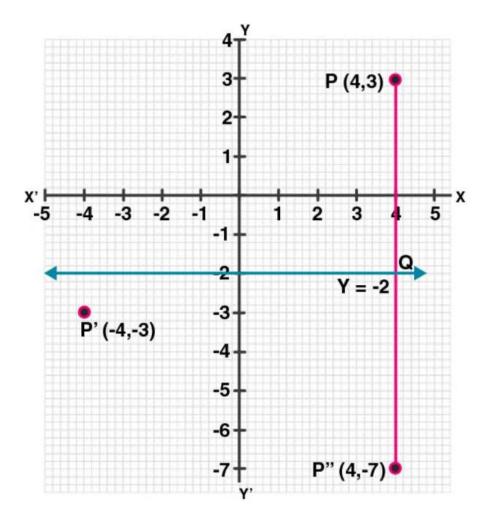
Hence, the co-ordinates of P' are (-1, -1).

- 12. If P' (-4, -3) is the image of a point P under reflection in the origin, find
- (i) The co-ordinates of P.
- (ii) The co-ordinates of the image of P under reflection in the line y = -2.

(i) Given, reflection of P is P' (-4, -3) in the origin

Thus, the co-ordinates of P will be (4, 3)

Now,


Draw a line y = -2, which is parallel to x-axis.

(ii) From P, draw a perpendicular on y = -2 meetings it at Q

Produce PQ to P'' such that QP'' = PQ

Thus, P'' will the image of P in the line y = -2

Hence, the co-ordinates of P" will be (4, -7).

13. A point P (a, b) is reflected in the x-axis to P' (2, -3), write down the value of α and b. P'' is the image of P, when reflected in the y-axis. Find the co-ordinates of P''. When P is reflected in the line parallel to y-axis such that x = 4.

P'(2, -3) is the reflection of P(a, b) in the x-axis

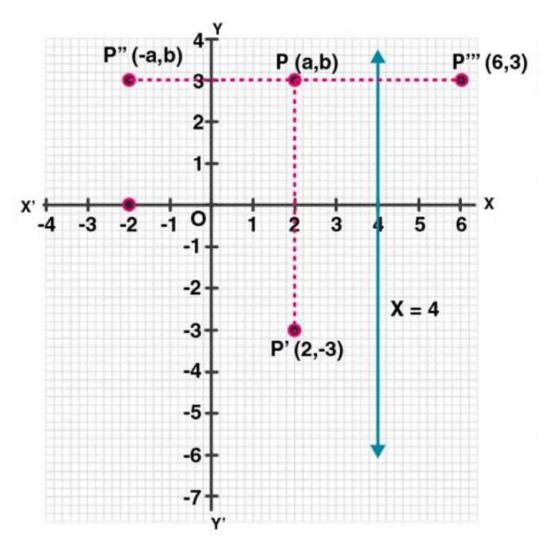
Hence, the co-ordinates of P' will be (a, -b) but P' is (2, -3).

On comparing, we get a = 2, b = 3

Thus, the co-ordinates of P will be (2, 3)

And,

P" is the image of P when reflected in y-axis.


Hence, the co-ordinate of P" will be (-2, 3)

Now, draw a line x = 4, which is parallel to y-axis.

As P'' is the image of P when it reflected in the line x = 4.

So, P" is its reflection.

Thus, the co-ordinates of P" will be (6, 3).

14.

(i) Point P (a, b) is reflected in the x-axis to P' (5, -2). Write down the values of a and b.

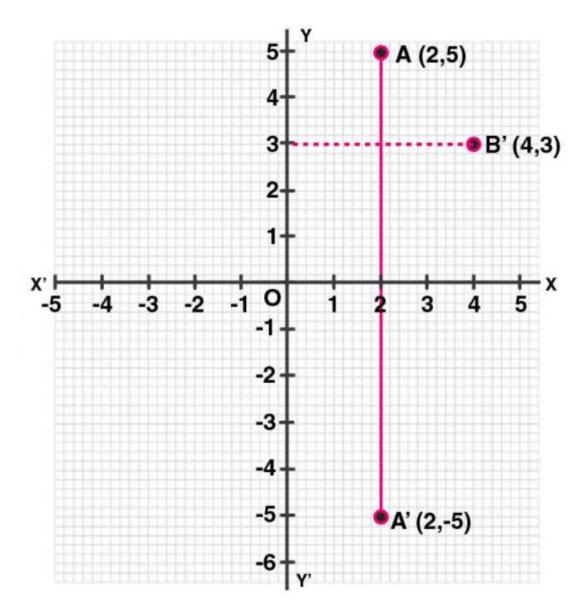
- (ii) P'' is the image of P when reflected in the y-axis. Write down the co-ordinates of P''.
- (iii) Name a single transformation that maps P' to P''.

