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A Word With You

Dear Learner,

Welcome!

Keen observation, careful experimentation and single minded devotion have helped successive
generations of researchers to accumulate vast treasure of knowledge.  As you go to higher classes, you
will appreciate that the method of sciences is characterised by objectivity, openness to change, innovation,
self-correction and dynamism.  It is therefore important in these formative years for you to learn
science by doing: develop problem solving and experimenting skills to unfold unknown situations.
To encourage this, we have included a number of exercises and activities.  These can be performed by
using readily available materials to get a feel of the physical principles in operation.  This will also
provide you an opportunity to reflect on how a scientist works.

Physics has always been an exciting subject.  But fundamental discoveries in rapid succession in the
early half of the 20th century brought in profound changes in our concepts of space, time, matter and
energy.  Another phenomenon characteristic of the previous century is the reduction in the time gap
between a new discovery and its applications from a decade or so to a few years due to close linking of
science and technology.  Therefore, future development in knowledge society will heavily depend on
the availability of well trained scientific human capital endowed with entrepreneurship capabilities.
This should provide you enough motivation to study science, do well and participate in the process of
sustainable growth and national development.

The organisation of the course is generic.  It is divided into eight core modules spread over 29 lessons.
Out of two optional modules, which intend to develop professional competencies, you will be required
to opt for any one.  You will get an opportunity to work in a physics laboratory and make precise
measurements using sensitive instruments.  This will also give you an opportunity to understand basic
physical principles.

As a self-learner, you would be required to demonstrate the ability, capacity and eagerness of Ekalavya.
Your confidence in yourself and genuine interest in learning science should help you develop being an
independent learner with drive and initiative.  Experience shows that interactive learning is more
rewarding.   So to ensure your active participation in teaching-learning as also to facilitate self-
regulation and pacing, we have given questions in the body of each lesson.   You must answer these.

In curriculum design an effort has been made to put thematically coherent topics together for braviety
and completeness.  Although we have strived hard to lucidly explain various concepts, it is possible that
you may still find some concepts/topics difficult to comprehend.  You are therefore advised to make a
note of your difficulties and discuss them in the counselling sessions as well as amongst peers.

You will find some useful information on the life and works of leading physicists/scientists who have
contributed to our vast pool of knowledge.  It is sincerely hoped that their lives will inspire you as role
models to contribute your best!

Our best wishes are with you.

Curriculum  Design and
Course Development Team



Dear Learner,

Welcome!

The Academic Department at the National Institute of Open Schooling tries to
bring you new programmes is accordance with your needs and requirements. After
making a comprehensive study, we found that our curriculum is more functional,
related to life situations and simple. The task now was to make it more effective
and useful for you. We invited leading educationists of the country and under
their guidance, we have been able to revise and update the curriculum in the subject
of Physics.

At the same time, we have also removed old, outdated information and added new,
relevant things and tried to make the learning material attractive and appealing
for you.

I hope you will find the new material interesting and exciting with lots of activities
to do. Any suggestions for further improvement are welcome.

Let me wish you all a happy and successful future.

(K. R. Chandrasekaran)

April 2007

A Note From the Director



Your learning material has been developed by a team of physics experts in open and distance
learning.  A consistent format has been developed for self-study.  The following points will give
you an idea on how to make best use of the print material.

Title is an advance organisor and conveys an idea about the contents of the lesson.
Reflect on it.

Introduction highlights the contents of the lesson and correlates it with your prior
knowledge as well as the natural phenomena in operation in our immediate environment.
Read it thoroughly.

Objectives relate the contents to your desired achievements after you have learnt the
lesson.  Remember these.

Content of the lesson has been divided into sections and sub-sections depending on
thematic unity of concepts.  Read the text carefully and make notes on the side margin of
the page.  After completing each section, answer intext questions and solve numerical
problems yourself.  This will give you an opportunity to check your understanding.  You
should continue reading a section till such time that you gain mastery over it.

At some places you will find some text in italics and bold.  This indicates that it is important.
You must learn them.

Solved Examples will help you to understand the concepts and fix your ideas.  In fact,
problem solving is an integral part of training in physics.  Do them yourself and note
the main concept being taught through a particular example.

Activities are simple experiments which you can perform at your home or work place
using readily available (low cost) materials.  These will help you to understand physics
by doing.  Do them yourself and correlate your findings with your observations.

Intext questions are based on the concepts discussed in every section.  Answer these
questions yourself in the space given below the question and then check your answers
with the model answers given at the end of the lesson.  This will help you to judge your
progress.  If you are not satisfied with the quality and authenticity of your answers, turn
the pages back and study the section again.

What you have learnt is essentially summary of the learning points for quick recapitulation.
You may like to add more points in this list.

Terminal exercises in the form of short, long and numerical questions will help you to
develop a perspective of the subject, if you answer these meticulously. Discuss your
responses with your peers or counsellors.

Answers to intext questions : These will help you to know how correctly you have
answered the intext questions.

Audio: For understanding difficult or abstract concepts, audio programmes are available
on certain content areas. You may listen to these on FM Gyanvani or may buy the CDs
from Priced Publication Unit, NIOS

Video: Video programmes on certain elements related to your subject have been made to
clarify certain concepts. You may watch these at your study center or may purchase
these CDs from Priced Publication Unit, NIOS.

These are few selected websites that you can access for extended learning.

Studying at a distance requires self-motivation, self-discipline and self-regulation.
Therefore you must develop regular study habit.  Drawing a daily schedule will help
you in this endeavour.  You should earmark a well-ventilated and well-lighted space in
your home for your study.  However, it should not be noisy or distract your concentration
from your work.

HOW TO USE THE STUDY MATERIAL

www
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1

UNITS, DIMENSIONS AND

VECTORS

In science, particularly in physics, we try to make measurements as precisely as possible.
Several times in the history of science, precise measurements have led to new discoveries
or important developments. Obviously, every measurement must be expressed in some
units. For example, if you measure the length of your room, it is expressed in suitable units.
Similarly, if you measure the interval between two events, it is expressed in some other
units. The unit of a physical quantity is derived, by expressing it in base units fixed by
international agreement. The idea of base units leads us to the concept of dimensions,
which as we shall see, has important applications in physics.

You will learn that physical quantities can generally be divided in two groups: scalars and
vectors. Scalars have only magnitudes while vectors have both magnitude and direction.
The mathematical operations with vectors are somewhat different from those which you
have learnt so far and which apply to scalars. The concepts of vectors and scalars help us in
understanding physics of different natural phenomena. You will experience it in this course.

Objectives

After studying this lesson, you should be able to:

� distinguish between the fundamental and derived quantities and give their SI
units;

� write the dimensions of various physical quantities;

� apply dimensional analysis to check the correctness of an equation and determine
the dimensional nature of ‘unknown’ quantities;

� differentiate between scalar and vector quantities and give examples of each;

� add and subtract two vectors and resolve a vector into its components; and

� calculate the product of two vectors.
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Motion, Force and Energy 1.1  Unit of Measurement

The laws of physics are expressed in terms of physical quantities such as distance, speed,
time, force, volume, electric current, etc. For measurement, each physical quantity is
assigned a unit. For example, time could be measured in minutes, hours or days. But for
the purpose of useful communication among different people, this unit must be compared
with a standard unit acceptable to all. As another example, when we say that the distance
between Mumbai and Kolkata is nearly 2000 kilometres, we have for comparison a basic
unit in mind, called a kilometre. Some other units that you may be familiar with are a
kilogram for mass and a second for time. It is essential that all agree on the standard units,
so that when we say 100 kilometres, or 10 kilograms, or 10 hours, others understand what
we mean by them. In science, international agreement on the basic units is absolutely essential;
otherwise scientists in one part of the world would not understand the results of an investigation
conducted in another part.

Suppose you undertake an investigation on the solubility of a chemical in water. You weigh
the chemical in tolas and measure the volume of water in cupfuls. You communicate the
results of your investigation to a scientist friend in Japan. Would your friend understand
your results?

It is very unlikely that your friend would understand your results because he/she may not
be familiar with tola and the cup used in your measerments, as they are not standard units.

Do you now realize the need for agreed standards and units?

Remember that in science, the results of an investigation are considered
established only if they can be reproduced by investigations conducted elsewhere
under identical conditions.

Measurements in Indian Traditions
Practices of systematic measurement are very old in India. The following quote from
Manusmriti amply illustrates this point :

“The king should examine the weights and balance every six months to ensure true
measurements and to mark them with royal stamp.” – Manusmriti, 8th Chapter, sloka–403.

In Harappan Era, signs of systematic use of measurement are found in abundance :
the equally wide roads, bricks having dimensions in the ratio 4 : 2 : 1, Ivory scale in
Lothal with smallest division of 1.70 mm, Hexahedral weights of 0.05, 0.1, 0.2, 0.5, 1, 2,
5, 10, 20, 50, 100, 200 and 500 units (1 unit = 20 g)

In Mauriyan Period, the following units of length were prevalent
8 Parmanu = 1 Rajahkan
8 Rajahkan = 1 Liksha
8 Liksha = 1 Yookamadhya
8 Yookamadhya = 1 Yavamadhya
8 Yavamadhya = 1 Angul
8 Angul = 1 Dhanurmushthi

In Mughal Period, Shershah and Akbar tried to re-establish uniformity of weights and
measures. Akbar introduced gaz of 41 digits for measuring length. For measuring area
of land, bigha was the unit. 1 bigha was 60 gaz × 60 gaz.

Units of mass and volume were also well obtained in Ayurveda.
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Motion, Force and Energy1.1.1 The SI Units
With the need of agreed units in mind, the 14th General Conference on Weights and
Measures held in 1971, adopted seven base or fundamental units. These units form the
SI system. The name SI is abbreviation for Système International d’Unités for the
International System of units. The system is popularly known as the metric system. The SI
units along with their symbols are given in Table 1.1.

Table 1.1 : Base SI Units

Quantity Unit Symbol

Length metre m

Mass kilogram kg

Time second s

Electric Current ampere A

Temperature kelvin K

Luminous Intensity candela cd

Amount of Substance mole mol

The mile, yard and foot as units of length are still used for some purposes in India as well
in some other countries. However, in scientific work we always use SI units.

As may be noted, the SI system is a metric system. It is quite easy to handle because
the smaller and larger units of the base units are always submultiples or multiples of
ten. These multiples or submultiples are given special names. These are listed in
Table 1.2.

Table 1.2 : Prefixes for powers of ten

Power of ten Prefix Symbol Example

10–18 atto a attometre (am)

10–15 femto f femtometre (fm)

10–12 pico p picofarad (pF)

10–9 nano n nanometre (nm)

10–6 micro µ micron (µm)

10–3 milli m milligram (mg)

10–2 centi c centimetre (cm)

10–1 deci d decimetre (dm)

101 deca da decagram (dag)

102 hecto h hectometre (hm)

103 kilo k kilogram (kg)

106 mega M megawatt (MW)

109 giga G gigahertz (GHz)

1012 tera T terahertz (THz)

1015 peta P peta kilogram (Pkg)

1018 exa E exa kilogram (Ekg)

Table 1.3 : Order of magnitude
of some masses

Mass kg
Electron 10–30

Proton 10–27

Amino acid 10–25

Hemoglobin 10–22

Flu virus 10–19

Giant amoeba 10–8

Raindrop 10–6

Ant 10–2

Human being 102

Saturn 5 rocket 106

Pyramid 1010

Earth 1024

Sun 1030

Milky Way galaxy 1041

Universe 1052
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Motion, Force and Energy Just to get an idea of the masses and sizes of various objects in the universe, see Table 1.3

and 1.4. Similarly, Table 1.5 gives you an idea of the time scales involved in the universe.

1.1.2 Standards of Mass, Length and Time

Once we have chosen to use the SI system of units, we
must decide on the set of standards against which these
units will be measured. We define here standards of mass,
length and time.

(i) Mass : The SI unit of mass is kilogram. The standard
kilogram was established in 1887. It is the mass of a
particular cylinder made of platinum-iridium alloy,
which is an unusually stable alloy. The standard is kept in
the International Bureau of Weights and Measures in Paris,
France. The prototype kilograms made of the same alloy
have been distributed to all countries the world over. For
India, the national prototype is the kilogram no. 57. This is

maintained by the National Physical Laboratory, New Delhi (Fig. 1.1).

(ii) Length : The SI unit of length is metre. It is defined in terms of a natural phenomenon:
One metre is defined as the distance travelled by light in vacuum in a time
interval of
1/299792458 second.

This definition of metre is based on the adoption of the speed of light in vacuum as
299792458 ms–1

(iii) Time : One second is defined as the time required for a Cesium - 133 (133Cs)
atom to undergo 9192631770 vibrations between two hyperfine levels of its
ground state.

This definition of a second has helped in the development of a device called atomic
clock (Fig. 1.2). The cesium clock maintained by the National Physical Laboratory

Fig. 1.2 : Atomic Clock

Table 1.4 : Order of magnitude
of some lengths

Length m
Radius of proton 10–15

Radius of atom 10–16

Radius of virus 10–7

Radius of giant amoeba 10–4

Radius of walnut 10–2

Height of human being 100

Height of highest
mountain 104

Radius of earth 107

Radius of sun 109

Earth-sun distance 1011

Radius of solar system 1013

Distance to nearest star 1016

Radius of Milky Way
galaxy 1021

Radius of visible universe 1026

Fig. 1.1 : Prototype of kilogram
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Motion, Force and Energy(NPL) in India has an uncertainty of ± 1 × 10–12  s, which corresponds to an accuracy
of one picosecond in a time interval of one second.

As of now, clock with an uncertainty of 5 parts in 1015 have been developed. This means
that if this clock runs for 1015 seconds, it will gain or lose less than 5 seconds. You can
convert 1015s to years and get the astonishing result that this clock could run for 6 million
years and lose or gain less than a second. This is not all. Researches are being conducted
today to improve upon this accuracy constantly. Ultimately, we expect to have a clock
which would run for 1018 second before it could gain or lose a second. To give you an idea
of this technological achievement, if this clock were started at the time of the birth of the
universe, an event called the Big Bang, it would have lost or gained only two seconds till
now.

Role of Precise Measurements in New Discoveries

A classical example of the fact that precise measurements may lead to new
discoveries are the experiments conducted by Lord Rayleigh to determine density of
nitrogen.

In one experiment, he passed the air bubbles through liquid ammonia over red hot
copper contained in a tube and measured the density of pure nitrogen so obtained. In
another experiment, he passed air directly over red hot copper and measured the
density of pure nitrogen. The density of nitrogen obtained in second experiment was
found to be 0.1% higher than that obtained in the first case. The experiment suggested
that air has some other gas heavier than nitrogen present in it. Later he discovered
this gas – Argon, and got Nobel Prize for this discovery.

Another example is the failed experiment of Michelson and Morley. Using Michelson’s
interferometer, they were expecting a shift of 0.4 fringe width in the interference
pattern obtained by the superposition of light waves travelling in the direction of
motion of the earth and those travelling in a transverse direction. The instrument was
hundred times more sensitive to defect the shift than the expected shift. Thus they
were expecting to measure the speed of earth with respect to ether and conclusively
prove that ether existed. But when they detected no shift, the world of science
entered into long discussions to explain the negative results. This led to the concepts
of length contraction, time dilation etc and ultimately to the theory of relativity.

Several discoveries in nuclear physics became possible due to the new technique of
spectroscopy which enabled detection, with precision, of the traces of new atoms
formed in a reaction.

1.1.3. Derived Units
We have so far defined three basic units for the measurement of mass, length and time.
For many quantities, we need units which we get by combining the basic units. These units
are called derived units. For example, combination of the units of length and time gives us
the derived unit of speed or velocity, m s–1. Another example is the interaction of the unit
of length with itself. We get derived units of area and volume as m2 and m3, respectively.

Now are would like you to list all the physical quantities that you are familiar with and the
units in which they are expressed.

Table 1.5 : Order of magnitude
of some time intervals

Interval s
Time for light to cross
nucleus 10–23

Period of visible light 10–15

Period of microwaves 10–10

Half-life of muon 10–6

Period of highest audible
sound 10–4

Period of human heartbeat 100

Half-life of free neutron 103

Period of the Earth’s
rotation (day) 105

Period of revolution of the
Earth (year) 107

Lifetime of human beings 109

Half-life of plutonium-239 1012

Lifetime of a mountain
range 1015

Age of the Earth 1017

Age of the universe 1018
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Motion, Force and Energy Some derived units have been given special names. Examples of most common of such
units are given in Table 1.6.

Table 1.6 : Examples of derived units with special names

Quantity Name Symbol Unit Symbol

Force newton N kg m s–2

Pressure pascal Pa N m–2

Energy/work joule J N m

Power watt W J s–1

One of the advantages of the SI system of units is that they form a coherent set in the
sense that the product or division of the SI units gives a unit which is also the SI unit of
some other derived quantity. For example, product of the SI units of force and length gives
directly the SI unit of work, namely, newton-metre (Nm) which has been given a special
name joule. Some care should be exercised in the order in which the units are
written. For example, Nm should be written in this order. If by mistake we write it as mN,
it becomes millinewton, which is something entirely different.

Remember that in physics, a quantity must be written with correct units.
Otherwise, it is meaningless and, therefore, of no significance.

Example 1.1 : Anand, Rina and Kaif were asked by their teacher to measure the
volume of water in a beaker.

Anand wrote : 200; Rina wrote : 200 mL; Kaif wrote : 200 Lm

Which one of these answers is correct?

Solution : The first one has no units. Therefore, we do not know what it means. The third
is also not correct because there is no unit like Lm. The second one is the only correct
answer. It denotes millilitre.

Note that the mass of a book, for example, can be expressed in kg or g. You should not
use gm for gram because the correct symbol is g and not gm.

Nomenclature and Symbols

(i) Symbols for units should not contain a full stop and should remain the same in the
plural. For example, the length of a pencil should be expressed as 7cm and not
7cm. or 7cms.

(ii) Double prefixes should be avoided when single prefixes are available, e.g.,

for nanosecond, we should write ns and not mµs; for pico farad we write pF and
not µµf.

(iii) When a prefix is placed before the symbol of a unit, the combination of prefix
and symbol should be considered as one symbol, which can be raised to a positive
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Motion, Force and Energy
or a negative power without using brackets, e.g., µs–1, cm2, mA2.

µs–1 = (10–6s)–1 (and not 10–6s–1)

(iv) Do not write cm/s/s for cm s–2. Similarly 1 poise = 1 g s–1cm–1 and not 1 g/s/cm.

(v) When writing a unit in full in a sentence, the word should be spelt with the letter
in lower case and not capital, e.g., 6 hertz and not 6 Hertz.

(vi) For convenience in reading of large numbers, the digits should be written in groups
of three starting from the right but no comma should be used: 1 532; 1 568 320.

Albert Abraham Michelson
(1852-1931)

German-American Physicst, inventor and experimenter devised
Michelson’s interferometer with the help of which, in association
with Morley, he tried to detect the motion of earth with respect to
ether but failed. However, the failed experiment stirred the
scientific world to reconsider all old theories and led to a new world of physics.

He developed a technique for increasing the resolving power of telescopes by adding
external mirrors. Through his stellar interferometer along with 100′′ Hookes telescope,
he made some precise measurements about stars.

Now, it is time to check your progress. Solve the following questions. In case you have
any problem, check answers given at the end of the lesson.

Intext Questions 1.1

1. The mass of the sun is 2 × 1030 kg. The mass of a proton is 2 × 10–27 kg. If the sun was
made only of protons, calculate the number of protons in the sun?

....................................................................................................................................

2. Earlier the wavelength of light was expressed in angstroms. One angstrom equals
10–8 cm. Now the wavelength is expressed in nanometers. How many angstroms
make one nanometre?

....................................................................................................................................

3. A radio station operates at a frequency of 1370 kHz. Express this frequency in GHz.

....................................................................................................................................

4. How many decimetres are there in a decametre? How many MW are there in one
GW?

....................................................................................................................................
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Motion, Force and Energy
1.2 Dimensions of Physical Quantities

Most physical quantities you would come across in this course can be expressed in terms
of five basic dimensions : mass (M), length (L), time (T), electrical current (I) and
temperature (θ). Since all quantities in mechanics can be expressed in terms of mass,
length and time, it is sufficient for our present purpose to deal with only these three
dimensions. Following examples show how dimensions of the physical quantities are
combinations of the powers of M, L and T :

(i) Volume requires 3 measurements in length. So it has 3 dimensions in length (L3).

(ii) Density is mass divided by volume. Its dimensional formula is ML–3.

(iii) Speed is distance travelled in unit time or length divided by time. Its dimensional
formula is LT–1.

(iv) Acceleration is change in velocity per unit time, i.e., length per unit time per unit
time. Its dimensionsal formula is LT–2.

(v) Force is mass multiplied by acceleration. Its dimensions are given by the formula
MLT–2.

Similar considerations enable us to write dimensions of other physical quantities.

Note that numbers associated with physical quantities have no significance in dimensional
considerations. Thus if dimension of x is L, then dimension of 3x will also be L.

Write down the dimensions of momentum, which is product of mass and velocity and
work which is product of force and displacement.

Remember that dimensions are not the same as the units. For example, speed can
be measured in ms–1 or kilometre per hour, but its dimensions are always given by length
divided by time, or simply LT–1.

Dimensional analysis is the process of checking the dimensions of a quantity, or a
combination of quantities. One of the important principles of dimensional analysis is that
each physical quantity on the two side of an equation must have the same
dimensions. Thus if x = p + q, then p and q will have the same dimensions as x. This
helps us in checking the accuracy of equations, or getting the dimensions of a quantity
using an equation. The following examples illustrate the use of dimensional analysis.

Example 1.2 : You know that the kinetic energy of a particle of mass m is 
1

2
mv2 while

its potential energy is mgh, where v is the velocity of the particle, h is its height from the
ground and g is the acceleration due to gravity. Since the two expressions represent the
same physical quantity i.e, energy, their dimensions must be the same. Let us prove this
by actually writing the dimensions of the two expressions.

Solution : The dimensions of 
1

2
mv2 are M.(LT–1)2, or ML2T–2. (Remember that the
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Motion, Force and Energynumerical factors have no dimensions.) The dimensions of mgh are M.LT–2.L, or
ML2T–2. Clearly, the two expressions are the same and hence represent the same physical
quantity.

Let us take another example to find an expression for a physical quantity in terms of other
quantities.

Example 1.3 : Experience tells us that the distance covered by a car, say x, starting
from rest and having uniform acceleration depends on time t and acceleration a. Let us
use dimensional analysis to find expression for the distance covered.

Solution : Suppose x depends on the mth power of t and nth power of a. Then we may
write

x ∝ tm. an

Expressing the two sides now in terms of dimensions, we get
L1 ∝ Tm (LT–2)n,

or,
L1 ∝ Tm–2n Ln.

Comparing the powers of L and T on both sides, you will easily get n = 1, and m = 2.
Hence, we have

x ∝ t2 a1,  or  x ∝ at2.

This is as far as we can go with dimensional analysis. It does not help us in getting the
numerical factors, since they have no dimensions. To get the numerical factors, we have
to get input from experiment or theory. In this particular case, of course, we know that
the complete relation is x = (1/2)at2.

Besides numerical factors, other quantities which do not have dimensions are
angles and arguments of trigonometric functions (sine, cosine, etc), exponential
and logarithmic functions. In sin x, x is said to be the argument of sine function. In ex, x
is said to be the argument of the exponential function.

Now take a pause and attempt the following questions to check your progress.

Intext Questions 1.2

1. Experiments with a simple pendulum show that its time period depends on its length (l)
and the acceleration due to gravity (g). Use dimensional analysis to obtain the
dependence of the time period on l and g .

....................................................................................................................................

2. Consider a particle moving in a circular orbit of radius r with velocity v and acceleration
a towards the centre of the orbit. Using dimensional analysis, show that a ∝ v2/r .

....................................................................................................................................

3. You are given an equation: mv = Ft, where m is mass, v is speed, F is force and t is
time. Check the equation for dimensional correctness.

....................................................................................................................................
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1.3.1 Scalar and Vector Quantities
In physics we classify physical quantities in two categories. In one case, we need only to
state their magnitude with proper units and that gives their complete description. Take, for
example, mass. If we say that the mass of a ball is 50 g, we do not have to add anything to
the description of mass. Similarly, the statement that the density of water is 1000 kg m–3 is
a complete description of density. Such quantities are called scalars. A scalar quantity
has only magnitude; no direction.

On the other hand, there are quantities which require both magnitude and direction for
their complete description. A simple example is velocity. The statement that the velocity
of a train is 100 km h–1 does not make much sense unless we also tell the direction in
which the train is moving. Force is another such quantity. We must specify not only the
magnitude of the force but also the direction in which the force is applied. Such quantities
are called vectors. A vector quantity has both magnitude and direction.

Some examples of vector quantities which
you come across in mechanics are:
displacement (Fig. 1.3), acceleration,
momentum, angular momentum and torque
etc,

What about energy? Is it a scalar or a vector?

To get the answer, think if there is a direction
associated with energy. If not, it is a scalar.

1.3.2  Representation of Vectors

A vector is represented by a line with an arrow
indicating its direction. Take vector AB in Fig. 1.4.
The length of the line represents its magnitude on
some scale. The arrow indicates its direction.
Vector CD is a vector in the same direction but its
magnitude is smaller. Vector EF is a vector whose
magnitude is the same as that of vector CD, but its
direction is different. In any vector, the initial point,

(point A in AB), is called the tail of the vector and the final point, (point B in AB) with the
arrow mark is called its tip (or head).

A vector is written with an arrow over the letter representing the vector, for example, A
r

.

The magnitude of vector A
r

 is simply A or | A
r

|. In print, a vector is indicated by a bold
letter as A.

Two vectors are said to be equal if their magnitudes are equal and they point in the same
direction. This means that all vectors which are parallel to each other have the same
magnitude and point in the same direction are equal. Three vectors A, B and C shown in
Fig. 1.5 are equal. We say A = B = C. But D is not equal to A.

Fig.1.3 : Displacement vector

Displacement
Vector

Actual path of
a particle

Fig. 1.4 : Directions and
magnitudes of vectors

A

B

C

D

E

F
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Motion, Force and EnergyA vector (here D) which has the same
magnitude as A but has opposite
direction, is called negative of A, or
–A. Thus, D = –A.

For respresenting a physical vector
quantitatively, we have to invariably
choose a proportionality scale. For
instance, the vector displacement
between Delhi and Agra, which is about
300 km, is represented by choosing a scale  100 km = 1 cm, say. Similarly, we can represent
a force of 30 N by a vector of length 3cm by choosing a scale 10N = 1cm.

From the above we can say that if we translate a vector parallel to itself, it remains
unchanged. This important result is used in addition of vectors. Let us sec how.

1.3.3 Addition of Vectors

You should remember that only vectors of the same kind can be added. For example,
two forces or two velocities can be added. But a force and a velocity cannot be added.

Suppose we wish to add vectors A and B. First redraw vector A [Fig. 1.6 (a)]. For this
draw a line (say pq) parallel to vector A. The length of the line i.e. pq should be equal to
the magnitude of the vector. Next draw vector B such that its tail coincides with the tip of
vector A. For this, draw a line qr from the tip of A (i.e., from the point q ) parallel to the
direction of vector B. The sum of two vectors then is the vector from the tail of A to the
tip of B, i.e. the resultant will be represented in magnitude and direction by line pr. You

can now easily prove that vector addition is commutative. That is, A + B = B + A, as
shown in Fig. 1.6 (b). In Fig. 1.6(b)  we observe that pqr is a triangle and its two sides pq
and qr respectively represent the vectors A and B in magnitude and direction, and the
third side pr, of the triangle represents the resultant vector with its direction from p to r.
This gives us a rule for finding the resultant of two vectors :

If two vectors are represented in magnitude and direction by the two sides
of a triangle taken in order, the resultant is represented by the third side of
the triangle taken in the opposite order. This is called triangle law of vectors.

Fig. 1.5 : Three vectors are equal but fourth
vector D is not equal.

A

B
C

D

                                    (a)
(b)

A

A

B

p q

A + B

r A

A +
 B

B

B +
 A

A
p q

r s

Fig. 1.6 : Addition of  vectors A and B
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Motion, Force and Energy The sum of two or more vectors is called the resultant vector. In Fig. 1.6(b), pr is the
resultant of A and B. What will be the resultant of three forces acting along the three sides
of a triangle in the same order? If you think that it is zero, you are right.

Let us now learn to calculate resultant of more than
two vectors.

The resultant of more than two vectors, say A, B
and C, can be found in the same manner as the sum
of two vectors. First we obtain the sum of A and B,
and then add the resultant of the two vectors, (A +
B), to C. Alternatively, you could add B and C, and
then add A to (B + C) (Fig. 1.7). In both cases you
get the same vector. Thus, vector addition is
associative. That is, A + (B + C) = (A + B) + C.

If you add more than three vectors, you will discover
that the resultant vector is the vector from the
tail of the first vector to the tip of the last vector.

Many a time, the point of application of vectors is the same. In such situations, it is more
convenient to use parallelogram law of vector addition. Let us now learn about it.

1.3.4 Parallelogram Law of Vector Addition

Let A and B be the two vectors and let θ be the angle between them as shown in Fig. 1.8.
To calculate the vector sum, we complete the parallelogram. Here side PQ represents
vector A, side PS represents B and the diagonal PR represents the resultant vector R.
Can you recognize that the diagonal PR is the sum vector A + B? It is called the resultant
of vectors A and B. The resultant makes an angle α with the direction of vector A.
Remember that vectors PQ and SR are equal to A, and vectors PS and QR are equal, to
B. To get the magnitude of the resultant vector R, drop a perpendicular RT as shown.
Then in terms of magnitudes

Fig.1.7 : Addition of three vectors
in two different orders

(A
 +

 B
) +

 C
A

 +
 (B

 +
 C

)
A + B B + C

A

B

C

Fig.1.8 : Parallelogram law of addition of vectors

B

θ
α θ

B

Q TP A

A + B
R

A
R

S

(PR)2 = (PT)2 + (RT)2

= (PQ + QT)2 + (RT)2
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Motion, Force and Energy= (PQ)2 + (QT)2 + 2PQ.QT + (RT)2

= (PQ)2 + [(QT)2 + (RT)2] + 2PQ.QT (1.1)

= (PQ)2 + (QR)2 + 2PQ.QT

= (PQ)2 + (QR)2 + 2PQ.QR (QT / QR)

R2 = A2 + B2 + 2AB.cosθ

Therefore, the magnitude of R is

R = 2 2A B + 2AB.cos+ θ (1.2)

For the direction of the vector R, we observe that

tanα =
RT

PT
 =

RT

PQ + QT  = 
Bsin

A + Bcos

θ
θ (1.3)

So, the direction of the resultant can be expressed in terms of the angle it makes with
base vector.

Special Cases

Now, let us consider as to what would be the resultant of two vectors when they are
parallel?

To find answer to this question, note that the angle between the two parallel vectors is zero
and the resultant is equal to the sum of their magnitudes and in the direction of these
vectors.

Suppose that two vectors are perpendicular to each other. What would be the magnitude
of the resultant? In this case, θ = 90º and cos θ = 0.

Suppose further that their magnitudes are equal. What would be the direction of the
resultant?

Notice that tan α = B/A = 1. So what is α?

Also note that when θ = π, the vectors become anti-parallel. In this case α = 0. The
resultant vector will be along A or B, depending upon which of these vectors has larger
magnitude.

Example 1.4 A cart is being pulled by Ahmed north-ward with a force of magnitude
70 N. Hamid is pulling the same cart in the south-west direction with a force of magnitude

50 N. Calculate the magnitude and direction of the resulting force on the cart.

Solution :

Here, magnitude of first force, say, A = 70 N.

The magnitude of the second force, say, B = 50 N.

Angle θ between the two forces = 135 degrees.
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Motion, Force and Energy So, the magnitude of the resultant is given by Eqn. (1.2) :

R= 2 2(70) + (50) + 2× 70×50× cos(135)

= 4900 + 2500 - 7000× sin45

   = 49.5 N

The magnitude of R = 49.5 N.

The direction is given by Eqn. (1.3):

tan α=
B sinθ

A + B cosθ =
50× sin (135)

70 + 50 cos (135) =
50× cos 45

70 – 50 sin 45
 =

1.00

Therefore, α = 45.0º (from the tables). Thus R makes an angle of 45º with 70 N force.
That is, R is in North-west direction as shown in Fig. 1.9.

1.3.5 Subtraction of Vectors

How do we subtract one vector from another?
If you recall that the difference of two vectors,
A – B, is actually equal to A + (–B), then you
can adopt the same method as for addition of
two vectors. It is explained in Fig. 1.10. Draw
vector –B from the tip of A. Join the tail of A
with the tip of –B. The resulting vector is the
difference (A – B).

You may now like to check your progress.

Intext Questions 1.3

Given vectors 
A

 and B

1. Make diagrams to show how to find the following vectors:

(a) B – A, (b) A + 2B, (c) A – 2B and (d) B – 2A.

....................................................................................................................................

2. Two vectors A and B of magnitudes 10 units and 12 units are anti-parallel. Determine
A + B and A – B.

....................................................................................................................................

3. Two vectors A and B of magnitudes A = 30 units and B = 60 units respectively are
inclined to each other at angle of 60 degrees. Find the resultant vector.

....................................................................................................................................

50
N

70N
45º

135º

R

Fig. 1.9: Resultant of forces
inclined at an angle

Fig. 1.10 : Subtraction of vector B
from vector A

B

–BA

A – B

R

O

P

Q
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1.4.1 Multiplication of a Vector by a Scalar

If we multiply a vector A by a scalar k,  the
product is a vector whose magnitude is the
absolute value of k times the magnitude of
A. This means that the magnitude of the
resultant vector is k |A|. The direction of
the new vector remains unchanged if k is
positive. If k is negative, the direction of
the new vector is opposite to its original
direction. For example, vector 3A is thrice
the magnitude of vector A, and it is in the
same direction as A. But vector –3A is in a direction opposite to vector A, although its
magnitude is thrice that of vector A.

1.4.2 Scalar Product of Vectors

The scalar product of two vectors A and B is written as A.B and is equal to AB cosθ,
where θ is the angle between the vectors. If you look carefully at Fig. 1.11, you would
notice that B cosθ is the projection of vector B along vector A. Therefore, the scalar
product of A and B is the product of magnitude of A with the length of the projection of B
along A. Another thing to note is that even if we take the angle between the two vectors
as 360 – θ, it does not matter because the cosine of both angles is the same. Since a dot
between the two vectors indicates the scalar product, it is also called the dot product.
Remember that the scalar product of two vectors is a scalar quantity.

A familiar example of the scalar product is the work done when a force F acts on a body
moving at an angle to the direction of the force. If d is the displacement of the body and θ
is the angle between F and d, then the work done by the force is Fdcosθ.

Since dot product is a scalar, it is commutative: A.B = B.A = ABcosθ. It is also distributive:
A.(B + C) = A.B + A.C.

1.4.3 Vector Product of Vectors

Suppose we have two vectors A and B inclined at an angle θ. We can draw a plane which
contains these two vectors. Let that plane be called Ω ( (Fig. 1.12 a) which is perpendicular
to the plane of paper here. Then the vector product of these vectors, written as A ××××× B, is
a vector, say C, whose magnitude is AB sinθ and whose direction is perpendicular to the
plane Ω. The direction of the vector C can be found by right-hand rule (Fig. 1.12 b).
Imagine the fingers of your right hand curling from A to B along the smaller angle between
them. Then the direction of the thumb gives the direction of the product vector C. If you
follow this rule, you can easily see that direction of vector B ××××× A is opposite to that of the
vector A ××××× B. This means that the vector product is not commutative. Since a cross
is inserted between the two vectors to indicate their vector product, the vector product is
also called the cross product.

Fig. 1.11: Projection of B on A

B

θ
A
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(a) (b)

Fig.1.12 (a) : Vector product of Vectors; (b) Direction of the product vector  C =A ××××× B is given
by the right hand rule. If the right hand is held so that the curling fingers point
from A to B through the smaller angle between the two, then the thumb strectched
at right angles to fingers will point in the direction of C.

A familiar example of vector product is the angular momentum possessed by a rotating
body.

To check your progress, try the following questions.

Intext Questions 1.4

1. Suppose vector A is parallel to vector B. What is their vector product? What will be
the vector product if B is anti-parallel to A?

....................................................................................................................................

2. Suppose we have a vector A and a vector C = 
1

2
 B. How is the direction of vector A

× B related to the direction of vector A × C.

....................................................................................................................................

3. Suppose vectors A and B are rotated in the plane which contains them. What happens
to the direction of vector C = A ××××× B.

....................................................................................................................................

4. Suppose you were free to rotate vectors A and B through arbitrary amounts keeping
them confined to the same plane. Can you make vector C = A ××××× B to point in exactly
opposite direction?

....................................................................................................................................

5. If vector A is along the x-axis and vector B is along the y-axis, what is the direction of
vector C = A ××××× B? What happens to C if A is along the y-axis and B is along the
x-axis?

....................................................................................................................................

6. A and B are two mutually perpendicular vectors. Calculate (a) A . B and (b) A × B.

....................................................................................................................................

A

B

θ

C = A  B×

– C = B  A×

π



3.17

MODULE - 1

Notes

17

Units, Dimensions and Vectors

Motion, Force and Energy
1.5 Resolution of Vectors

Resolution of vectors is converse of addition of vectors. Here we calculate components of
a given vector along any set of coordinate axes. Suppose we have vector A as shown in
Fig. 1.13 and we need to find its components along  x and y-axes. Let these components
be called A

x
 and A

y
 respectively. Simple trigonometry shows that

A
x

= A cos θ (1.4)

and A
y

= A sin θ, (1.5)

where θ is the angle that A makes with the x - axis. What about the components of vector
A along X and Y-axes (Fig. 1.13)? If the angle between the X-axis and A is φ, then

A
X

= A cos φ

and A
Y

= A sin φ.

