
Part-I

GROUP - 1

Group-1 elements are Shiny, Soft, and highly reactive metals, none of them occur as a natural free element

Fr

Francium

87

have one Valence Electron

The reactivity of the GROUP-1 METALS increases down the group as the outer electron gets further from the nucleus & becomes easier to remove.

Silver-like lustre

Low melting point

High Ductility

High malleablity

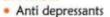
Excellent conductor of heat and electricity

Part-II

Properties of Alkali Metals

VERY SOFT ELECTR

- Alkali metals can be easily cut with a knife
- Among all alkali metals lithium is hardest.


ELECTRONIC CONFIGURATION

- They have one valence shell electron.
- General valence electronic configuration

LITHIUM

USES

SODIUM

- Street lamps
- Salt

ATOMIC SIZE

COLOR

EST

FLAME

Size increases down the group due to added extra orbit.

ELECTROPOSITIVE

It is the ability to remove an electron

- Electropositivity increases down the group.
- Caesium has the highest electropositive character.

POTASSIUM

CAESIUM

Atomic Clocks

STORED IN KEROSENE

Alkali metals react with air easily to form oxide layer therefore they are stored in kerosene.

REACTS WITH WATER

- They reacts violently with water and form hydroxides.
- Don't even dare to go near when caesium reacts with water.

REACTS WITH AMMONIA

On dissolving NH₃ forms Ammoniated cation and electron. Solution turns blue

$$M^+ + x NH_3 \rightarrow [M (NH_3)_x]^+$$

 $e^- + y NH_3 \rightarrow [e (NH_3)_y]^-$

ALKALINE EARTH METALS

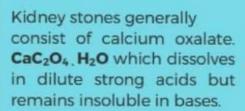
ELECTRONIC CONFIGURATION

Valence Electrons = 2

FLAME COLOUR TEST

Group II Element Flame Colour

Beryllium Colourless


Magnesium Colourless

Calcium Brick red

Strontium Crimson red

Barium Apple green

DO YOU KNOW?

They are commonly called alkaline earth metals because their oxides are alkaline in nature and are found in earth's crust.

REACTION WITH WATER

Be does not react even with boiling water and **Ba** react vigorously even with cold water. Thus increasing order of reactivity with water is

Mg < Cr < Sr < Ba

ATOMIC SIZE

Size increases down the group due to added extra orbit.

ELECTROPOSITIVITY

Strong electropositive elements due to large size, electropositivity increases down the group.

REACTION WITH NITROGEN

These metals react with nitrogen to form nitrides of the types M₃N₂ which are hydrolysed with water to evolve NH₃.

3M + N₂ M₃N₂

 $M_3N_2 + 6H_2O \implies 3M(OH)_2 + 2NH_3$

Ammonia

O BERYLLIUM

Corrosion resistant alloys

STRONTIUM - -

Glass for colour television cathode ray tubes

O MAGNESIUM-

Present in chlorophyll, helps in photosynthesis

OCALCIUM

Hydrated CaCl₂ used for melting ice on roads

BARIUM

Nuclear Medicine

ALKALI METALS

DIFFERENCE BEINFEIN

ALKALINE EARTH METALS

PROPERTIES	ALKALI METALS	ALKALINE EARTH METALS
Physical properties	Soft, Low melting point, Paramagnetic.	Comparatively harder. High melting point, Diamagnetic
Valency	Monovalent	Bivalent
Electropositive nature	More electropositive	Less electropositive
Hydroxides	Strong base, highly soluble and stable towards heat.	Weak base, less soluble and decomposes on heating.
Bicarbonates	These are known in solid state.	These are not known in free state. Exist only in solution
Carbonates	Soluble in water. Do not decomposes on heating (LiCO3 is an exception)	Insoluble in water. Decomposes on heating.
Action of carbon	Do not directly combine with carbon	Directly combine with carbon to form carbides
Solubility of salts	Sulphates, phosphates, fluorides, chromates, oxides etc are soluble in water.	Sulphates, phosphates, fluorides, chromates, oxalates etc are insoluble in water
Reducing power	Stronger as ionization potential values are low and oxidation potential values are high	Weaker as ionization potential values are high and oxidation potential values are low.
Electronic configuration	One electron is present in the valence shell. The configuration is ns ¹ (monovalent)	Two electrons are present in the valence shell. The configuration is ns ² (bivalent)