(i) Image of P (a, b) reflected in the x-axis to P' (5, -2)

So, the co-ordinates of P will be (5, 2)

Hence, a = 5 and b = 2

(ii) P'' is the image of P when reflected in the y-axis

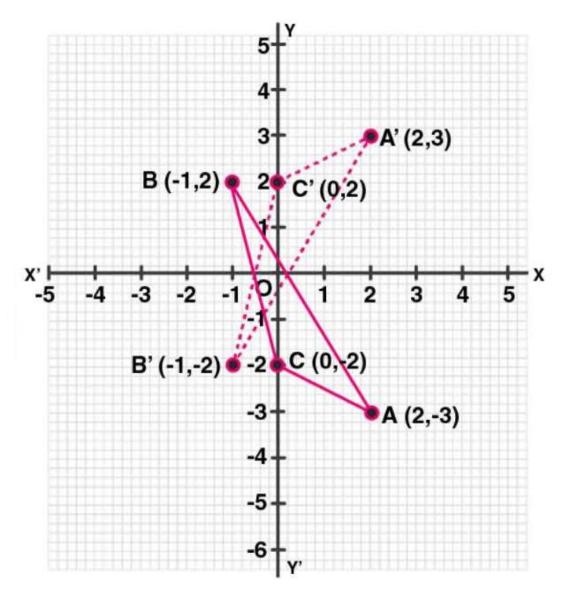

Thus, its co-ordinates will be (-5, -2).

- (iii) The single transformation that maps P' to P'' is the origin.
- 15. Points A and B have co-ordinates (2, 5) and (0, 3). Find
- (i) The image A' of A under reflection in the x-axis.
- (ii) The image B' of B under reflection in the line AA'.

Solution:

Given, co-ordinates of A are (2, 5) and of B are (0, 3).

- (i) Co-ordinates of A', the image of A reflected in the x-axis will be (2, -5)
- (ii) Co-ordinates of B', the image of B under reflection in the line AA' will be (4, 3).



16. Plot the points A (2, -3), B (-1, 2) and C (0, -2) on the graph paper. Draw the triangle formed by reflecting these points in the x-axis. Are the two triangle congruent?

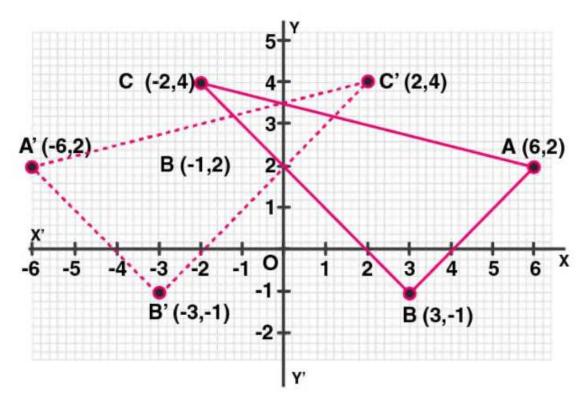
The points A (2, -3), B (-1, 2) and C (0, -2) has been plotted on the graph paper as shown and are joined to form a triangle ABC.

Hence, the co-ordinates of the images of A, B and C reflected in x-axis will be A' (2, 3), B' (-1, -2), C' (0, 2) respectively.

And, these are joined to from another $\Delta A'B'C'$ Yes, these two triangle are congruent.

17. The points (6, 2), (3, -1) and (-2, 4) are the vertices of a right-angle triangle. Check whether it remains a right-angled triangle after reflection in the y-axis.

Solution:


Let A (6, 2), B (3, -1) and C (-2, 4) be the points of the right-angled triangle.

Then,

The co-ordinates of the images of A, B, C reflected in y-axis will be:

Hence, by joining these points

We see that $\Delta A'B'C'$ is also a right-angled triangle.