It must now be clear that the components of a vector are not fixed quantities; they depend
on the particular set of axes along which components are required. Note also that the
magnitude of vector A and its direction in terms of its components are given by

A = 2 2A Ax y+  = 2 2
X YA A+ (1.6)

and
tan θ = A

y
 / A

x
, tan φ = A

Y
 /A

X
. (1.7)

So, if we are given the components of a vector, we can combine them as in these equations
to get the vector.

1.6  Unit Vector

At this stage we introduce the concept of a unit vector. As the name suggests, a unit
vector has unitary magnitude and has a specified direction. It has no units and no dimensions.

As an example, we can write vector A as A n̂  where a cap on n (i.e. n̂ ) denotes a unit
vector in the direction of A. Notice that a unit vector has been introduced to take care of

y
Y

Ay

AY

A

Ax

AX

x

X

θ φ
O

Fig. 1.13 : Resolution of vector A along two sets of coordinates (x, y) and (X, Y)
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Motion, Force and Energy the direction of the vector; the magnitude has been taken care of by A. Of particular
importance are the unit vectors along coordinate axes. Unit vector along x-axis is denoted

by î , along y-axis by ĵ  and along z-axis by k̂ . Using this notation, vector A, whose

components along x and y axes are respectively A
x
 and A

y
, can be written as

A = A
x
 î  + A

y ĵ  . (1.8)

Another vector B can similarly be written as

B = B
x
 î  + B

y
 ĵ  . (1.9)

The sum of these two vectors can now be written as

A + B = (A
x
 + B

x
) î  + (A

y
 + B

y
) ĵ (1.10)

By the rules of scalar product you can show that

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ=1, =1, =1, =0, =0, and =0i. i j. j k .k i . j i .k j.k (1.11)

The dot product between two vectors A and B can now be written as

A . B = (A
x
 î  + A

y
 ĵ  ). (B

x
 î  + B

y
 ĵ )

= A
x
B

x
 ( î  . î ) + A

x
B

y
 ( î  . ĵ ) + A

y
B

x
 ( ĵ  . î ) + A

y
B

y
 ( ĵ  . ĵ )

= A
x
B

x
 + A

y
B

y
, (1.12)

Here, we have used the results contained in Eqn. (1.11).

Example 1.4 On a coordinate system (showing all
the four quadrants) show the following vectors:

A = 4 î  + 0 ĵ , B = 0 î  + 5 ĵ  , C = 4 î  + 5 ĵ ,

D = 6 î  – 4 ĵ .

Find their magnitudes and directions.

Solution : The vectors are given in component form.

The factor multiplying î  is the x component and the

factor multiplying ĵ  is the y component. All the vectors
are shown on the coordinate grid (Fig. 1.14).

The components of A are A
x
 = 4, A

y
 = 0. So, the magnitude of  A = 4. Its direction is

1 A
tan

A
− ⎛ ⎞
⎜ ⎟
⎝ ⎠

y

x
 in accordance with Eqn. (1.7). This quantity is zero, since A

y
 = 0. This makes

it to be along the x-axis, as it is. Vector B has x-component = 0, so it lies along the y-axis
and its magnitude is 5.

x-x

-y

y

B
C

A
D

–4

Fig. 1.14
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Motion, Force and EnergyLet us consider vector C. Here, C
x
 = 4 and C

y
 = 5. Therefore, the magnitude of C is

C = 2 24 5 41+ = . The angle that it makes with the x-axis is tan–1 (C
y 
/C

x
) = 51.3

degrees. Similarly, the magnitude of D is D = 60 . Its direction is tan–1 (D
y
/D

x
) = tan–1

(0.666) = –33.7º (in the fourth quadrant).

Example 1.5 Calculate the product C . D for the vectors given in Example 1.4.

Solution : The dot product of C with D can be found using Eqn. (1.12):

C . D = C
x
D

x
 + C

y
D

y
 = 4×6 + 5×(-4) = 24 – 20 = 4.

The cross product of two vectors can also be written in terms of the unit vectors. For this
we first need the cross product of unit vectors. For this remember that the angle between

the unit vectors is a right angle. Consider, for example, î  × ĵ  . Sine of the angle between
them is one. The magnitude of the product vector is also 1. Its direction is perpendicular to

the xy - plane containing î  and ĵ  , which is the z-axis. By the right hand rule, we also find
that this must be the positive z-axis. And what is the unit vector in the positive

z - direction. The unit vector k̂ . Therefore,

î  × ĵ  = k̂ . (1.13)
Using similar arguments, we can show,

ĵ  × k̂ = î , k̂  × î  = ĵ , ĵ  × î  = – k̂ , k̂  × ĵ  = – î , î  × k̂  = – ĵ , (1.14)

and

î  × î = ĵ  × ĵ  = k̂  × k̂  = 0. (1.15)

Example 1.6 Calculate the cross product of vectors C and D given in Example (1.4).

Solution : We have

C × D = (4 î  + 5 ĵ  ) × (6 î  – 4 ĵ  )

= 24 ( î  × î  ) –16 ( î  × ĵ ) + 30 ( ĵ  × î ) –20 ( ĵ  × ĵ )
Using the results contained in Eqns. (1.13 – 1.15), we can write

C × D = –16 k̂  – 30 k̂  = – 46 k̂
So, the cross product of C and D is a vector of magnitude 46 and in the negative z
direction. Since C and D are in the xy-plane, it is obvious that the cross product must be
perpendicular to this plane, that is, it must be in the z-direction.

Intext Questions 1.5

1. A vector A makes an angle of 60 degrees with the x-axis of the xy-system of coordinates.
If its magnitude is 50 units, find its components in x, y directions. If another vector B
of the same magnitude makes an angle of 30 degrees with the X-axis of the XY-
system of coordinates. Find its components now. Are they same as before?

....................................................................................................................................
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2. Two vectors A and B are given respectively as 3 î  – 4 ĵ  and –2 î  + 6 ĵ  . Sketch

them on the coordinate grid. Find their magnitudes and the angles that they make with
the x-axis (see Fig. 1.14).

....................................................................................................................................

3. Calculate the dot and cross product of the vectors given in the above question.

....................................................................................................................................

You now know that each term in an equation must have the same dimensions. Having
learnt vectors, we must now add this: For an equation to be correct, each term in it
must have the same character: either all of them be vectors or all of them be
scalars.

What You Have Learnt

� Every physical quantity must be measured in some unit and also expressed in this
unit. The SI system has been accepted and followed universally for scientific
reporting.

� Base SI units for mass, length and time are respectively kg, m and s. In addition to
base units, there are derived units.

� Every physical quantity has dimensions. Dimensional analysis is a useful tool for
checking correctness of equations.

� In physics, we deal generally with two kinds of quantities, scalars and vectors. A
scalar has only magnitude. A vector has both direction and magnitude.

� Vectors are added according to the parallelogram rule.

� The scalar product of two vectors is a scalar.

� The vector product of two vectors is a vector perpendicular to the plane containing
the two vectors.

� Vectors can be resolved into components along a specified set of coordinates axes.

Terminal Exercise

1. A unit used for measuring very large distances is called a light year. It is the distance
covered by light in one year. Express light year in metres. Take speed of light as
3 × 108 m s–1.

2. Meteors are small pieces of rock which enter the earth’s atmosphere occasionally
at very high speeds. Because of friction caused by the atmosphere, they become
very hot and emit radiations for a very short time before they get completely burnt.
The streak of light that is seen as a result is called a ‘shooting star’. The speed of a
meteor is 51 kms–1 In comparison, speed of sound in air at about 200C is 340 ms–1

Find the ratio of magnitudes of the two speeds.

3. The distance covered by a particle in time t while starting with the initial velocity u
and moving with a uniform acceleration a is given by s = ut + (1/2)at2. Check the
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Motion, Force and Energycorrectness of the expression using dimensional analysis.

4. Newton’s law of gravitation states that the magnitude of force between two particles
of mass m

1
 and m

2
 separated by a distance r is given by

F = G 1 2
2

m m

r

 where G is the universal constant of gravitation. Find the dimensions of G.

5. Hamida is pushing a table in a certain direction with a force of magnitude 10 N. At
the same time her, classmate Lila is pushing the same table with a force of magnitude
8 N in a direction making an angle of 60o to the direction in which Hamida is pushing.
Calculate the magnitude of the resultant force on the table and its direction.

6. A physical quantity is obtained as a dot product of two vector quantities. Is it a scalar
or a vector? What is the nature of a physical quantity obtained as cross product of
two vectors?

7. John wants to pull a cart applying a force parallel to the ground. His friend Ramu
suggests that it would be easier to pull the cart by applying a force at an angle of 30
degrees to the ground. Who is correct and why?

8. Two vectors are given by 5 î  – 3 ĵ  and 3 î  – 5 ĵ . Calculate their scalar and vector
products.

Answers to Intext Questions

1.1

1. Mass of the sun = 2 × 1030 kg

Mass of a proton = 2 × 10–27 kg

( No of protons in the sun = 
30

57
27

2 10
10

2 10

kg

kg−

× =
× .

2. 1 angstrom = 10–8 cm = 10–10 m

1 nanometer (nm) = 10–9 m

∴ 1 nm/1 angstrom = 10–9 m /10–10 m = 10 so 1 nm = 10 Å

3. 1370 kHz = 1370 × 103 Hz = (1370 × 103 )/109 GHz = 1.370 × 10–3 GHz

4. 1 decameter (dam) = 10 m

1 decimeter (dm) = 10–1 m

∴ 1 dam = 100 dm

1 MW = 106 W

1 GW = 109 W

∴ 1 GW = 103 MW
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1. Dimension of length = L

Dimension of time = T

Dimensions of g = LT–2

Let time period t be proportional to lα and gβ

Then, writing dimensions on both sides  T = Lα (LT–2)β = Lα+β T–2β

Equating powers of L and T,

α + β = 0, 2β = –1 ⇒ β = –1/2 and α = 1/2

So, t α
l

g  .

2. Dimension of a = LT–2

Dimension of v = LT–1

Dimension of r = L

Let a be proportional to vα and rβ

Then dimensionally,

LT–2 = (LT–1)α Lβ = Lα+β T–α

Equating powers of L and T,

α + β = 1, α = 2, ⇒ α = –1

So, α ∝ v2/r

3. Dimensions of mv = MLT–1

Dimensions of Ft = MLT–2 T1 = MLT–1

Dimensions of both the sides are the same, therefore, the equation is dimensionally
correct.

1.3

1. Suppose

(a)   (b)

A

A + B

B
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(c)   

A

–2BA – 2B
       (d)

–2A

B – 2A B

2.
A

10 units
⎯⎯⎯⎯⎯→          

B
12 units

←⎯⎯⎯⎯⎯

B 12 units
A 10 units

= −←⎯⎯⎯⎯⎯⎯→
=

A + B = 10 + (–12)

= –2 units

also 
A = 10 units –B = + 12 units

A – B = 22 units

3.

| A B |+  = 77 units

1.4
1. If A and B are parallel, the angle θ between them is zero. So, their cross product

A × B = AB sin θ = 0.

If they are antiparallel then the angle between them is 180o. Therefore,

A × B = AB sin θ = 0, because sin 180o = 0.

2. If magnitude of B is halved, but it remains in the same plane as before, then the
direction of the vector product C = A × B remains unchanged. Its magnitude may
change.
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Motion, Force and Energy 3. Since vectors A and B rotate without change in the plane containing them, the direction
of  C = A × B will not change.

4. Suppose initially the angle between A and B is between zero and 180o. Then C = A
× B will be directed upward perpendicular to the plane. After rotation through arbitrary
amounts, if the angle between them becomes > 180o, then C will drop underneath
but perpendicular to the plane.

5. If A is along x-axis and B is along y-axis, then they are both in the xy plane. The
vector product C = A × B will be along z-direction. If A is along y-axis and B is along
x-axis, then C is along the negative z-axis.

6. (a) A . B = |A| |B| cos θ = 0 when θ = 90º

(b) A ××××× B = |A| |B| sin θ = |A| |B| as sin θ = 1 at θ = 90º

1.5
1. When A makes an angle of 60o with the x-axis:

 A
x

= A cos 60 = 50 . ½ = 25 units

A
y

= A sin 60 = 50.√3/2 = 50 . 0.866

= 43.3 units

 When A makes an angle of 30o with the x-axis

A
x

= 50 cos 30 = 50 . 0.866 = 43.3 units

A
y

= 50 sin 30 = 50 . ½ = 25 units

 The components in the two cases are obviously not the same.

2. The position of vectors on the coordinate grid is shown in Fig. 1.14.

Suppose A makes an angle θ with the x-axis, then

tan θ = – 4/3 ⇒ θ = tan–1(– 4/3)

= –53o 6′ or 306o 54′

after taking account of the quadrant in which the angle lies.

If B makes an angle φ with the x-axis, then

tan φ = 6/–2 = –3 ⇒ φ = tan–1(–3)

= 108o 24′

 3. The dot product of A and B:

A . B = (3 î  – 4 ĵ ).(–2 î  +6 ĵ )

= –6( î . î ) – 24( ĵ . ĵ ) = –30

because î . ĵ  = ĵ . î  = 0, and î . î  = ĵ . ĵ  = 1

 The cross product of A and B:

A × B = (3 î  – 4 ĵ ) × (–2 î  + 6 ĵ )

= 18 ( î  × ĵ ) + 8 ( ĵ  × î ) = 18 k̂  – 8 k̂  = 10 k̂
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Motion, Force and Energyon using Eqs.(1.14) and (1.15). So, the cross product is in the direction of z-axis,
since A and B lie in the xy plane.

Answers to Terminal Problems
1. 1 ly = 9.4673 × 1015 m.

2.
Speed of meteor 51 3

Speed of sound in air of 20ºC 340 20
= =

5. 15.84 N and α = tan–1 
1

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

8. A . B = 30

A × B = ( ) ( )ˆ ˆ ˆ ˆ5 3 3 5− × −i j i j  is a single vector C such that |C| = 16 units along

negative z-direction.
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2

MOTION IN A STRAIGHT LINE

We see a number of things moving around us. Humans, animals, vehicles can be seen
moving on land. Fish, frogs and other aquatic animals move in water. Birds and aeroplanes
move in air. Though we do not feel it, the earth on which we live also revolves around the
sun as well as its own axis. It is, therefore, quite apparent that we live in a world that is
very much in constant motion. Therefore to understand the physical world around us, the
study of motion is essential. Motion can be in a straight line(1D), in a plane(2D) or in
space(3D). If the motion of the object is only in one direction, it is said to be the motion in
a straight line. For example, motion of a car on a straight road, motion of a train on straight
rails, motion of a freely falling body, motion of a lift, and motion of an athlete running on a
straight track, etc.

In this lesson you will learn about motion in a straight line. In the following lessons, you will
study the laws of motion, motion in plane and other types of motion.

Objectives

After studying this lesson, you should be able to,

� distinguish between distance and displacement, and speed and velocity;

� explain the terms instantaneous velocity, relative velocity and average velocity;

� define acceleration and instantaneous acceleration;

� interpret position - time and velocity - time graphs for uniform as well as non-
uniform motion;

� derive equations of motion with constant acceleration; and

� describe motion under gravity; and
� solve numericals based on equations of motion.

2.1 Speed and Velocity

We know that the total length of the path covered by a body is the distance travelled by
it. But the difference between the initial and final position vectors of a body is called its
displacement. Basically, displacement is the shortest distance between the two
positions and has a certain direction. Thus, the displacement is a vector quantity but
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distance is a scalar. You might have also learnt that the rate of change of distance with
time is called speed but the rate of change of displacement is known as velocity. Unlike
speed, velocity is a vector quantity. For 1-D motion, the directional aspect of the vector is
taken care of by putting + and – signs and we do not have to use vector notation for
displacement, velocity and acceleration for motion in one dimension.

2.1.1 Average Velocity

When an object travels a certain distance with different velocities, its motion is specified
by its average velocity. The average velocity of an object is defined as the  displacement
per unit time. Let x

1
 and x

2
 be its positions at instants t

1
 and t

2
, respectively. Then

mathematically we can express average velocity as

v =
displacement

time taken

=
x x

t t
2 1

2 1

–

–  = 
∆
∆

x

t
(2.1)

where x
2
 – x

1
 signifies change in position (denoted by ∆x) and t

2
 – t

1
 is the corresponding

change in time (denoted by ∆t). Here the bar over the symbol for velocity (v ) is standard
notation used to indicate an average quantity. Average velocity can be represented as vav

also. The average speed of an object is obtained by dividing the total distance travelled by
the total time taken:

Average speed = 
total distancetravelled

total time taken (2.2)

If the motion is in the same direction along a straight line, the average speed is the same as
the magnitude of the average velocity. However, this is always not the case (see example
2.2).

Following examples will help you in understanding the difference between average speed
and average velocity.

Example 2.1 : The position of an object moving along the x-axis is defined as x = 20t2,
where t is the time measured in seconds and position is expressed  in metres. Calculate

the average velocity of the object over the time interval from 3s to 4s.

Solution : Given,

x = 20t2

Note that x and t are measured in metres and seconds. It means that the constant of
proportionality (20) has dimensions ms–2.

We know that the average velocity is given by the relation

v = 
x x

t t
2 1

2 1

–

–
At t

1
 = 3s,
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x

1
= 20 × (3)2

= 20 × 9 = 180 m

Similarly, for t
2
= 4s

x
2

= 20 × (4)2

= 20 × 16 = 320 m

∴ v = 
2 1

2 1

x x

t t

−
−  = 

(320 180) m

(4 3) s

−
−  = 

140 m

1s  = 140 ms–1

Hence, average velocity = 140 ms–1.

Example 2.2 : A person runs on a 300m circular track and comes back to the starting
point in 200s. Calculate the average speed and average velocity.

Solution : Given,

Total length of the track = 300m.

Time taken to cover this length = 200s

Hence,

average speed = 
total distance travelled

time taken

= 
300

200
ms–1 = 1.5 ms–1

As the person comes back to the same point, the displacement is zero. Therefore, the
average velocity is also zero.

Note that in the above example, the average speed is not equal to the magnitude of the
average velocity. Do you know the reason?

2.1.2 Relative Velocity

When we say that a bullock cart is moving at 10km h–1 due south, it means that the cart
travels a distance of 10km in 1h in southward direction from its starting position. Thus it is
implied that the referred velocity is with respect to some reference point. In fact, the
velocity of a body is always specified with respect to some other body. Since all bodies are
in motion, we can say that every velocity is relative in nature.

The relative velocity of an object with respect to another object is the rate at which it
changes its position relative to the object / point taken as reference. For example, if v

A
 and

v
B
 are the velocities of the two objects along a straight line, the relative velocity of B with

respect to A will be v
B
– v

A
.
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The rate of change of the relative position of an object with respect to the other
object is known as the relative velocity of that object with respect to the other.

Importance of Relative Velocity

The position and hence velocity of a body is specified in relation with some other
body. If the reference body is at rest, the motion of the body can be described easily
.You will learn the equations of kinematics in this lesson. But what happens, if the
reference body is also moving? Such a motion is seen to
be of the two body system by a stationary observer.
However, it can be simplified by invoking the concept of
relative motion.

Let the initial positions of two bodies A and B be x
A
(0) and x

B
(0). If body A moves

along positive x-direction with velocity v
A
 and body B with velocity v

B
, then the

positions of points A and B after t seconds will be given by

x
A
(t) = x

A
(0) + v

A
t

x
B
(t) = x

B
(0) + v

B
t

Therefore, the relative separation of B from A will be

x
BA

(t) = x
B
(t) – x

A
(t) = x

B
(0) – x

A
(0) + (v

B
 – v

A
) t

= x
BA

(0) + v
BA

t

where v
BA

 = (v
B
 – v

A
) is called the relative velocity of B with respect to A. Thus by

applying the concept of relative velocity, a two body problem can be reduced to a
single body problem.

Example 2.3 : A train A is moving on a straight track (or railway line) from North to
South with a speed of 60km h–1. Another train B is moving from South to North  with a

speed of 70km h–1. What is the velocity of B relative to the train A?

Solution : Considering the direction from South to North as positive, we have

velocity (v
B
) of train B = + 70km h–1

and, velocity (v
A
) of train A = – 60km h–1

Hence, the velocity of train B relative to train A

= v
B
 – v

A

= 70 – (– 60) = 130km h–1.

In the above example, you have seen that the relative velocity of one train with respect to
the other is equal to the sum of their respective velocities. This is why a train moving in a
direction opposite to that of the train in which you are travelling appears to be travelling
very fast. But, if the other train were moving in the same direction as your train, it would
appear to be very slow.

A B

xA(0) xB(0)O
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While travelling in a bus or a car, you might have noticed that sometimes it speeds up and
sometimes it slows down. That is, its velocity changes with time. Just as the velocity is
defined as the time rate of change of displacement, the acceleration is defined as time
rate of change of velocity. Acceleration is a vector quantity and its SI unit is m s–2. In one
dimension, there is no need to use vector notation for acceleration as explained in the case
of velocity. The average acceleration of an object is given by,

Average acceleration ( a ) = 
Final velocity - Initial velocity

Time taken for change in velocity

a = 
2 1t t−
2 1–v v

 = 
t

∆
∆
v

(2.3)

In one dimensional motion, when the acceleration is in the same direction as the motion or
velocity (normally taken to be in the positive direction), the acceleration is positive. But the
acceleration may be in the opposite direction of the motion also. Then the acceleration is
taken as negative and is often called deceleration or retardation. So we can say that an
increase in the rate of change of velocity is acceleration, whereas the decrease in the
rate of change of velocity is retardation.

Example 2.4 : The velocity of a car moving towards the East increases from 0 to 12ms–

1 in 3.0 s. Calculate its average acceleration.

Solution : Given,

v
1

= 0 m s–1

v
2

= 12 m s–1

t = 3.0 s

a = 
–1(12.0m s ) 

3.0s
= 4.0  m s–2

Intext Questions 2.1

1. Is it possible for a moving body to have non-zero average speed but zero average
velocity during any given interval of time? If so, explain.

..................................................................................................................................

2. A lady drove to the market at a speed of 8 km h–1. Finding market closed, she came
back home at a speed of 10 km h–1. If the market is 2km away from her home,
calculate the average velocity and average speed.

..................................................................................................................................

3. Can a moving body have zero relative velocity with respect to another body? Give an
example.

..................................................................................................................................

4. A person strolls inside a train with a velocity of 1.0 m s–1 in the direction of motion of
the train. If the train is moving with a velocity of 3.0 m s–1, calculate his
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(a) velocity as seen by passengers in the compartment, and  (b) velocity with respect
to a person sitting on the platform.

..................................................................................................................................

2.2 Position - Time Graph

If you roll a ball on the ground, you will notice that
at different times, the ball is found at different
positions. The different positions and corresponding
times can be plotted on a graph giving us a certain
curve. Such a curve is known as position-time curve.
Generally, the time is represented along x-axis
whereas the position of the body is represented
along y-axis.

Let us plot the position - time graph for a body at
rest at a distance of 20m from the origin. What will
be its position after 1s, 2s, 3s, 4s and 5s? You will
find that the graph is a straight line parallel to the
time axis, as shown in Fig. 2.1

2.2.1  Position-Time Graph for Uniform Motion

Now, let us consider a case where an object covers equal distances in equal intervals of
time. For example, if the object covers a distance of 10m in each second for 5 seconds, the
positions of the object at different times will be as shown in the following table.

Time (t) in s 1 2 3 4 5

Position (x) in m 10 20 30 40 50

In order to plot this data, take time along
x-axis assuming 1cm as 1s, and position
along y-axis with a scale of 1cm to be
equal to 10m. The position-time graph will
be as shown in Fig.2.2

The graph is a straight line inclined with
the x-axis.  A motion in which the
velocity of the moving object is
constant is known as uniform motion.
Its position-time graph is a straight line
inclined to the time axis.

In other words, we can say that when a
moving object covers equal distances in
equal intervals of time, it is in uniform
motion.

Fig. 2.1 : Position-time graph for
a body at rest

Fig. 2.2 : Position-time graph for
uniform motion
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Motion, Force and Energy 2.2.2 Position-Time Graph for Non-Uniform Motion

Let us now take an example of a train which starts from a station, speeds up and moves
with uniform velocity for certain duration and then slows down before steaming in the next
station. In this case you will find that the distances covered in equal intervals of time

are not equal. Such a motion is said to
be non-uniform motion. If the distances
covered in successive intervals are
increasing, the motion is said to be
accelerated motion. The position-time
graph for such an object is as shown in
Fig.2.3.

Note that the position-time graph of
accelerated motion is a continuous curve.
Hence, the velocity of the body changes
continuously. In such a situation, it is more
appropriate to define average velocity of
the body over an extremely small interval
of time or instantaneous velocity. Let us

learn to do so now.

2.2.3 Interpretation of Position - Time Graph

As you have seen, the position - time graphs of different moving objects can have different
shapes. If it is a straight line parallel to the time axis, you can say that the body is at rest
(Fig. 2.1). And the straight line inclined to the time axis shows that the motion is uniform
(Fig.2.2). A continuous curve implies continuously changing velocity.

(a) Velocity from position - time graph : The slope of the straight line of position - time
graph gives the average velocity of the object in motion. For determining the slope, we
choose two widely separated points (say A and B) on the straight line (Fig.2.2) and form a
triangle by drawing lines parallel to y-axis and x-axis. Thus, the average velocity of the object

v  = 2 1

2 1

x x

t t

−
−

 = 
x

t

∆
∆

 = 
BC

AC
(2.4)

Hence, average velocity of object equals the slope of the straight line AB.

It shows that greater the value of the slope (∆x/∆t) of the straight line position - time
graph, more will be the average velocity. Notice that the slope is also equal to the tangent
of the angle that the straight line makes with a horizontal line, i.e., tan θ = ∆x/∆t. Any two
corresponding ∆x and ∆t  intervals can be used to determine
the slope and thus the average velocity during that time internal.

Example 2.5 : The position - time graphs of two bodies A
and B are shown in Fig. 2.4. Which of these has greater

velocity?

Solution : Body A  has greater slope and hence greater
velocity.

Fig. 2.4 : Position-
time graph of
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P
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Fig. 2.3 : Position-time graph of acceler-
ated motion as a continuous
curve
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(b) Instantaneous velocity : As you have learnt, a body having uniform motion along a
straight line has the same velocity at every instant. But in the case of  non-uniform motion,
the position - time graph is a curved line, as shown in Fig.2.5. As a result, the slope or the
average velocity varies, depending on the size of the
time intervals selected. The velocity of the particle at
any instant of time or at some point of its path is called
its instantaneous velocity.

Note that the average velocity over a time interval

∆t is given by v  = 
∆
∆

x

t
. As ∆t is made smaller and

smaller the average velocity approaches
instantaneous velocity.

In the limit ∆t → 0, the slope (∆x/∆t) of a line tangent
to the curve at that point gives the instantaneous
velocity. However, for uniform motion, the average
and instantaneous velocities are the same.

Example 2.6 : The position - time graph for the motion of an object for 20 seconds is
shown in Fig. 2.6. What distances and with what speeds does it travel in time intervals (i)
0 s to 5 s, (ii) 5 s to 10 s, (iii) 10 s to 15 s and (iv) 15 s to 17.5 s? Calculate the average
speed for this total journey.

FE

2017.5151052.5
O

4

8
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C D
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si
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m
) 

→

A

B

time(s) →

Fig. 2.6: Position-time graph

Solution :
i) During 0 s to 5 s, distance travelled = 4 m

∴ speed = 
Distance

Time
 = 

–14 m 4 m
0.8 m s

(5 – 0) 5
= =

s s

ii) During 5 s to 10 s, distance travelled = 12 – 4 = 8 m

∴ speed = 
–1(12 – 4) m 8 m

1.6 m s
(10 – 5) s 5 s

= =

iii) During 10 s to 15 s, distance travelled = 12 – 12 = 0 m

 ∴speed = 
Distance

Time
 = 

0

5
 = 0

iv) During 15 s to 17.5 s, distance travelled = 12 m

Fig. 2.5 : Displacement-time
graph for non-
uniform motion
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∴ Speed = 
12 m

2.5 s  = 4.8 m s–1

Now we would like you to pause for a while and solve the following questions to check
your progress.

Intext Questions 2.2

1. Draw the position-time graph for a motion with zero acceleration.

..................................................................................................................................

2. The following figure shows the displacement - time graph for two students A and B who
start from their school and reach their homes. Look at the graphs carefully and answer
the following questions.

(i) Do they both leave school at the same time?

..................................................................................................................................

(ii) Who stays farther from the school?

..............................................................

(iii) Do they both reach their respective
houses at the same time?

..............................................................

(iv) Who moves faster?

..............................................................

(v) At what distance from the school do
they cross each other?

..............................................................

3. Under what conditions is average velocity of a body equal to its instantaneous velocity?

..................................................................................................................................

4. Which of the following graphs is not possible? Give reason for your answer?

..................................................................................................................................

A C

B
time ( ) t →
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 →

A C

B
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            (a)                        (b)
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2.3  Velocity - Time Graph

Just like the position-time graph, we can plot velocity-time graph. While plotting a
velocity-time graph, generally the time is taken along the x-axis and the velocity along the
y-axis.

2.3.1 Velocity-Time Graph for Uniform Motion

As you know, in uniform motion the velocity of the body remains constant, i.e., there is no
change in the velocity with time. The velocity-time graph for such a uniform motion is a
straight line parallel to the time axis, as shown in the Fig. 2.6.

2.3.2  Velocity-Time Graph for Non-Uniform Motion

If the velocity of a body changes uniformly with time, its acceleration is constant. The
velocity-time graph for such a motion is a straight
line inclined to the time axis. This is shown in
Fig. 2.7 by the straight line AB. It is clear from
the graph that the velocity increases by equal
amounts in equal intervals of time. The average
acceleration of the body is given by

                  a = 
v - v2 1

t t2 1-  = 
t

∆
∆
v

= 
MP

LP

= slope of the straight line

Since the slope of the straight line is constant,
the average acceleration of the body is constant.
However, it is also possible that the rate of
variation in the velocity is not constant. Such a
motion is called non-uniformly accelerated
motion. In such a situation, the slope of the velocity-time graph will vary at every instant,
as shown in Fig.2.8. It can be seen that θ

A
, θ

B
 and θ

C
 are different at points A, B and C.

2.3.3 Interpretation of Velocity-Time Graph

Using v – t graph of the motion of a body, we can determine the distance travelled by it
and the acceleration of the body at different instants. Let us see how we can do so.

Fig. 2.6 : Velocity-time graph for
     uniform motion

Fig. 2.7 :Velocity-time graph for motion with three
            different stages of constant acceleration
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(a) Determination of the distance travelled by
the body : Let us again consider the velocity-time
graph shown in Fig. 2.7. The portion AB shows the
motion with constant acceleration, whereas the
portion CD shows the constantly retarded motion.
The portion BC represents uniform motion (i.e.,
motion with zero acceleration).

For uniform motion, the distance travelled by the body
from time t

1
 to t

2
 is given by s = v (t

2
 – t

1
) = the area

under the curve between t
1
 and t

2
 Generalising this

result for Fig. 2.7, we find that the distance travelled
by the body between time t

1
 and t

2

s = area of trapezium KLMN

= (½) × (KL + MN) × KN

= (½) × (v
1
 + v

2
) × (t

2
 – t

1
)

(b) Determination of the acceleration of the body : We know that acceleration of a
body is the rate of change of its velocity with time. If you look at the velocity-time graph
given in the Fig.2.9, you will note that the average acceleration is represented by the slope
of the chord AB, which is given by

average acceleration ( a ) = 2 1

2 1t t t

−∆ =
∆ −

v vv
.

If the time interval ∆t is made smaller and smaller, the average acceleration becomes
instantaneous acceleration. Thus, instantaneous acceleration

a = limit
0→∆t  

t

∆
∆
v

 = 
d

dt

v
 = slope of the tangent at (t = t) = 

ab

bc

Thus, the slope of the tangent at a point on the velocity-time graph gives the
acceleration at that instant.

Example 2.7 : The velocity-time graphs for three
different bodies A,B and C are shown in Fig. 2.9(a).
(i) Which body has the maximum acceleration and

how much?

(ii) Calculate the distances travelled by these bodies
in first 3s.

(iii) Which of these three bodies covers the maximum
distance at the end of their journey?

(iv) What are the velocities at t = 2s?

Solution :

(i) As the slope of the v-t graph for body A is
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Fig. 2.9(a) : Velocity-time graph of
uniformly accelerated
motion of three different
bodies
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maximum, its acceleration is maximum:

a =  
t

∆
∆
v

=  
6 0

3 0

−
−

= 
6

3
 = 2 ms–2.

(ii) The distance travelled by a body is equal to the area of the  v-t graph.

∴ In first 3s,

the distance travelled by A = Area OA′L

= (½) × 6 × 3 = 9m.

the distance travelled by B = Area OB′L

= (½) × 3 × 3 = 4.5 m.

the distance travelled by C = (½) × 1 × 3 = 1.5 m.

(iii) At the end of the journey, the maximum distance is travelled by B.

= (½) × 6 × 6 = 18 m.

(iv) Since v-t graph for each body is a straight line, instantaneous acceleration is equal to
average acceleration.

At 2s, the velocity of A = 4 m s–1

the velocity of B = 2 m s–1

the velocity of C = 0.80 m s–1 (approx.)

Intext Questions 2.3

1. The motion of a particle moving in a straight line is
depicted in the adjoining v – t graph. (i) Describe the
motion in terms of velocity, acceleration and distance
travelled (ii) Find the average speed.

....................................................................................

2. What type of motion does the adjoining graph represent
- uniform motion, accelerated motion or decelerated
motion?  Explain.

....................................................................................

3. Using the adjoining v -t graph, calculate the (i)
average velocity, and (ii) average speed of the
particle for the time interval 0 – 22 seconds. The
particle is moving in a straight line all the time.

............................................................................

t s( )→

v 
(m

s
) 

–1
→

5 15

20

0
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v 
(m

s
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2.4  Equations of Motion

As you now know, for describing the motion of an object, we use physical quantities like
distance, velocity and acceleration. In the case of constant acceleration, the velocity acquired
and the distance travelled in a given time can be calculated by using one or more of three
equations. These equations, generally known as equations of motion for constant
acceleration or kinematical equations, are easy to use and find many applications.

2.4.1 Equation of Uniform Motion

In order to derive these equations, let us take initial time to be zero i.e. t
1
 = 0. We can then

assume t
2
 = t to be the elapsed time. The initial position (x

1
) and initial velocity (v

1
) of an

object will now be represented by x
0
 and  v

0
 and at time t they will be called x and v

(rather than x
2
 and  v

2
). According to Eqn. (2.1), the average velocity during the time t will

be

v = 0x x

t

−
. (2.4)

2.4.2 First Equation of Uniformly Accelerated Motion

The first equation of uniformly accelerated motion helps in determining the velocity of an
object after a certain time when the acceleration is given. As you know, by definition

Acceleration (a)
Change in velocity

Time taken
=  = 2 1

2 1t t

−
−

v v

If at t
1
 = 0,  v

1
 =  v

0
 and at t

2
 = t,  v

2
 =  v. Then

a = 0

t

−v v
(2.5)

⇒ v = v
0
 + at (2.6)

Example 2.8 : A car starting from rest has an acceleration of 10ms–2. How fast will it
be going after 5s?

Solution : Given,

Initial velocity v
0

= 0

Acceleration a = 10 ms–2

Time t = 5s

Using first equation of motion

v = v
0
 + at

we find that for t = 5s, the velocity is given by

v = 0 + (10 ms–2) × (5s)

= 50 ms–1
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2.4.2  Second Equation of Uniformly Accelerated Motion

Second equation of motion is used to calculate
the position of an object after time t when it is
undergoing constant acceleration a.

Suppose that at t = 0, x
1
 = x

0
;
 
v

1
 = v

0
 and at t = t,

x
2
 = x; v

2
 = v.

The distance travelled = area under v – t graph

= Area of trapezium
OABC

= 
1

2
(CB + OA) × OC

x – x
0

= ½ (v + v
0
) t

Since v = v
0
 + at, we can write

x – x
0

= ½ (v
0
 + at + v

0
)t

= v
0
t + ½ at2

or x = x
0
 + v

0
t + ½ at2 (2.7)

Example 2.9 : A car A is travelling on a straight road with a uniform speed of 60 km h–1.
Car B is following it with uniform velocity of 70 km h–1. When the distance between them
is 2.5 km, the car B is given a decceleration of 20 km h–1. At what distance and time will
the car B catch up with car A?

Solution : Suppose that car B catches up with car A at a distance x after time t.

For car A, the distance travelled in t time, x = 60 × t.

For car B, the distance travelled in t time is given by

x′ = x
0
 + v

0
t + ½ at2

= 0 + 70 × t + ½ (–20) × t2

x′ = 70 t – 10 t2

But the distance between two cars is

x′ – x = 2.5

∴ (70 t – 10 t2) – (60 t) = 2.5

or 10 t2 – 10 t + 2.5 = 0

It gives t = ½ hour

∴ x = 70t – 10t2

= 70 × ½ – 10 × (½)2

= 35 – 2.5 = 32.5 km.

O t
C

D

B

A

v

v(
m

s
) 

–1
→

t (s) →

Fig. 2.10 : v–t graph for
uniformly accelerated
motion
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Motion, Force and Energy 2.4.4  Third Equation of Uniformly Accelerated Motion

The third equation is used in a situation when the acceleration, position and initial velocity
are known, and the final velocity is desired but the time t is not known. From Eqn. (2.7.),
we can write

x – x
0

= ½ (v + v0) t.