18. The triangle ABC where A (1, 2), B (4, 8), C (6, 8) is reflected in the x-axis to triangle A'B'C'. The triangle A'B'C' is then reflected in the origin to triangle A"B"C". Write down the co-ordinate of A"B"C". Write down a single transformation that maps ABC onto A"B"C".

Solution:

Given,

The co-ordinates of \triangle ABC are A (1, 2) B (4, 8), C (6, 8)

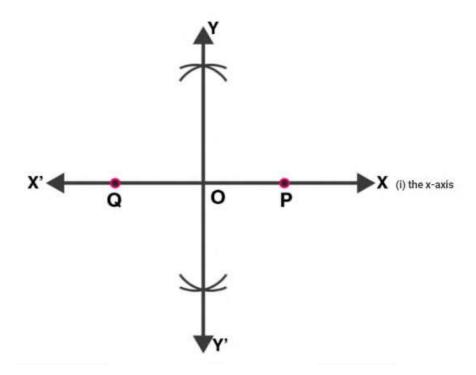
These vertices are reflected in x-axis as A', B' and C'

Hence, their co-ordinates are A' (1, 2) B' (4, 8), C' (6, 8).

Now,

A', B' and C' are again reflected in origins to from a Δ A"B"C".

Hence, the co-ordinates will be A" (-1, 2) B" (-4, 8), C" (-6, 8).


The single transformation that maps ABC onto A"B"C" is y-axis.

19. The image of a point P on reflection in a line l is point P'. Describe the location of the line l.

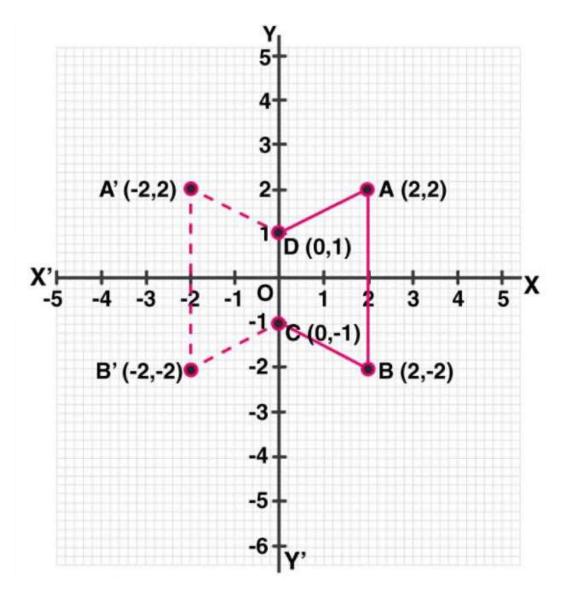
Solution:

The line will be the right bisector of the line segment joining P and P'.

- 20. Given two points P and Q, and that (1) the image of P on reflection in the y-axis is the point Q and (2) the midpoint of PQ is invariant on reflection in x-axis. Locate:
 - (i) The y-axis and
 - (ii) The origin

Given, Q is the image of P on reflection in y-axis and mid-point of PQ is invariant on reflection in x-axis.

- (i) X-axis will be the line joining the points P and Q.
- (ii) The line perpendicular bisector of line segment PQ is the y-axis.
- (iii) The origin will be the mid-point of line segment PQ.
- 21. The point (-3, 0) on reflection in a line is mapped as (3, 0) and the point (2, -3) on reflection in the same line is mapped as (-2, -3).
- (i) Name the mirror line.
- (ii) Write the co-ordinates of the image of (-3, -4) in the mirror line.

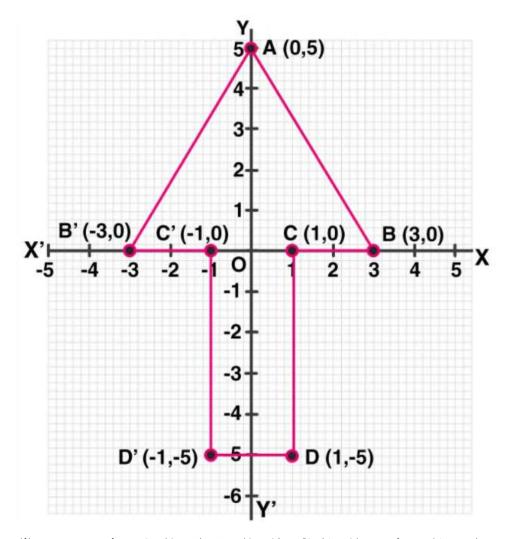

Solution:

Given,

The point (-3, 0) is the image of point (3, 0) and point (2, -3) is image of point (-2, -3) reflected on the same line.

- (i) Clearly, it's seen that the mirror line will be y-axis.
- (ii) The co-ordinates of the image of the point (-3, -4) reflected in the same line i.e. y-axis will be (3, -4).
- 22. Use graph paper for this (take 2 cm = 1 unit along both x and y-axis). ABCD is a quadrilateral whose vertices are A (2, 2), B (2, -2), C (0, -1) and D (0, 1).
 - (i) Reflect quadrilateral ABCD on the y-axis and name it as A'B'CD.
 - (ii) Write down the coordinates of A' and B'.
 - (iii) Name two points which are invariant under the above reflection.
 - (iv) Name the polygon A'B'CD.

Solution:



- (i) Quadrilateral ABCD is reflected on the y-axis and named as A'B'CD.
- (ii) As A' is the reflection of A (2, 2) about the line x = 0 (y-axis) Thus, the co-ordinates of A' are (-2, 2).

And, as B' is the reflection of B (2, -2) about the line x = 0 (y-axis) Thus, the coordinates of B' are (-2, -2).

- (iii) Points C (0, -1) and D (0, 1) are invariant under the above reflection.
- (iv) The polygon A'B'CD is a trapezium since A'B' || CD.

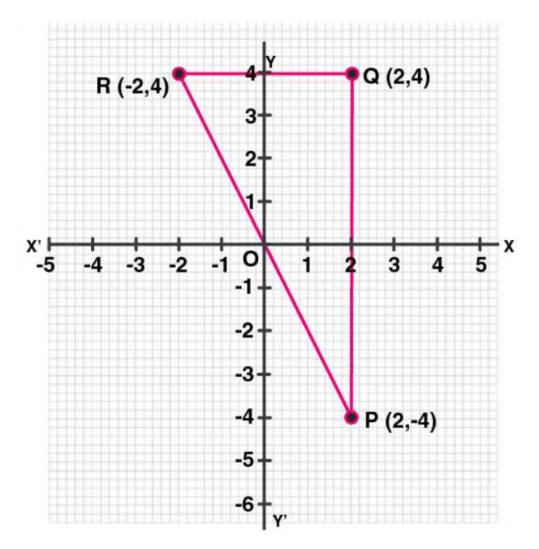
- 23. Use a graph sheet for this question. Take 1 cm = 1 unit along both x and y-axis.
- (i) Plot the point: A (0, 5), B (3, 0), C (1, 0) and D (1, -5).
- (ii) Reflect the points B, C and D on the y-axis and name them as B', C' and D' respectively.
- (iii) Write down the coordinates of B', C' and D'.
- (iv) Join the points A, B, C, D, D', C', B', A in order and give a name to the closed figure ABCDD'C'B'.

(i) Point A (0, 5), B (3, 0), C (1, 0) and D (1, -5) are plotted on the graph sheet.

- (ii) Points B, C and D are reflected on the y-axis and named as B', C' and D' respectively.
- (iii) The coordinates of B' are (-3, 0), C' (-1, 0) and D' (-1, -5).
- (iv) Points A, B, C, D, D', C', B', A are joined in order and the closed figure comes out to be an arrow marks (Or a heptagon).
- 24. Use graph paper for this question.
- (i) The point P (2, -4) is reflected about the line x = 0 to get the image Q. Find the co-ordinates of Q.
- (ii) Point Q is reflected about the line y = 0 to get the image R. Find the co-ordinates of R.
- (iii) Name the figure PQR.
- (iv) Find the area of figure PQR.

(i) As the point Q is the reflection of the point P (2, -4) in the line x = 0.

Thus, the co-ordinates of Q are (2, 4).


(ii) As R is the reflection of Q (2, 4) about the line y = 0,

Thus, the co-ordinates of R are (-2, 4).

- (iii) Figure PQR is the right-angled triangle PQR.
- (iv) Area of $\triangle PQR = \frac{1}{2} \times QR \times PQ$

$$=\frac{1}{2}\times4\times8$$

= 16 sq. units.

- 25. Using a graph paper, plot the points A(6, 4) and B(0, 4).
- (i) Reflect A and B in the origin to get the images A' and B'.
- (ii) Write the co-ordinates of A' and B'.
- (iii) State the geometrical name for the figure ABA'B'.
- (iv) Find its perimeter.