Also from Eqn. (2.6), we recall that

t = 
a

0–v v

Substituting this in above expression we get

x – x
0

= ½ (v + v
0
) 

0

a

−⎛ ⎞
⎜ ⎟
⎝ ⎠

v v

⇒ 2a (x – x
0
) = v2 – v0

⇒ v2 = 2
0v  + 2a (x – x

0
) (2.8)

Thus, the three equations for constant acceleration are

v = v
0
 + at

x = x
0
 + v

0
t + ½ at2

and v2 = 2
0v  + 2a (x – x

0
)

Example 2.10 : A motorcyclist moves along a straight road with a constant acceleration
of 4m s–2. If initially she was at a position of 5m and had a velocity of 3m s–1, calculate

(i) the position and velocity at time t = 2s, and

(ii) the position of the motorcyclist when its velocity is 5ms–1.

Solution : We are given

x
0

= 5m, v
0
 = 3m s–1, a = 4 ms–2.

(i) Using Eqn. (2.7)
x = x

0
 + v

0
t + ½ at2

= 5 + 3 × 2 + ½ × 4 × (2)2 = 19m
From Eqn. (2.6)

v = v
0
 + at

= 3 + 4 × 2 = 11ms–1

Velocity, v = 11ms–1.

(ii) Using equation
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v2 = 2

0v  + 2a (x – x
0
)

(5)2 = (3)2 + 2 × 4 × (x – 5)

⇒ x = 7m

Hence position of the motor cyclist (x) = 7m.

2.5 Motion under gravity

You must have noted that when we throw a body in the upward direction or drop a stone
from a certain height, they come down to the earth. Do you know why they come to the
earth and what type of path they follow? It happens because of the gravitational force of
the earth on them. The gravitational force acts in the vertical direction. Therefore, motion
under gravity is along a straight line. It is a one dimensional motion. The free fall of a
body towards the earth is one of the most common examples of motion with constant
acceleration. In the absence of air resistance, it is found that all bodies, irrespective of
their size or weight, fall with the same acceleration. Though the acceleration due to gravity
varies with altitude, for small distances compared to the earth’s radius, it may be taken
constant throughout the fall. For our practical use, the effect of air resistance is neglected.

The acceleration of a freely falling body due to gravity is denoted by g. At or near the
earth’s surface, its magnitude is approximately 9.8 ms–2. More precise values, and its
variation with height and latitude will be discussed in detail in lesson 5 of this book.

Galileo Galilei (1564 – 1642)

He was born at Pisa in Italy in 1564. He enunciated the laws of falling
bodies. He devised a telescope and used it for astronomical observations.
His major works are : Dialogues about the Two great Systems of the
World and Conversations concerning Two New Sciences. He supported
the idea that the earth revolves around the sun.

Example 2.11 : A stone is dropped from a height of 50m and it falls freely. Calculate the
(i) distance travelled in 2 s, (ii) velocity of the stone when it reaches the ground, and

(iii) velocity at 3 s i.e., 3 s after the start.

Solution : Given

Height h = 50 m and Initial velocity v
0

= 0

Consider, initial position (y
0
) to be zero and the origin at the starting point. Thus, the y-axis

(vertical axis) below it will be negative. Since acceleration is downward in the negative
y-direction, the value of a = – g = –9.8 ms–2.

(i) From Eqn. (2.7), we recall that

y = y
0
 + v

0
t + ½ at2
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y = 0 + 0 – ½ gt2 = –½ × 9.8 × (2)2

= –19.6m.

The negative sign shows that the distance is below the starting point in downward direction.

(ii) At the ground y = –50m,

Using equation (2.8),
v2 = v0

2  + 2a (y – y
0
)

= 0 + 2 (–9.8) (–50 – 0)

v = 9.9 ms–1

(iii) Using v  = v
0
 + at, at t = 3s, we get

∴ v = 0 + (–9.8) × 3

v = –29.4 ms–1

This shows that the velocity of the stone at t = 3 s is 29.4 m s–1 and it is in downward
direction.

Note : It is important to mention here that in kinematic equations, we use certain
sign convention according to which quantities directed upwards and rightwards are
taken as positive and those downwards and leftward are taken as negative.

Take a pause and solve the following questions.

Intext Questions 2.4

1. A body starting from rest covers a distance of 40 m in 4s with constant acceleration
along a straight line. Compute its final velocity and the time required to cover half of
the total distance.

..................................................................................................................................

2. A car moves along a straight road with constant aceleration of 5 ms–2. Initially at 5m,
its velocity was 3 ms–1 Compute its position and velocity at t = 2 s.

..................................................................................................................................

3. With what velocity should a body be thrown vertically upward so that it reaches a
height of 25 m? For how long will it be in the air?

..................................................................................................................................

4. A ball is thrown upward in the air. Is its acceleration greater while it is being thrown
or after it is thrown?

..................................................................................................................................
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What You Have Learnt

� The ratio of the displacement of an object to the time interval is known as average
velocity.

� The total distance travelled divided by the time taken is average speed.

� The rate of change of the relative position of an object with respect to another object is
known as the relative velocity of that object with respect to the other.

� The change in the velocity in unit time is called acceleration.

� The position-time graph for a body at rest is a straight line parallel to the time axis.

� The position-time graph for a uniform motion is a straight line inclined to the time axis.

� A body covering equal distance in equal intervals of time, however small, is said to be in
uniform motion.

� The velocity of a particle at any one instant of time or at any one point of its path is
called its instantaneous velocity.

� The slope of the position-time graph gives the average velocity.

� The velocity-time graph for a body moving with constant acceleration is a straight line
inclined to the time axis.

� The area under the velocity-time graph gives the displacement of the body.

� The average acceleration of the body can be computed by the slope of velocity-time
graph.

� The motion of a body can be described by following three equations :

(i) v = 0v  + at

(ii) x = x
0
 + 0v t + ½ at2

(iii) 2v  = 2
0v  + 2a.(x – x

0
)

Terminal Exercise

1. Distinguish between average speed and average velocity.

2. A car C moving with a speed of 65 km h–1 on a straight road is ahead of motorcycle
M moving with the speed of 80 km h–1 in the same direction. What is the velocity of
M relative to A?

3. How long does a car take to travel 30m, if it accelerates from rest at a rate of
2.0 m s2?

4. A motorcyclist covers half of the distance between two places at a speed of
30 km h–1 and the second half at the speed of 60 kmh–1. Compute the average speed
of the motorcycle.
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Motion, Force and Energy 5. A duck, flying directly south for the winter, flies with a constant velocity of 20 km h–1

to a distance of 25 km. How long does it take for the duck to fly this distance?

6. Bangalore is 1200km from New Delhi by air (straight line distance) and 1500 km by
train. If it takes 2h by air and  20h by train, calculate the ratio of the average speeds.

7. A car accelerates along a straight road from rest to 50 kmh–1 in 5.0 s. What is the
magnitude of its average acceleration?

8. A body with an initial velocity of 2.0 ms–1 is accelerated at 8.0 ms–2 for 3 seconds.
(i) How far does the body travel during the period of acceleration? (ii) How far would
the body travel if it were initially at rest?

9. A ball is released from rest from the top of a cliff. Taking the top of the cliff as the
reference (zero) level and upwards as the positive direction, draw (i) the displacement-
time graph, (ii) distance-time graph (iii) velocity-time graph, (iv) speed-time graph.

10. A ball thrown vertically upwards with a velocity v
0
 from the top of the cliff of height h,

falls to the beach below. Taking beach as the reference (zero) level, upward as the
positive direction, draw the motion graphs. i.e., the graphs between (i) distance-time,
(ii) velocity-time, (iii) displacement-time, (iv) speed - time graphs.

11. A body is thrown vertically upward, with a velocity of 10m/s. What will be the value of
the velocity and acceleration of the body at the highest point?

12. Two objects of different masses, one of 10g and other of 100g are dropped from the
same height. Will they reach the ground at the same time? Explain your answer.

13. What happens to the uniform motion of a body when it is given an acceleration at right
angle to its motion?

14. What does the slope of velocity-time graph at any instant represent?

Answers to Intext Questions

2.1

1. Yes. When body returns to its initial postion its velocity is zero but speed is non-zero.

2. Average speed = 
2 2

2
8

2
10

+

+
 = 

4

9
 × 20 = 8.89 km h–1, average velocity = 0

3. Yes, two cars moving with same velocity in the same direction, will have zero relative
velocity with respect to each other.

4. (a) 1 m s–1

(b) 2 m s–1

2.2

1. See Fig. 2.2.

2. (i) A, (ii) B covers more distance, (iii) B, (iv) A, (v) When they are 3km from the
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starting point of B.

3. In the uniform motion.

4. (a) is wrong, because the distance covered cannot decrease with time or become
zero.

2.3

1. (i) (a) The body starts with a zero velocity.

(b) Motion of the body between start and 5th seconds is uniformly accelerated. It has
been represented by the line OA.

a = 
15 0

5 0

−
−

 = 3 m s–2

(c) Motion of the body between 5th and 10th second is a uniform motion (represented

by AB). a = 
15 15 0

15 5 10

− =
−

 = 0 m s–2.

(d) Motion between 15th and 25th second is uniformly retarded. (represented by the

line BC). a = 
0 15

25 15

−
−

 = – 1.5 m s–2.

(ii) (a) Average speed = 
Distance covered Area of OA BC

time taken (25 0)
=

−

1 1
15 5) (15 10) 15 10

5252 2
25 50

⎛ ⎞ ⎛ ⎞× × + × + × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =  = 10.5 m s–1.

(b) Deccelerated Velocity decreases with time.

(c) Total distance covered = 
20 15 10 7

m m
2 2

× ×⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 185 m.

∴ average speed = 
185 1ms
22

⎛ ⎞ −
⎜ ⎟
⎝ ⎠

 = 8.4 ms–1.

Total displacement = 
20 15 10 7

m m
2 2

× ×⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = 115 m.

∴ average velocity = 
115 1ms
22

−
 = 5.22 m s–1.
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1. Using x = x
0
 + v

0
t + ½ at2

    40 = 
1

2
 × a × 16

⇒  a = 5 ms–2

Next using v2 = v0
2  + 2a (x – x

0
)

v = 20 m s–1,

20 = 0 + 
1

2
 × 5 × t2  ⇒  t = 2 2 s

2. Using Eqn.(2.9), x = 21m, and using Eqn.(2.6), v = 13 m s–1.

3. At maximum height v = 0, using Eqn. (2.10), v
0
 = 7 10 ms–1 = 22.6 m s–1.

The body will be in the air for the twice of the time it takes to reach the maximum
height.

4. The acceleration of the ball is greater while it is thrown.

Answers to Terminal Exercises

2. 15 km h–1

3. 5.47 s

4. 40 ms–1

5. 1.25 h

6. 8 : 1

7. 2.8 m s–2 (or 3000 km h–2)

8. (i) 42 m (ii) 36 m

11. O and 9.8 m s–2.
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3

LAWS OF MOTION

In the previous lesson you learnt to describe the motion of an object in terms of its
displacement, velocity and acceleration. But an important question is : what makes an
object to move? Or what causes a ball rolling along the ground to come to a stop? From
our everyday experience we know that we need to push or pull an object if we wish to
change its position in a room. Similarly, a football has to be kicked in order to send it over
a large distance. A cricket ball has to be hit hard by a batter to send it across the boundary
for a six. You will agree that muscular activity is involved in all these actions and its effect
is quite visible.

There are, however, many situations where the cause behind an action is not visible. For
example, what makes rain drops to fall to the ground? What makes the earth to go around
the sun? In this lesson you will learn the basic laws of motion and discover that force causes
motion. The concept of force developed in this lesson will be useful in different branches of
physics. Newton showed that force and motion are intimately connected. The laws of motion
are fundamental and enable us to understand everyday phenomena.

Objectives

After studying this lesson, you should be able to :

� explain the significance of inertia;

� state Newton’s laws of motion and illustrate them with examples;

� explain the law of conservation of momentum and illustrate it with examples;

� define coefficient of friction and distinguish between static friction, kinetic friction
and rolling friction;

� suggest different methods of reducing friction and highlight the role of friction
in every-day life; and

� analyse a given situation and apply Newton’s laws of motion using free body
diagrams.

3.1 Concepts of Force and Inertia

We all know that stationary objects remain wherever they are placed. These objects
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Motion, Force and Energy cannot move on their own from one place to another place unless forced to change their
state of rest. Similarly, an object moving with constant velocity has to be forced to change
its state of motion. The property of an object by which it resists a change in its state
of rest or of uniform motion in a straight line is called inertia. Mass of a body is a
measure of its inertia.

In a way, inertia is a fantastic property. If it were not present, your books or classnotes
could mingle with those of your younger brother or sister. Your wardrobe could move to
your friend’s house creating chaos in life. You must however recall that the state of rest or
of uniform motion of an object are not absolute. In the previous lesson you have learnt that
an object at rest with respect to one observer may appear to be in motion with respect to
some other observer. Observations show that the change in velocity of an object can
only be brought, if a net force acts on it.

You are very familiar with the term force. We use it in so many situations in our everyday
life. We are exerting force when we are pulling, pushing, kicking, hitting etc. Though a
force is not visible, its effect can be seen or experienced. Forces are known to have
different kinds of effects :

(a) They may change the shape and the size of an object. A balloon changes shape
depending on the magnitude of force acting on it.

(b) Forces also influence the motion of an object. A force can set an object into
motion or it can bring a moving object to rest. A force can also change the direction
or speed of motion.

(c) Forces can rotate a body about an axis. You will learn about it in lesson seven.

3.1.1 Force and Motion

Force is a vector quantity. For this reason, when several forces act on a body simultaneously,
a net equivalent force can be calculated by vector addition, as discussed in lesson 1.

Motion of a body is characterised by its displacement, velocity etc. We come across many
situations where the velocity of an object is either continuously increasing or decreasing.
For example, in the case of a body falling freely, the velocity of the body increases
continuously, till it hits the ground. Similarly, in the case of a ball rolling on a horizontal
surface, the velocity of the ball decreases continuously and ultimately becomes zero.

From experience we know that a net non-zero force is required to change the state  of a
body. For a body in motion, the velocity will change depending on the direction of the
force acting on it. If a net force acts on a body in motion, its velocity will increase in
magnitude, if the direction of the force and velocity are same. If the direction of net force
acting on the body is opposite to the direction of motion, the magnitude of velocity will
decrease. However, if a net force acts on a body in a direction perpendicular to its velocity,
the magnitude of velocity of the body remains constant (see Sec 4.3). Such a force changes
only the direction of velocity of the body. We may therfore conclude that velocity of a
body changes as long as a net force is acting on it.

3.1.2 First Law of Motion
When we roll a marble on a smooth floor, it stops after some time. It is obvious that its
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Motion, Force and Energyvelocity decreases and ultimately it becomes zero. However, if we want it to move
continuously with the same velocity, a force will have to be constantly applied on it.

We also see that in order to move a trolley at constant velocity, it has to be continuously
pushed or pulled. Is there any net force acting on the marble or trolley in the situations
mentioned here?

Motion and Inertia

Galileo carried out experiments to prove that in the absence of any external force, a
body would continue to be in its state of rest or of uniform motion in a straight line.
He observed that a body is accelerated while moving down an inclined plane
(Fig. 3.1 a) and is retarded while moving up an inclined plane (Fig. 3.1 b). He argued
that if the plane is neither inclined upwards nor downwards (i.e. if it is a horizontal
plane surface), the motion of the body will neither be accelerated not retarded. That
is, on a horizontal plane surface, a body will move with a uniform speed/velocity (if
there is no external force).

Fig. 3.1 : Motion of a body on inclined and horizontal planes

In another thought experiment, he considered two inclined planes facing each other,
as shown in Fig. 3.2. The inclination of the plane PQ is same in all the three cases,
whereas the inclination of the plane RS in Fig. 3.2 (a) is more than that in (b) and (c).
The plane PQRS is very smooth and the ball is of marble. When the ball is allowed
to roll down the plane PQ, it rises to nearly the same height on the face RS. As the
inclination of the plane RS decreases, the balls moves a longer distance to rise to the
same height on the inclined plane (Fig. 3.2b). When the plane RS becomes horizontal,
the ball keeps moving to attain the same height as on the plane PQ, i.e. on a horizontal
plane, the ball will keep moving if there is no friction between the plane and the ball.

B

(a)

AP

h

h

S
Final PositionInitial Position

Q R

       

B

(b)

AP

h h

S

Final Position

Q R

(c)

P

h

S

Where is the final position?

Q R

Fig. 3.2 : Motion of a ball along planes inclined to each other
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Motion, Force and Energy
 Sir Issac Newton

(1642–1727)

Newton was born at Wollsthorpe in England in 1642. He studied at
Trinity College, Cambridge and became the most profound scientist.
The observation of an apple falling towards the ground helped him to
formulate the basic law of gravitation. He enunciated the laws of
motion and the law of gravitation. Newton was a genius and contributed
significantly in all fields of science, including mathematics. His

contributions are of a classical nature and form the basis of the modern science. He
wrote his book “Principia” in Latin and his book on optics was written in English.

You may logically ask : Why is it necessary to apply a force continuously to the trolley to
keep it moving uniformly? We know that a forward force on the cart is needed for balancing
out the force of friction on the cart. That is, the force of friction on the trolley can be
overcome by continuously pushing or pulling it.

Isaac Newton generalised Galileo’s conclusions in the form of a law known as Newton’s
first law of motion, which states that a body continues to be in a state of rest or of
uniform motion in a straight line unless it is acted upon by a net external force.

As you know, the state of rest or motion of a body depends on its relative position with
respect to an observer. A person in a running car is at rest with respect to another person
in the same car. But the same person is in motion with respect to a person standing on the
road. For this reason, it is necessary to record measurements of changes in position,
velocity, acceleration and force with respect to a chosen frame of reference.

A reference frame relative to which a body in translatory motion has constant velocity, if
no net external force acts on it, is known as an inertial frame of reference. This
nomenclature follows from the property of inertia of bodies due to which they tend to
preserve their state (of rest or of uniform linear motion). A reference frame fixed to the
earth (for all practical purposes) is considered an inertial frame of reference.

Now you may like to take a break and answer the following questions.

Intext Questions 3.1

1. Is it correct to state that a body always moves in the direction of the net external force
acting on it?

....................................................................................................................................

2. What physical quantity is a measure of the inertia of a body?

....................................................................................................................................

3. Can a force change only the direction of velocity of an object keeping its magnitude
constant?

....................................................................................................................................
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Motion, Force and Energy4. State the different types of changes which a force can bring in a body when applied
on it.

....................................................................................................................................

3.2 Concept of Momentum

You must have seen that a fielder finds it difficult to stop a cricket ball moving with a large
velocity although its mass is small. Similarly, it is difficult to stop a truck moving with a
small velocity because its mass is large. These examples suggest that both, mass and
velocity of a body, are important, when we study the effect of  force on the motion of the
body.

The product of mass m of a body and its velocity v is called its linear momentum p.
Mathmatically, we write

p = mv

In SI units, momentum is measured in kg ms–1. Momentum is a vector quantity. The direction
of momentum vector is the same as the direction of velocity vector. Momentum of an
object, therefore, can change on account of change in its magnitude or direction or both.
The following examples illustrate this point.

Example 3.1 Aman weights 60 kg and travels with velocity 1.0 m s–1 towards Manoj
who weights 40 kg, and is moving with 1.5 m s–1 towards Aman. Calculate their momenta.

Solution : For Aman

momentum = mass × velocity

= (60 kg) × (1.0 m s–1)

= 60 kgms–1

For Manoj

momentum = 40 kg × (– 1.5 ms–1)

= – 60 kg ms–1

Note that the momenta of Aman and Manoj have the same magnitude but they are in
opposite directions.

Example 3.2 A 2 kg object is allowed to fall freely at t = 0 s. Callculate its momentum
at (a) t = 0, (b) t = 1 s and (c) t = 2 s during its free-fall.

Solution : (a) As velocity of the object at t = 0 s is zero, the initial momentum of the object
will also be zero.

(b) At t = 1s, the velocity of the object will be 9.8 ms–1 [use v = v
0
 + at] pointing downward.

So the momentum of the object will be

p
1

= (2 kg) × (9.8 ms–1) = 19.6 kgms–1 pointing downward.
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Motion, Force and Energy (c) At t = 2 s, the velocity of the object will be 19.6 m s–1 pointing downward. So the
momentum of the object will now be

p
2

= (2 kg) × (19.6 ms–1) = 39.2 kgms–1 pointing downward.

Thus, we see that the momentum of a freely-falling body increases continuously in magnitude
and points in the same direction. Now think what causes the momentum of a freely-falling
body to change in magnitude?

Example 3.3 A rubber ball of mass 0.2 kg strikes a rigid wall with a speed of
10 ms–1 and rebounds along the original path with the same speed. Calculate the change in
momentum of the ball.

Solution : Here the momentum of the ball has the same magnitude before and after the
impact but there is a reversal in its direction. In each case the magnitude of momentum is
(0.2 kg)×(10 ms–1) i.e. 2 kgms–1.

If we choose initial momentum vector to be along + x axis, the final momentum vector will
be along –x axis. So p

i
 = 2 kgms–1, p

f
 = –2 kgms–1. Therefore, the change in momentum

of the ball, p
f
 – p

i
 = (–2 kg ms–1) – (2 kg ms–1) = – 4 kg ms–1.

Here negative sign shows that the momentum of the ball changes by 4 kgms–1 in the
direction of –x axis. What causes this change in momentum of the ball?

In actual practice, a rubber ball rebounds from a rigid wall with a speed less than its speed
before the impact. In such a case also, the magnitude of the momentum will change.

3.3  Second Law of Motion

You now know that a body moving at constant velocity will have constant momentum.
Newton’s first law of motion suggests that no net external force acts on such a body.

In Example 3.2 we have seen that the momentum of a ball falling freely under gravity
increases with time. Since such a body falls under the action of gravitational force acting
on it, there appears to be a connection between change in momentum of an object, net
force acting on it and the time for which it is acting. Newton’s second law of motion gives
a quantitative relation between these three physical quantities. It states that the rate of
change of momentum of a body is directly proportional to the net force acting on the
body. Change in momentum of the body takes place in the direction of net external
force acting on the body.

This means that if ∆p is the change in momentum of a body in time ∆t due to a net external
force F, we can write

F
∆

∆
∝ p

t

or F
∆

=
∆

k
t

p
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Motion, Force and Energywhere k is constant of proportionality.

By expressing momentum as a product of mass and velocity, we can rewrite this result as

F = k m
t

∆⎛ ⎞
⎜ ⎟∆⎝ ⎠

v

F = k m a (as 
∆
∆t

v
 = a) (3.1)

The value of the constant k depends upon the units of m and a. If these units are chosen
such that when the magnitude of m = 1 unit and a = 1 unit, the magnitude of F is also be 1
unit.  Then, we can write

1 = k . 1. 1

i.e., k = 1

Using this result in Eqn. (3.1), we get

F = m a (3.2)

In SI units,  m = 1 kg, a = 1 m s–2. Then magnitude of external force

F = 1 kg × 1 ms–2 = 1 kg ms–2

= 1 unit of force (3.3)

This unit of force (i.e., 1 kg m s–2) is called one newton.

Note that the second law of motion gives us a unit for measuring force. The SI unit of
force i.e., a newton may thus, be defined as the force which will produce an acceleration
of 1 ms–2 in a mass of 1 kg.

Example 3.3  A ball of mass 0.4 kg starts rolling on the ground at 20 ms–1 and comes to
a stop after 10s. Calculate the force which stops the ball, assuming it to be constant in

magnitude throughout.

Solution : Given  m= 0.4 kg,  initial velocity u = 20 ms–1, final velocity  v = 0 m s–1 and
t = 10s. So

|F| = m|a| = 
( – )m u

t

v
 = 

–10.4 kg ( 20 ms )

10 s

−

= – 0.8 kg m s–2 = – 0.8 N

Here negative sign shows that force on the ball is in a direction opposite to that of its
motion.

Example 3.4 A constant force of magnitude 50 N is applied to a body of 10 kg moving
initially with a speed of 10 m s–1. How long will it take the body to stop if the force acts

in a direction opposite to its motion.
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Motion, Force and Energy Solution : Given m = 10 kg, F = –50 N, v
0
 = 10 ms–1 and v = 0. We have to calculate t.

Since

F = ma

we can write

F =  m
0−⎛ ⎞

⎜ ⎟
⎝ ⎠t

v v

∴ –50 N = 10 kg 

–10 10 m s⎛ ⎞−
⎜ ⎟
⎝ ⎠t

or t = 
–1–100 kgms

–50 N
 = 

–1

–2

100 kg ms

50 kg m s
 = 2 s.

It is important to note here that Newton’s second law of motion, as stated here is applicable
to bodies having constant mass. Will this law hold for bodies  whose mass changes with
time, as in a rocket?

Intext Questions 3.2

1. Two objects of different masses have the same momentum. Which of them is moving
faster?

....................................................................................................................................

2. A boy throws up a ball with a velocity v
0
. If  the ball returns to the thrower with the

same velocity, will there be any change in

(a) momentum of the ball?.....................................................................................

(b) magnitude of the momentum of the ball?............................................................

3. When a ball falls from a height, its momentum increases. What causes increase in its
momentum?

....................................................................................................................................

4. In which case will there be larger change in momentum of the object?

(a) A 150 N force acts for 0.1 s on a 2 kg object initially at rest.

(b) A 150 N force acts for 0.2 s on a 2 kg. object initially at rest.

....................................................................................................................................

5. An object is moving at a constant speed in a circular path. Does the object have
constant momentum? Give reason for your answer.

....................................................................................................................................
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It is the gravitational pull of the earth, which allows an object to accelerate towards the
earth. Does the object also pull the earth? Similarly when we push an almirah, does the
almirah also push us? If so, why don’t we move in the direction of that force? These
situations compel us to ask whether a single force such as a push or a pull exists? It has
been observed that actions of two bodies on each other are always mutual. Here, by
action and reaction we mean ‘forces of interaction’. So, whenever two bodies interact,
they exert force on each other. One of them is called ‘action’ and the other is called
‘reaction’. Thus, we can say that forces always exist in pairs.

3.4.1  Third Law of Motion

On the basis of his study of interactions between
bodies, Newton formulated third law of motion: To
every action, there is an equal and opposite
reaction.

Here by ‘action’ and ‘reaction’ we mean force. Thus,
when a book placed on a table exerts some force on
the table, the latter, also exerts a force of equal
magnitude on the book in the upward direction, as
shown in Fig. 3.3. Do the forces F1 and F2 shown
here cancel out? It is important to note that F

1
 and

F2 are acting on different bodies and therefore, they
do not cancel out.

The action and reaction in a given situation appear as a pair of forces. Any one of them
cannot exist without the other.

If one goes by the literal meaning of words, reaction always follows an action, whereas
action and reaction introduced in Newton’s third law exist simultaneously. For this reason,
it is better to state Newton’s third law as when two objects interact, the force exerted by
one object on the other is equal in magnitude and opposite in direction to the force
exerted by the latter object on the former.

Vectorially, if F12 is the force which object 1 experiences due to object 2 and F21 is the
force which object 2 experiences due to object 1, then according to Newton’s third law of
motion, we can write

F12 = –F21 (3.4)

3.4.2 Impulse

The effect of force applied for a short duration is called impulse. Impulse is defined as the
product of force (F) and the time duration (∆t) for which the force is applied.

i.e., Impulse = F.∆t

If the initial and final velocities of body acted upon by a force F are u and v respectively
then we can write

Fig 3.3 : A book placed on a table
exerts a force F

1
 (equal to its

weight mg) on the table, while
the table exerts a force F

2
 on

the book.

F2

F1
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Impulse = 

−
∆

um m

t

v
. ∆t

= mv – m u

= pf – pi

= ∆p

That is, impulse is equal to change in linear momentum.

Impulse in a vector quantity and its SI unit is kgms–1 (or N s).

Intext Questions 3.3

1. When a high jumper leaves the ground, where does the force which throws the jumper
upwards come from?

....................................................................................................................................

2. Identify the action - reaction forces in each of the following situations:

(a) A man kicks a football.....................................................................................

(b) Earth pulls the moon.......................................................................................

(c) A ball hits a wall...............................................................................................

3. “A person exerts a large force on an almirah to push it forward but he is not pushed
backward because the almirah exerts a small force on him”. Is the argument given
here correct? Explain.

....................................................................................................................................

3.5 Conservation of Momentum

It has been experimentally shown that if two bodies interact, the vector sum of their
momenta remains unchanged, provided the force of mutual interaction is the only force
acting on them. The same has been found to be true for more than two bodies interacting
with each other. Generally, a number of bodies interacting with each other are said to be
forming a system. If the bodies in a system do not interact with bodies outside the system,
the system is said to be a closed system or an isolated system. In an isolated system, the
vector sum of the momenta of bodies remains constant. This is called the law of
conservation of momentum.

Here, it follows that it is the total momentum of the bodies in an isolated system remains
unchanged but the momentum of individual bodies may change, in magnitude alone or
direction alone or both. You may now logically ask : What causes the momentum of individual
bodies in an isolated system to change? It is due to mutual interactions and their strengths.
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Motion, Force and EnergyConservation of linear momentum is applicable in a wide range of phenomena such as
collisions, explosions, nuclear reactions, radioactive decay etc.

3.5.1 Conservation of Momentum as a Consequence of
Newton’s Laws

According to Newton’s second law of motion, Eqn. (3.1), the change in momentum ∆p of
a body, when a force F acts on it for time ∆t, is

∆p  = F ∆t

This result implies that if no force acts on the body, the change in momentum of the body
will be zero. That is, the momentum of the body will remain unchanged. This agrument
can be extended to a system of bodies as well.

Newton’s third law can also be used to arrive at the same result. Consider an isolated
system of two bodies A and B which interact with each other for time ∆t. If F

AB
 and F

BA

are the forces which they exert on each other, then in accordance with Newton’s third law

F
AB

= – F
BA

or
A

t

∆

∆

p
= – B

t

∆

∆

p

or ∆p
A
 + ∆p

B
= 0 or

or ∆p
total

= 0

or p
total

= constant

That is, there is no change in the momentum of the system. In other words, the momentum
of the system is conserved.

3.5.2  A Few Illustrations of Conservation of Momentum

a) Recoil of a gun : When a bullet is fired from a gun, the gun recoils. The velocity v
2
 of

the recoil of the gun can be found by using the law of conservation of momentum. Let
m be the mass of the bullet being fired from a gun of mass M. If v

1
 is the velocity of

the bullet, then momentum will be said to be conserved if the velocity v
2
 of the gun is given

by

mv
1
 + Mv

2
= 0

or mv
1

= – Mv
2

or v
2

= 1M

m− v (3.5)

Here, negative sign shows that v
2
 is in a direction opposite to v

1
. Since m  <<  M, the recoil

velocity of the gun will be considerably smaller than the velocity of the bullet.

b) Collision : In a collision, we may regard the colliding bodies as forming a system. In
the absence of any external force on the colliding bodies, such as the force of friction, the
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Motion, Force and Energy system can be considered to be an isolated system. The forces of interaction between the
colliding bodies will not change the total momentum of the colliding bodies.

Collision of the striker with a coin of carrom or collision between the billiared balls may be
quite instructive for the study of collision between elastic bodies.

Example 3.5 : Two trolleys, each of mass m, coupled together are moving with initial
velocity v. They collide with three identical stationary trolleys coupled together and continue
moving in the same direction. What will be the velocity of the trolleys after the impact?

Solution : Let v′ be the velocity of the trolleys  after the impact.

Momentum before collision = 2 mv

Momentum after collision = 5 mv′

In accordance with the law of conservation of momentum, we can write

2mv = 5 mv′

or v′ = 
2

5
v

c) Explosion of a bomb : A bomb explodes into fragments with the release of huge
energy. Consider a bomb at rest initially which explodes into two fragments A and B. As
the momentum of the bomb was zero before the explosion, the total momentum of the two
fragments formed will also be zero after the explosion. For this reason, the two fragments
will fly off in opposite directions. If the masses of the two fragments are equal, the velocities
of the two fragments will also be equal in magnitude.

d) Rocket propulsion : Flight of a rocket is an important practical application of
conservation of momentum. A rocket consists of a shell with a fuel tank, which can be
considered as one body. The shell is provided with a nozzle through which high pressure
gases are made to escape. On firing the rocket, the combustion of the fuel produces gases
at very high pressure and temperature. Due to their high pressure, these gases escape
from the nozzle at a high velocity and provide thrust to the rocket to go upward due to the
conservation of momentum of the system. If M is the mass of the rocket and m is the mass
of gas escaping per second with a velocity v, the change in momentum of the gas in t
second = m vt.

If the increase in velocity of the rocket in t second is V, the increase in its momentum =
MV.  According to the principle of conservation of momentum,

mvt + MV = 0

or
t

V
= a = –

m

M

v

i.e., the rocket moves with an acceleration

a = –
m

M

v
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You may have noticed that when a batter hits a ball to make it roll along the ground, the ball
does not continue to move forever. It comes to rest after travelling some distance. Thus,
the momentum of the ball, which was imparted to it during initial push, tends to be zero.
We know that some force acting on the ball is responsible for this change in its momentum.
Such a force, called the frictional force, exists whenever bodies in contact tend to move
with respect to each other. It is the force of friction which has to be overcome when we
push or pull a body horizontally along the floor to change its position.

Force of friction is a contact force and always acts along the surfaces in a direction
opposite to that of the motion of the body. It is commonly known that friction is caused
by roughness of the surfaces in contact. For this reason deliberate attempts are made to
make the surfaces rough or smooth depending upon the requirement.

Friction opposes the motion of objects, causes wear and tear and is responsible for loss of
mechanical energy. But then, it is only due to friction that we are able to walk, drive
vehicles and stop moving vehicles. Friction thus plays a dual role in our lives. It is therefore
said that friction is a necessary evil.

3.6.1 Static and Kinetic Friction

We all know that certain minimum force is required to move an object over a surface. To
illustrate this point, let us consider a block resting on some horizontal surface, as shown in
Fig.3.4. Let some external force F

ext
 be applied on the block. Initially the block does not

move. This is possible only if some other force is acting on the block. The force is called
the force of static friction and is represented by symbol f

s
. As F

ext
 is increased, f

s
 also

increases and remains equal to F
ext

 in magnitude until it reaches a critical value f
s
(max).

When F
ext

 is increased further, the block starts to slide and is then subject to kinetic
friction. It is common experience that the force needed to set an object in motion is larger
than the force needed to keep it moving at constant velocity. For this reason, the maximum
value of static friction f

s
 between a pair of surfaces in contact will be larger than the

force of kinetic friction f
k
 between them. Fig. 3.5 shows the variation of the force of

friction with the external force.

For a given pair of surfaces in contact, you may like to know the factors on which f
s
(max)

and f
k
 depend? It is an experimental fact that f

s
(max) is directly proportional to the normal

force F
N
. i.e.

f
s
(max) α F

N
    or      f

s
(max) = µ

s
 F

N
(3.6)

where µ
s
 is called the coefficient of static friction. The normal force F

N
 of the surface on

the block can be found by knowing the force with which the block presses the surface.
Refer to Fig. 3.4. The normal force F

N
 on the block will be mg, where m is mass of the

block.

Since f
s
 =  F

ext 
 for   f

s
 <  f

s 
max, we can write

f
s 
 < µ

s
 F

N
.
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Motion, Force and Energy It has also been experimentally found that maximum force of static friction between a
pair of surfaces is independent of the area of contact.

fs

mg

FN

Fext

fs

Fext

fk

fs 
(max)

smooth sliding

(at rest)

Similarly, we can write

f
k
 = µ

k
 F

N

where µ
k
 is the coefficient of kinetic

friction. In general, µ
s
 > µ

k
. Moreover,

coefficients µ
s
 and µ

k 
are not really constants

for any pair of surfaces such as wood on
wood or rubber on concrete, etc. Values of
µµµµµs

 and µµµµµk
 for a given pair of materials

depend on the roughness of surfaces, there
cleanliness, temperature, humidity etc.

Example 3.6 A 2 kg block is resting on a horizontal surface. The coefficient of static
friction between the surfaces in contact is 0.25. Calculate the maximum magnitude of
force of static friction between the surfaces in contact.

Solution :

Here m = 2 kg and µ
s
= 0.25. From Eqn. (3.6), we recall that

f
s
(max) = µ

s
F

N

= µ
s
 mg

= (0.25) (2 kg) (9.8 ms–2)

= 4.9 N.

Example 3.7  A 5 kg block is resting on a horizontal surface for which µ
k 
= 0.1. What

will be the acceleration of the block if it is pulled by a 10 N force acting on it in the
horizontal direction?

Solution :

As f
k
= µ

k 
F

N
 and F

N
 = mg, we can write

Fig. 3.6 : Normal force on the block

Fig. 3.4 : Forces acting on the block Fig. 3.5 : Variation of force of friction
with external force
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k

= µ
k 
mg

= (0.1) (5 kg) (9.8 ms–2)

= 4.9 kgms–2 = 4.9 N

Net force on the block = F
ext

 – f
k

= 10 N – 4.9 N

= 5.1 N

Hence,

acceleration = a = 
Fnet

m
 = 

51

5

. N

kg  = 1.02 ms–2

So the block will have an acceleration of 1.02 ms–2 in the direction of externally applied force.

3.6.2 Rolling Friction

It is a common experience that pushing or pulling objects such as carts on wheels is much
easier. The motion of a wheel is different from sliding motion. It is a rolling motion. The
friction in the case of rolling motion is known as rolling friction. For the same normal
force, rolling friction is much smaller than sliding friction. For example, when steel wheels
roll over steel rails, rolling friction is about 1/100th of the sliding friction between steel and
steel. Typical values for coefficient of rolling friction µ

r
 are 0.006 for steel on steel and

0.02 – 0.04 for rubber on concrete.

We would now like you to do a simple activity :

Activity 3.1

Place a heavy book or a pile of books on a table and try to push them with your fingers.
Next put three or more pencils below the books and now push them again. In which case
do you need less force? What do you conclude from your experience?

3.6.3 Methods of Reducing Friction

Wheel is considered to be greatest invention of
mankind for the simple reason that rolling is much
easier than sliding. Because of this, ball bearings
are used in machines to reduce friction. In a ball-
bearing, steel balls are placed between two co-axial
cylinders, as shown in Fig.3.6. Generally one of
the two cylinders is allowed to turn with respect to
the other. Here the rotation of the balls is almost
frictionless. Ball-bearings find application in almost
all types of vehicles and in electric motors such as
electric fans etc.

Use of lubricants such as grease or oil between the Fig. 3.6 : Balls in the ball-bearing
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Motion, Force and Energy surfaces in contact reduces friction considerably. In heavy machines, oil is made to flow
over moving parts. It reduces frictional force between moving parts and also prevents
them from getting overheated. In fact, the presence of lubricants changes the nature of
friction from dry friction to fluid friction, which is considerably smaller than the former.

Flow of compressed and purified air between the surfaces in contact also reduces
friction. It also prevents dust and dirt from getting collected on the moving parts.

Fluid Friction

Bodies moving on or through a liquid or gas also face friction. Shooting stars (meteors)
shine because of the heat generated by air-friction. Contrary to solid friction, fluid
friction depends upon the shape of the bodies. This is why fishes have a special
shape and fast moving aeroplanes and vehicles are also given a fish-like shape,
called a stream-line shape. Fluid friction increases rapidly with increase in speed. If
a car is run at a high speed, more fuel will have to be burnt to overcome the increased
fluid (air) friction. Car manufactures advise us to drive at a speed of
40-45 km h–1 for maximum efficiency.

3.7 The Free Body Diagram Technique

Application of Newton’s laws to solve problems in mechanics becomes easier by use of
the free body diagram technique. A diagram which shows all the forces acting on a
body in a given situation is called a free body diagram (FBD). The procedure to draw a
free body diagram, is described below :

1. Draw a simple, neat diagram of the system as per the given description.

2. Isolate the object of interest. This object will be called the Free Body now.

3. Consider all external forces acting on the free body and mark them by arrows touching
the free body with their line of action clearly represented.

4. Now apply Newton’s second law ΣF = m a

(or ΣF
x
 = m a

x
 and ΣF

y
 = m a

y
)

Remember : (i) A net force must be acting on the object along the direction of motion. (ii)
For obtaining a complete solution, you must have as many independent equations as the
number of unknowns.

Example 3.8 : Two blocks of masses m
1
 and m

2
 are connected by a string and placed on a

smooth horizontal surface. The block of mass m
2
 is pulled by a force F acting parallel to the

horizontal surface. What will be the acceleration of the blocks and the tension in the string
connecting the two blocks (assuming it to be horizontal)?

Solution : Refer to Fig. 3.7. Let a be the acceleration of the blocks in the direction of F
and let the tension in the string be T. On applying ΣF = ma in the component form to the
free body diagram of system of two bodies of masses m

1
 and m

2
, we get
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1
 + m

2
) g = 0

and F = (m
1
 + m

2
)a

⇒ a = 
F

1 2m m+

On applying ΣF = ma in the component form to the free body diagram of m
1
 we get

N
1
 – m

1
g = 0 and T = m

1
a

⇒ T  = m
1

F

1 2m m+

F

HG
I

KJ

or T = 
m

m m
1

1 2+

F

HG
I

KJ .F

Apply ΣF = ma once again to the free body diagram of m
2
 and see whether you get the

same expressions for a and T.

Example 3.9 : Two masses m
1
 and m

2
 (m

1
 > m

2
) are connected at

the two ends of a light inextensible string that passes over a light
frictionless fixed pulley. Find the acceleration of the masses and the
tension in the string connecting them when the masses are released.

Solution : Let a be acceleration of mass m
1
 downward. The

acceleration of mass m
2
 will also be a only but upward. (Why?). Let

T be the tension in the string connecting the two masses.

On applying ΣF = ma to m
1
 and m

2
 we get

m
1
g – T = m

1
a

T – m
2
g = m

2
a

On solving equations (1) and (2) for a and T we get

a = 
m m

m m
1 2

1 2

-

+

F

HG
I

KJ .g T = 
2 1 2

1 2

m m

m m+

F

HG
I

KJ a

At this stage you can check the prediction of the results thus obtained for the extreme
values of the variables (i.e. m

1
 and m

2
). Either take m

1
 = m

2
 or m

1
 >> m

2
 and see whether

a and T take values as expected.

Example 3.10 : A trolley of mass M = 10 kg is connected to a block of mass m = 2 kg
with the help of massless inextensible string passing over a light frictionless pulley as
shown in Fig. 3.10 (a). The coefficient of kinetic friction between the trolley and the

m1 m2
T T F

Fig 3.7: Free body diagram for two blocks connected by a string

N1 a
T

m g1 N2
a

T F

m g2

m1

m2

T
T

m g1

a
T

m g2

T

a

Fig. 3.9

N

m m1 2 + 

(  + ) m m g1 2

F

Fig 3.8
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k
) = 0.02. Find,

a) acceleration of the trolley, and

b) tension in the string.

Solution : Fig (b) and (c) shows the free body diagrams of
the trolley and the block respectively. Let a be the acceleration
of the block and the trolley.

For the trolley, F
N

= Mg and

T – f
k
 = Ma where f

k
= µ

k
 F

N

= µ
k
 Mg

So T – µ
k
 Mg = Ma ...(1)

For the block mg – T= ma ...(2)

On adding equations (1) and (2) we get mg – µ
k
  Mg = (M + m) a

or a = 
kmg Mg

M m

− µ
+  = 

2 2(2 kg) (9.8ms ) (0.02) (10 kg) (9.8 ms )

(10 kg 2 kg)

− −−
+

= 
2 219.6 kg ms 1.96 kg ms

12 kg

− −−
 = 1.47 ms–2

So a = 1.47 ms–2

From equation (2) T = mg – ma = m (g – a)

= 2 kg (9.8 ms–2 – 1.47 ms–2)

= 2 kg (8.33 ms–2)

So T = 16.66 N

Intext Questions 3.4

1. A block of mass m is held on a rough inclined surface of inclination θ. Show in a
diagram, various forces acting on the block.

....................................................................................................................................

2. A force of 100 N acts on two blocks A and B of masses 2 kg and 3 kg respectively,
placed in contact on a smooth horizontal surface as shown.
What is the magnitude of force which block A exerts on block
B?

....................................................................................................................................

(a)

M

m

T

FN

FK

Mg
(b)

mg

T

(c)

a
a

Fig. 3.10

A B
F

Fig. 3.11
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Motion, Force and Energy3. What will be the tension in the string when a 5kg object suspended from it is pulled up
with

(a) a velocity of 2ms–1?

(b) an acceleration of 2ms–2?

....................................................................................................................................

3.8 Elementary Ideas of Inertial and Non Inertial Frames

To study motion in one dimension (i.e. in a straight line) a reference point (origin) is enough.
But, when it comes to motions in two and three dimensions, we have to use a set of
reference lines to specify the position of a point in space. This set of lines is called frame
of reference.

Every motion is described by an observer. The description of motion will change with the
change in the state of motion of the observer. For example, let us consider a box lying on
a railway platform. A person standing on the platform will say that the box is at rest. A
person in a train moving with a uniform velocity v will say that the box is moving with
velocity –v. But, what will be the description of the box by a person in a train having
acceleration (a). He/she will find that the box is moving with an acceleration (– a).
Obviously, the first law of motion is failing for this observer.

Thus a frame of reference is fixed with the observer to describe motion. If the frame is
stationary or moving with a constant velocity with respect to the object under study (another
frame of reference), then in this frame law of inertia holds good. Therefore, such frames
are called inertial frames. On the other hand, if the observer’s frame is accelerating, then
we call it non-inertial frame.

For the motion of a body of mass m in a non-inertial frame, having acceleration (a), we
may apply second law of motion by involving a psuedo force m a. In a rotating body, this
force is called centrifugal force.

Intext Questions 3.5

1. A glass half filled with water is kept on a horizontal table in a train. Will the free
surface of water remain horizontal as the train starts?

.................................................................................................................................

2. When a car is driven too fast around a curve it skids outwards. How would a passenger
sitting inside explain the car’s motion? How would an observer standing on a road
explain the event?

.................................................................................................................................

3. A tiny particle of mass 6 × 10–10 kg is in a water suspension in a centrifuge which is
being rotated at an angular speed of 2π × 103 rad s–1. The particle is at a distance of
4 cm from the axis of rotation. Calculate the net centrifugal force acting on the
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.................................................................................................................................

4. What must the angular speed of the rotation of earth so that the centrifugal force
makes objects fly off its surface? Take g = 10 m s–2.

.................................................................................................................................

5. In the reference frame attached to a freely falling body of mass 2 kg, what is the
magnitude and direction of inertial force on the body?

....................................................................................................................................

What You Have Learnt

� The inertia of a body is its tendency to resist any change in its state of rest or
uniform motion.

� Newton’s first law states that a body remains in a state of rest or of uniform motion
in a straight line as long as net external force acting on it is zero.

� For a single particle of mass m moving with velocity v we define a vector quantity p
called the linear momentum as p = m v.

� Newton’s second law states that the time rate of change of momentum of a body is
proportional to the resultant force acting on the body.

� According to Newton’s second law, acceleration produced in a body of constant
mass is directly proportional to net external force acting on the body : F = m a.

� Newton’s third law states that if two bodies A and B interact with each other, then
the force which body A exerts on body B will be equal and opposite to the force
which body B exerts on body A.

� According to the law of conservation of momentum, if no net external force acts on
a system of particles, the total momentum of the system will remain constant regardless
of the nature of forces between them.

� Frictional force is the force which acts on a body when it attempts to slide, or roll
along a surface. The force of friction is always parallel to the surfaces in contact and
opposite to the direction of motion of the object.

� The maximum force of static friction f
s
(max) between a body and a surface is proportional

to the normal force F
N
 acting on the body. This maximum force occurs when the

body is on the verge of sliding.

� For a body sliding on some surface, the magnitude of the force of kinetic friction f
k
 is

given by f
k
 = µ

k 
F

N
 where µ

k 
is the coefficient of kinetic friction for the surfaces in

contact.

� Use of rollers and ball-bearings reduces friction and associated energy losses
considerably as rolling friction is much smaller than kinetic friction.
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Motion, Force and Energy
� Newton’s laws of motion are applicable only in an inertial frame of reference. An

inertial frame is one in which an isolated object has zero acceleration.

� For an object to be in static equilibrium, the vector sum of all the forces acting on it
must be zero. This is a necessary and sufficient conditions for point objects only.

Terminal Exercise

1. Which of the following will always be in the direction of net external force acting on
the body?

(a) displacement (b) velocity
(c) acceleration (d) Change is momentum.

2. When a constant net external force acts on an object, which of the following may not
change?

(a) position (b) speed (c) velocity (d) acceleration

Justify your answer with an example each.

3. A 0.5 kg ball is dropped from such a height that it takes 4s to reach the ground.
Calculate the change in momentum of the ball.

4. In which case will there be larger change in momentum of a 2 kg object:

(a) When 10 N force acts on it for 1s ?

(b) When 10 N force acts on it for 1m ?

Calculate change in momentum in each case.

5. A ball of mass 0.2 kg falls through air with an acceleration of 6 ms–2. Calculate the air
drag on the ball.

6. A load of mass 20 kg is lifted with the help of a rope at a constant acceleration. The
load covers a height of 5 m in 2 seconds. Calculate the tension in the rope. In a rocket
m changes with time. Write down the mathmatical form of Newton’s law in this case
and interpret it physically.

7. A ball of mass 0.1 kg moving at 10 m s–1 is deflected by a wall at the same speed in
the direction shown. What is the magnitude of the change in momentum of the ball?

Fig 3.12
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Motion, Force and Energy 8. Find the average recoil force on a machine gun that is firing 150 bullets per minute,
each with a speed of 900 m s–1. Mass of each bullet is 12 g.

9. Explain why, when catching a fast moving ball, the hands are drawn back while the
ball is being brought to rest.

10. A constant force of magnitude 20 N acts on a body of mass 2 kg, initially at rest, for
2 seconds. What will be the velocity of the body after
(a) 1 second from start?   (b) 3 seconds from start?

11. How does a force acting on a block in the direction shown here keep the block from
sliding down the vertical wall?

Wall

30º

Fig 3.13

12. A 1.2 kg block is resting on a horizontal surface. The coefficient of static friction
between the block and the surface is 0.5. What will be the magnitude and direction of
the force of friction on the block when the magnitude of the external force acting on
the block in the horizontal direction is

(a) 0 N ? (b) 4.9 N ? (c) 9.8 N ?

13. For a block on a surface the maximum force of static friction is 10N. What will be the
force of friction on the block when a 5 N external force is applied to it parallel to the
surface on which it is resting?

14. What minimum force F is required to keep a 5 kg block at rest on an inclined plane of
inclination 300. The coefficient of static friction between the block and the inclined
plane is 0.25.

15. Two blocks P and Q of masses m
1
 = 2 kg and m

2
 = 3 kg respectively are placed in

contact with each other on horizontal frictionless surface. Some external force F = 10
N is applied to the block P in the direction parallel to the surface. Find the following

(a) acceleration of the blocks

(b) force which the block P exerts on block Q.

16. Two blocks P and Q of masses m
1
 = 2 kg and m

2
 = 4 kg

are connected to a third block R of mass M as shown RP Q
M

m1
m2

Fig 3.14
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Motion, Force and Energyin Fig. 3.14 For what maximum value of M will the system be in equilibrium? The
frictional force acting on each block is half the force of normal reaction on it.

17. Explain the role of friction in the case of bicycle brakes. What will happen if a few
drops of oil are put on the rim?

18. A 2 kg block is pushed up an incline plane of inclination θ = 370 imparting it a speed of
20 m s–1. How much distance will the block travel before coming to rest? The coefficient
of kinetic friction between the block and the incline plane is µ

k
 = 0.5.

Take g = 10 m s–2 and use sin 370 = 0.6, cos 370 = 0.8.

Answers to Intext Questions

3.1

1. No. The statement is true only for a body which was at rest before the application of
force.

2. Inertial mass

3. Yes, as in uniform circular motion.

4. A force can change motion. It can also deform bodies.

3.2
1. Object of smaller mass

2. (a) Yes  (b) No.

3. Momentum of the falling ball increases because gravitational force acts on it in the
direction of its motion and hence velocity increases.

4. In case (b) the change in momentum will be larger. It is the F ∆t product that gives the

change in momentum. as F
∆⎛ ⎞∝⎜ ⎟⎝ ⎠∆

p

t

5. No. Though the speed is constant, the velocity of the object changes due to change in
direction. Hence its momentum will not be constant.

3.3

1. The jumper is thrown upwards by the force which the ground exerts on the jumper.
This force is the reaction to the force which the jumper exerts on the ground.

2. (a) The force with which a man kicks a football is action and the force which the
football exerts on the man will be its reaction.

(b) The force with which earth pulls the moon is action and the force which the moon
exerts on the earth will be its reaction.

(c) If the force which the ball exerts on the wall is the action then the force which the
wall exerts on the ball will be its reaction.
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Motion, Force and Energy 3. No. The arguement is not correct. The almirah moves when the push by the person
exceeds the frictional force between the almirah and the floor. He does not get
pushed backward due to a large force of friction that he experiences due to the floor.
On a slippery surface, he will not be able to push the almirah foward.

3.4

 

FN f s

mg si
n 

θ
θ θ

mg mg cos θ

Fig. 3.15
2. 40 N

3. (a) (5 × 9.8) N

(b) F = (5 × 2) N + (5 × 9.8) N = 59 N

3.5

(1) When the train starts it has an acceleration, say a. Thus the total force acting on
water in the frame of reference attached to the train is

F = m g – m a
where m is the mass of the water and the glass. (Fig. 3.16). The surface of the water
takes up a position normal to F as shown.

F mg

–ma ma

Fig. 3.16

(2) To the passenger sitting inside, a centrifugal force (–mv2/r) acts on the car. The
greater v is the larger r would be. To an observer standing on the road, the car
moving in a curve has a centripetal acceleration given by v2/r. Once again, the greater
is v, the larger will be r.

(3) The net centrifugal force on the particle is F = mω2r = (6 × 10–10 kg) × (2π ×
103 rad s–1)2 × (0.04 m) = 9.6 × 10–4 N.

(4) For an object to fly off centrifugal force (= centripetal force) should be just more

than the weight of a body. If r is the radius of the earth then 
2m

r

v
 = mg

as v = rω
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2 2r

r

ω
 = g

or, angular speed  ω = /g r

∴  Any angular speed more than /g r  will make objects fly off.

5. Zero (as it is a case of free fall of a body).

Answers to Terminal Problems
1. (d)

2. (a) if internal forces developed within the material counter bank the external force. A
it happens in case of force applied on a wall.

(b) It force is applied at right angles to the direction of motion of the body, the force
changes the direction of motion of body and not to speed.

3. v = 0 + (–g) × 4

|v| = 40 m s–1

∴ ∆P = m (v – u) = (0.5 × 40) = 20 kg m s–2

4. When 10 N force acts for 1s.

5. 0.76 N

7. 250 N.

8. 27 N

10. (a) 10 m s–1  (b) 20 m s–1

12. (a) 0 N (b) 4.9 N (c) ~7.5 N

13. 5 N

14. 14.2 N

15. (a) 2 m s–2 (b) 6 N

16. 3 kg

18. 20 m
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4

I

MOTION IN A PLANE

n the preceding two lessons you have studied the concepts related to motion in a straight
line.  Can you describe the motion of objects moving in a plane, i.e, in two dimensions,
using the concepts discussed so far. To do so, we have to introduce certain new concepts.
An interesting example of motion in two dimensions is the motion of a ball thrown at an
angle to the horizontal. This motions is called a projectile motion.

In  this lesson you will learn  to answer questions like : What should be the position and
speed of an aircraft so that food or medicine packets dropped from it reach the people
affected by floods or an earthquake? How should an athlete throw a discuss or a javelin so
that it covers the maximum horizontal distance? How should roads be designed so that
cars taking a turn around a curve do not go off the road? What should be the speed of a
satellite so that it moves in a circular orbit around the earth? And so on.

Such situations arise in projectile motion and circular motion. We will introduce the concepts
of angular speed, centripetal acceleration, and centripetal force to explain this kind of
motion.

Objectives

After studying this lesson, you should be able to :

� explain projectile motion and circular motion and give their examples;

� derive expressions for the time of flight, range and maximum height of a projectile;

� derive the equation of the trajectory of a projectile;

� derive expressions for velocity and acceleration of a particle in circular motion;
and

� define radial and tangential acceleration.

4.1 Projectile Motion

The first breakthrough in the description of projectile motion was made by Galileo. He
showed that the horizontal and vertical motions of a slow moving projectile are mutually
independent. This can be understood by doing the following activity.
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Motion, Force and EnergyTake two cricket balls. Project one of them horizontally from the top of building. At the
same time drop the other ball downward from the same height. What will you notice?

You will find that both the balls hit the ground at the same time. This shows that the
downward acceleration of a projectile is the same as that of a freely falling body. Moreover,
this takes place independent of its horizontal motion. Further, measurement of time and
distance will show that the horizontal velocity continues unchanged and takes place
independent of the vertical motion.

In other words, the two important properties of a projectile motion are :

(i) a constant horizontal velocity component

(i) a constant vertically downward acceleration component.

The combination of these two motions results in the curved path of the projectile.

Refer to Fig. 4.1. Suppose
a boy at A throws a ball with
an initial horizontal speed.
According to Newton’s
second law there will be no
acceleration in the
horizontal direction unless a
horizontally directed force
acts on the ball. Ignoring
friction of air, the only force
acting on the ball once it is free from the hand of the boy is the force of gravity.

Hence the horizontal speed v
H
 of the ball does not change. But as the ball moves with this

speed to the right, it also falls under the action of gravity as shown by the vector’s v
v

representing the vertical component of the velocity. Note that v = 2 2
H v+v v  and is tangential

to the trajectory.

Having defined projectile motion, we would like to determine how high and how far
does a projectile go and for how long does it remain in air. These factors are important
if we want to launch a projectile to land at a certain target - for instance, a football in
the goal, a cricket ball beyond the boundary and relief packets in the reach of people
marooned by floods or other natural disasters.

4.1.1 Maximum Height, Time of Flight and Range of a Projectile

Let us analyse projectile motion to determine its maximum height, time of flight and range.
In doing so, we will ignore effects such as wind or air resistance. We can characterise the
initial velocity of an object in projectile motion by its vertical and horizontal components.
Let us take the positive x-axis in the horizontal direction and the positive y-axis in the
vertical direction (Fig. 4.2).

Let us assume that the initial position of the projectile is at the origin O at t = 0. As you

Fig 4.1: Curved path of a projectile

vv

A

C

B

D

vv

vv

vv

vH

vA

vH
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Motion, Force and Energy know, the coordinates of the origin are x = 0, y = 0. Now suppose the projectile is launched
with an initial velocity v

0
 at an angle θ

0
, known as the angle of elevation, to the x-axis. Its

components in the x and y directions are,

v
ox

= v
o
 cos θ

0
(4.1 a)

and v
oy

= v
o
 sin θ

0
(4.1 b)

Fig 4.2 : Maximum height, time of flight and range of a projectile

Let a
x
 and a

y
 be the horizontal and vertical components, respectively, of the projectile’s

acceleration. Then

a
x

= 0; a
y
 = –g = –9.8 m s–2 (4.2)

The negative sign for a
y
 appears as the acceleration due to gravity is always in the negative

y direction in the chosen coordinate system.

Notice that a
y
 is constant. Therefore, we can use Eqns. (2.6) and (2.9) to write expressions

for the horizontal and vertical components of the projectile’s velocity and position at time
t. These are given by

Horizontal motion v
x

= v
ox

, since a
x
 = 0 (4.3a)

x = v
ox

t = v
0
 cos θ

0
t (4.3b)

Vertical motion v
y

= v
oy  

– g t = v
0
 sin θ

0 
– gt (4.3c)

y = v
oy

t
  
– ½g t2  = v

0
 sin θ

0
t
 
– ½g t2 (4.3d)

The vertical position and velocity components are also related through Eqn. (2.10) as

– g y = ½ 2 2( – )y oyv v (4.3e)

You will note that the horizontal motion, given by Eqns. (4.3a and b), is motion with constant
velocity. And the vertical motion, given by Eqns. (4.3c and d), is motion with constant
(downward) acceleration. The vector sum of the two respective components would give
us the velocity and position of the projectile at any instant of time.

Now, let us make use of these equations to know the maximum height, time of flight and
range of a projectile.

(a) Maximum height : As the projectile travels through air, it climbs upto some maximum

O
θ0

V0

y

hmax

R

x



3.75

MODULE - 1

Notes

75

Motion in a Plane

Motion, Force and Energyheight (h) and then begins to come down. At the instant when the projectile is at the
maximum height, the vertical component of its velocity is zero. This is the instant
when the projectile stops to move upward and does not yet begin to move downward.
Thus, putting v

y
 = 0 in Eqns. (4.3c and e), we get

0 = v
oy

 – g t,

Thus the time taken to rise taken to the maximum height is given by

t = 
oy

g

v
 = 

0 0sin θ
g

v
(4.4)

At the maximum height h attained by the projectile, the vertical velocity is zero. Therefore,
applying v2 – u2 = 2 a s = 2 g h, we get the expression for maximum height :

 
2 2

00 sin

2
h

g

θ
=

v
           (as v = 0 and u = v

0
 sin θ) (4.5)

Note that in our calculation we have ignored the effects of air resistance. This is a good
approximation for a projectile with a fairly low velocity.

Using Eqn.(4.4) we can also determine the total time for which the projectile is in the air.
This is termed as the time of flight.

(b) Time of flight : The time of flight of a projectile is the time interval between the
instant of its launch and the instant when it hits the ground. The time t given by Eq.(4.4)
is the time for half the flight of the ball. Therefore, the total time of flight is given by

0 02 sin
2T t

g

θ= = v
(4.6)

Finally we calculate the distance travelled horizontally by the projectile. This is also called
its range.

(c) Range : The range R of a projectile is calculated simply by multiplying its time of flight
and horizontal velocity. Thus using Eqns. (4.3b) and (4.4), we get

R = (v
ox

)  (2 t)

= (v
0
 cos θ

0
) 0 0(2 sin )

g

θv

= 2
0v 0 0(2sin cos )

g

θ θ

Since 2 sin θ cos θ = sin 2θ, the range R is given by

2
0 0sin 2

R
g

θ
=

v
(4.7)
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Motion, Force and Energy From Eqn. (4.7) you can see that the range of a projectile depends on

� its initial speed v
0
, and

� its direction given by θ
0
.

Now can you determine the angle at which a disc, a hammer or a javelin should be thrown
so that it covers maximum distance horizontally? In other words, let us find out the angle
for which the range would be maximum?

Clearly, R will be maximum for any given speed when sin 2θ
0
 = 1 or 2θ

0
 = 900.

Thus, for R to be maximum at a given speed v
0
, θ

0
 should be equal to 450.

Let us determine these quantities for a particular case.

Example 4.1 : In the centennial (on the occasion of its centenary) Olympics held at
Atlanta in 1996, the gold medallist hammer thrower threw the hammer to a distance of
19.6m. Assuming this to be the maximum range, calculate the initial speed with which the
hammer was thrown. What was the maximum height of the hammer? How long did it
remain in the air? Ignore the height of the thrower’s hand above the ground.

Solution : Since we can ignore the height of the thrower’s hand above the ground, the
launch point and the point of impact can be taken to be at the same height. We take the
origin of the coordinate axes at the launch point. Since the distance covered by the hammer
is the range, it is equal to the hammer’s range for θ

0
 = 450. Thus we have from Eqn.(4.7):

R = 
2
0

g

v

 or v
0

= Rg

It is given that R = 19.6 m. Putting g = 9.8 ms–2 we get

v
0

= –2(19.6m) (9.8 ms )×  = 9.8 2 ms–1 = 14.01ms–1

The maximum height and time of flight are given by Eqns. (4.5) and (4.6), respectively.
Putting the value of v

0
 and sin θ

0
 in Eqns. (4.5) and (4.6), we get

Maximum height, h = 
( )

2
2

2 –2

–2

1
9.8 2 m s

2
2 9.8ms

⎛ ⎞× ⎜ ⎟
⎝ ⎠

×
 = 4.9 m

Time of flight, T = 
( ) –1

–2

2 9.8 2 m s

9.8 m s

×
 × 

1

2
 = 2 s

Now that you have studied some concepts related to projectile motion and their applications,

you may like to check your understanding. Solve the following problems.
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Intext Questions 4.1

1. Identify examples of projectile motion from among the following situations :

(a) An archer shoots an arrow
at a target

(b) Rocks are ejected from an
exploding volcano

(c) A truck moves on a
mountainous road

(d) A bomb is released from a
bomber plane. [Hint :
Remember that at the time of release the bomb shares the horizontal motion of
the plane.]

(e) A boat sails in a river.

..................................................................................................................................

2. Three balls thrown at different angles reach the same maximum height (Fig.4.3):

(a) Are the vertical components of the initial velocity the same for all the balls? If
not, which one has the least vertical component?

(b) Will they all have the same time of flight?

(c) Which one has the greatest horizontal velocity component?

..................................................................................................................................

3. An athelete set the record for the long jump with a jump of 8.90 m. Assume his initial
speed on take off to be 9.5 ms–1. How close did he come to the maximum possible
range in the absence of air resistance? Take g = 9.78 ms–2.

..................................................................................................................................

4.2 The Trajectory of a Projectile

The path followed by a projectile is called its trajectory. Can you recognise the shapes of
the trajectories of projectiles shown in Fig. 4.1, 4.2 and 4.3.

Although we have discussed quite a few things about projectile motion, we have still not
answered the question: What is the path or trajectory of a projectile? So let us determine
the equation for the trajectory of a projectile.

It is easy to determine the equation for the path or trajectory of a projectile. You just have
to eliminate t from Eqns. (4.3b) and (4.3d) for x and y. Substituting the value of t from Eqn.
(4.3b) in Eqn.(4.3d) we get

Fig 4.3 : Trajectories of a projectile
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y = v

oy
 

ox

x

v
 – 

1

2

2

2
ox

g x

v as
⎛ ⎞=⎜ ⎟
⎝ ⎠ox

x
t

v
(4.8 a)

Using Eqns. (4.1 a and b), Eqn (4.8a) becomes

y = (tan θ
0
) x – 2

0 02( cos )

g

θv
x2 (4.8 b)

as v
oy

 = v
0
 sin θ and v

ox
 = v

0
 cos θ.

Eqn. (4.8) is of the form y = a x + b x2, which is the equation of a parabola. Thus, if air

resistance is negligible, the path of any projectile launched at an angle to the horizontal

is a parabola or a portion of a parabola. In Fig 4.3 you can see some trajectories of a

projectile at different angles of elevation.

Eqns. (4.5) to (4.7) are often handy for solving problems of projectile motion. For example,
these equations are used to calculate the launch speed and the angle of elevation required
to hit a target at a known range. However, these equations do not give us complete description
of projectile motion, if distance covered are very large. To get a complete description, we
must include the rotation of the earth also. This is beyond the scope of this course.

Now, let us summarise the important equations describing projectile motion launched from
a point (x

0
, y

0
) with a velocity v

0
 at an angle of elevation, θ

0
.

Equations of Projectile Motion:

a
x

= 0 a
y

= – g (4.9 a)

v
x

= v
0 
cos θ

0
v

y
= v

0 
sin θ – g t (4.9 b)

x = x
0 
+ (v

0
 cos θ

0
)t y = y

0 
+ (v

0
 sin θ) t –(½) g t2 (4.9 c)

Equation of trajectory:

y = y
0 
+ (tan θ) (x – x

0
) – 2

0 02( cos )

g

θv
 (x – x

0
)2 (4.9 d)

Note that these equations are more general than the ones discussed earlier. The initial
coordinates are left unspecified as (x

0
, y

0
) rather than being placed at (0,0). Can you

derive this general equation of the projectile trajectory? Do it before proceeding further?

Thus far you have studied motion of objects in a plane, which can be placed in the category
of projectile motion. In projectile motion, the acceleration is constant both in magnitude
and direction. There is another kind of two-dimensional motion in which acceleration is
constant in magnitude but not in direction. This is uniform circular motion, and you will
learn about in the following section.
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Motion, Force and EnergyEvangelista Torricelli
(1608 – 1647)

Italian mathematician and a student of Galelio Galili, he invented
mercury barometer, investigated theory of projectiles, improved
telescope and invented a primitive microscope. Disproved that
nature abhors vacuum, presented torricellis theorem.

4.3 Circular Motion

Look at Fig. 4.4a. It shows the position vectors r
1
 and r

2
 of a particle in uniform circular

motion at two different instants of time t
1
 and t

2
, respectively. The word ‘uniform’ refers

to constant speed. We have said that the speed of the particle is constant. What about its
velocity? To find out velocity, recall the definition of average velocity and apply it to points
P

1
 and P

2
:

v
av = 2 1

2 1

–

–t t

r r
 = 

t

∆
∆

r
(4.10 a)

The motion of a gramophone record, a grinding wheel at constant speed, the moving hands
of an ordinary clock, a vehicle turning around a corner are examples of circular motion.
The movement of gears, pulleys and wheels also involve circular motion. The simplest
kind of circular motion is uniform circular motion. The most familiar example of uniform
circular motion are a point on a rotating fan blade or a grinding wheel moving at constant
speed.

One of the example of uniform circular motion is an artificial satellite in circular orbit
around the earth. We have been benefitted immensely by the INSAT series of satellites
and other artificial satellites. So let us now learn about uniform circular motion.

4.3.1 Uniform Circular Motion

By definition, uniform circular motion is motion with constant speed in a circle.

Fig. 4.4 (a): Positions of a particle in uniform circular motion; (b): Uniform circular motion

The vector ∆r is shown in Fig. 4.4a. Now suppose you make the time interval ∆t smaller

r2

t1 r1

t2
P2

P1

r∆

(a)

P2

r P1

| | = v1 v

| | = 
v 2

v

(b)
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Motion, Force and Energy and smaller so that it approaches zero. What happens to ∆r? In particular, what is the
direction of ∆r? It approaches the tangent to the circle at point P

1
 as ∆t tends to zero.

Mathematically, we define the instantaneous velocity at point P
1
 as

v = 
limit

0t∆ →
d

dt t

∆ =
∆

r r

Thus, in uniform circular motion, the velocity vector changes continuously. Can you say
why? This is because the direction of velocity is not constant. It goes on changing
continuously as the particle travels around the circle (Fig. 4.4b). Because of this change
in velocity, uniform circular motion is accelerated motion. The acceleration of a particle
in uniform circular motion is  termed as centripetal acceleration. Let us learn about it in
some detail.

Centripetal acceleration : Consider a particle of mass m moving with a uniform speed
v in a circle. Suppose at any instant its position is at A and its motion is directed along AX.
After a small time ∆t, the particle reaches B and its velocity is represented by the tangent
at B directed along BY.

Let r and r′′′′′ be the position vectors and v and v′′′′′ ; the velocities of the particle at A and B
respectively as shown in Fig. 4.5 (a). The change in velocity ∆v is obtained using the
triangle law of vectors. As the path of the particle is circular and velocity is along its
tangent, v is perpendicular to r and v′ is perpendicular to ∆r. As the average acceleration

t

∆⎛ ⎞=⎜ ⎟∆⎝ ⎠
a

v
 is along ∆v, it (i.e., the average acceleration) is perpendicular to ∆r.

Let the angle between the position vectors r and r′′′′′ be ∆θ. Then the angle between
velocity vectors v and v′′′′′ will also be ∆θ as the velocity vectors are always perpendicular
to the position vectors.

To determine the change in velocity ∆v due to the change in direction, consider a point O
outside the circle. Draw a line OP parallel to and equal to AX (or v) and a line OQ parallel
to and equal to BY (or v′′′′′). As |v| = |v′′′′′ |, OP = OQ. Join PQ. You get a triangle OPQ (Fig. 4.5b)

(a)

Y
v′B

A

v

r′
∆θr

C

XXX

∆θ

∆v

O Q

P

(b)
v′

v

Fig. 4.5
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Motion, Force and EnergyNow in triangle OPQ, sides OP and OQ represent velocity vectors v and v′′′′′ at A and B
respectively. Hence, their difference is represented by the side PQ in magnitude and
direction. In other words the change in the velocity equal to PQ in magnitude and direction
takes place as the particle moves from A to B in time ∆t.

∴ Acceleration = Rate of change of velocity

a = 
t t

∆=
∆ ∆
PQ v

As ∆t is very small AB is also very small and is nearly a straight line. Then ∆ ACB and
∆POQ are isosceles triangles having their included angles equal. The triangles are,
therefore, similar and hence,

PQ

AB
= 

OP

CA

or .

∆
∆t

v

v = 
r

v

[as magnitudes of velocity vectors v
1
 and v

2
 = v (say)]

or
∆
∆t

v
= 

2

r

v

But 
∆
∆t

v
 is the acceleration of the particle. Hence

Centripetal acceleration, a = 
2

r

v

Since v = r ω, the magnitude of centripetal force in given by

F = m a = 
2m

r

v
 = m rω2.

As ∆t is very small, ∆θ is also very small and ∠OPQ = ∠OQP = 1 right angle.

Thus PQ is perpendicular to OP, which is parallel to the tangent AX at A. Now AC is also
perpendicular to AX. Therefore AC is parallel to PQ. It shows that the contripetal force at
any point acts towards the centre along the radius.

It shows that some minimum centripetal force has to be applied on a body to make it move
in a circular path. In the absence of such a force, the body will move in a straight line path.
To experience this, you can perform a simple activity.

Activity 4.1

Take a small piece of stone and tie it to one end of a string. Hold the other end with your
fingers and then try to whirl the stone in a horizontal or vertical circle. Start with a small
speed of rotation and increase it gradually. What happens when the speed of rotation is
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Motion, Force and Energy low? Do you feel any pull on your fingers when the stone is whirling. What happens to the
stone when you leave the end of the string you were holding? How do you explain this?

Activity 4.2

Take an aluminium channel of length one metre and bend it in the form shown in the
diagram with a circular loop in the middle. Take help of some technical preson if required.

Fig. 4.5:  The ball will loop if it starts rolling from a point high enough on the incline

Roll down a glass marble from different heights of the channel on the right hand side, and
see whether the marble is able to loop the loop in each case or does it need some minimum
height (hence velocity) below which the marble will not be able to complete the loop and
fall down. How do you explain it?

Some Applications of Centripetal Force
(i) Centrifuges : These are spinning devices used for separating materials having
different densities. When a mixture of two materials of different densities placed in
a vessel is rotated at high speed, the centripetal force on the heavier material will be
more. Therefore, it will move to outermost position in the vessel and hence can be
separated. These devises are being used for uranium enrichment. In a chemistry
laboratory these are used for chemical analysis.

mercury

woler

Action of a 
centrifuge

Fig. 4.6: When mercury and water are rotated in a dish, the water stays inside.
Centripetal force, like gravitational force, is greater for the more dense substance.

(ii) Mud clings to an automobile tyre until the speed becomes too high and then it flies
off tangentially (Fig. 4.7).
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Fig. 4.7: Mud or water on a fast-turning wheel flies off tangentially

(iii) Planetary motion : The Earth and the other planets revolving round the sun get
necessary centripetal force from the gravitational force between them and the sun.