Points A (6, 4) and B (0, 4) are plotted on a graph paper.

- (i) A and B are reflected in the origin to get images A' and B'.
- (ii) Hence,

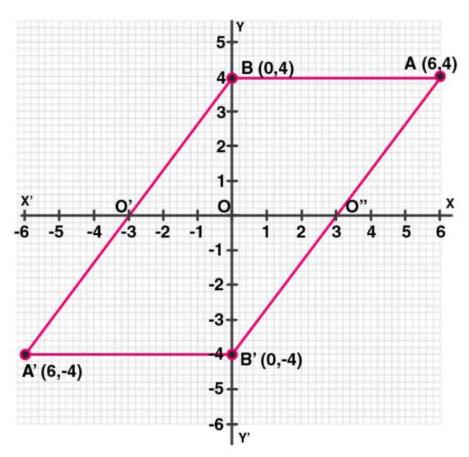
The co-ordinates of A' are (-6, 4)

The co-ordinates of B' are (0, -4)

- (iii) The geometrical name for ABA'B' is parallelogram
- (iv) From the figure in graph paper, we see that

Length of AB = A'B' = 6 units

And, BB' = 8 units

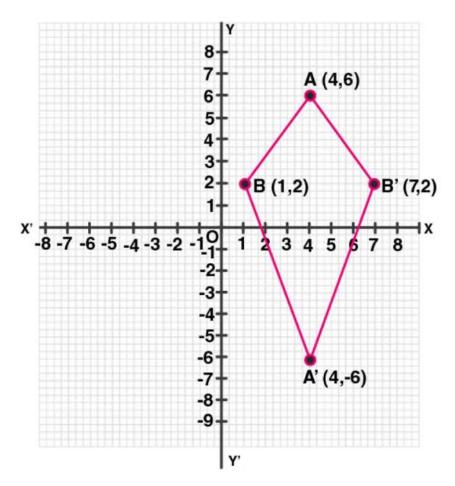

In $\triangle ABB$ ', by Pythagoras theorem

$$(AB')^2 = AB^2 + (BB')^2$$

$$=6^2+8^2$$

$$=36+64=100$$

AB' =
$$\sqrt{100}$$
 = 10 units.


Hence, the perimeter of ABA'B' = (6 + 10 + 6 + 10) = 32 units.

- 26. Use graph paper to answer this question.
- (i) Plot the points A (4, 6) and B (1, 2).
- (ii) If A' is the image of A when reflected in x-axis, write the coordinates of A'.
- (iii) If B' is the image of B when B is reflected in the line AA'. Write the co-ordinates of B'.
- (iv) Give the geometrical name for the figure ABA'B'.

- (i) Plotting the points A (4, 6) and B (1, 2) on the given graph.
- (ii) The co-ordinates of the image of A when reflected in axis are A'(4,-6).
- (iii) The co-ordinates of the image of B when reflected in the line AA' and B' = (7, 2).
- (iv) it's seen that in the quadrilateral ABA'B', we have

AB = AB' and A'B = A'B'

Thus, ABA'B' is a kite.

- 27. The points A (2,3), B (4,5) and C (7,2) are the vertices of \triangle ABC.
- (i) Write down the co-ordinates of A_1 , B_1 , C_1 if ΔA_1 , B_1 , C_1 is the image of ΔABC when reflected in the origin.
- (ii) Write down the co-ordinates of A_2 , B_2 , C_2 if ΔA_2 , B_2 , C_2 is the image of ΔABC when reflected in the x-axis.
- (iii) Assign the special name to the quadrilateral BBC_2B_2 and find its area.

Given, point A (2, 3), B (4, 5) and C (7, 2) are the vertices of \triangle ABC.

And, A₁, B₁, C₁ are the images of A, B and C reflected in the origin.