Example 4.2 : Astronauts experience high acceleration in their flights in space. In the
training centres for such situations, they are placed in a closed capsule, which is fixed at
the end of a revolving arm of radius 15 m. The capsule is whirled around in a circular path,
just like the way we whirl a stone tied to a string in a horizontal circle. If the arm revolves
at a rate of 24 revolutions per minute, calculate the centripetal acceleration of the capsule.

Solution : The circumference of the circular path is 2π × (radius) = 2π × 15 m. Since the
capsule makes 24 revolutions per minute or 60 s, the time it takes to go once around this

circumference is 
60

24
s. Therefore,

speed of the capsule, v = 
2

T

πr
=

2 15 m

(60/24) s

π ×
 = 38 ms–1

The magnitude of the centripetal acceleration

a = 
2

r

v
 = 

–1 2(38 ms )

15 m  = 96 ms–2

Note that centripetal acceleration is about 10 times the acceleration due to gravity.

Intext Questions 4.2

1. In uniform circular motion, (a) Is the speed constant? (b) Is the velocity constant? (c)
Is the magnitude of the acceleration constant? (d) Is acceleration constant? Explain.

...................................................................................................................................

2. An athlete runs around a circular track with a speed of 9.0 ms–1 and a centripetal
acceleration of 3 ms–2. What is the radius of the track?

...................................................................................................................................

3. The Fermi lab accelerator is one of the largest particle accelerators. In this accelerator,
protons are forced to travel in an evacuated tube in a circular orbit of diameter 2.0 km
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Motion, Force and Energy at a speed which is nearly equal to 99.99995% of the speed of light. What is the
centripetal acceleration of these protons? Take c = 3 × 108 ms–1.

...................................................................................................................................

4.4 Applications of Uniform Circular Motion

So far you have studied that an object moving in a circle is accelerating. You have also
studied Newton’s laws in the previous lesson. From Newton’s second law we can say that
as the object in circular motion is accelerating, a net force must be acting on it.

What is the direction and magnitude of this force? This is what you will learn in this
section. Then we will apply Newton’s laws of motion to uniform circular motion. This
helps us to explain why roads are banked, or why pilots feel pressed to their seats when
they fly aircrafts in vertical loops.

Let us first determine the force acting on a particle that keeps it in uniform circular motion.
Consider a particle moving with constant speed v in a circle of radius r. From Newton’s
second law, the net external force acting on a particle is related to its acceleration by

F = 
2m

r
− v

r̂ , |F| = 
2m

r

v
(4.19)

This net external force directed towards the centre of the circle with magnitude given by
Eqn. (4.19) is called centripetal force. An important thing to understand and remember
is that the term ‘centripetal force’ does not refer to a type of force of interaction like
the force of gravitation or electrical force. This  term only tells us that the net force of
a certain magnitude acting on a particle in uniform circular motion is directed towards the
centre. It does not tell us how this force is provided.

Thus, the force may be provided by the gravitational attraction between two bodies. For
example, in the motion of a planet around the sun, the centripetal force is provided by the
gravitational force between the two. Similarly, the centripetal force for a car travelling
around a bend is provided by the force of friction between the road and the car’s tyres
and/or by the horizontal component of normal reaction of banked road. You will understand
these ideas better when we apply them in certain concrete situations.

4.4.1 Banking of Roads

While riding a bicycle and taking a sharp turn, you may have felt that something is trying to
throw you away from your path. Have you ever thought as to why does it happen?

You tend to be thrown out because enough centripetal force has not been provided to keep
you in the circular path. Some force is provided by the friction between the tyres and the
road, but that may not be sufficient. When you slow down, the needed centripetal force
decreases and you manage to complete this turn.

Consider now a car of mass m, travelling with speed v on a curved section of a highway
(Fig.4.6). To keep the car moving uniformly on the circular path, a force must act on it
directed towards the centre of the circle and its magnitude must be equal to
mv2/r. Here r is the radius of curvature of the curved section.
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Fr

(a)                  (b)
Fig.4.6 : A car taking a turn (a) on a level road; (b) on a banked road; and (c) Forces on the car with F

N

resolved into its rectangular components. Generally θθθθθ is not as large as shown here in the
diagram.

Now if the road is levelled, the force of friction between the road and the tyres provides
the necessary centripetal force to keep the car in circular path. This causes a lot of wear
and tear in the tyre and may not be enough to give it a safe turn. The roads at curves are,
therefore, banked, where banking means the raising of the outer edge of the road above
the level of the inner edge (Fig. 4.6). As a matter of fact, roads are designed to minimise
reliance on friction. For example, when car tyres are smooth or there is water or snow on
roads, the coefficient of friction becomes negligible. Roads are banked at curves so that
cars can keep on track even when friction is negligible.

Let us now analyse the free body diagram for the car to obtain an expression for the angle
of banking, θ, which is adjusted for the sharpness of the curve and the maximum allowed
speed.

Consider the case when there is no frictional force acting between the car tyres and the
road. The forces acting on the car are the car’s weight mg and F

N
, the force of normal

reaction. The centripetal force is provided by the horizontal component of F
N
. Thus, resolving

the force F
N
 into its horizontal and vertical components, we can write

F
N
 sin θ = 

2m

r

v
(4.20a)

Since there is no vertical acceleration, the vertical component of F
N
 is equal to the car’s

weight:
F

N 
cos θ = m g (4.20b)

We have two equations with two unknowns, i.e., F
N
 and θ. To determine θ, we eliminate

F
N
. Dividing Eqn. (4.20 a) by Eqn. (4.20 b), we get

tan θ = 
2 /m r

m g

v
 = 

2

r g

v

or θ = tan–1 
2

rg

v
(4.21)

How do we interpret Eqn. (4.21) for limits on v and choice of θ? Firstly, Eqn.(4.21) tells us
that the angle of banking is independent of the mass of the vehicle. So even large trucks
and other heavy vehicles can ply on banked roads.

F cos N θ

F   sin N θ

FN

θ O

m g 

X

A

F   sin N θ

F  cos N θ

m g 

θ FN

(c)
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Motion, Force and Energy Secondly, θ should be greater for high speeds and for sharp curves (i.e., for lower values
of r). For a given θ, if the speed is more than v, it will tend to move towards the outer
edge of the curved road. So a vehicle driver must drive within prescribed speed limits on
curves. Otherwise, the will be pushed off the road. Hence, there may be accidents.

Usually, due to frictional forces, there is a range of speeds on either side of v. Vehicles can
maintain a stable circular path around curves, if their speed remains within this range. To
get a feel of actual numbers, consider a curved path of radius 300 m. Let the typical speed
of a vehicle be 50 ms–1. What should the angle of banking be? You may like to quickly use
Eqn.(4.21) and calculate θ.

θ = tan–1 
–1 2

–2

(50 ms )

(300 m) (9.8 ms )  = tan–1 (0.017) = 10

You may like to consider another application.

4.4.2 Aircrafts in vertical loops

On Republic Day and other shows by the Indian Air Force, you might have seen pilots
flying aircrafts in loops (Fig. 4.8a). In such situations, at the bottom of the loop, the pilots
feel as if they are being pressed to their seats by a force several times the force of gravity.
Let us understand as to why this happens. Fig. 4.8b shows the ‘free body’ diagram for the
pilot of mass m at the bottom of the loop.

Fig.4.8 : (a) Aircrafts in vertical loops, (b) Free-body diagram for the pilot at the lowest point.

The forces acting on him are mg and the normal force N exerted by the seat. The net
vertically upward force is N – mg and this provides the centripetal acceleration:

N – mg = m a

or N – mg = m v2/r

or N = m (g + v2/r)

In actual situations, if v = 200 ms–1 and r = 1500 m, we get

N = m g

–1 2

–2

(200 m s )
1

(9.8 m s 1500 m)

⎡ ⎤
+⎢ ⎥×⎣ ⎦

 = m g × 3.7

So the pilots feel as though force of gravity has been magnified by a factor of 3.7. If this

+

N

v

mg

(a) (b)
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Motion, Force and Energyforce exceeds set limits, pilots may even black out for a while and it could be dangerous
for them and for the aircraft.

Intext Questions 4.3

1. Aircrafts usually bank while taking a turn when flying
at a constant speed (Fig.4.8). Explain why aircrafts
do bank? Draw a free body diagram for this aircraft.
(F

a
 is the force exerted by the air on the aircraft).

Suppose an aircraft travelling at a speed v = 100 ms–1

makes a turn at a banking angle of 300. What is the radius
of curvature of the turn? Take g = 10 ms–2.

2. Calculate the maximum speed of a car which makes a turn of radius 100 m on a
horizontal road. The coefficient of friction between the tyres and the road is 0.90.
Take g = 10 ms–2.

.................................................................................................................................

3. An interesting act performed at variety shows is to swing a bucket of water in a
vertical circle such that water does not spill out while the bucket is inverted at the top
of the circle. For this trick to be performed sucessfully, the speed of the bucket must
be larger than a certain minimum value. Derive an expression for the minimum speed
of the bucket at the top of the circle in terms of its radius R. Calculate the speed for
R = 1.0 m.

.................................................................................................................................

What You Have Learnt

� Projectile motion is defined as the motion which has constant velocity in a certain
direction and constant acceleration in a direction perpendicular to that of velocity:

a
x

= 0 a
y

= – g

v
x

= v
0 
cos θ v

y
= v

0 
sin θ –g t

x = x
0 
+ (v

0
 cos θ) t y = y

0 
+ (v

0
 sin θ) –½ –g t2

� Height h = 
2
0 sin 2θ

g

v

� Time of flight T = 
02 sin θ
g

v

� Range of the projectile R = 
2
0 sin 2θ

g

v

L
θ

θ
L sin θ

L cos θ

m g
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� Equation of the Trajectory of a projectile y = (tan θ

0
) x –

2
0 02( cos )

g

θv
 x2

� Circular motion is uniform when the speed of the particle is constant. A particle
undergoing uniform circular motion in a circle of radius r at constant speed v has a
centripetal acceleration given by

a
r
 = –

2

r

v
r̂

where r̂  is the unit vector directed from the centre of the circle to the particle. The
speed v of the particle is related to its angular speed ω by v = r ω.

� The centripetal force acting on the particle is given by

F = m a
r
 = 

2m

r

v
r̂  = m r ω2

Terminal Exercise

1. Why does a cyclist bend inward while taking a turn on a circular path?

2. Explain why the outer rail is raised with respect to the inner rail on the curved portion
of a railway track?

3. If a particle is having circular motion with constant speed, will its acceleration also be
constant?

4. A stone is thrown from the window of a bus moving on horizontal road. What path
will the stone follow while reaching the ground; as seen by a observer standing on the
road?

5. A string can sustain a maximum force of 100 N without breaking. A mass of 1kg is
tied to one end of the piece of string of 1m long and it is rotated in a horizontal plane.
Compute the maximum speed with which the body can be rotated without breaking
the string?

6. A motorcyclist passes a curve of radius 50 m with a speed of 10 m s–1. What will be
the centripetal acceleration when turning the curve?

7. A bullet is fired with an initial velocity 300 ms–1 at an angle of 300 with the horizontal.
At what distance from the gun will the bullet strike the ground?

8. The length of the second’s hand of a clock is 10 cm. What is the speed of the tip of
this hand?

9. You must have seen actors in Hindi films jumping over huge gaps on horse backs and
motor cycles. In this problem consider a daredevil motor cycle rider trying to cross a
gap at a velocity of 100 km h–1. (Fig. 4.9). Let the angle of incline on either side be
450. Calculate the widest gap he can cross.

10. A shell is fired at an angle of elevation of 300 with a velocity of 500 m s–1. Calculate
the vertical and horizontal components of the velocity, the maximum height that the
shell reaches, and its range.

11. An aeroplane drops a food packet from a height of 2000 m above the ground while in
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fall to the ground? How far ahead (horizontally) of the point of release does the
packet land?

Fig. 4.9 Fig. 4.10

12. A mass m moving in a circle at speed v on a frictionless table is attached to a hanging
mass M by a string through a hole in the table (Fig.4.10). Determine the speed of the
mass m for which the mass M would remain at rest.

13. A car is rounding a curve of radius 200 m at a speed of 60 kmh–1. What is the
centripetal force on a passenger of mass m = 90 kg?

Answers to Intext Questions

4.1

(1) (a), (b), (d)

(2) (a) Yes (b) Yes (c) The ball with the maximum range.

(3) Maximum Range

2
0

g

v
 = 

–1 2

–2

(9.5 ms )

9.78 ms  = 9.23 m

Thus, the difference is 9.23 m – 8.90 m = 0.33 m.

4.2

(1) (a) Yes (b) No (c) Yes (d) No

The velocity and acceleration are not constant because their directions are changing
continuously.

(2) Since

a = 
2

r

v
, r = 

2

α

v
 = 

–1 2

–2

(9.0 ms )

3 ms
 = 27 m

(3) a = 
2c

r
 = 

8 –1 2

3

(3×10  ms )

10×10  m
= 9 × 1013 ms–2

45º 45º
R

r

m

M
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(1) This is similar to the case of banking of roads. If the aircraft banks, there is a component
of the force L exerted by the air along the radius of the circle to provide the centripetal
acceleration. Fig.4.11 shows the free body diagram. The radius of curvature is

R = 
2

0tan θg

v
 = 

2–1

–2

100 ms

10 ms tan 30

⎛ ⎞
⎜ ⎟×⎝ ⎠

o = 10 3 m = 17.3 m

Fig.4.11

(2) The force of friction provides the necessary centripetal acceleration :

F
s

= µ
s
N = 

2m

r

v

Since the road is horizontal N – mg

Thus µ
s
 mg = 

2m

r

v

or v2 = µ
s
g r

or v = (0.9 × 10 m s–2 × 100 m)½

v = 30 ms–1.

(3) Refer to Fig. 4.12 showing the free body diagram for the bucket at the top of the
circle. In order that water in the bucket does not spill but keeps moving in the circle,
the force mg should provide the centripetal acceleration. At the top of the circle.

mg = 
2m

r

v

or v2 = Rg

∴ v = Rg

Fig. 4.12 Fig. 4.13

θ

θ
L cos θ

L sin θ

L

30º

m g
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Motion, Force and EnergyThis is the minimum value of the bucket’s speed at the top of the vertical circle. For
R = 1.0 m and taking g = 10 ms–2 we get

v = 10 m s–1 = 3.2 ms–1

Answers to Terminal Problems
5. 10 ms–1

6. 2 ms–2

7. 900 3  m

8. 1.05 × 10–3 ms–1

9. 77.1 m

10. v
x
 = 250 3  ms–1

vy = 250 ms–1

Vertical height = 500 m

Horizontal range = 3125 m

11. t = 20 s, 999.9 m

12. v = 
m g r

m

13. 125 N
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5

GRAVITATION

ave you ever thought why a ball thrown upward always comes back to the ground?
Or a coin tossed in air falls back on the ground.  Since times immemorial, human beings
have wondered about this phenomenon. The answer was provided in the 17th century by
Sir Isaac Newton.  He proposed that the gravitational force is responsible for bodies being
attracted to the earth.  He also said that it is the same force which keeps the moon in its
orbit around the earth and planets bound to the Sun.  It is a universal force, that is, it is
present everywhere in the universe.  In fact, it is this force that keeps the whole universe
together.

In this lesson you will learn Newton’s law of gravitation. We shall also study the accelera-
tion caused in objects due to the pull of the earth.  This acceleration, called acceleration
due to gravity, is not constant on the earth. You will learn  the factors due to which it
varies. You will also study Kepler’s laws of planetary motion and orbits of artificial satel-
lites of various kinds in this lesson.  Finally, we shall recount some of the important pro-
grammes and achievements of India in the field of space research.

Objectives

After studying this lesson, you should be able to:

� state the law of gravitation;

� calculate the value of acceleration due to gravity of a heavenly body;

� analyse the variation in the value of the acceleration due to gravity with height,
depth and latitude;

� identify the force responsible for planetary motion and state Kepler’s laws  of
planetary motion;

� calculate the orbital velocity and the escape velocity;

� explain how an artificial satellite is launched;

� distinguish between polar and equatorial satellites;

� state conditions for a satellite to be a geostationary satellite;

� calculate the height of a geostationary satellite and list their applications; and

� state the achievements of India in the field of satellite technology.

H
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5.1  Law of Gravitation

It is said that Newton was sitting under a tree
when an apple fell on the ground.  This set
him thinking:  since all apples and other objects
fall to the ground, there must be some force
from the earth acting on them.  He asked
himself: Could it be the same force which
keeps the moon in orbit around the earth?
Newton argued that at every point in its orbit,
the moon would have flown along a tangent,
but is held back to the orbit by some force
(Fig. 5.1).  Could this continuous ‘fall’ be due
to the same force which forces apples to fall
to the ground?  He had deduced from
Kepler’s laws that the force between the Sun
and planets varies as 1/r2. Using this result

he was able to show that it is the same force that keeps the moon in its orbit around the
earth. Then he generalised the idea to formulate the universal law of gravitation as.

Every particle attracts every other particle in the universe with a force which
varies as the product of their masses and inversely as the square of the distance
between them.  Thus, if m

1
 and m

2
 are the masses of the two particles, and r is the

distance between them, the magnitude of the force F is given by.

F ∝ 1 2
2

m m

r

or F = G 
1 2

2

m m

r (5.1)

The constant of proportionality, G , is called the universal constant of gravitation.  Its
value remains the same between any two objects everywhere in the universe.
This means that if the force between two particles is F on the earth, the force between
these particles kept at the same distance anywhere in the universe would be the same.

One of the extremely important characteristics of the gravitational force is that it is always
attractive. It is also one of the fundamental forces of nature.

Remember that the attraction is mutual, that is, particle of mass m
1
 attracts the

particle of mass m2 and m2 attracts m1.  Also, the force is along the line joining the
two particles.

Knowing that the force is a vector quantity, does
Eqn. (5.1) need modification? The answer to this
question is that the equation should reflect both
magnitude and the direction of the force.  As
stated, the gravitational force acts along the line

Fig. 5.1 : At each point on its orbit, the moon
would have flown off along a tangent
but the attraction of the earth keeps
it in its orbit.

Moon

Earth

Fig. 5.2 : The masses m
1
 and m

2
 are

placed at a distance r
12

 from
eact other. The mass m

1

attracts m
2
 with a  force F

12
.

F12 F21

m1 r12

m2
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2
 attracts m

1
 with a force which is along the line

joining the two particles (Fig. 5.2).  If the force of attraction exerted by m
1
 on  m

2
 is

denoted by F
12

 and the distance between them is denoted by r
12

, then the vector form of
the law of gravitation is

F
12

= G
1 2

12

m m

r 12r̂  (5.2)

Here 12r̂ is a unit vector from m
1
 to m

2

In a similar way, we may write the force exerted by  m
2
 on m

1
  as

F
21

= – G 1 2
2
21

m m

r 21r̂ (5.3)

As 1̂2r = ˆ– ,21r  from Eqns. (5.2) and (5.3) we find that

–=12 21F F (5.4)

The forces F
12

 and F
21

 are equal and opposite and form a pair of forces of action and

reaction in accordance with Newton’s third law of motion.  Remember that 12r̂  and 21r̂

have unit magnitude. However, the directions of these vectors are opposite to each other.

Unless specified, in this lesson we would use only the magnitude of the gravitational force.

The value of the constant G is so small that it could not be determined by Newton or his
contemporary  experimentalists. It was determined by Cavendish for the first time about
100 years later.  Its accepted value today is 6.67 × 10–11 Nm2 kg–2. It is because of the
smallness of G that the gravitational force due to ordinary objects is not felt by us.

Example 5.1 : Kepler’s third law states (we shall discuss this in greater details later)
that if r is the mean distance of a planet from the Sun,  and T is its orbital period, then
r3 / T 2 = const. Show that the force acting on a planet is inversely proportional to the
square of the distance.

Solution : Assume for simplicity that the orbit of a planet is circular. (In reality, the orbits
are nearly circular.)  Then the centripetal force acting on the planet is

F =  
2m

r

v

where v is the orbital velocity. Since 
2

T

r
r

π= ω =v , where T is the period, we can rewrite

above expression as

F = m 
2

2
T

r
r

π⎛ ⎞
⎜ ⎟⎝ ⎠

or F = 
2

2

4

T

π mr
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But T2∝ r3 or T2 = Kr3  (Kelpler’s 3rd law)

where K is a constant of proportionality. Hence

∴ F = 
2

3

4 mr

Kr

π
 = 

24

K

π
 × 2

m

r
 = 

24 m

K

π
 . 2

1

r

or F ∝ 2

1

r
(Q 

24 m

K

π
 is constant for a planet)

Before proceedins further, it is better that you check your progress.

Intext Questions 5.1

1. The period of revolution of the moon around the earth is 27.3 days.  Remember that
this is the period with respect to the fixed stars (the period of revolution with respect
to the moving earth is about 29.5 days; it is this period that is used to fix the duration
of a month in some calendars). The radius of moon’s orbit is 3.84 × 108 m (60 times
the earth’s radius).  Calculate the centripetal acceleration of the moon and show that
it is very close to the value given by  9.8 ms–2 divided by 3600, to take account of the
variation of the gravity as 1/r2.

..................................................................................................................................

2. From Eqn. (5.1), deduce dimensions of G.

..................................................................................................................................

3. Using Eqn. (5.1), show that G may be defined as the magnitude of force between
two masses of 1 kg each separated by a distance of 1 m.

..................................................................................................................................

4. The magnitude of force between two masses placed at a certain distance is F.  What
happens to F if (i) the distance is doubled without any change in masses, (ii) the
distance remains the same but each mass is doubled, (iii) the distance is doubled and
each mass is also doubled?

..................................................................................................................................

5. Two bodies having masses 50 kg and 60 kg are seperated by a distance of 1m.
Calculate the gravitational force between them.

..................................................................................................................................

5.2 Acceleration Due to Gravity

From Newton’s second law of motion you know that a force F  exerted on an object
produces an acceleration a in the object according to the relation

F = ma (5.5)

The force of gravity, i.e., the force exerted by the earth on a body lying on or near its
surface, also produces an acceleration in the body. The acceleration produced by the
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g.  According to Eq. (5.1), the magnitude of the force of gravity on a particle of mass  m
on the earth’s surface is given by

F = G 2

m M

R
(5.6)

where M is the mass of the earth and R is its radius. From Eqns. (5.5)  and  (5.6), we get

mg = G 2

m M

R

or g = G 2

M

R
(5.7)

Remember that the force due to gravity on an object is directed towards the
center of the earth.  It is this direction that we call vertical.  Fig. 5.3 shows vertical
directions at different places on the earth.  The
direction perpendicular to the vertical is called the
horizontal direction.

Once we know the mass and the radius of the earth,
or of any other celestial body such as a planet, the
value of g at its surface can be calculated using
Eqn. (5.7).  On the surface of the earth, the value of
g is taken as 9.8 ms–2.

Given the mass and the radius of a satellite or a
planet, we can use Eqn. (5.7) to find the acceleration
due to the gravitational attraction of that satellite or
planet.

Before proceeding further, let us look at Eqn. (5.7)
again.  The acceleration due to gravity produced in a body is independent of its mass.  This
means that a heavy ball and a light ball will fall with the same velocity.  If we drop these
balls from a certain height at the same time, both would reach the ground
simultaneously.

Activity 5.1

Take a piece of paper and a small pebble.  Drop them simultaneously from a certain
height. Observe the path followed by the two bodies and note the times at which they
touch the ground.  Then take  two pebbles, one heavier than the other.  Release them
simultaneously from a height and observe the time at which they touch
the ground.

B

C

A

Vertical for B

Vert
ica

l fo
r C

Vertical for A

Earth
Fig. 5.3 : The vertical direction at any

place is the direction to-
wards the centre of earth at
that point
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Fall Under Gravity

The fact that a heavy pebble falls at the same rate as a light pebble, might appear a
bit strange. Till sixteenth century it was a common belief that a heavy body falls
faster than a light body.  However, the great scientist of the time, Galileo, showed
that the two bodies do indeed fall at the same rate. It is said that he went up to the top
of the Tower of Pisa and released simultaneously two iron balls of considerably
different masses. The balls touched the ground at the same time. But when feather
and a stone were made to fall simultaneously, they reached the ground at different
times. Galileo argued that the feather fell slower because it experienced greater
force of buoyancy due to air.  He said that if there were no air, the two bodies would
fall together. In recent times, astronauts have performed the feather and stone ex-
periment on the moon and verified that the two fall together.  Remember that the
moon has no atmosphere and so no air.

Under the influence of gravity, a body falls vertically downwards towards the earth.  For
small heights above the surface of the earth, the acceleration due to gravity does not
change much. Therefore, the equations of motion for initial and final velocities and the
distance covered in time t are given by

v = u + gt

s = ut + (
1

2
)gt2

and v2 = u2 + 2gs. (5.8)

It is important to remember that g is always directed vertically downwards, no matter
what the direction of motion of the body is.  A body falling with an acceleration equal
to g is said to be in free-fall.

From Eqn. (5.8) it is clear that if a body begins to fall from rest, it would fall a distance
h = (1/2)gt2 in time t. So, a simple experiment like dropping a heavy coin from a height and
measuring its time of fall with the help of an accurate stop watch could give us the value
of g. If you measure the time taken by a five-rupee coin to fall through a distance of 1 m,
you will find that the average time of fall for several trials is 0.45 s.  From this data, the
value of g can be calculated. However, in the laboratory you would determine g by an
indirect method, using a simple pendulum.

You must be wondering as to why we take radius of the earth as the distance between the
earth and a particle on its surface while calculating the force of gravity on that particle.
When we consider two discreet particles or mass points, the separation between them is
just the distance between them. But when we calculate gravitational force between extended
bodies, what distance do we take into account? To resolve this problem, the concept of
centre of gravity of a body is introduced. This is a point such that, as far as the
gravitational effect is concerned, we may replace the whole body by just this point and the
effect would be the same.  For geometrically regular bodies of uniform density, such as
spheres, cylinders, rectangles, the geometrical center is also the centre of gravity.  That is
why we choose the center of the earth to measure distances to other bodies. For irregular
bodies, there is no easy way to locate their centres of gravity.
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But this point is outside the mass of the body.  It means that the centre of gravity of a body
may lie outside it. Where is your own centre of gravity located? Assuming that we have a
regular shape, it would be at the centre of our body, somewhere beneath the navel.

Later on in this course, you would also learn about the centre of mass of a body.  This is
a point at which the whole mass of the body can be assumed to be concentrated.  In a
uniform gravitational field, the kind we have near the earth, the centre of gravity coin-
cides with the centre of mass.

The use of centre of gravity, or the center of mass, makes our calculations extremely
simple. Just imagine the amount of calculations we would have to do if we have to calculate
the forces between individual particles a body is made of and then finding the resultant of all
these forces.

You should remember that G and g represent different physical quantities. G is the
universal constant of gravitation which remains the same everywhere, while g is
acceleration due to gravity, which may change from place to place, as we shall see in
the next section.

You may like to answer a few questions to check your progress.

Intext Questions  5.2

1. The mass of the earth is 5.97 × 1024 kg and its mean radius is 6.371 × 106 m.  Calculate
the value of g at the surface of the earth.

..................................................................................................................................

2. Careful measurements show that the radius of the earth at the equator is 6378 km
while at the poles it is 6357 km.  Compare values of g at the poles and at the equator.

..................................................................................................................................

3. A particle is thrown up.  What is the direction of g when (i) the particle is going up, (ii)
when it is at the top of its journey, (iii) when it is coming down, and (iv) when it has
come back to the ground?

..................................................................................................................................

4. The mass of the moon is 7.3 × 1022 kg and its radius is 1.74 × 106 m.  Calculate the
gravitational acceleration at its surface.

..................................................................................................................................

5.3  Variation in the Value of g

5.3.1 Variation with Height

The quantity R2 in the denominator on the right hand side of Eqn. (5.7) suggests that the
magnitude of g decreases as square of the distance from the centre of the earth
increases.  So, at a distance R from the surface, that is, at a distance 2R from the centre
of the earth, the value of g becomes (1/4) th of the value of g at the surface.  However, if
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the distance h above the surface of the earth, called altitude, is small compared with the
radius of the earth, the value of g, denoted by g

h
, is given by

g
h

= 2

G

( )+
M

R h

= 
2

2 1

GM

h
R

R
⎛ ⎞+⎜ ⎟
⎝ ⎠

= 
2

1⎛ ⎞+⎜ ⎟⎝ ⎠

g

h

R
(5.9)

where g = GM/R2 is the value of acceleration due to gravity at the surface of the earth.
Therefore,

h

g

g = 
2

1
⎛ ⎞+⎜ ⎟⎝ ⎠

h

R
 = 1 + 

2h

R
 + 

2
⎛ ⎞
⎜ ⎟⎝ ⎠

h

R

Since (h/R) is a small quantity, (h/R)2 will be a still smaller quantity. So it can be neglected
in comparison to (h/R).  Thus

g
h

= 
2

1

g
h

R
⎛ ⎞+⎜ ⎟⎝ ⎠

(5.10)

Let us take an example to understand how we apply this concept.

Example 5.2 : Modern aircrafts fly at heights upward of 10 km.  Let us calculate the
value of g at an altitude of 10 km.  Take the radius of the earth as 6400 km and the value
of g on the surface of the earth as 9.8 ms–2.

Solution :  From Eqn. (5.8), we have

g
h

= 2.(10) km
1

6400 km

g

⎛ ⎞
+⎜ ⎟⎝ ⎠

 = 
–29.8 ms

1.003
 = 9.77 ms–2.

5.3.2. Variation of g with Depth

Consider a point P at a depth d inside the earth (Fig. 5.4). Let us assume that the earth is
a sphere of uniform density ρ. The distance of the point P from the center of the earth is
r = (R – d). Draw a sphere of radius (r – d).  A mass placed at P will experience
gravitational force from particles in (i) the shell of thickness d, and (ii) the sphere of radius
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r. It can be shown that the forces due to all the particles
in the shell cancel each other. That is, the net force on
the particle at P due to the matter in the shell is zero.
Therefore, in calculating the acceleration due to gravity
at P, we have to consider only the mass of the sphere
of radius (r – d).  The mass M′ of the sphere of radius
(r – d) is

M ′ =  
4

3

π
 ρ (R – d)3 (5.10)

The acceleration due to gravity experienced by a particle
placed at P is, therefore,

g
d

= G 2( )

′M

R - d  = 
4 G

3

π
 ρ (R – d)     (5.11)

Note that as d increases, (R – d) decreases.  This means that the value of g decreases
as we go below the earth. At d = R, that is, at the centre of the earth, the acceleration
due to gravity will vanish. Also note that (R – d) = r is the distance from the centre of the
earth.  Therefore, acceleration due to gravity is linearly proportional to r.  The variation of
g from the centre of the earth to distances far from the earth’s surface is shown in Fig. 5.5.

Fig. 5.5 : Variation of g with distance from the centre of the earth

We can express g
d
 in terms of the value at the surface by realizing that at d = 0, we get the

surface value: g = 
4

3

πG
 ρR.   It is now easy to see that

g
d

= g
( )−R d

R
 = g 1

⎛ ⎞−⎜ ⎟⎝ ⎠

d

R
, 0 ≤ d ≤ R (5.12)

On the basis of Eqns. (5.9) and (5.12), we can conclude that g decreases with both
height as well as depth.

←
r

 d

 = R
 –

 
 d 

R

P

RO

2.45 ms–2

9.8 ms–2

2R r→

g→
Fig. 5.4 : A point at depth d is at

a distance r = R – d
from the centre of the
earth
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Internal Structure of the Earth

Fig.5.6 : Structure of the earth (not to scale). Three prominent layers of the earth are
shown along with their estimated masses.

Refer to Fig. 5.6 You will note that most of the mass of the earth is concentrated in
its core. The top surface layer is very light. For very small depths, there is hardly any
decrease in the mass to be taken into account for calculating g, while there is a
decrease in the radius.  So, the value of g increases up to a certain depth and then
starts decreasing. It means that assumption about earth being a uniform sphere is
not correct.

5.3.3 Variation of g with Latitude

You know that the earth rotates about its axis. Due to this, every particle on the earth’s
surface excecutes circular motion.  In the absence of gravity, all these particles would be
flying off the earth along the tangents to their circular orbits.  Gravity plays an important
role in keeping us tied to the earth’s surface.  You also know that to keep a particle in
circular motion, it must be supplied centripetal force.  A small part of the gravity force is
used in supplying this centripetal force.  As a result, the force of attraction of the earth on
objects on its surface is slightly reduced. The maximum effect of the rotation of the earth is
felt at the equator.  At poles, the effect vanishes completely.  We now quote the formula for
variation in g with latitude without derivation. If gλ denotes the value of g at latitude λ and
g is the value at the poles, then

gλ = g – Rω2 cosλ, (5.13)

where ω is the angular velocity of the earth and R is its radius. You can easily see that at
the poles, λ = 90 degrees, and hence gλ = g.

Example 5.3 :  Let us calculate the value of g at the poles.

Solution :   The radius of the earth at the poles = 6357 km = 6.357 × 106 m

                   The mass of the earth = 5.97 × 1024 kg

Using Eqn. (5.7), we get

g at the poles = [6.67 × 10–11 × 5.97 × 1024 / (6.357 × 106)2] ms–2

                     = 9.853 ms–2

3490
kmCore

1.93 × 10 kg24

Mantle
4.01 × 10 kg24

25km
CRUST

3.94 × 10 kg22

6345km
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Example 5.4 :   Now let us calculate the value of g at  λ = 60º, where radius of earth is

6371 km.

Solution :    The period of rotation of the earth, T = 24 hours = (24 × 60 × 60) s

                ∴ frequency of the earth’s rotation = 1/T

                    angular frequency of the earth  ω = 2π/T = 2π/(24 × 60 × 60)

                                                                                 = 7.27 × 10–5

                 ∴Rω2 cos λ = 6.371 × 106 × (7.27 × 10-5)2 × 0.5 =  0.017 ms–2

Since g
0
 = g – Rω2 cos λ, we can write

             gλ (at latitude 60 degrees) = 9.853 – 0.017 = 9.836 ms–2

Intext Questions  5.3

1. At what height must we go so that the value of g becomes half of what it is at the
surface of the earth?

..................................................................................................................................

2. At what depth would the value of g be 80% of what it is on the surface of the earth?

..................................................................................................................................

3. The latitude of Delhi is approximately 30 degrees north.  Calculate the difference
between the values of g at Delhi and at the poles.

..................................................................................................................................

4. A satellite orbits the earth at an altitude of 1000 km.  Calcultate the acceleration due
to gravity acting on the satellite (i) using Eqn. (5.9) and (ii) using the relation g is
proportional to 1/r2, where r is the distance from the centre of the earth. Which
method do you consider better for this case and why?

..................................................................................................................................

5.4  Weight and Mass

The force with which a body is pulled towards the earth is called its weight.  If m is the
mass of the body, then its weight W is given by

W = mg (5.14)

Since weight is a force, its unit is newton. If your mass is 50 kg, your weight would be 50
kg × 9.8 ms–2 = 490 N.

Since g varies from place to place, weight of a body also changes from place to place.

The weight is maximum at the poles and minimum at the equator. This is because the
radius of the earth is minimum at the poles and maximum at the equator. The weight
decreases when we go to higher altitudes or inside the earth.

The mass of a body, however, does not change.  Mass is an intrinsic property of a body.
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Note: In everyday life we often use mass and weight interchangeably. Spring balances,
though they measure weight, are marked in kg (and not in N).

Activity 5.2

Calculate the weight of an object of mass 50 kg at distances of 2R, 3R, 4R, 5R and 6R
from the centre of the earth. Plot a graph showing the weight against distance.  Show on
the same graph how the mass of the object varies with distance.

Try the following questions to consolidate your ideas on mass and weight.

Intext Questions 5.4

1. Suppose you land on the moon.  In what way would your weight and mass be affected?

..................................................................................................................................

2. Compare your weight at Mars with that on the earth?  What happens to your mass?
Take the mass of Mars = 6 × 1023 kg and its radius as 4.3 × 106 m.

..................................................................................................................................

3. You must have seen two types of balances for weighing objects.  In one case there
are two pans.  In one pan, we place the object to be weighed and in the other we
place weights.  The other type is a spring balance.  Here the object to be weighed is
suspended from the hook at the end of a spring and reading is taken on a scale.
Suppose you weigh a bag of potatoes with both the balances and they give the same
value. Now you take them to the moon.  Would there be any change in the
measurements made by the two balances?

..................................................................................................................................

5.5  Kepler’s Laws of Planetary Motion

In ancient times it was believed that all heavenly bodies move around the earth.  Greek
astronomers lent great support to this notion. So strong was the faith in the earth-centred
universe that all evidences showing that planets revolved around the Sun were ignored.
However, Polish Astronomer Copernicus in the 15th century proposed that all the planets
revolved around the Sun.  In the 16th century, Galileo, based on his astronomical observations,
supported Copernicus.  Another European astronomer, Tycho Brahe, collected a lot of
observations on the motion of planets. Based on these observations, his assistant Kepler
formulated laws of planetary motion.
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Johannes Kepler

German by birth, Johannes Kepler, started his career in astronomy
as an assistant to Tycho Brahe. Tycho religiously collected the
data of the positions of various planets on the daily basis for more
than 20 years. On his death, the data was passed on to Kepler
who spent 16 years to analyse the data. On the basis of his analysis,
Kepler arrived at the three laws of planetary motion.

He is considered as the founder of geometrical optics as he was the first person to
describe the working of a telescope through its ray diagram.