(i) Hence,

Co-ordinates of $A_1 = (-2, -3)$

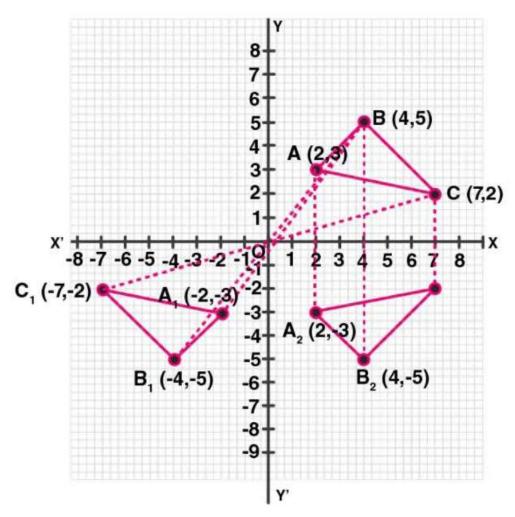
Co-ordinates of $B_1 = (-4, -5)$ and

Co-ordinates of $C_1 = (-7, -2)$

(ii) Now,

Co-ordinates of A₂, B₂, C₂ the images of A, B and C when reflected in x-axis are:

$$A_2(2,-3), B_2(4,-5), C_2(7,-2)$$


(iii) The quadrilateral formed by joining the points, BBC₂B₂ is an isosceles trapezium and its area is

$$=\frac{1}{2}(BB_2 + CC_2) \times 3$$

$$=\frac{1}{2}(10+4)\times 3$$

$$=\frac{1}{2}\times14\times3$$

$$= 21 \text{ sq. units}$$

- 28. The point P (3, 4) is reflected to P' in the x-axis and O' is the image of O (origin) in the line PP'. Find:
- (i) The co-ordinates of P' and O'.
- (ii) The length of segments PP' and OO'.
- (iii) The perimeter of the quadrilateral POP'O'.

Given,

P' is the image of P (3, 4) reflected in x-axis and O' is the image of O the origin in the line P'P.

(i) Hence, co-ordinates of P' are (3, -4) and co-ordinates of O' reflected in PP' are (6, 0).

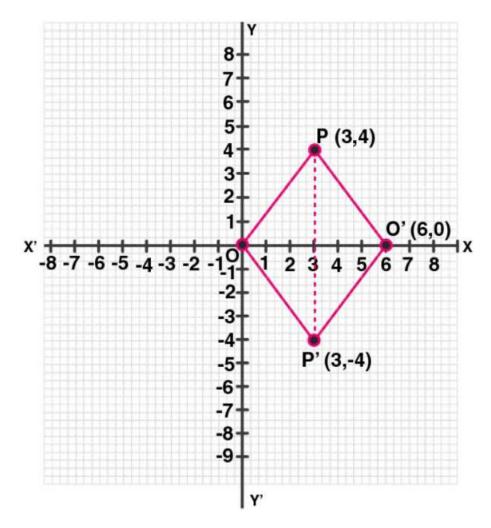
- (ii) Length of PP' = 8 units and OO' = 6 units.
- (iii) Perimeter of POP'O' is $(4 \times OP)$ units.

Let Q be the point of intersection of diagonals OO' and PP'.

So, OQ = 3 units and OP = 4 units.

Hence,

$$OP = \sqrt{(OQ)^2 + (PQ)^2}$$


$$= \sqrt{(3^2 + 4^2)}$$

$$=\sqrt{(9+16)}$$

$$=\sqrt{25}$$

= 5 units

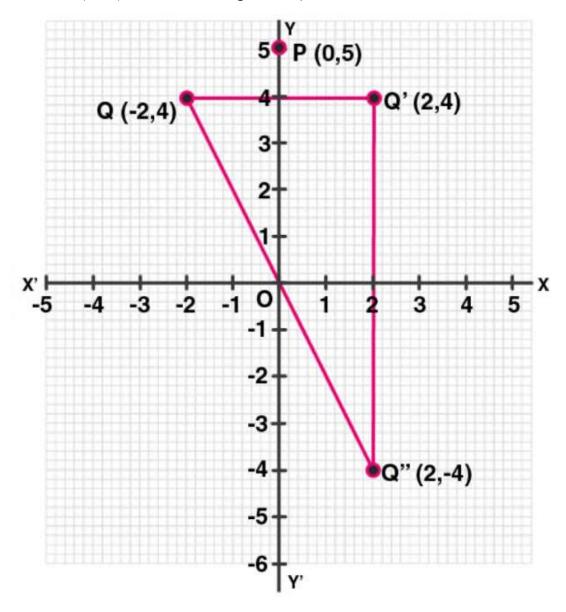
Thus, the perimeter of POP'O' = $4 \times 5 = 20$ units.

- 29. Use a graph paper for this question. (Take 10 small divisions = 1 unit on both axes). P and Q have co-ordinates (0, 5) and (-2, 4).
- (i) P is invariant when reflected in an axis. Name the axis.
- (ii) Find the image of Q on reflection in the axis found in (i).
- (iii) (0, k) on reflection in the origin is invariant. Write the value of k.
- (iv) Write the co-ordinates of the images of Q, obtained by reflecting it in origin followed by a reflection in x-axis.

Given, two point P(0, 5) and Q(-2, 4)

(i) As the abscissa of P is 0. It is invariant when is reflected in y-axis.

(ii) Let Q' be the image of Q on reflection in y-axis.


Thus, the co-ordinate of Q' will be (2, 4)

(iii) (0, k) on reflection in the origin is invariant.

So, the co-ordinates of images will be (0, 0)

Hence, k = 0

(iv) The reflection of Q in the origin is the point Q" and its coordinates will be (2, -4) and reflection of Q" (2, -4) in x-axis is (2, 4) which is the point Q'.

CHAPTER TEST

1. The point P (4, -7) on reflection in x-axis is mapped onto P'. Then P' on reflection in the y-axis is mapped onto P". Find the coordinates of P' and P". Write down a single transformation that maps P onto P".

Solution:

Given,

P' is the image of P (4, -7) reflected in x-axis.

Thus, the co-ordinates of P' are (4, 7)

Again P" is the image of P' reflected in y-axis.

Hence, the co-ordinates of P" are (-4, 7)

Therefore, single transformation that maps P and P" is in the origin.

2. The point P (a, b) is first reflected in the origin and then reflected in the y-axis to P'. If P' has co-ordinates (3, -4), evaluate a, b.

Solution:

The co-ordinates of image of P (a, b) reflected in origin are (-a, -b).

Again, the co-ordinates of P' which is image of the above point (-a, -b) reflected in the y-axis are (a, -b).

But the co-ordinates of P' are (3, -4)

Thus, a = 3 and $-b = -4 \Rightarrow b = 4$

3. A point P (a, b) becomes (-2, c) after reflection in the x-axis, and P becomes (d, 5) after reflection in the origin. Find the values of a, b, c, and d.

Solution:

Given, point P (a, b) and the image of P (a, b) after reflected in the x-axis be (a, -b)

But it is given as (-2, c)

Thus,
$$a = -2$$
, $c = -b$

Next,

If P is reflected in the origin, then its co-ordinates will be (-a, -b)

But it is given as (d, 5)

Thus,

$$-b = 5 \Rightarrow b = -5,$$

$$d = -a = -(-2) = 2,$$

$$c = -b = -(-5) = 5$$

Thus,

$$a = -2$$
, $b = -5$, $c = 5$ and $d = 2$

4. A (4, -1), B (0, 7) and C (-2, 5) are the vertices of a triangle. \triangle ABC is reflected in the y-axis and then reflected in the origin. Find the co-ordinates of the final images of the vertices.

Solution:

Given, A (4, -1), B (0, 7) and C (-2, 5) are the vertices of $\triangle ABC$.

 \triangle ABC after reflecting in y-axis, the co-ordinates of points will be A'(-4,-1), B'(0,7), C'(2,5).

Again, when $\Delta A'B'C'$ reflecting in origin.

The co-ordinates of the images of the vertices will be A''(4, 1),

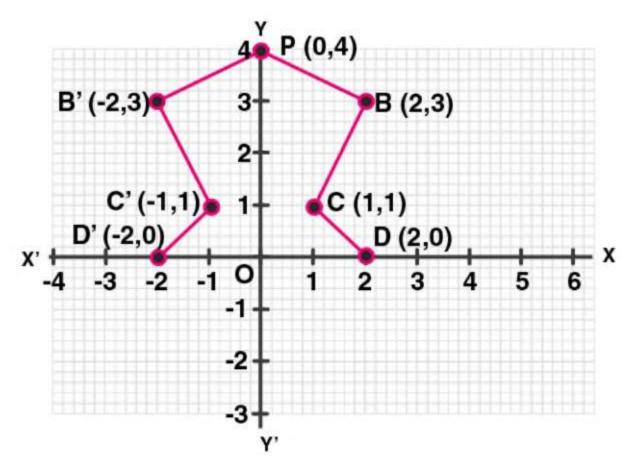
$$B''(0,-7), C''(-2,-5).$$

5. The points A (4, -11), B (5, 3), C (2, 15) and D (1, 1) are the vertices of a parallelogram. If the parallelogram is reflected in the y-axis and then in the origin, find the co-ordinates of the final images. Check whether it remains a parallelogram. Write down a single transformation that brings the above change.