For his assertion that the earth revolved around the Sun, Galileo came into conflict
with the church because the Christian authorities believed that the earth was at the
centre of the universe.  Although he was silenced, Galileo kept recording his obser-
vations quietly, which were made public after his death.  Interestingly, Galileo was
freed from that blame recently by the present Pope.

Kepler formulated three laws which govern the motion of planets.  These  are:

1. The orbit of a planet is an ellipse with the Sun at one of the foci (Fig. 5.7). (An ellipse
has two foci.)

Fig. 5.7 : The path of a planet is an ellipse with the Sun at one of its foci. If the time taken by the
planet to move from point A to B is the same as from point C to D, then according to the
second law of Kepler, the areas AOB and COD are equal.

2. The area swept by the line joining the planet to the sun in unit time is constant through
out the orbit (Fig 5.7)

3. The square of the period of revolution of a planet around the sun is proportional to the
cube of its average distance from the Sun.  If we denote the period by T and the
average distance from the Sun as r, T2 α r3.

Let us look at the third law a little more carefully.  You may recall that Newton used  this
law to deduce that the force acting between the Sun and the planets varied as 1/r2 (Example
5.1).  Moreover, if T

1
 and T

2
 are the orbital periods of two planets and r

1
 and r

2
 are their

mean distances from the Sun, then the third law implies that

Ellipse

D

C

Sun

Planet

B

A

O
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2

1
2

2

T

T
= 

3
1

3
2

r

r (5.15)

The constant of proportionality cancels out when we divide the relation for one planet by
the relation for the second planet.  This is a very important relation.  For example, it can be
used to get T

2
, if we know T

1
,  r

1
 and r

2
.

Example 5.5 : Calculate the orbital period of planet mercury, if its distance from the
Sun is 57.9 × 109 m.  You are given that the distance of the earth from the Sun is

1.5 × 1011 m.

Solution :  We know that the orbital period of the earth is 365.25 days.  So, T
1
 = 365.25

days and r
1
 = 1.5 × 1011 m. We are told that r

2
 = 57.9×109 m for mercury.  Therefore, the

orbital period of mercury is given by T
2

2
2
2

1

T

T
= 

3
2
3

1

r

r

On  substituting the values of various quantities, we get

T
2

= 
2 3

1 2
3

1

T r

r
 =

2 9 3 3

11 3 3

(365.25) (57.9 10 ) m

(1.5 10 ) m

× ×
×  days

= 87.6 days.

In the same manner you can find the orbital periods of other planets. The data is given
below.  You can also check your results with numbers in Table 5.1.

Table 5.1: Some data about the planets of solar system

Name of Mean distance Radius Mass
the planet from the Sun (in terms (x103 km) (Earth Masses)

of the distance of earth)
Mercury 0.387 2.44 0.53
Venus 0.72 6.05 0.815

Earth 1.0 6.38 1.00

Mars 1.52 3.39 0.107
Jupiter 5.2 71.40 317.8

Saturn 9.54 60.00 95.16

Uranus 19.2 25.4 14.50
Neptune 30.1 24.3 17.20

Pluto 39.4 1.50 0.002

Kepler’s laws apply to any system where the force binding the system is gravitational in
nature.  For example, they apply to Jupiter and its satellites.  They also apply to the earth
and its satellites like the moon and artificial satellites.

Example 5.6 :  A satellite has an orbital period equal to one day. (Such satellites are
called geosynchronous satellites.) Calculate its height from the earth’s surface, given that
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the distance of the moon from the earth is 60 R

E
 (R

E
 is the radius of the earth), and its

orbital period is 27.3 days.  [This orbital period of the moon is with respect to the fixed
stars.  With respect to the earth, which itself is in orbit round the Sun, the orbital period of
the moon is about 29.5 day.]

Solution : A geostationary satellite has a period T
2
 equal to 1 day.  For moon T

1
 = 27.3

days and r
1
 = 60 R

E
, T

2
 = 1 day.  Using Eqn. (5.15), we have

r
2

= 

1/33 2
1 2

2
1T

⎡ ⎤
⎢ ⎥
⎣ ⎦

r T
 = 

1/33 3 2 2

2 2

(60 ) (1 day )

27.3 day
ER⎡ ⎤

⎢ ⎥
⎣ ⎦

  = 6.6 R
E
.

Remember that the distance of the satellite is taken from the centre of the earth.  To find

its height from the surface of the earth, we must subtract R
E
 from 6.6 R

E
.  The required

distance from the earth’s surface is 5.6 R
E
.  If you want to get this distance in km,

multiply 5.6 by the radius of the earth in km.

5.5.1  Orbital Velocity of Planets

We have so for talked of orbital periods of planets.  If the orbital period of a planet is T and
its distance from the Sun is r, then it covers a distance 2πr in time T.  Its orbital velocity is,
therefore,

v
orb

= 
2 r

T

π
 (5.16)

There is another way also to calculate the orbital velocity.  The centripetal force experi-

enced by the planet is 2 /orbm rυ , where m is its mass.  This force must be supplied by the

force of gravitation between the Sun and the planet.  If M is the mass of the Sun, then the

gravitational force on the planet is 
2

sG m M

r
.  Equating the two forces, we get

2
orbm

r

υ
= 2

sG M

r
,

so that,

v
orb

= 2
sG M

r
(5.17)

Notice that the mass of the planet does not enter the above equation.  The orbital velocity
depends only on the distance from the Sun.  Note also that if you substitute v from
Eqn. (5.16) in Eqn. (5.17), you get the third law of Kepler.

Intext Questions   5.5

1. Many planetary systems have been discovered in our Galaxy.  Would Kepler’s laws
be applicable to them?

..................................................................................................................................

above
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Motion, Force and Energy2. Two artificial satellites are orbiting the earth at distances of 1000 km and 2000 km
from the surface of the earth.  Which one of them has the longer period?  If the time
period of the former is 90 min, find the time period of the latter.

..................................................................................................................................

3. A new small planet, named Sedna, has been discovered recently in the solar system.
It is orbiting the Sun at a distance of 86 AU.  (An AU is the distance between the Sun
and the earth.  It is equal to 1.5 × 1011 m.)  Calculate its orbital period in years.

..................................................................................................................................

4. Obtain an expression for the orbital velocity of a satellite orbiting the earth.

..................................................................................................................................

5.   Using Eqns. (5.16) and (5.17), obtain Kepler’s third law.

..................................................................................................................................

5.6  Escape Velocity

You now know that a ball thrown upwards always comes back due to the force of gravity.
If you throw it with greater force, it goes a little higher but again comes back.  If you have
a friend with great physical power, ask him to throw the ball upwards.  The ball may go
higher than what you had managed, but it still comes back.  You may then ask: Is it possible
for an object to escape the pull of the earth?  The answer is ‘yes’.  The object must
acquire what is called the escape velocity.  It is defined as the minimum velocity
required by an object to escape the gravitational pull of the earth.

It is obvious that the escape velocity will depend on the mass of the body it is trying to
escape from, because the gravitational pull is proportional to mass.  It will also depend on
the radius of the body, because smaller the radius, stronger is the gravitational force.

The escape velocity from the earth is given by

v
esc

= 
2G M

R
 (5.18)

where M is the mass of the earth and R is its radius.  For calculating escape velocity from
any other planet or heavenly body, mass and radius of that heavenly body will have to be
substituted in the above expression.

It is not that the force of gravity ceases to act when an object is launched with escape
velocity.  The force does act.  Both the velocity of the object as well as the force of gravity
acting on it decrease as the object goes up.  It so happens that the force becomes zero
before the velocity becomes zero.  Hence the object escapes the pull of gravity.

Try the following questions to grasp the concept.
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Intext Questions  5.6

1. The mass of the earth is 5.97 × 1024 kg and its radius is 6371 km. Calculate the
escape velocity from the earth.

..................................................................................................................................

2. Suppose the earth shrunk suddenly to one-fourth its radius without any change in its
mass.  What would be the escape velocity then?

..................................................................................................................................

3. An imaginary planet X has mass eight times that of the earth and radius twice that of
the earth.  What would be the escape velocity from this planet in terms of the escape
velocity from the earth?

..................................................................................................................................

5.7 Artificial Satellites

A cricket match is played in Sydney in Australia but we can watch it live in India.  A game
of Tennis played in America is enjoyed in India. Have you ever wondered what makes it
possible?  All this is made possible by artificial satellites orbiting the earth.  You may now
ask : How is an artificial satellite put in an orbit?

You have already studied the motion of a projectile.  If you project a body at an angle to
the horizontal, it follows a parabolic path. Now imagine launching bodies with increasing
force.  What happens is shown in Fig. 5.8.  Projectiles travel larger and larger distances
before falling back to the earth.  Eventually, the projectile goes into an orbit around the
earth.  It becomes an artificial satellite. Remember that such satellites are man-made
and launched with a particular purpose in mind. Satellites like the moon are natural satellites.

Fig. 5.8 : A projectile to orbit the earth

In order to put a satellite in orbit, it is first lifted to a height of about 200 km to minimize loss
of energy due to friction in the atmosphere of the earth. Then it is given a horizontal push
with a velocity of about 8 kms–1.

The orbit of an artificial satellite also obeys Kepler’s laws because the controlling force is

Earth
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plane always passes through the center of the earth.

Remember that the orbital velocity of an artificial satellite has to be less than the escape
velocity; otherwise it will break free of the gravitational field of the earth and will not orbit
around the earth.  From the expressions for the orbital velocity of a satellite close to the
earth and the escape velocity from the earth, we can write

v
orb

= 
sec

2

v
 (5.19)

Artificial satellites have generally two types of orbits (Fig. 5.9) depending on the purpose
for which the satellite is launched.  Satellites used for tasks such as remote sensing have
polar orbits.  The altitude of these orbits is about 800 km.  If the orbit is at a height of less
than about 300 km, the satellite loses energy because of friction caused by the particles of
the atmosphere.  As a result, it moves to a lower height where the density is high.  There
it gets burnt.  The time period of polar satellites is around 100 minutes.  It is possible to
make a polar satellite sun-synchronous, so that it arrives at the same latitude at the same
time every day.  During repeated crossing, the satellite can scan the whole earth as it spins
about its axis (Fig. 5.10).  Such satellites are used for collecting data for weather prediction,
monitoring floods, crops, bushfires, etc.

Fig.5.9: Equitorial and polar orbits

Satellites used for communications are put in equatorial orbits at high altitudes.   Most of
these satellites are geo-synchronous, the ones which have the same orbital period
as the period of rotation of the earth, equal to 24 hours.  Their height, as you saw in
Example 5.6 is fixed at around 36000 km.  Since their orbital period matches that of the
earth, they appear to be hovering above the same spot on the earth.   A combination of
such satellites covers the entire globe, and signals can be sent from any place on the globe
to any other place. Since a geo-synchronous satellite observes the same spot on the earth
all the time, it can also be used for monitoring any peculiar happening that takes a long time
to develop, such as severe storms and hurricanes.

G N

Polar plane

equator equatorial plane

G S
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Fig. 5.10: A sun synchromous satellite scanning the earth

Applications of Satellites

Artificial satellites have been very useful to mankind.  Following are some of their
applications:

1. Weather Forecasting :  The satellites collect all kinds of data which is useful
in forecasting long term and short term weather.  The weather chart that you
see every day on the television or in newspapers is made from the data sent by
these satellites.  For a country like India, where so much depends on timely
rains, the satellite data is used to watch the onset and progress of monsoon.
Apart from weather, satellites can watch unhealthy trends in crops over large
areas, can warn us of possible floods, onset and spread of forest fire, etc.

2. Navigation :  A few satellites together can pinpoint the position of a place on
the earth with great accuracy.  This is of great help in locating our own position
if we have forgotten our way and are lost.  Satellites have been used to prepare
detailed maps of large chunks of land, which would otherwise take  a lot of time
and energy.

3. Telecommunication :  We have already mentioned about the transmission of
television programmes from anywhere on the globe to everywhere became
possible with satillites. Apart from television signals, telephone and radio signals
are also transmitted.  The communication revolution brought about by artificial
satellites has made the world a small place, which is sometimes called a global
village.

4. Scientific Research :  Satellites can be used to send scientific instruments in
space to observe the earth, the moon, comets, planets, the Sun, stars and galaxies.
You must have heard of Hubble Space Telescope and Chandra X-Ray Telescope.
The advantage of having a telescope in space is that light from distant objects
does not have to go through the atmosphere.  So there is hardly any reduction in
its intensity.  For this reason, the pictures taken by Hubble Space Telescope are
of much superior quality than those taken by terrestrial telescopes.

Recently, a group of Europeon scientists have observed an earth like planet out-
side our solar system at a distance of 20 light years.

5. Monitoring Military Activities :  Artificial satellites are used to keep an eye
on the enemy troop movement.  Almost all countries that can afford cost of
these satellites have them.

Descending orbit
West looking

Ascending orbit
East looking
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Vikram Ambalal Sarabhai

Born in a family of industrialists at Ahmedabad, Gujarat, India. Vikram
Sarabhai grew to inspire a whole generation of scientists in India. His
initial work on time variation of cosmic rays brought him laurels in
scientific fraternity. A founder of Physical Research Laboratory,
Ahmedabad and a pioneer of space research in India, he was the first
to realise the dividends that space research can bring in the fields of

communication, education, metrology, remote sensing and geodesy, etc.

5.7.1 Indian Space Research Organization

India is a very large and populous country. Much of the population lives in rural areas and
depends heavily on rains, particularly the monsoons.  So, weather forecast is an important
task that the government has to perform.  It has also to meet the communication needs of
a vast population.  Then much of our area remains unexplored for minerals, oil and gas.
Satellite technology offers a cost-effective solution for all these problems.  With this in
view, the Government of India set up in 1969 the Indian Space Research Organization
(ISRO) under the dynamic leadership of Dr. Vikram Sarabhai. Dr. Sarabhai had a vision
for using satellitis for educating the nation. ISRO has pursued a very vigorous programme
to develop space systems for communication, television broadcasting, meteorological
services, remote sensing and scientific research.  It has also developed successfully launch
vehicles for polar satellites (PSLV) (Fig. 5.11) and geo-synchronous satellites (GSLV)
(Fig. 5.12).  In fact, it has launched satellites for other countries like Germany, Belgium
and Korea. and has joined the exclusive club of five countries. Its scientific programme
includes studies of
(i) climate, environment and global change,
(ii) upper atmosphere,
(iii) astronomy  and astrophysics, and
(iv) Indian Ocean.
Recently, ISRO launched an exclusive educational satillite EduSat, first of its kind in the
world. It is being used to educate both young and adult students living in remote places.

It is now making preparation for a mission to the moon.

Fig. 5.11: PSLV Fig. 5.12: GSLV
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Intext Questions  5.7

1. Some science writers believe that some day human beings will establish colonies on
the Mars. Suppose people living this desire to put in orbit a Mars synchronous satellite.
The rotation period of Mars is 24.6 hours.  The mass and radius of Mars are
6.4 × 1023 kg and 3400 km, respectively.  What would be the height of the satellite
from the surface of Mars?

..................................................................................................................................

2. List the advantages of having a telescope in space.

..................................................................................................................................

What You Have Learnt

� The force of gravitation exists between any two particles in the universe. It varies as
the product of their masses and inversely as the square of distance between them.

� The constant of gravitation, G , is a universal constant.

� The force of gravitation of the earth attracts all bodies towards it.

� The acceleration due to gravity near the surface  of the earth is 9.8 ms–2. It varies on
the surface of the earth because the shape of the earth is not perfectly spherical.

� The acceleration due to gravity varies with height, depth and latitude.

� The weight of a body is the force of gravity acting on it.

� Kepler’s first law states that the orbit of a planet is elliptic with sun at one of its foci.

� Kepler’s second law states that the line joining the planet with the Sun sweeps equal
areas in equal intervals of time.

� Kepler’s third law states that the square of the orbital period of a planet is proportional
to the cube of its mean distance from the Sun.

� A body can escape the gravitational field of the earth if it can acquire a velocity equal
to or greater than the escape velocity.

� The orbital velocity of a satellite depends on its distance from the earth.

Terminal Exercise

1. You have learnt that the gravitational attraction is mutual.  If that is so, does an apple
also attract the earth?  If yes, then why does the earth not move in response?

2. We set up an experiment on earth to measure the force of gravitation between two
particles placed at a certain distance apart.  Suppose the force is of magnitude F.  We
take the same set up to the moon and perform the experiment again. What would be
the magnitude of the force between the two particles there?
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3. Suppose the earth expands to twice its size without any change in its mass.  What

would be your weight if your present weight were 500 N?

4. Suppose the earth loses its gravity suddenly.  What would happen to life on this plant?

5. Refer to Fig. 5.6 which shows the structure of the earth. Calculate the values of g at
the bottom of the crust (depth 25 km) and at the bottom of the mantle (depth
2855 km).

6. Derive an expression for the mass of the earth, given the orbital period of the moon
and the radius of its orbit.

7. Suppose your weight is 500 N on the earth.  Calculate your weight on the moon.
What would be your mass on the moon?

8. A polar satellite is placed at a height of 800 km from earth’s surface.  Calculate its
orbital period and orbital velocity.

Answers to Intext Questions

5.1

1. Moon’s time period T = 27.3d

= 27.3 × 24 × 3600 s

Radius of moon’s orbit R= 3.84 × 108 m

Moon’s orbital speed v = 
2 R

T

π

Centripetal accleration = v2/R

= 
2

2

4 R

T

2π
.

1

R
= 2

4 R

T

2π

= 
8

2 2

4 3.84 10 m

(27.3 24 3600) s

2π × ×
× ×

= 2

4 3.84

(27.3 2.4 3.6)

2π ×
× ×  × 10–2 ms–2

= .00272 ms–2

If we calculate centripetal acceleration on dividing g by 3600, we get the same value :

= 
9.8

3600
ms–2
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2. F = 1 2
2

G m m

r

F is force  ∴ G = 
2

2

Force

(mass)

× r
 = 

2

2

Nm

kg

3. F = G 1 2
2

m m

r

If m
1
 = 1kg, m

2
 = 1kg, r = 1m, then F = G

or G is equal to the force between two masses of 1kg each placed at a distance of 1m
from each other

4. (i) F α 1/r2, if r is doubled, force becomes one-fourth.

(ii) F α m
1
m

2
, if m

1
 and m

2
 are both doubled then F becomes 4 times.

(iii) F α 1 2
2

m m

r
,

if each mass is doubled, and distance is also doubled, then

F remains unchanged.

5. F = G 2

50 kg 60 kg

1 m

×
; G = 6.68 × 10–11

2

2

Nm

kg

= 6.67 × 10–11 
2

2

Nm

kg .
2

2

3000 kg

1 m

= 6.67 × 10–11 × 3 × 103 N

= 2 × 10–7 N

5.2

1. g = 2

GM

R

= 6.67 × 10–11

2

2

Nm

kg .
24

6 2 2

5.97 ×10 kg

(6.371×10 ) m

= 
6.97 59.7

6.371 6.371

×
×  

N

kg  = 9.81 m s–2
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2. g at poles

g
pole

 = 2
pole

GM

R

  = 6.67 × 10–11

2

2

Nm

kg
.

24

6 2 2

5.97 ×10 kg

(6.371×10 ) m

 = 
6.97 59.7

6.371 6.371

×
×  

N

kg  = 9.81 ms–2

Similarly,

g
eguator

 = 
6.97 59.7

6.378 6.378

×
×  

N

kg  = 9.79 ms–2

3. The value of g is always vertically downwards.

4. g
moon

= 6.67 × 10–11

2

2

Nm

kg
 × 

22

6 2 2

7.3 ×10 kg

(1.74 ×10 ) m

= 
6.67 7.3

1.74 1.74

×
×  × 10–1

N

kg  = 1.61 m s–2

5.3

1. Let g at distance r from the centre of the earth be called g
1
.

Outside the earth,

then 
1

g

g  = 
2

2R

r

If g
1
 = g/2 ⇒ r2 = 2R2 ⇒ r = 2 R = 1.412 R

∴ Height from earth’s surface= 1.4142 R – R

= 0.4142 R

2. Inside the earth g varies as distance from the centre of the earth. Suppose at depth d,
g is called g

d
.

Then
dg

g = 
R –

R

d

If g
d

= 80%, then
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0.8

1
 = 

R –

R

d

∴       d = 0.2 R

3. In example 5.3, we calculated ω = 7.27 × 10–5  rad s–1

∴ Rω2 cos 30º = 6.37 × 106 × (7.27 × 10–5)2 s–2 . 3 2  = 0.029 ms–2

g at poles = 9.853 m s2

(Calculated in example 5.2)

∴ g at Delhi = 9.853 ms–2 – 0.029 ms–2

 = 9.824 ms–2

4. Using formula (5.9),

g
h
= 

2
1

g
h

R
+

 = 
–29.81m s

2000 km
1+

6371km

= 
–29.81 m s

28371km
6371 km

 = 7.47 m s–2

Using variation with r

g = 
G

2( + )

M

R h

= 6.67 × 10–11 
2Nm

2kg
. 

245.97 10 kg
6 2 2(7.371 10 ) m

×

×

= 7.33 ms–2

This gives more accurate results because formula (5.9) is for the case h << R. In this
case h is not << R.

5.4

1. On the moon the value of g is only 1/6th that on the earth. So, your weight on moon will
become 1/6th of your weight on the earth. The mass, however, remains constant.

2. Mass of Mars = 6 × 1023 kg

Radius of Mars = 4.3 × 106 m
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∴ g
Mars

= G 2

M

R
 = 6.67 × 10–11 

2Nm
2kg

.
236×10 kg
6 2 2(4.3×10 ) m

 = 2.16

Weight on Mars
Weight on Earth  = 

m . 2.16
m . 9.81

 = 0.22

So, your weight will become roughly 1/4th that on the earth. Mass remains constant.

3. Balances with two pans actually compare masses because g acts on both the pans and
gets cancelled. The other type of balance, spring balance, measures weight. The bal-
ance with two pans gives the same reading on the moon as on the earth. Spring balance
with give weight as 1/6th that on the earth for a bag of potatoes.

5.5

1. Yes. Wherever the force between bodies is gravitational, Kepler’s laws will hold.

2. According to Kepler’s third law

2
1
2

2

T

T  = 
3

1
3

2

r

r or T2 α r3 ⇒ T α r3/2

So, the satellite which is farther off has higher period.

Let T
1
 = 90 min, r

1
= 1000 km + 6371 km

r
2

= 2000 km + 6371 km

[ From the centre of the earth]

∴ 2
2T = 

2 3
1 2

3
1

.T r

r  = (90 min)2 

3
8371 km

7371 km

⎛ ⎞
⎜ ⎟
⎝ ⎠

T
2
= 108.9 min

3. According to Kepler’s third law

2
earth
2

sedna

T

T = 
3

earth
3

sedna

r

r [Distance from the Sun]

T
earth

= 1 yr., r
earth

 = 1 AU

2
sednaT  = 

2 3
3 2

3

(1yr) (86 AU)
(86) yr

(1AU)

∴ T
sedna

=797.5 yr

4. If v is the orbital velocity of the satellite of mass m at a distance r from the centre of the
earth, then equating centripltal force with the gravitational force, we have
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2m

r

v
= 

G
2

mM

r
 ⇒ v = 

GM

r

where M is the mass of the earth.

5. From Eqs. (5.16) and (5.17),

2 2

2

4

T

rπ
 = 

GM

r
 ⇒ T2 = 

2 34 .

G .

r

M

π

or T2 α r3.

5.6

1. v
esc

= 
2GM

R

= 2 24Nm 5.97 10 kg–112 6.67 10 .
2 6kg 6.371 10 m

×× ×
×

= 
2 6.67 5.97 10

6.371

× × ×
 103 ms–1

= 11.2 × 103 ms–1 = 11.3 kms–1

2. v
esc

α 
1

R

If R becomes 1/4th, v
esc

 becomes double.

3. v
esc

 α 
M

R

If M becomes eight times, and R twice,

then

v
esc

α 4  or v
esc

 becomes double.

5.7

1. (R + h) 
2

2 2

4 G

T ( )

M

R h

π =
+

⇒ (R + h)3 = 2

G
4

M

π T2
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= 
11 23 2

2

6.67 10 6.4 10 (14.6 3600)

4 (3.14)

−× × × × ×
×

= 8370 × 1018 m

R + h = 20300 km

h = 26900 km

2. (a) Images are clearer 

(b) x-ray telescopy etc. also work.

Answers to Terminal Problems

3. 125 N

5. � g, 5.5 ms–2

7. Weight = 
500

N
6

, mass 50 kg on moon as well as on earth

8. T �  
1

1 h
2

, v = 7.47 km s–1
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6

WORK ENERGY AND POWER

You know that motion of objects arises due to application of force and is described by
Newton’s laws of motion. You also know how the velocity (speed and direction) of an
object changes when a force acts on it. In this lesson, you will learn the concepts of work
and energy. Modern society needs large amounts of energy to do many kinds of work.
Primitive man used muscular energy to do work. Later, animal energy was harnessed to
help people do various kinds of tasks. With the invention of various kinds of machines, the
ability to do work increased greatly.  Progress of our civilization now critrcally depends the
on the availability of usable energy. Energy and work are, therefore, closely linked.

From the above discussion you will appreciate that the rate of doing work improved with
newer modes, i.e. as we shifted from humans → animals → machines to provide  necessary
force. The rate of doing work is known as power.

Objectives

After studying this lesson, you should be able to:

� define work done by a force and give unit of work;

� calculate the work done by an applied force;

� state work-energy theorem;

� define power of a system;

� calculate the work done by gravity when a mass moves from one point to another;

� explain the meaning of energy;

� obtain expressions for gravitational potential energy and elastic potential
energy;

� apply the principle of conservation of energy for physical system; and

� apply the laws of conservation of momentum and energy in elastic collisions.
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The word ‘work’ has different meaning for different people. When you study, you do
mental work. When a worker carries bricks and cement to higher floors of a building, he
is doing physical work against the force of gravity. But in science, work has a definite
meaning. The technical meaning of work is not always the same as the common meaning.
The work is defined in the following way :

Let us suppose that a constant force F acting on an object results in displacement d i.e.
moves it by a distance d along a straight line on a horizontal surface, as shown in Fig. 6.1.
The work done by a force is the product of the magnitude of force component in the
direction of displacement and the displacement of this object.

If force F is acting at angle θ with respect to the displacement d of the object, its component
along d will be F cos θ. Then work done by force F is given by

W = F cosθ.d (6.1)

In vector form, the work done is given by:

W = F. d (6.2)

Note that if d = 0, W = 0. That is, no work is done by a force, whatever its magnitude, if
there is no displacement of the object. Also note that though both force and displacement
are vectors, work is a scalar.

Activity 6.1

You and your friends may try to push the wall of a room. Irrespective of the applied force,
the wall will not move. Thus we say that no work is done.

The unit of work is defined using Eqn.(6.2). If the applied force is in newton and displacement
is in metre, then the unit of work is joule.

(Unit of Force)×(Unit of displacement) = newton . metre = Nm (6.3)

This unit is given a special name, joule, and is denoted by J.

One joule is defined, as the work done by a force of one newton when it produces a
displacement of one metre. Joule is the SI unit of work.

F

θ

F

d

Fig  6.1 : A force F on a block moves it  by a horizontal distance d. The direction of force
makes an angle θθθθθ with the horizontal direction.
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Solution : W = Force × Distance

= Mass × Acceleration × distance

Dimension of work = [M] × [LT–²] × [L]

= [ML²T–2]

In electrical measurements, kilowatt-hour (kWh) is used as unit of work. It is related to
joule as

1kWh = 3.6 × 106 J

You will study the details of this unit later in this lesson.

Example 6.2 : A force of 6N is applied on an object at an angle of 60º with the horizontal.
Calculate the work done in moving the object by 2m in the horizontal direction.

Solution : From Eqn. (6.2) we know that

W = Fd cosθ

= 6×2 × cos 60º

= 6×2 × (½)

= 6 J

Example 6.3 : A person lifts 5 kg  potatoes from the ground floor to a height of 4m to
bring it to first floor. Calculate the work done.

Solution : Since the potatoes are lifted, work is being done against gravity. Therefore, we
can write

Force = mg

= 5 kg× 9.8 ms–²

= 49 N

Work done = 49 × 4 (Nm)

= 196 J

6.1.1  Positive and Negative Work

As you have seen, work done is defined by Eqn.(6.2), where the angle θ between the
force and the displacement is also important. In fact, it leads us to the situation in which
work becomes a positive or a negative quantity. Consider the examples given below:

Fig. 6.2 (a) shows a car moving in + x direction and a force F is applied in the same
direction. The speed of the car keeps increasing. The force and the displacement both are
in the same direction, i.e. θ = 0º. Therefore, the work done is given by
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= Fd (6.4)

The work is this case is positive.

Figure 6.2 (b) shows the same car moving in the +x direction, but the force F is applied in
the opposite direction to stop the car. Here, angle θ = 180º. Therefore,

W = Fd cos 180º.

= –Fd (6.5)

Hence, the work done by the force is negative. In fact, the work done by a force shall be

negative for θ  lying between 90º and 270º.

From the above examples, we can conclude that

a) When we press the accelerator of the car, the force is in the direction of motion of the

car. As a result, we increase the speed of the car. The work done is positive.

b) When we apply brakes of a car, the force is applied in a direction opposite to its

motion. The car loses speed and may finally come to rest. Negative work is said to

have been done.

c) In case the applied force and displacement are as right angles, i.e. θ  = 90º, no work is

said to be done.

6.1.2  Work Done by the Force of Gravity

Fig.6.3(a) shows a mass m being lifted to a height h and Fig. 6.3(b) shows the same mass

being lowered by a distance h. The weight of the object is mg in both cases. You may

recall from the previous lesson that weight is a force.

In Fig. 6.3 (a), the work is done against the force mg (downwards) and the displacement

is upward (θ = 180º). Therefore,

W = Fd cos 180º

= – mgh

Fig. 6.2 : A car is moving on a horizontal road. a) A force F is applied in the direction of the
moving car. It gets accelerated. b) A force F is applied in opposite direction so that the
car comes to rest after some distance.

F v v F

(a) (b)
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In the Fig. 6.3(b), the mass is being lowered. The force mg and the displacement d are in
the same direction (θ = 0º). Therefore, the work done

W = Fd cos 0º

= + mgh (6.6)

You must be very careful in interpreting the results obtained above. When the object is
lifted up, the work done by the gravitational force is negative but the work done by the
person lifting the object is positive. When the object is being lowered, the work done by
the gravitational force is positive but the workdone by the person lowering the object is
negative. In both of these cases, it is assumed that the object is being moved without
acceleration.

Intext Questions 6.1

1. When a particle rotates in a circle, a force acts on the particle. Calculate the work
done by this force on the particle.

..................................................................................................................................

2. Give one example of each of the following. Work done by a force is
a) zero
b) negative
c) positive

..................................................................................................................................

3. A bag of grains of mass 2 kg. is lifted through a height of 5m.

h h

mg

F

mg

(a)

(b)

Fig 6.3 : a) The object is lifted up against the force of gravity,
b) The object is lowered towards the earth.
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b) How much work is done by the force of gravity?

..................................................................................................................................

4. A force F = (2 î  + 3 ĵ ) N produces a displacements d  = (– î  + 2 ĵ ) m. Calculate the
work done.

..................................................................................................................................

5. A force F = (5 î  +3 ĵ ) acts on a particle to give a displacement d = (3 î  + 4 ĵ ) m

a) Calculate the magnitude of displacement

b) Calculate the magnitude of force.

c) How much work is done by the force?

..................................................................................................................................

6.2  Work Done by A Variable Force

You have so far studied the cases where the force acting on the object is constant. This
may not always be true. In some cases, the force responsible for doing work may keep
varying with time. Let us now consider a case in which the magnitude of force F(x)
changes with the position x of the object. Let us now calculate the work done by a variable
force. Let us assume that the displacement is from x

i
 to x

f
, where x

i
 and x

f
 are the initial

and final positions. In such a situation, work is calculated over a large number of small
intervals of displacements ∆x. In fact, ∆x is taken so small that the force F(x) can be
assumed to be constant over each such interval. The work done during a small
displacements ∆x is given by

∆W = F(x) ∆x (6.7)

F(x) ∆x is numerically equal to the small area shown shaded in the Fig. 6.4(a). The total
work done by the force between x

i
 and x

f
 is the sum of all such areas (area of all strips

added together):

F

∆x x →

F

x
i x

fx →
Fig 6.4 : A varying force F moves the object from the initial position xi to final position xf. The

variation of  force with distance is shown by the solid curve (arbitrary) and work done is
numerically equal to the shaded area.
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= Σ F (x) ∆x
(6.8)

The width of the strips can be made as small as possible so that the areas of all strips
added together are equal to the total area enclosed between x

i
 and x

f
.. It will give the total

work done by the force between x
i
 and x

f
 :

W = 
lim 0

( )
∆ →

∆∑
x

F x x (6.9)

6.2.1  Work done by a Spring

A very simple example of a variable force is the force exerted by a spring. Let us derive
the expression for work done in this case.

Fig. 6.5(a) shows the equilibrium position of a light spring whose one end is attached to a
rigid wall and the other end is attached to a block of mass m. The system is placed on a
smooth horizontal table. We take x-axis along the horizontal direction. Let mass m be at
position x = 0. The spring is now compressed (or elongated) by an external force F. An
internal force F

s
 is called into play in the spring due to its elastic property. This force F

s

keeps increasing with increasing x and becomes equal to F  when the compression (or
elongation) is maximum at x = x

m
.

According to Hooke’s law (true for small x only), |F
s
| = kx, where k is known as spring

constant. Since the direction of F
s
 is always opposite to compression (or extension), it is

written as :

F = F
s
= – kx (6.10)

Fig. 6.5 : A spring-mass system whose one end is rigidly fixed and mass m, rests on a smooth
horizontal surface.  a) The relaxed position of the spring’s, free end at x = 0; b) The
spring is compressed by applying external force F and c) Pulled or elongated by an
external force F. The maximum compression/ elongation is x

m
.

x = 0

F

F

x

x = 0

xm

(a)

(b)

(c)
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event of compression of the spring, the external force F is directed towards left and the
displacement x is also towards left. Hence, the work done by the external force is
positive. However, for the same direction of displacement, the restoring force generated
in the spring is towards right, i.e. F and x are oppositely directed. The work done by the
spring force is negative. You can yourself examine the case of extension of the spring
and arrive at the same result: “the work done by the external force is positive but the

work done by the spring force is negative and its magnitude is (½) 2
mkx ”

A simple calculation can be done to derive an expression for the work done. At x = 0, the
force F

s 
= 0. As x increases, the force F

s
 increases and becomes equal to F when x = x

m
.

Since the variation of the force is linear with displacement, the average force during

compression (or extension) can be approximated to 
0

2

+⎛ ⎞
⎜ ⎟
⎝ ⎠

Fs
 = 

2

Fs
. The work done by

the force is given by

W = force . displacement

= 
2

Fs
 . x,

But |F
s
| = k | x

m
|. Hence

W = 
1

2
k x

m 
× x

m

= 
1

2
k x2

m
(6.11)

The work done can also be obtained graphically. It is shown in Fig. 6.6.

Fig. 6.6: The work done is numerically equal to the area of the shaded triangle.

x

F
s

F
s 
= kx

m

x
 
= x

m
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Fig. 6.7 : Extension in a spring under a
load.

The area of the shaded triangle is:

= 
1

2
 base × height

W = 
1

2
x

m
 × kx

m

= 
1

2
kx

m
²   (6.12)

This is the same as that obtained analytically in Eqn. (6.11)

Activity 6.2

Measuring spring constant

Suspend the spring vertically, as shown in
Fig. 6.7 (a). Now attach a block of mass m
to the lower end of the spring. On doing so,
the spring extends by some distance.
Measure the extension. Suppose it is s, as
shown in Fig 6.7 (b). Now think why does
the spring not extend further. This is because
the spring force (restoring force) acting
upwards balances the weight mg of the block
in equilibrium state. You can calculate the
spring constant by putting the values in

F
s

= k.s

or mg = k.s

Thus, k = 
mg

s
(6.13)

Example 6.4: A mass of 2 kg is attached to a light spring of force constant
k =100 Nm–1. Calculate the work done by an external force in stretching the spring by
10 cm.

Solution:

W = 
1

2
kx²

= 
1

2
 × 100 × (0.1)²

= 50 × 0 .01 = 0.5 J

As explained earlier, the work doen by the restioning force in the spring = – 0.5 J.

Fig. 6.8: A mass m = 2 kg is attached to a
spring on a horizontal surface.

m = 2 kg

F
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Intext Questions 6.2

1. Define spring constant. Give its SI unit.

................................................................................................................................

2. A force of 10 N extends a spring by 1cm.How much force is needed to extend this
spring by 5 cm? How much work will be done by this force?

................................................................................................................................

6.3  Power

You have already learnt to calculate the work done by a force. In such calculations, we did
not consider whether the work is done in one second or in one hour. In our daily life,
however, the time taken to perform a particular work is important. For example, a man
may take several hours to load a truck with cement bags, whereas a machine may do this
work in much less time. Therefore, it is important to know the rate at which work is done.
The rate at which work is done is called power.

If ∆W work is done in time ∆t, the average power is defined as

Average Power = 
Work done

time taken

Mathematically, we can write

P = 
W

t

∆
∆ (6.14)

If the rate of doing work is not constant, this rate may vary. In such cases, we may define
instantaneous power P

P = limit
t 0∆ →   

∆⎛ ⎞ =⎜ ⎟∆⎝ ⎠

W dW

t dt
(6.15)

The definition of power helps us to determine the SI unit of power:

P = 
∆
∆
W

t

= joule/ second = watt

Thus, the SI unit of power is watt. It is abbreviated asW.

The power of an agent doing work is 1W, if one joule of work is done by it in one second.
The more common units of power are kilowatt (kW) and megawatt (MW).