Solution:

Given, points A (4, -11), B (5, 3), C (2, 15) and D (1, 1) are the vertices of a parallelogram.

After reflecting in y-axis, the images of these points will be


Again, reflecting these points in origin, the image of these points will be A" (4, -11), B" (5, -3), C" (2, -15) and D" (0, -1)

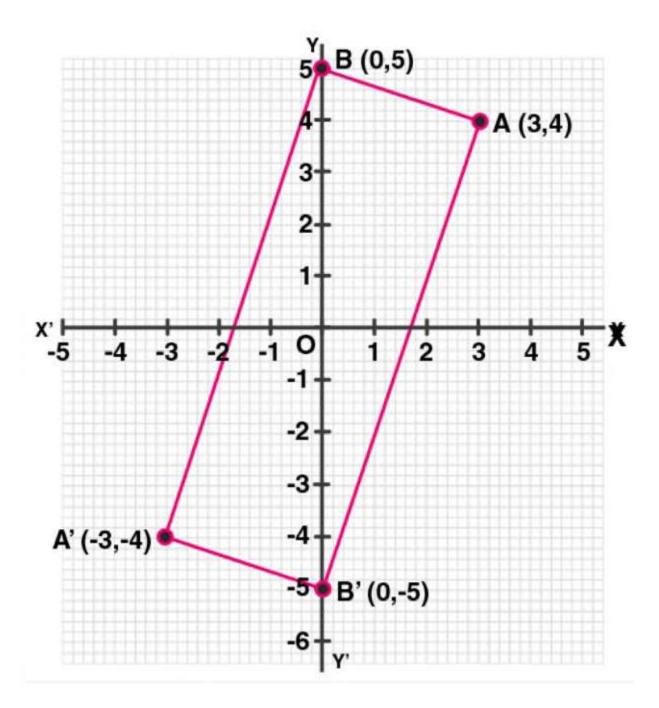
Yes, the reflection of a single transformation is in the x-axis.

- 6. Use a graph paper for this question (take 2 cm = 1 unit on both x and y axes).
- (i) Plot the following points: A (0, 4), B (2, 3), C (1, 1) and D (2, 0)
- (ii) Reflect points B, C, and D on y-axis and write down their coordinates. Name the images B', C', D' respectively.
- (iii) Join points A, B, C, D, D', C', B' and A in order, so as to form a closed figure. Write down the equation of line of symmetry of the figure formed.

- (i) On graph: A (0, 4), B (2, 3), C (1, 1) and D (2, 0)
- (ii) Point after reflection on y-axis are B' = (-2, 3), C' = (-1, 1) and D' = (-2, 0)
- (iii) The point A, B, C, D, D', C', B' and A in order to form a closed figure.

Hence, the equation of the line of symmetry is x = 0.

- 7. The triangle OAB is reflected in the origin O to triangle OA'B'. A' and B' have coordinates (-3, -4) and (0, -5) respectively.
- (i) Find the co-ordinates of A and B.
- (ii) Draw a diagram to represent the given information.
- (iii) What kind of figure is the quadrilateral ABA'B'?
- (iv) Find the co-ordinates of A", the reflection of A in the origin followed by reflection in the y-axis.


(v) Find the co-ordinates of B", the reflection of B in the x-axis followed by reflection in the origin.

Solution:

Given,

 Δ OAB is reflected in the origin O to Δ OA'B' and the co-ordinates of A' = (-3, -4) and B' = (0, -5).

- (i) Hence, the co-ordinates of A will be (3, 4) and of B will be (0, 5).
- (ii) The diagram representing the given information has been drawn here.
- (iii) The figure in the diagram is a rectangle.
- (iv) The co-ordinates of B', the reflection of B is the x-axis is (0, -5) and co-ordinates of B", the reflection in origin of the points (0, -5) will be (0, 5).
- (v) The co-ordinates of the points, the reflection of A in the origin are (-3, -4) and co-ordinates of A", the reflected in y-axis of the point (-3, -4) and (-3, 4).