1 kW = 103  W, and     1 MW= 106W
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(1736–1819)

Scottish inventor and mechanical engineer, James Watt is renowned
for improving the efficiency of a steam engine. This paved the way
for industrial revolution.

He, introduced horse power as the unit of power. SI unit of power
watt is named in his honour. Some of the important inventions by
James Watt are : a steam locomotive and an attachment that adapted telescope to
measure distances.

Example 6.5 : Determine the dimensions of power.

Solution : Since P = 
work

time

= Force × 
Distance

Time

∴ Dimension of P = [Mass] × [Acceleration] × 
[Distance]

[Time]

= [M] × 2

L

T
⎡ ⎤
⎢ ⎥⎣ ⎦

  × 
L

T
⎡ ⎤
⎢ ⎥⎣ ⎦

= [ML²T–3]

You may have heard electricians discussing the power of a machine in terms of the horse
power, abbreviated as hp. This unit of power was under British system. It is a larger unit:

1hp = 746 W (6.16)

The unit of power is used to define a new unit of work (energy). One such unit of work is
kilowatt hour. This unit is commonly used in electrical measurement.

kilowatt. hour (kWh) = kW. hour

= 10³ W. hour

= 
310 J

1s
 × 3600 s

= 36,00,000 J  = 3.6× 106 J

Or 1 kWh = 3.6 MJ (mega joules) (6.17)

The electrical energy that is consumed in homes is measured in kilowatt-hour. In common
man’s language : 1kWh = 1 Unit of electrical consumption.

Intext Questions 6.3

1. A body of mass 100 kg  is lifted through a distance of 8 m in 10s. Calculate the power
of the lifter.

................................................................................................................................
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................................................................................................................................

6.5   Work and Kinetic Energy

As you know, the capacity to do work is called energy. If a system (object) has energy, it
has ability to do work. An automobile moving on a road uses chemical energy of fuel
(CNG, petrol, diesel). It can push an object which comes on its way to some distance.
Thus it can do work. All moving objects possess energy because they can do work before
they come to rest. We call this kind of energy as kinetic energy. Kinetic energy is the
energy of an object because of its motion.

Let us consider an object of mass m moving along a straight line when a constant force of
magnitude F acts on it along the direction of motion. This force produces a uniform
acceleration a such that F = ma. Let v

1
 be the speed of the object at time t

1
. This speed

becomes v
2
 at another instant of time t

2
. During this interval of time t = (t

2
 – t

1
 ), the object

covers a distance, s. Using Equations of Motion, we can write

2
2v = 2

1v  + 2as

or a =    
2 2
2 1–

2s

v v
(6.18)

Combining this result with  Newton’s second law of motion, we can write

F = m  ×  
2 2
2 1–

2s

v v

We know that work done by the force is given by

W = Fs

Hence, W = m  ×  
2 2
2 1–

2s

v v
s

= 
2
2

1

2
mv  – 

2
1

1

2
mv

= K
2 
– K

1
(6.19)

where K
2
= 

2
2

1

2
mv  and K

1
 = 

2
1

1

2
mv  respectively denote the final and initial kinetic energies.

(K
2
 – K

1
) denotes the change in kinetic energy, which is equal to the work done by the

force.

Kinetic Energy is a scalar quantity. It depends on the product of mass and the square of
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large. It is the total value 
1

2
m 2v  that determines the kinetic energy.

Example  6.6 : A body of mass 10 kg is initially moving with a speed of 4.0 ms–1. A
force of 30 N is now applied on the body for 2 seconds.

i) What is the final speed of the body after 2 seconds?

ii) How much work has been done during this period?

iii) What is the initial kinetic energy?

iv) What is the final kinetic energy?

v) What is the distance covered during this period?

vi) Show that the work done is equal to the change in kinetic energy?

Solution :

i) Force (F) = ma

or a = F/m

= 30/10

= 3 ms–²

The final speed v
2

= v
1
+ at

= 4 + (3 × 2)  = 10 ms–1

ii) The distance covered in 2 seconds:

s = ut + 
1

2
at²

= (4×2) + 
1

2
 (3×4)

= 8 +6  = 14 m

Work done W = F × S

= 30 × 14 = 420  J

iii) The initial Kinetic Energy

K
1

= 
2
1

1

2
mv

= 
1

2
  (10 ×16) = 80 J
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K
2

= 
2
2

1
2

mv

= 
1

2
 (10 ×100) = 500  J

v) The distance covered as calculated above = 14m

vi) The change in kinetic energy is:

K
2
– K

1
= (500 – 80) = 420  J

As may be seen, this is same as wok done.

Work-Energy Theorem

The work-energy theorem states that the work done by the resultant of all forces
acting on a body is equal to the change in kinetic energy of the body.

Intext Question 6.4

1. Is it possible for a particle to have a negative value of kinetic energy? Why?

..................................................................................................................................

2- What happens to the kinetic energy of a particle if

a) The speed v of the particle is made 2v.

b) The mass m of the particle is made m/2 ?

..................................................................................................................................

3- A particle moving with a kinetic energy 3.6 J collides with a spring of force constant
180 Nm–1. Calculate the maximum compression of the spring.

..................................................................................................................................

4- A car of mass 1000 kg is moving at a speed of 90 kmh–1. Brakes are applied and
the car stops at a distance of 15 m from the braking point. What is the average
force applied by brakes? If the car stops in 25s after braking , calculate the
average power of the brakes?

..................................................................................................................................

5. If an external force does 375 J of work in compressing a spring, how much work is
done by the spring itself?

..................................................................................................................................

6.6  Potential Energy

In the previous section we have discussed that a moving object has kinetic energy associated
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Motion, Force and Energy with it. Objects possess another kind of energy due to their position in space. This energy
is known as Potential Energy. Familiar example is the Gravitational Potential Energy
possessed by a body in Gravitational Field. Let us understand it now.

6.6.1 Potential Energy in Gravitational Field

Suppose that a person lifts a mass m from a given height
h

1
 to a height h

2
 above the earth’s surface. Let us also

assume that the value of acceleration due to gravity
remains constant. The mass has been displaced by a
distance h = (h

2
 – h

1
 ) against the force of gravity. The

magnifude of this force is mg and it acts downwards.
Therefore, the work done by the person is

      W = force  × distance

=  mgh (6.20)

The work is positive and is stored in mass m as energy.
This energy by virtue of the position in space is called
gravitational potential energy. It has capacity to do
work. If this mass is left free, it will fall down and during
the fall it can be made to do work. For example, it can lift
another mass if properly connected by a string, which is
passing over a pulley.

The selection of the initial height h
1
 is arbitrary. The

important concept is the change in height, i.e. (h
2
 – h

1
).

We, therefore, say that the point of zero potential energy is arbitrary. Any point in space
can be chosen as a point of zero potential energy. Normally, a point on the surface of the
earth is assumed to be the reference point with zero potential energy.

Example 6.7 : A truck is loaded with sugar bags. The total mass of the load and the
truck together is 100,000 kg. The truck moves on a winding path up a mountain to a height
of 700 m in 1 hour. What average power must the engine produce to lift the material?

Solution : W = mgh

= (100,000 kg) × (9.8 m s–2 × 700 m)

=  9.8× 7× 107 J

=  68.6 × 107J

          Time taken = 1 hour = 60 × 60s

= 3600 s

Average Power, P = W / t

= 
768.6 10 J

3600 s

×

Fig. 6.9: Object of mass m
originally at height h

1

above the earth’s sur-
face is moved to a
height h

2
.
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We know that 746 W = 1 hp

∴ P = 
51.91 10

746

×
= 2.56 × 10² = 256 hp.

Example 6.8 :  Hydroelectric power generation uses falling water as a source of energy
to turn turbine blades and generate electrical power. In a power station,
1000 × 10³ kg water falls through a height of 51 m in one second.

i) Calculate the work done by the falling water?

ii) How much power can be generated under ideal conditions?

Solution :

i) The potential energy of the water at the top = mgh

P.E. = (1000 × 10³ kg)  × (9.8 ms–2) × (51 m).

= 9.8 × 51 × 106 J

=  500 × 106 J

Water loses all its potential energy. The same is converted into work in moving the turbine
blades. Therefore

W = Force × distance

= mg × h

= 1000 × 103 × (9.8) × 51 J

` = 500 × 106 J

= 500 M J

ii) The work done per  second is given by

P = W/t

= 
500 M J

1s

= 500 MW
Ideal conditions mean that there is no loss of energy due to frictional forces. In practice,
there is the  always some loss in machines. Such losses can be minimized but can never be
eliminated.

6.6.2 Potential energy of springs

You now know that an external force is required to compress or stretch a given spring.
These situations are shown in Fig. 6.5. Let there be a spring of force constant k. This
spring is compressed by a distance x. From Eqn.(6.11) we recall that work done by the
external force to compress the spring is given by

W = 
1

2
kx²
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bounces back and the elastic potential energy of the spring is converted into kinetic energy
of the mass m.

6.6.3 Conservation of Energy

We see around us various forms of energy but we are familiar with some forms more than
others. Examples are Electrical Energy, Thermal Energy, Gravitational Energy, Chemical
Energy and Nuclear Energy etc. These forms of energy are very closely related in the
sense that one can be changed to another. There is a very fundamental law about energy.
It is known as Law of Conservation of Energy. It states, “ The total energy of an
isolated system always remains constant.” The energy may change its form. It  can
be converted from one form to other. But the total energy of the system remains unchanged.
In an isolated system, if there is any loss of energy of one form, there is a gain of an equal
amount of another form of energy. Thus energy is neither created nor destroyed. The
universe is also an isolated system as there is nothing beyond this. It is therefore said that
the total energy of the universe always remains constant in spite of the fact that variety of
changes are taking place in the universe every moment. It is a law of great importance. It
has led to many new discoveries in science and it has not been found to fail.

In a Thermal Power Station, the chemical energy of
coal is changed into electrical energy. The electrical
energy runs machines. In these machines, the
electrical energy changes into mechanical energy, light
energy or thermal energy.

The law of conservation of energy is more general
than we can think of. It applies to systems ranging
from big planets and stars to the smallest nuclear
particles.

(a) Conservation of mechanical energy during
the free fall of a body

We now wish to test the validity of the law of
conservation of energy in case of mechanical energy,
which is of immediate interest.

Let us suppose that an object of mass m lying on the
ground is lifted to a height h. The work done is mgh,
which is stored in the object as potential energy. This

object is now allowed to fall freely. Let us calculate the energy of this object when it has
fallen through a distance h

1
. The height of the object now above the earth surface is h

2
 =

h – h
1
 (Fig 6. 10). At this point P, the potential energy = mgh

2.

When the object falls freely, it gets accelerated and gains in speed. We can calculate the
speed of the object when it has fallen through a height h

1
 from the top positions using the

equation

v² = u² + 2gs (6.21)

Fig. 6.10 : Mass m is lifted to a height
h from earth’s surface. It
is then lowered to a height
h

2
 at point P.  The total

energy at P is same as that
at the highest point.

h1

h2

P

h



3.137
137

MODULE - 1

Notes

Work Energy and Power

Motion, Force and Energywhere u is the initial speed at the height h
1
, i.e. u = 0 and s = h

1
.
 
Then, we have

v² = 2gh
1

The kinetic energy at point P is given by

  K.E = 
1

2
mv²

= 
2

m
 × 2gh

1

= mgh
1

(6.22)

The total energy at the point P is

Kinetic Energy + Potential Energy = mgh
1
+ mgh

2

= mgh (6.23)

This is same as the potential energy at the highest point. Thus, the total Energy is
conserved.

(b) Conservation of Mechanical Energy for a Mass Oscillating on a Spring

Fig. 6.11 shows a spring whose one end is fixed to a  rigid wall and the other end is
connected to a wooden block lying on a smooth horizontal table. This free end is at x

0
 in

the relaxed position of the spring. A block of mass m moving with speed v along the line of
the spring collides with the spring at the free end, and compresses it by x

m
. This is the

maximum compression. At x
0
, the total energy of the spring-mass system is 

1

2
mv². It is

the kinetic energy of the mass. The potential energy of the spring is zero. At the point of

extreme compression, the potential energy of the spring is 
21

 
2 mk x  and the kinetic energy of

the mass is zero. The total energy now is 
21

 
2 mk x . Obviously, this means that

21
 

2 mk x = 
21

2
mv (6.24)

K.E + P.E (Before collision) = K.E. + P.E. (After collision)

Fig. 6.11 : A block of mass m moving with velocity v on a horizontal surface collides with the
spring. The maximum compression is x

m
.

x0

v

m

x

0

0

xm
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21

2
mv  + 0 = 0 + 

2
m

1

2
kx (6.25)

i.e., the total energy is conserved.

Conservation of mass-energy in nuclear reactions

Nuclear energy is different from other forms of energy in the sense that it is not
obtained by the transformation of some other form of energy. On the contrary, it is
obtained by transformation of mass into energy.

Hence, in nuclear reacions, the law of conservation of mass and the law of
conservation of energy merge into a single law of conservation of mass-energy.

Example 6.9 : A block of mass 0.5 kg slides down a smooth curved surface and falls
through a vertical height of 2.5m to reach a horizontal surface at B (Fig 6.12). On the

basis of energy conservtion, calculate, i) the energy of the block at point A, and ii) the
speed of the block at point B.

Solution :

i) Potential energy at A = mgh = (0.5) × (9.8) × 2.5  J

= 4.9 × 2.5 J

= 12.25 J

The kinetic energy at A = 0 and

Total Energy = 12.25 J

ii) The total energy of the block at A must be the
same as the total energy at B.

The total energy (P.E. + K.E.) at A = 12.25 J

The total energy (P.E. + K.E.) at B = 
1

2
mv²

Since P.E. at B is zero, the total energy is only K.E.

∴
1

2
mv² = 12.25

v² = 
12.25 2

0.5

×

=  12.25 × 4

v² = 49.00

Hence v = 7.0 ms–1

Note: This can also be obtained from the equations of motion:

2.5m

B

A

Fig. 6.12 : A block slides on a curved
surface. The total energy at
A (Potential only) gets
converted into total energy at
B (kinetic only).
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0v  + 2gx

   = 0 + 2 × 9.8 × 2.5

v² = 49

v = 7 ms–1

6.5.4 Conservative and dissipative (Non conservative) Forces

(a) Conservative forces

We have seen that the work done by the gravitational force acting on an object depends on
the product of the weight of the object and its vertical
displacement. If an object is moved from a point A to
a point B under gravity, (Fig 6.13), the work done by
gravity depends on the vertical separation between
the two points. It does not depend on the path followed
to reach B starting from A. When a force obeys this
rule, it is called a conservative force. Some of the
examples of conservative forces are gravitational force,
elastic force and electrostatic force.

A conservative force has a property that the work
done by a conservative force is independent of
path. In Fig 6.13 (a)

W
AB

 (along 1) = W
AB

 (along 2)

Fig. 6.13 (b) shows the same two positions of the
object. The object moves from A to B along the path 1
and returns back to A along the path 2. By definition,
the work done by a conservative force along path 1 is
equal and opposite to the work done along the path 2.

W
AB

 (along 1) = –W
BA

 (along 2)

or W
AB

 + W
BA

= 0 (6.27)

This result brings out an important property of the conservative force in that the work
done by a conservative force on an object is zero when the object moves around a
closed path and returns back to its starting point.

(b) Non-conservative Forces

The force of friction is a good example of a non-conservative force. Fig. 6.14 shows a
rough horizontal surface. A block of mass m is moving on this surface with a speed v at the
point A.

After moving a certain distance along a straight line, the block stops at the point B. The

block had a kinetic energy E = 
1

2
mv² at the point A. It has neither kinetic energy nor

(a)

(b)

Fig. 6.13 : a) The object is moved
from A to B along two
different paths. b) It is
taken from A to B along
path 1 and brought back
to A along path 2.

A

B1

2

A

B1

2
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go? It has changed its form. Work has been done against the frictional force or we can say
that force of friction has done negative work on the block. The kinetic energy has changed
to thermal energy of the system. The block with the same kinetic energy E is now taken
from A to B through a longer path 2. It may not even reach the point B. It may stop much
before reaching B. This obviously means that more work has to be done along this path.
Thus, it canbe said that the work done depends on the path.

Intext Questions 6.5

1. ABC is a triangle where AB is horizontal and BC is
vertical. The length of the sides AB = 3m, BC = 4m
and AC=5m. A block of mass  2 kg  is at A. What is the
change in potential energy of the block when

a) it is taken from A to B

b) from B to C

c) from C to A

d)  How much work is done by gravitational force in moving the mass form B to C
(positive or Negative work)?

..................................................................................................................................

2. A ball of mass 0.5 kg is at A at a height of 10m above the ground. Solve
the following questions by applying work-energy principle. In free fall

a) What is the speed of the ball at B?

b) What is the speed of the ball at the point C?

c) How much work is done by gravitational force in bringing the ball
from A to C (give proper sign)?

...........................................................................................................

Fig. 6.14: A block which is given an initial speed  v  on a rough horizontal surface, moves along
a straight line path 1 and comes to rest at B. It starts with the same speed υυυυυ at A but now
moves along a different path 2.

Fig. 6.16

Fig. 6.15

A B

v

Path 1

Path 2

v = 0

10m

4m
A

B

C
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Fig. 6.18

30º

2m

A

C

B

3. A block at the top of an inclined plane slides down.
The length of the plane BC = 2m and it makes an
angle of 30° with horizontal. The mass of the block
is 2 kg. The kinetic energy of the block at the point B
is 15.6 J. How much of the potential energy is lost
due to non-conservative forces (friction). How much
is the magnitude of the frictional force?

4. The Figure shows two curves A and B between
energy E and displacement x of the bob of a simple
pendulum. Which one represents the P.E. of the bob and
why?

.........................................................................

5. When non- conservative forces work on a system, does the total mechanical
energy remain constant?

..................................................................................

6.6 Elastic and inelastic collisions

Let us consider a system of two bodies. The system is a closed system which implies that
no external force acts on it. The system may consist of two balls or two springs or one ball
and one spring and so on. When two bodies interact, it is termed as collision. There are no
external forces acting on the system.

Let us start with a collision of two balls and to make the analysis simpler, let there be a
“head-on” or “central collision”. In such collisions, colliding bodies move along the line
joining their centres. The collisions are of two kinds :

(i) Perfectly Elastic Collision: If the forces of interaction between the two bodies are
conservative, the total kinetic energy is conserved i.e. the total kinetic energy before
collision is same as that after the collision. Such collisions are termed as completely
elastic collisions.

(ii) Perfectly Inelastic collision: When two colliding bodies stick together after the
collision and move as one single unit, it is termed as perfectly inelastic collision. It
is like motion of a bullet embedded in a target.

You should remember that the momentum is conserved in all types of collisions.
Why? But kinetic energy is conserved in elastic collisions only.

6.6.1 Elastic Collision (Head-on)

Let two balls A and B having masses m
A
 and m

B
 respectively collide “head-on”, as shown

in Fig. (6.19). Let v
Ai

 and v
Bi

 be the velocities of the two balls before collision and v
Af

 and
v

Bf
 be their velocities after the collision .
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Now applying the laws of conservation of momentum and kinetic energy, we get

For conservation of momentum

m
A
v

Ai
 + m

A
v

Bi
= m

A
v

Af
 + m

B
v

Bf
(6.28)

For conservation of kinetic energy

1

2
 m

A
2
Aiv  

+ 
1

2
m

Bi
= 

1

2
m

A

2
Afv + 

1

2
m

B

2
Bfv (6.29)

There are only two unknown quantities (velocities of the balls after collision) and there
are two independent equations [Eqns. (6.28) and (6.29)]. The solution is not difficult, but
a lengthy one. Therefore, we quote the results only

(v
Bf 

– v
Af

) = – (v
Bi 

– v
Ai

) (6.30)

v
Af

=
 
 B B

A B

2

+
im

m m

v
+  

Ai A B

A B

( – )m m

m m+
v

(6.31)

v
Bf

= – A A

A B

2

+
im

m m

v
+

  

B A B

A B

( – )

)+
im m

(m m

v
(6.32)

We now discuss  some special cases.

CASE I : Suppose that the two balls colliding with each other are identical i.e. m
A
= m

B
=

m. Then the second term in Eqns. (6.31 and (6.32) will drop out resulting in

v
Af

= v
Bi

(6.33)

and v
Bf

= v
Ai

(6.34)

That is, if two identical balls collide “head-on”, their velocities after collision get interchanged.

After collision: i) the velocity of A is same as that of B before collision.

ii) the velocity of B is same as that of A before collision.

v
Ai

v
B i

v
A f v

Bf

Before Collision After Collision(a)

v
Ai

v
Bi v

Before Collision After Collision

(b)

Fig.6.19 : Schematic representation of Head-on collision (a) Elastic collision; (b) In elastic collision
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Let B be at rest so that v
Bi

 = 0. Then v
Af

 = 0 and v
Bf 

= v
Ai

After collision, A comes to rest and B moves with the velocity of A before collision.

Similar conclusion can be drawn about the kinetic energy of the balls after collision. Complete
loss of kinetic energy or partial loss of kinetic energy  (m

A
 # m

B
) by A is same as the gain

in the kinetic energy of B. These facts have very important applications in nuclear reactors
in slowing down neutrons.

CASE II : The second interesting case is that of collision of two particles of unequal
masses.

i) Let us assume that m
B
 is very large compared to m

A
 and particle B is initially at rest :

m
B
>> m

A
 and v

Bi
= 0

Then, the mass m
A
 can be neglected in comparison to m

B
. From Eqns. (6.31) and (6.32),

we get

v
Af

 ≈ –v
Ai

and v
Bf

 ≈ 0

After collision, the heavy particle continues to be at rest. The light particle returns back on
its path with a velocity equal to its the initial velocity.

This is what happens when a child hits a wall with a ball.

These results find applications in Physics of atoms, as for example in the case where an

α – particle hits a heavy nucleus such as uranium.

Intext Questions 6.6

1 Two hard balls collide when one of them is at rest.
a) Is it possible that both of them remain at rest after collision?
b) Is it possible that one of them remains at rest after collision?

..................................................................................................................................

2. There is a system of three identical balls A B C on a
straight line as shown here. B and C are in contact and at
rest. A moving with a velocity v collides “head-on” with
B. After collision, what will be the velocities of A, B and
C separately? Explain.

..................................................................................................................................

3. Ball A of mass 2 kg collides head-on with ball
B of mass 4 kg. A is moving in + x direction
with speed 50ms–1 and B is moving in –x
direction with speed 40ms–1. What are the
velocities of A and B after collision? The
collision is elastic.

.......................................................................................................................

A B–x +x →

u  = 50 msA

–1 uB = 40 ms–1

Fig. 6.21

A B C

v

Fig. 6.20
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Motion, Force and Energy 4. A bullet of mass 1 kg is fired and gets embedded into a block of wood of mass 1 kg
initially at rest. The velocity if the bullet before collision is 90m/s.

a) What is the velocity of the system after collision.

b) Calculate the kinetic energies before and after the collision?

c) Is it an elastic collision or inelastic collision?

d) How much energy is lost in collision?

..................................................................................................................................

5.       In an elastic collision between two balls, does the kinetic energy of each ball change
after collision?

..................................................................................................................................

What You Have Learnt

� Work done by a constant force F is

W = F.d = Fd cosθ

Where θ is the angle between F and d. The unit of work is joule. Work is a scalar
quantity.

� Work is numerically equal to the area under the F versus x graph.

� Work done by elastic force obeying Hooke’s law is W =  
1

2
kx² where k is force

constant of the elastic material (spring or wire). The sign of W is positive for the
external force acting on the spring and negative for the restoring force offered by
spring. x is compression or elongation of the spring.

� The unit of k is newton per metre (N m–1.)

� Power is the time rate of doing work. P = W/t its unit is  J/s i.e., watt (W)

� Mechanical energy of a system exists in two forms (i) kinetic energy and (ii) Potential
energy.

� Kinetic energy of mass m moving with speed v is E = 
1

2
mv². It is a scalar quantity.

� The Work-Energy Theorem states that the work done by all forces is equal to the
change in the kinetic energy of the object.

W = K
f
 – K

i
 = ∆K

� Work done by a conservative force on a particle is equal to the change in mechanical
energy of the particle, that is change in the kinetic energy + the change in potential
energy. In other words the mechanical energy is conserved under conservative forces.

∆ E = (E
f 
– E

i
) + (E

f 
– E

i
)

= (∆E)
P
 + (∆E)

k
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Motion, Force and Energy� Work done by a conservative force on an object is zero for a round trip of the object
(object returning back to its starting point).

� Work done by a conservative force does not depend on the path of the moving object.
It depends only on its initial and final positions.

�  Work done is path dependent for a non-conservative force. The total mechanical
energy is not conserved.

� The potential energy of a particle is the energy because of its position in space in a
conservative field.

� Energy stored in a compressed or stretches spring is known as elastic potential energy.

It has a value 
1

2
kx², where k is spring constant and x is diplacement.

� The energy stored in a mass m near the earth’s surface is  mgh. It is called the
gravitational potential energy. Here h is change in vertical co-ordinate of the mass.
The reference level of zero potential energy is arbitrary.

�  Energy may be transformed from one kind to another in an isolated system, but it can
neither be created nor destroyed. The total energy always remains constant.

�  Laws of conservation of momentum always hold good in any type of collision.

� The kinetic energy is also conserved in elastic collision while it is not conserved in
inelastic collision.

Terminal Exercise

1. If two particles have the same kinetic energy, are their momenta also same? Explain.

2. A particle in motion collides with another one at rest. Is it possible that both of them
are at rest after collision?

3. Does the total mechanical energy of a system remain constant when dissipative forces
work on the system?

4. A child throws a ball vertically upwards with a velocity 20 m s–1.

(a) At what point is the kinetic energy maximum?

(b) At what point is the potenital energy maximum?

5. A block of mass 3kg moving with a velocity 20ms–1 collides with a spring of force
constant 1200 Nm–1. Calculate the maximum compression of the spring.

6. What will be the compression of the spring in question 5 at the moment when kinetic
energy of the block is equal to twice the elastic potential energy of the spring?

7. The power of an electric bulb is 60W. Calculate the electrical energy consumed in 30
days if the bulb is lighted for 12 hours per day.

8. 1000kg of water falls every second from a height of 120m. The energy of this falling
water is used to generate electricity. Calculate the power of the generator assuming
no losses.
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Motion, Force and Energy 9. The speed of a 1200 kg car is 90 km h–1 on a highway. The driver applies brakes to
stop the car. The car comes to rest in 3 seconds. Calculate the average power of the
brakes.

10. A 400g ball moving with speed 5 m s–1 has elastic head-on collision with another ball
of mass 600g initially at rest. Calculate the speed of the balls after collision.

11. A bullet of mass 10g is fired with an initial velocity 500 m s–1. It hits a 20kg wooden
block at rest and gets embedded into the block.

(a)  Calculate the velocity of the block after the impact

(b) How much energy is lost in the collision?

12. An object of mass 6kg. is resting on a horizontal surface. A horizontal force of 15N
is constantly applied on the object. The object moves a distance of 100m in 10 seconds.
(a) How much work does the applied force do?
(b) What is the kinetic energy of the block after 10 seconds?
(c) What is the magnitude and direction of the frictional force (if there is any)?
(d) How much energy is lost during motion?

13. A, B, C and D are four point on a hemispherical cup placed inverted on the ground.
Diameter BC = 50cm. A 250g particle at rest at A, slide down along the smooth
surface of the cup. Calculate it’s

(a) Potential energy at A relative to B.

(b) Speed at the point B (Lowest point).

(c) Kinetic and potential energy at D.

Do you find that the mechanical energy of the block is conserved? Why?

14. The force constant of a spring is 400N/m. How much work must be done on the
spring to stretch it (a) by 6.0cm (b) from x = 4.0cm to x = 6.0 cm, where x = 0 is the
relaxed position of the spring.

15. The mass of a car is 1000kg. It starts from rest and attains a speed of 15 m s–1 in
3.0seconds. Calculate

(a) The average power of the engine.

(b) The work done on the car by the engine.

Answers to Intext Questions

6.1

1. The force always works at right angle to the motion of the particle. Hence no work is
done by the force.

2. (a) Work done is zero (i) when there is no displacement of the object. (ii) When the
angle between force and the displacement is 90º.
When a mass moves on a horizontal plane the work done by gravitation force is
zero.

A

B C
O

ER
2

R

D

R
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Motion, Force and Energy(b) When a particle is thrown verically upwards, the work done by gravitational force
is negative.

(c) When a particle moves in the direction of force, the work done by force is positive.

3. (a) W = mgh = 2 × 9.8 × 5 = + 98 J

(b) The work done by gravity is –98 J

4. F = (2 î  + 3 ĵ ) d = (– î  + 2 ĵ )

W = F.d     = (2 î  + 3 ĵ ) . (– î  + 2 ĵ )

–2 + 6 = 4

5. F = (5 î  + 3 ĵ ) d = (3 î  + 4 ĵ )

(a)  | d | = 9 + 16 = 25 = 5 m

(b)  | F | = 25 + 9  = 34  = 5.83

(c)  W  = F.d = (5 î  + 3 ĵ ) . (3 î  + 4 ĵ )

= 15 + 12 = 27 J

6.2

1. Spring constant is defined as the restoring force per unit displacement. Thus, it is
measured in Nm–1.

2. k = 
10N

1cm
 = 

10N

1/100m
= 100 N m

As F = kx for x = 50 cm. F = 
N

100 (0.5 m)
m

⎛ ⎞
⎜ ⎟⎝ ⎠

     = 50 N.

W = 
1

2
kx2 =  

21 100N 5 5
m

2 m 100 100
⎛ ⎞× × ×⎜ ⎟⎝ ⎠

      = 1.25 N m = 1.25 J.

6.3

1. P = 
( )100 9.8 8

10

mgh

t s

× ×
= J = 784W.

2. 10 H.P = (10 × 746) W = 
10 746

1000

×
W

      = 7.46 kW

6.4

1. k.E. = 
1

2
mv2. It is never negative because
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(ii) v2 is always positive.

2. (a) K.E = 
1

2
mv2 = E

When v is made 2v , K.E becomes 4 times and E becomes 4E

(b) When m becomes 
2

m
, E becomes 

2

E

3. P.E. of spring = 
1

2
kx2 = 3.6 J

∴ x2 = 
2 3.6

k

×
= 

2 3.6

180

×
= 0.04m

and  x = 0.2m = 20cm.

4.  v2 = u2 – 2as  Final velocity is zero and initial velocity is 
90km

h
 = 25ms–1

∴
2

2

u

s
= a = 

25 25

2 15

×
×  = 20.83 ms–2

F = ma = 1000 × 20.83= 20830N.

Power = 
W

t
 = 

20830 15

25

×
 = 12498W

5. Work done by external force = 375 J

Work done by spring = – 375 J

6.5

1. (a) O, no change in P.E.

 (b) Change in P.E. = mgh =  2 × 9.8 × 4 = 78.4 J

(c) Change in P.E. = 78.4 J.

(d) – 78.4 J.

2.  (a) Change in P.E. from = mgh = 0.5 × 9.8 × 4 = 19.6 J

K.E. at B = 
1

2
mv2 = 19.6 J

v2 = 
19.6 2

0.5

×

v2 = 78.4 ⇒ v = 8.85 m s–1
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(c) mgh = 0.5 × 9.8 × 10 = 49.0 J (+ positive)

W = +49 J

3. BC = 2m

AC

BC
 = sin30º

AC = BC sin30º

= 2 × 
1

2
 = 1

Change in P.E. from C to B = mgh = 2 × 9.8 × 1 = 19.6 J

But the K.E. at B is = 15.6 J

Energy lost = 19.6 – 15.6 = 4J

This loss is due to frictional force

4J = F × d = F × 2

  F = 2N

4. When the bob of a simple pendulum oscillates, its K.E. is max at x = 0 and min at x =
x

m
. The P.E. is min at x = 0 and max at x = x

m
. Hence A represents the P.E. curve.

5. No.

6.6

1. (a) No, because, it will go against the low of conservation of linear momentum.

(b) yes.

2.

v
A
 = 0, v

B
 = 0, v

C
 = v

Q This condition only satisfies the laws of conservation of (i) linear momentum and
(ii) total kinetic energy.

3. v
Af

=
 
 B B

A B

2

+
im

m m

v
+  

Ai A B

A B

( – )m m

m m+
v

= 
( ) ( )2 4 40 50 2

6 6

× × − −
−

= 
320 100

6 6
− +

= 
220

6
−

→v
A B C
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v
Bf

= – A A

A B

2

+
im

m m

v
+

  

B A B

A B

( – )

)+
im m

(m m

v

= 
( ) ( )40 4 22 2 50

6 6

− −× ×
+

= 
200 80

6 6
−

= 
120

6
= 20 ms–1.

Thus ball A returns back with a velocity of 35 ms–1 and ball B moves on with a velocity
of 20 ms–1.

4. (a) 1.76 ms–1.

(b) 81 J and 1.58 J

(c) Inelastic collision

(d) 79.42 J

5. yes, but the total energy of both the balls together after collision is the same as it was
before collision.

Answers to Terminal Problem

5. 1 m.

6. 0.707 m

7. 21.6 kW

8. 1.2 mega watt

9. 125 kW

10.
1

4
m s–1, 

19

6
 ms–1

11. (a) 0.25 m s–1

(b) 1249.4 J

12. (a) 1500 J (b) 1200 J (c) 3 N opposite to the direction of motion

(d) 300 J

13. (a) 0.625 J (b) 5 m s–1 (c) 0.313 J

14. (a) 0.72 J    (b) 0.4 J

15. (a) 37.5 kW (b) 1.125 × 105 J
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7

S

MOTION OF RIGID BODY

o far you have learnt about the motion of a single object, usually taken as a point mass.
This simplification is quite useful for learning the laws of mechanics. But in real life,
objects consist of very large number of particles. A tiny pebble contains millions of particles.
Do we then write millions of equations, one for each particle? Or is there a simpler way?
While discovering answer to this question you will learn about centre of mass and moment
of inertia, which plays the same role in rotational motion as does mass in translational
motion.

You will also study an important concept of physics, the angular momentum. If no external
force acts on a rotating system, its angular momentum in conserved. This has very important
implications in physics. It enables us to understand how a swimmer is able to somersault
while diving from a diving board into the water below.

Objectives

After studying this lesson, you should be able to :

� define the centre of mass of a rigid body;

� explain why motion of a rigid body is a combination of translational and rotational
motions;

� define moment of inertia and  state theorems of parallel and perpendicular axes;

� define torque and find the direction of rotation produced by it;

� write the equation of motion of a rigid body;

� state the principle of conservation of angular momentum; and

� calculate the velocity acquired by a rigid body at the end of its motion on an
inclined plane.
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7.1 Rigid Body

As mentioned earlier, point masses are ideal constructs, brought in for simplicity in
discussion. In practice, when extended bodies interact with each other and the distances
between them are very large compared to their sizes, their sizes can be ignored and they
may be treated as point masses. Can you give two examples of such cases where the
sizes of the bodies are not important? Sizes of stars are small as compared to the size of
the galaxy. So, stars can be considered as point masses. Similarly, in the earth-moon
system, moon’s size can be ignored. But when we have to consider the rotation of a body
about an axis, the size of the body becomes important. When we consider the rotation of
a system, we generally assume that during rotation, the distances between its constituent
particles remain fixed. Such a system of particles is called a rigid body.

A rigid body is one in which the separation between the constituent particles does not
change with its motion.

This definition implies that the shape of a rigid body is preserved during its motion. However,
like a point mass, a rigid body is also an idealisation because, if we apply large forces, the
distances between particles do change, may be infinitesimally. Therefore, in nature there
is nothing like a perfectly rigid body. For most purposes, a solid body is good enough
approximation to a rigid body. A cricket ball, a wooden block, a steel disc, even the earth
and the moon could be considered as rigid bodies in this lesson.

Can water in a bucket be considered a rigid body? Obviously, water  in a bucket
cannot be a rigid body because it changes shape as bucket is pushed around.

You may now like to check what you have understood about a rigid body.

Intext Questions 7.1

1. A frame is made of six wooden rods. The rods are firmly attached to each other. Can
this system be considered a rigid body?
..................................................................................................................................

2. Can a heap of sand be considered a rigid body? Explain your answer.

..................................................................................................................................

7.2  Centre of Mass (C.M.) of a Rigid Body

Before we deal with rigid bodies consisting of several particles, let us consider a simpler
case. Suppose we have a system of two particles having same mass joined by weightless
and inextensible rod. Can we consider this system as a rigid body?

In this system, the distance between the two particles is fixed. So it is a rigid body.

Suppose that the two particles are at heights z
1
 and z

2
 from a horizontal surface (Fig. 7.1).

Suppose further that the gravitational force is uniform in the small region in which the two
particles move about. The force on each particle will be mg. The total force acting on the
system is therefore 2mg. We have now to find a point C somewhere in the system so that
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if a force 2mg acts at that point located at a
height z from the horizontal surface, the motion
of the system would be the same as with two
forces. The potiential energies of particles 1 and
2 are mgz

1
 and mgz

2
,
 
respectively. The potential

energy of the particle at C is 2mgz. Since this
must be equal to the combined potential energy
of the two particles, can write

2 mgz = mgz
1
 + mgz

2
(7.1)

or z = 
z z1 2+

2
(7.2)

Note that the point C lies midway between the two particles. If the two masses were
unequal, this point would not have been in the middle. If the mass of particle 1 is m

1
 and

that  of particle 2 is m
2
, Eqn. (7.1) modifies to

(m
1
 + m

2
) gz = m

1
gz

1
 + m

2 
gz

2
(7.3)

so that

z = 
1 1 2 2

1 2( )

m z m z

m m
+

+

(7.4)

The point C is called the centre of mass (CM) of the system. As such, it is a mathematical
tool and there is no physical point as CM.

To grasp this concept, study the following example  carefully.

Example 7.1 : If in the above case, the mass of one particle is twice that of the other, let
us locate the CM.

Solution :  m
1
= m and m

2
= 2 m, Then Eqn. (7.4) gives

z = 
1 22

( 2 )

m z m z

m m

+
+  = 1 22

3

z z+

When a body consists of several particles, we generalise Eqn (7.4) to define its CM : If
the particle with mass m

1
 has coordinates (x

1
, y

1
, z

1
) with respect to some coordinate

system, mass m
2
 has coordinates (x

2
, y

2
, z

2
) and so on (Fig.7.2), the coordinates of

CM are given by

         x = 
1 1 2 2

1 2

...

...

m x m x

m m

+ +
+ +  = 

1

i

i
i

m x

m
=

∑

∑

N

i
i

N (7.5)

Fig. 7.1 : Two particle system

1

2

C

z1

z2z
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  = 1

N

i
i

m x

M
=
∑ i

              Similarly y = 1

N

i
i

y

M
=
∑ im

(7.6)

 and z = 1

N

i
i

M
=
∑ im z

(7.7)

where 
1

N

i =
∑ im  denotes the sum over all the particles

and, therefore, 
1

N

i=
∑ im  is the total mass of the body, M.

Why should we define CM so precisely?

Recall that the rate of change of displacement is velocity, and the rate of change of
velocity is acceleration. If a

1x
 denotes the component of  acceleration of particle 1 along

the x-axis and so on, from Eqn. (7.5), we can write

M a
x

= m
1 
a

1x
 + m

2 
a

2x
 +... (7.8)

where a
x
 is the acceleration of the centre of mass along x-axis. Similar equations can be

written for accelerations along y- and z-axes. These equations can, however, be combined
into a single equation using vector notation :

M a = m
1 
a1 + m

2 
a2 +... (7.9)

But the product of mass and acceleration is force. m
1 
a

1 
is therefore the sum of all forces

acting on particle 1. Similarly, m
2  

a
2
 gives the net force acting on particle 2. The right hand

side is, thus, the total force acting on the body.

The forces acting on a body can be of two kinds. Some forces can be due to sources
outside the body. These forces are called the external forces. A familiar example is the
force of gravity. Some other forces arise due to the interaction among the particles of the
body. These are called internal forces. A familiar example is cohesive force.

In the case of a rigid body, the sum of the internal forces is zero because they cancel each
other in pairs. Therefore, the acceleration of individual particles of the body are due to the
sum or resultant of the external forces. In the light of this, we may write Eqn. (7.9) as

M a = F
ext

(7.10)

This shows that the CM of a body moves as though the entire mass of the body were
located at that point and it was acted upon by the sum of all the external forces
acting on the body. Note the simplification introduced in the derivation by defining the
centre of mass. We donot have to deal with millions of individual particles now, only the
centre of mass needs to be located to determine the motion of the given body. The fact

y′

O

z

x

m
1

m
2

Cº

x
1
,  y

1
, z

1

x
2
,  y

2
, z

2

Fig. 7.2 : C.M. of a body
consisting of  several
particles

m
3

m
4 m

5
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that the motion of the CM is determined by the external forces and that the internal forces
have no role in this at all leads to very interesting consequences.

You are familiar with the motion of a projectile. Can you recall what path is traced by a
projectile?

The motion is along a parabolic path. Suppose
the projectile is a bomb which explodes in mid
air and breaks up into several fragments. The
explosion is caused by the internal forces.
There is no change in the external force, which
is the force of gravity. The centre of mass of
the projectile, therefore, continues to be  the
same parabola on which the bomb would have
moved if it had not exploded (Fig. 7.3). The
fragments may fly in all directions on different
parabolic paths but the centre of mass of the
various fragments will lie on the original parabola.

You might have now understood the  importance of  the concept of centre of mass of a
rigid body. You will encounter more examples of importance in subsequent sections. Let
us therefore see how the centre of mass of a system is obtained by taking a simple
example.

Example 7.2 : Suppose four masses, 1.0 kg,
2.0 kg, 3.0 kg and 4.0 kg are located at the
corners of a square of side 1.0 m. Locate its
centre of mass?

Solution : We can always make the square
lie in a plane. Let this plane be the (x,y) plane.
Further, let us assume that one of the corners
coincides with the origin of the coordinate
system and the sides are along the x and y
axes. The coordinates of the four masses are :
m

1
 (0,0), m

2
 (1.0,0), m

3
 (1.0,1.0) and m

4
 (0, 1.0),

where all distances are expressed in metres
(Fig.7.4).
From Eqns. (7.5) and (7.6), we get

x = 
10 0 2 0 10 30 10 4 0 0

10 2 0 30 4 0

. . . . . .

. . . .

× × × ×+ + +

+ + + m

= 0.5 m

and y = 
10 0 2 0 0 30 10 4 0 10

10 2 0 30 4 0

. . . . . .

. . . .

× × × ×+ + +

+ + + m

= 0.7 m

The CM has coordinates (0.5 m, 0.7 m) and is marked C in Fig.7.4. Note that the CM
is not at the centre of the square although the square is a symmetrical figure.

What could be the reason for the CM not being at the centre? To discover answer
to this question, calculate the coordinates of CM if all masses are equal.

Fig.7.3 : Centre of mass of a projectile

Y

O X

Path of
CM

Explosion

Fig. 7.4 : Locating CM of four masses
placed at the corners of a square

y

m4 (0, 1.0) m3

(1.0, 1.0)

(0, 0.7)
C (0.5, 0.7)

(0.5, 0)

(1.0,0)
m2O x

m1
(0, 0)
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The position of centre of mass of extended bodies can not be easily calculated because a
very large number of particles constituting the body have to be considered. The fact that
all the particles of a rigid body have same mass and are uniformly distributed makes things
somewhat simpler. If the body is regular in shape and possesses some symmetry, say it is
cylindrical or spherical, the calculation is a little bit simplified. But even such calculations are
beyond the scope of this course. However, keeping in mind the importance of CM, we give in
Table 7.1 the position of CM of some regular, symmetrical bodies.

Two things must be remembered about the centre of mass : (i) It may be outside the body
as in case of a ring.  (ii) When two bodies revolve around each other, they actually revolve
around their common centre of mass. For example, stars in a binary system revolve around

Triangular plate

Point of intersection of the three medians

Regular polygon and circular plate

At the geometrical centre of the figure

Cylinder and sphere

At the geometrical centre of the figure

Pyramid and cone

On line joining vertex with centre of base and at
h/4 of the height measured from the base.

Figure with axial symmetry

Some point on the axis of symmetry

Figure with centre of symmetry

At the centre of symmetry

Figure Position of Centre of Mass

Table 7.1 Centres of Mass of some regular symmetrical bodies
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their common centre of mass. The Earth-Sun system also revolves around its common
centre of mass. But since mass of the Sun is very large as compared to the mass of earth,
the centre of mass of the system is very close to the centre of the Sun.

Now it is time to check your progress.

Intext Questions 7.2

1. The grid shown here has particles A, B, C,
D and E respectively have masses 1.0 kg,
2.0kg, 3.0 kg, 4.0 kg and 5.0 kg. Calculate
the coordinates of the position of the centre
of mass of the system (Fig. 7.5).
.........................................................

2. If three particles of masses m
1
 =1 kg, m

2
 =

2 kg, and m
3
 = 3 kg are situated at the

corners of an equilateral triangle of side
1.0 m, obtain the position coordinates of
the  centre of mass of the system.
............................................................

3. Show that the ratio of the distances of the
two particles from their common centre of
mass is inversely proportional to the ratio of their masses.
..........................................................................................................................

7.3 Translational and Rotational Motion of a Rigid Body :
A Comparison

When a rigid body moves in such a way that all its particles move along parallel paths
(Fig.7.6), its motion is called translational motion. Since all the particles execute identical
motion, its centre of mass must also be tracing out an identical path. Therefore, the
translational motion of a body may be characterised by the motion of its centre of mass.
We have seen that this motion is given by Eqn.(7.10) :

M a = Fext

Do you now see the advantage of defining the centre of mass of a body? With its help, the
translational motion of body can be described by an equation for a single particle having
mass equal to the mass of the whole body. It is located at the centre of mass and is acted
upon by the sum of all the external forces which are acting on the rigid body. To understand
the concept clearly, perform the following activities.

Fig. 7.5
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Activity 7.1

Take a wooden block. Make two or three marks
on any of its surfaces. Now keep the marked
surface in front of you and push the block along
a horizontal floor. Note the paths traced by the
marks. All these marks have paths parallel to
the floor and, therefore, parallel to one another
(Fig. 7.6). You can easily see that the lengths
of the paths are also equal.

Activity 7.2

Let us now perform another simple experiment.
Take a cylindrical piece of wood. On its plane face
make a mark or two. Now roll  the cylinder slowly
on the floor, keeping the plane face towards you.
You would notice that the mark such as A in
Fig. 7.7, has not only moved parallel to the floor,
but has also performed circular motion. So, the body
has performed both translational and rotational
motion.

While the general motion of a rigid body consists
of both translation and rotation, it cannot have

translational motion if one point in the body is fixed;  it
can then only rotate. The most convenient point to fix
for this purpose is the CM of the body.

You might have seen a grinding stone (the chakki). The
handle of the stone moves in a circular path. All the
points on the stone also move in circular paths around
an axis passing through the centre of the stone (Fig.7.8).

The motion of a rigid body in which all its  constituent
particles describe concentric circular paths is known

as rotational motion.

We have noted above that translational
motion of a rigid body can be described
by an equation similar to that of a single
particle. You are familiar with such
equations. Therefore, in this lesson we
concentrate only on the rotational motion
of a rigid body. The rotational motion can
be obtained by keeping a point of the
body fixed so that it cannot have any
translational motion. For the sake of

Fig. 7.7 : Rolling motion of a cylinder:
The point A has not only
moved parallel to the floor but
also performed circular
motion

A
B A

B AB

Fig. 7.6 : A wooden block moving along
the floor performs
translational motion.

Fig. 7.8 : Pure rotation of a
grinding stone

Fig. 7.9 : Rotation of the earth

A

A
A

A

A

B
B

B

B

B
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mathematical convenience, this point is taken to
be the CM. The rotation is then about an axis
passing through the CM. A good example of
rotational motion is the earth’s rotation about its
own axis (Fig. 7.9). You have studied in earlier
lessons that the mass of the body plays a very
important role. It determines the acceleration
acquired by the body for a given force. Can we
define a similar quantity for rotational motion
also? Let us find out.

7.3.1 Moment of Inertia

Let C be the centre of mass of a rigid body.
Suppose it rotates about an axis through this point
(Fig.7.10).

Suppose particles of masses m
1
, m

2
, m

3
...are located at distances r

1
, r

2
, r

3
...from the axis

of rotation and are moving with speeds v
1
, v

2
, v

3
 respectively. Then particle 1 has kinetic

energy (½) m
1

2
1v . Similarly, the kinetic energy of particle of mass m

2
 is (½) m

2
2
2v . By

adding the kinetic energies of all the particles, we get the total energy of the body. If T
denotes the total kinetic energy of the body, we can write

T = (½) m
1

2
1v  + (½) m

2
2
2v +...

= 
1

2

1

1

2

i

i i
i

m
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ v (7.11)

where 
1

i n

i

=

=
∑ indicates the sum over all the particles of the body.

You have studied in lesson 4 that angular speed (ω) is related to linear speed (v) through
the equation v = r ω. Using this result in Eqn. (7.11), we get

T =
2

1

1
( )

2

i n

i i

i

m r
=

=

⎛ ⎞ ω⎜ ⎟
⎝ ⎠∑ (7.12)

Note that we have not put the subscript i with w because all the particles of a rigid body
have the same angular speed. Eqn. (7.12) can now be rewritten as

T = 
2 21

2

i n

i=1
i im r

=⎛ ⎞ ω⎜ ⎟
⎝ ⎠
∑

= 
1

2
 I ω2 (7.13)

The quantity

m
1

r
1

m
2

m
3 r

2r
3

Fig. 7.10 :Rotation of a plane lamina
about an axis passing
through its centre of mass
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I = 

i
Σ 2

i im r (7.14)

is called the moment of inertia of the body.

Example 7.3 : Four particles of mass m each are located at the corners of a square of
side L. Calculate their moment of inertia about an-axis passing through the centre of the
square and perpendicular to its plane.

Solution : Simple geometry tells us that the distance of each particle from the axis of

rotation is r =L 2 . Therefore, we can write

I = 
2 2 2 2m r m r m r m r+ + +

= 4m r2

= 

2

4
2

L
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

(Since 
2

= L
r ).

22 m L=

It is important to remember that moment of inertia is defined with reference to an axis of
rotation. Therefore, whenever you mention moment of inertia, the axis of rotation must
also be specified. In the present case,  I is the moment of inertia about an axis passing
through the centre of the square  and normal to the plane containing four perfect masses.

(Fig. 7.10) The moment of inertia is  expressed in kg m2.

The moment of inertia of a rigid body is often written as

I = M K2 (7.15)

where M is the total mass of the body and K is called the radius of gyration of the body.

The radius of gyration is that distance from the axis of rotation where the whole
mass of the body can be assumed to be placed to get the same moment of inertia
which the body actually has. It is important to remember that the moment of inertia of a
body about an axis depends on the distribution of mass around that axis. If the distribution
of mass changes, the moment of inertia will also change. This can be easily seen from

Example 7.3. Suppose we place additional masses at one pair of opposite corners of

amount m each. Then the moment of inertia of the system about the axis through C and

perpendicular to the plane of square would be

I = 
2 2 2 22 2m r m r m r m r+ + +

= 6m r2

Note that moment of inertia has changed from 2mL2 to 3 mL2.

Fig. 7.11

C

r

L
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Table 7.2 Moments of inertia of a few regular and uniform bodies.

R
Axis

I = MR2

Axis

R I = 
2

2
M R
l

Hoop about
central axis

Solid cylinder
about cylindrical
axis

Thin rod about
an axis passing
through its centre
and normal to its
lengthI = 

2

12

M L

Hoop about
any diameter

Axis

2R

I = 
22

5

M R

Solid sphere
about any
diameter

I = 
2

2

M R

Axis

Annular cylinder (or
ring) about cylinder
axis

Solid cylinder (or disk)
about a central diameter

Thin rod about an axis
passing through one
end and perpendicular
to length

Thin spherical shell
about any diameter

Hoop about any
tangent line

I = 
2
M

( 2
1R  + 2

2R )

I = 
2

4
M R

 + 
2 2

12

M l

I = 
2

3

M L

I = 
22

3

M R

I = 
23

2

M R

Refer to Eqn.(7.13) again and compare it with the equation for kinetic energy of a body in
linear motion. Can you draw any analogy? You will note that in rotational motion, the role
of mass has been taken over by the moment of inertia and the angular speed has replaced
the linear speed.

A. Physical significance of moment of inertia

The physical significance of moment of inertia is that it performs the same role in
rotational motion that the mass does in linear motion.

Axis

L

R

L

Axis

Axis

L

Axis

2R

Axis

R
  1
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Just as the mass of a body resists change in its state of linear motion, the moment of
inertia resists a change in its rotational motion. This property of the moment of inertia
has been put to a great practical use. Most machines, which produce rotational motion
have as one of their components a disc which has a very large moment of inertia. Examples
of such machines are the steam engine and the automobile engine. The disc with a large
moment of inertia is called a flywheel. To understand how a flywheel works, imagine
that the driver of the engine wants to suddenly increase the speed. Because of its large
moment of inertia, the flywheel resists this attempt. It allows only a gradual increase in
speed. Similarly, it works against the attempts to suddenly reduce the speed, and allows
only a gradual decrease in the speed. Thus , the flywheel, with its large moment of inertia,
prevents jerky motion and ensures a smooth ride for the passengers.

We have seen that in rotational motion, angular velocity is analogous to linear velocity in
linear motion. Since angular acceleration (denoted usually by α) is the rate of change of
angular velocity, it must correspond to acceleration in linear motion.

B. Equations of motion for a uniformly rotating rigid body

Consider a lamina rotating about an axis passing through O and
normal to its plane. If it is rotating with a constant angular velocity ω,
as shown, then it will turn through an angle θ in t seconds such that

θ = ω t 7.16(a)

However, if the lamina is subjected to constant torque (which is the
turning effect of force),  it will undergo a constant angular
acceleration. The following equations describe its rotational motion:

ω
f

= ω
i
 + α t 7.16(b)

where ω
i
 is initial angular velocity and ω

f
 is final angular velocity.

Similarly, we can write

θ = ω
i
 t + 

1

2
 α t2 7.16(c)

ω
f
2 = ω

i
2 + 2 α θ 7.16(d)

where θ is angular dispalcement in t seconds.

On a little careful scrutiny, you can recognise the similarity of these equations with the
corresponding equations of kinematics for translatory motion.

Example 7.4 : A wheel of a bicycle is free to rotate about a horizontal axis (Fig. 7.11).
It is initially at rest. Imagine a line OP drawn on it. By what angle would the line OP  move
in 2 s if it had a uniform angular acceleration of 2.5 rad s–2.

Fig.7.13 : Rotation of bicycle wheel

P′
P

O

θ

Fig. 7.12 :Rotation of
a lamina
about a
fixed nail

P

O
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Solution : Angular displacement of line OP is given by

θ = ω
0 
t + (½) α t2

= 0 + (½) × (2.5 rad s–2). × 4 s2

= 5 rad

We have mentioned above that for rotational motion of a rigid body, its CM is kept fixed.
However, it is just a matter of convenience that we keep CM fixed. But many a time, we
consider points other than the CM. That is, a point in the body which can also be kept fixed
and the body rotated about it. But then the axis of rotation will pass through this fixed
point. The moment of inertia about this axis would be different from the moment of inertia
about an axis passing through the CM. The relation between the two moments of inertia
can be obtained using the theorems of moment of inertia.

7.3.2 Theorems of moment of inertia

There are two theorems which connect moments of inertia
about two axes; one of which is passing through the CM
of the body. These are :

(i) the theorem of parallel axes, and

(ii) the theorem of perpendicular axes.

Let us now learn about these theorems and their
applications.

(i) Theorem of parallel axes

Suppose the given rigid body rotates about an axis passing through any point P other than
the centre of mass. The moment of inertia about this axis can be found from a knowledge
of the moment of inertia about a parallel axis through the centre of mass. Theorem of
parallel axis states that the moment of inertia about an axis parallel to the axis passing
through its centre of mass is equal to the moment of inertia about its centre of mass
plus the product of mass and square of the perpendicular distance between the
parallel axes. If I denotes the required moment of inertia and I

C
 denotes the moment of

inertia about a parallel axis passing through the CM, then

I = I
C
 + M d 2 (7.17)

where M is the mass of the body and d is the distance between the two axes (Fig. 7.12).
This is known as the theorem of parallel axes.

(ii) Theorem of perpendicular axes

Let us choose three mutually perpendicular axes, two of which, say x and y are in the
plane of the body, and the third, the z–axis, is perpendicular to the plane (Fig.7.13). The
perpendicular axes theorem states that the sum of the moments of inertia about  x and
y axes is equal to the moment of inertia about the z–axis.

C d

P

Fig.7.14 : Parallel axes
through CM and
another point P
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Fig.7.15 : Theorem of perpendicular axes Fig.7.16 : Moment of inertia of a hoop

That is,

I
z

= I
x
 + I

y
(7.18)

We now illustrate the use of these theorems by the following example.

Let us take a hoop shown in Fig. 7.16. From Table 7.2 you would recall that moment of
inertia of a hoop about an axis passing through its centre and perpendicular to the base  is
M R2, where M is its mass and R is its radius. The theorem of perpendicular axes tells us
that this must be equal to the sum of the moments of inertia about two diameters which are
perpendicular to each other as well as to the central axis. The symmetry of the hoop tells
us that the moment of inertia about any diameter is the same as about any other diameter.
This means that all the diameters are equivalent and any two perpendicular diameters
may be chosen. Since the moment of inertia about each is the same, say
I

d
, Eqn.(7.18) gives

M R2 = 2 I
d

and therefore
I

d
= (½) MR2

So, the moment of inertia of a hoop about any of its diameter is (½) M R2.

Let us now take a point P on the rim. Consider a tangent to the hoop at this point which is
parallel to the axis of the hoop. The distance between the two axes is obviously equal to R.
The moment of inertia about the tangent can be calculated using the theorem of parallel
axes. It is given by

I
tan

= M R2 + M R2 = 2 M R2.

It must be mentioned that many of the entries in Table 7.2 have been computed using the
theorems of parallel and perpendicular axes.

7.3.3 Torque and Couple

Activity 7.3

Have you ever noticed that it is easy to open the door by
applying force at a point far away from the hinges? What
happens if you try to open a door by applying force near the
hinges? Carry out this activity a few times. You would realise
that much more effort is needed to open the door if you apply
force near the hinges than at a point away from the hinges.
Why is it so? Similarly, for turning a screw we use a spanner
with a long handle. What is the purpose of keeping a long
handle? Let us seek answers to these questions now.Fig.7.17 : Rotation of a body

O

r
S
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θF
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x
y

O

I = MR2
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Suppose O is a fixed point in the body and it can rotate about an axis passing through this
point (Fig.7.17). Let a force of magnitude F be applied at the point A along the line AB. If
AB passes through the point O, the force F will not be able to rotate the body. The farther
is the line AB from O, the greater is the ability of the force to turn the body about the axis
through O. The turning effect of a force is called torque. Its magnitude is given by

τ = F s = F r sin θ (7.19)

where s is the distance between the axis of rotation and the line along which the force is
applied.

The units of torque are newton-metre, or Nm. The torque
is actually a vector quantity. The vector from of  Eqn.(7.19)
is

τττττ = r ××××× F            (7.20)

which gives both magnitude and direction of the torque.
What is the direction in which the body would turn? To
discover this, we recall the rules of vector product (refer
to lesson 1) : τ is perpendicular to the plane containing
vectors r and F, which is the plane of paper here
(Fig.7.18). If we extend the thumb of the right hand at
right angles to the fingers and curl the fingers so as to point from r to F through the smaller
angle, the direction in which thumb points is the direction of τττττ.

Apply the above rule and show that the turning effect of the force in Fig. 7.18 is
normal to the plane of paper downwards. This corresponds to clockwise rotation of
the body.

Example 7.5 : Fig.7.19 shows a bicycle pedal. Suppose your foot is at the top and you
are pressing the pedal downwards. (i) What torque do you produce? (ii) Where should

your foot be for generating maximum torque?

Fig.7.19 : A bicycle pedal (a) at the top when τττττ = 0; (b) when τττττ is maximum

Solution : (i) When your foot is at the top, the line of action of the force passes through
the centre of the pedal. So, θ = 0, and τ = Fr sinθ = 0.

(ii) To get maximum torque, sinθ must have its maximum value, that is θ must be 90º. This
happens when your foot is at position B and you are pressing the pedal downwards.

F

(a)

F
B

(b)

Fig. 7.18 : Right hand thumb rule

θ
F

r

τO

S
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If there are several torques acting on a

body, the net torque is the vector sum of

all the torques. Do you see any

correspondence between the role of

torque in the rotational motion and the role

of force in the linear motion? Consider two

forces of equal magnitude acting on a

body in opposite directions (Fig.7.20).

Assume that the body is free to rotate about

an axis passing through O. The two

torques on the body have magnitudes
τττττ 1 = (a + b) F

and τττττ 2
= a F.

You can verify that the turning effect of these
torques are in the opposite directions. Therefore,
the magnitude of the net turning effect on the body

is in the direction of the larger torque, which in

this case is τττττ1 :

τττττ = τττττ1
 – τττττ2

 = bF (7.21)

We may therefore conclude that two equal and

opposite forces having different lines of action

are said to form a couple whose torque is equal

to the product of one of the forces and the

perpendicular distance between them.

There is another useful expression for torque which clarifies its correspondence with
force in linear motion. Consider a rigid body rotating about an axis passing through a point
O (Fig. 7.21). Obviously, a particle like P is rotating about the axis in a circle of radius r. If
the circular motion is non–uniform, the particle experiences forces in the radial direction
as well as in the tangential direction. The radial force is the centripetal force m ω2 r, which
keeps the particle in the circular path. The tangential force is required to change the
magnitude of v, which at every instant is along the tangent to the circular path. Its magnitude
is m a, where a is the tangential acceleration. The radial force does not produce any
torque. Do you know why? The tangential force produces a torque of magnitude m
a r. Since a = r α, where α is the angular acceleration, the magnitude of the torque is m r2

α. If we consider all the particles of the body, we can write

τ = 
0

=

=
∑
i n

i
m

i
2

ir α =
2

1i
i

m r
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ α

= I α. (7.22)

O r
P

A

Fig. 7.21 : A rigid body rotating
about on axis

Fig.7.20 : Two opposite forces acting on body
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because α is same for all the particles at a given instant.

The similarity between this equation and F = m a shows that τττττ performs the same role in
rotational motion as F does in linear motion. A list of corresponding quantities in rotational
motion and linear motion is given in Table 7.3. With the help of this table, you can write any
equation for rotational motion if you know its corresponding equation in linear motion.

Table 7.3 : Corresponding quantities in rotational and translational motions

Translational Motion Rotation about a Fixed Axis

Displacement x Angular displacement θ

Velocity v  = 
dx

dt
Angular velocity ω = 

d

dt

θ

Acceleration a = 
dv

dt
Angular acceleration α = 

d

dt

ω

Mass M Moment of inertia I

Force F = m a Torque τ = I α

Work W = Fz dx Work W = τz dθ

Kinetic energy ½M v2 Kinetic energy (½) I ω2

Power P = Fv Power P = τ ω
Linear momentum M v Angular momentum I ω

With the help of Eqn.(7.22) we can calculate the angular
acceleration produced in a body by a given torque.

Example 7.6 : A uniform disc of mass 1.0 kg and radius
0.1m can rotate about an axis passing through its centre and

normal to its plane without friction. A massless string goes
round the rim of the disc and a mass of 0.1 kg hangs at its end
(Fig.7.22). Calculate (i) the angular acceleration of the disc,
(ii) the angle through which the disc rotates in one second,
and (iii) the angular velocity of the disc after one second. Take
g = 10 ms–2

Solution :  (i) If R and M denote the radius and mass of the
disc, from  Table 7.2, we recall that its moment of inertia is
given by I = (½) M R2. If F denotes the magnitude of force (=
m g) due to the mass at the end of the string then τ = F R.
Eqn. (7.22) now gives

α  = τ /I = FR/I = 2F/MR

= 

2–2 (0.1kg) (10ms )

(1.0kg) (0.1m)

× ×
×  = 20 rad s–2.

1m

Fig. 7.22

0.1kg
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Motion, Force and Energy (ii) For angle θ through which the disc rotates, we use Eqn.(7.16). Since the initial angular
velocity is zero, we have

θ = (½) × 20 × 1.0 = 10 rad

(iii) For the velocity after one second, we have

ω = α t = 20 × 1.0 = 20 rad s–1

Now, you may like to check your progress.Try the following questions.

Intext Questions 7.3

1.  Four particles, each of mass m, are fixed at the
corners of a square whose each side is of length r.
Calculate the moment of inertia about an axis
passing through one of the corners and
perpendicular to the plane of the square. Calculate
also the moment of inertia about an axis which is
along one of the sides. Verify your result by using
the theorem of perpendicular axes.
....................................................................................................

2. Calculate the radius of gyration of a solid sphere if the axis is a tangent to the sphere.
(You may use Table 7.2)

.........................................................................................................................

7.4 Angular Momentum

From Table 7.3 you may recall that rotational analogue of linear momentum is angular
momentum. To understand its physical significance, we would like you to do an activity.

Activity 7.4

If you can get hold of a stool which can rotate without much friction, you can perform an
interesting experiment. Ask a friend to sit on the stool with her arms folded. Make the
stool rotate fast. Measure the speed of rotation. Ask your friend to stretch her arms and
measure the speed again. Do you note any change in the speed of rotation of the stool?
Ask her to fold her arms once again and observe the change in the speed of the stool.

Let us try to understand why we expect a change in the speed of rotation of the stool in
two cases : sitting with folded and stretched  hands. For this, let us again consider a rigid
body rotating about an axis, say z–axis through a fixed point O in the body. All the points of
the body describe circular paths about the axis of rotation with the centres of the paths on
the axis and have angular velocity ω. Consider a particle like P at distance r

i
 from the axis

m

P

r

m
Q

r

r

m
R

Axis
along
the
side

Axis ⊥
to the
plane
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(Fig. 7.20). Its linear velocity is v

i
 = r

i
ω and its momentum

is therefore m
i
 r

i 
ω. The product of linear momentum

and the distance from the axis is called angular
momentum, denoted by L. If we sum this product for
all the particles of the body, we get

L = 
i
∑ m

i 
ω r

i 
 r

i  
= 

i
i im rΣ 2

F

HG
I

KJ
ω

= I ω (7.23)

Remember that the angular velocity is the same for all
the particles and the term within brackets is the moment
of inertia. Like the linear momentum, the angular
momentum is also a vector quantity. Eqn. (7.23) gives
only the component of the vector L along the axis of rotation. It is important to remember
that I must refer to the same axis. The unit of angular momentum is kg m2 s–1

Recall now that the rate of change of ω is α and I α = τ. Therefore,  the rate of change
of angular momentum is equal to torque.  In vector notation, we write the equation of
motion of a rotating body as

d

dt

L
= τττττ  = I 

d

dt

ω
 = I α (7.24)

7.4.1  Conservation of angular momentum

Eqn. (7.24) shows that if there is no net torque acting on the body,  
d

dt

L
 = 0. This

means that there is no change in angular momentum, i.e. the angular momentum is
constant. This is the principle of conservation of angular momentum. Along with the
conservation of energy and linear momentum, this is one of the most important principles
of physics.

The principle of conservation of angular momentum allows us to answer questions such
as : How the direction of toy umbrella floating in air remains fixed? The trick is to make it
rotate and thereby impart it some angular momentum. Once it goes in air, there is no
torque acting on it. Its angular momentum is then constant. Since angular momentum is a
vector quantity, its constancy implies fixed direction and magnitude. Thus, the direction of
the toy umbrella remains fixed while it is in air.

In the case of your friend on the rotating stool; when no net torque acts on the stool, the
angular momentum of the stool and the person on it must be conserved. When the arms
are  stretched, she causes the moment of inertia of the system to increase.
Eqn. (7.23) then implies that the angular velocity must decrease. Similarly, when she folds
her arms, the moment of inertia of the system decreases. This causes the angular velocity
to increase. Note that the change is basically caused by the change in the moment of
inertia due to change in distance of particles from the axis of rotation.

Fig.7.23 : A rigid body rotating
about an axis through ‘O’

P
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Motion, Force and Energy Let us look at a few more examples of conservation of angular momentum. Suppose we
have a spherical ball of mass M and radius R. The ball is set rotating by applying a torque
on it. The torque is then removed. When there is no external torque, whatever angular
momentum the ball has acquired must be conserved. Since moment of inertia of the ball is
(2/5) M R2 (Table 7.2), its angular momentum is given by

L = 
2

5
M R2ω (7.25)

where ω is its angular velocity. Imagine now that the radius of the ball somehow decreases.
To conserve its angular momentum, ω must increase and the ball must rotate faster. This
is what really happens to some stars, such as those which become pulsars (see Box on
page 176).

What would happen if the radius of the ball were to
increase suddenly?

You can again use Eqn.(7.25) to show that if R increases,
ω must decrease to conserve angular momentum. If instead
of radius, the moment of inertia of the system changes some
how, ω will change again. For an interesting effect of this
kind see Box below

The length of the day is not constant

Scientists have observed very small and irregular
variations in the period of rotation of the earth about its
axis, i.e. the length of the day. One of the causes that
they have identified is weather. Due to changes in
weather, large scale movement in the air of the earth’s
atmosphere takes place. This causes a change in the
mass distribution around the axis of the earth, resulting
in a change in the moment of inertia of the earth. Since
the angular momentum of the earth L = I ω must be
conserved, a change in I means a change in rotational
speed of the earth, or in the length of the day.

Acrobats, skaters, divers and other sports persons make excellent use of the principle of
conservation of angular momentum to show off their feats. You must have seen divers
jumping off the diving boards during swimming events in national or international events
such as Asian Games, Olympics or National meets. At the time of jumping, the diver gives
herself a slight rotation, by which she acquires some angular momentum. When she is in
air, there is no torque acting on her and therefore her angular momentum must be conserved.
If she folds her body to decrease her moment of inertia (Fig. 7.24) her rotation must
become faster. If she unfolds her body, her moment of inertia increases and she must
rotate slowly. In this way, by controlling the shape of her body, the diver is able to
demonstrate her feat before entering into pool of water.

Example 7.7 : Shiela stands at the centre of a rotating platform that has frictionless
bearings. She holds a 2.0 kg object in each hand at 1.0 m from the axis of rotation of the

Fig.7.24 : Diver, Sommer
saulting after
jumping off the
diving boards.
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system. The system is initially rotating at 10 rotations per minute. Calculate a) the initial
angular velocity in rad s–1, b) the angular velocity after the objects are brought to a distance

of 0.2 m from the axis of rotation, and (c) change in the kinetic energy of the system. (d)

If the kinetic energy has increased, what is the cause of this increase? (Assume that the

moment of inertia of Shiela and platform I
SP 

stays constant at 1.0 kg m2.)

Solution : (a) 1 rotation = 2π radian

∴ initial angular velocity ω = 
10 2 radian

60 s

× π
 = 1.05 rad s–1

(b) The key idea here is to use the law of conservation of angular momentum. The initial

moment of inertia I
i

= I 
SP

+ m 2
ir  + m 2

ir

= 1.0 kg m2 + (2.0 kg) × (1 m2) + (2.0 kg) × (1 m2)

= 5.0 kg m2.

After the objects are brought to a distance of 0.2 m, final moment of inertia.

I
t

= I
SP

 + 2
fmr  + 2

fmr

= 1.0 kg m2 + 2.0 kg × (0.2)2 m2 + 2.0 kg × (0.2)2 m2

= 1.16 kg m2.

Conservation of angular momentum requires that

I
i
ω

i
= I

f
 ω

f

or ω
f

= 
i i

f

I

I

ω

 = 
2 –1

2

(5.0 kg m ) ×1.05 rad s

1.16kg m

= 4.5 rad s–1

Suppose the change in kinetic energy of rotation is ∆E. Then

∆E = 
1

2
I

f
 ω f

2  – 
1

2
I
i
 ωi

2

= 
1

2
 × 1.16 kg m2 × (4.5)2 (rad s–1)2 – 

1

2
 × 5.0 kg m2

× (1.05)2 (rad s–1)2

= 9.05J

Since final kinetic energy is higher than the initial kinetic energy, there is an increase in  the

kinetic energy of the system.

(d) When Shiela pulls the objects towards the axis, she does work on the system. This

work goes into the system and increases its kinetic energy.
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Intext Questions 7.4

1. A hydrogen molecule consists of two identical atoms, each of mass m and separated
by a fixed distance d. The molecule rotates about an axis which is halfway between
the two atoms, with angular speed ω. Calculate the angular momentum of the molecule.

..................................................................................................................................

2. A uniform circular disc of mass 2.0 kg and radius 20 cm is rotated about one of its
diameters at an angular speed of 10 rad s–1. Calculate its angular momentum about
the axis of rotation.

..................................................................................................................................

3. A wheel is rotating at an angular speed ω about its axis which is kept vertical. Another
wheel of the same radius but half the mass, initially at rest, is slipped on the same axle
gently. These two wheels then rotate with a common speed. Calculate the common
angular speed.

..................................................................................................................................

4. It is said that the earth was formed from a contracting gas cloud. Suppose some time
in the past, the radius of the earth was 25 times its present radius. What was then its
period of rotation on its own axis?

..................................................................................................................................

7.5  Simultaneous Rotational and Translational Motions

We have already noted that if a point in a rigid body is not fixed, it can possess rotational
motion as well as translational motion. The general motion
of a rigid body consists of both these motions. Imagine
the motion of an automobile wheel on a plane horizontal
surface. Suppose you are observing the circular face
(Fig.7.25). Fix your attention at a point P and at the centre
C of the circular face. Remember that the centre of mass
of the wheel lies at the centre of its axis and C is the end
point of the axis. As it rolls, you would notice that point P
rotates round the point C. The point C itself gets translated
in the direction of motion. So the wheel has both the
rotational and translational motions. If point C or the centre
of mass gets translated with velocity v

cm
, the kinetic

energy of translation is

(KE)
tr

= 
1

2
2
cmM v (7.26)

C

P

Fig.7.25
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where M is the mass. And if ω is the angular speed of rotation, the kinetic energy of
rotation is

(KE)
rot

= 
1

2
I ω2 (7.27)

where I is the moment of inertia. The total energy of the body due to translation and
rotation is the sum of these two kinetic energies. An interesting case, where both translational
and rotational motion are involved, is the motion of a body on an inclined plane.

Example 7.8 : Suppose a rigid body has mass M, radius R and moment of inertia I. It is
rolling down an inclined plane of height h (Fig.7.26). At the end of its journey, it has
acquired a linear speed v and an angular speed ω. Assume that the loss of energy due to
friction is small and can be neglected. Obtain the value of v in terms of h.

Fig.7.26 : Motion of a rigid body on an inclined plane

Solution : The principle of conservation of energy implies that the sum of the kinetic
energies due to translation and rotation at the foot of the inclined plane must be equal to
the potential energy that the body had at the top of the inclined plane. Therefore,

(½) Mv  2 + ½ I ω2 = M g h (7.28)

If the motion is pure rolling and there is no slipping, we can write v = R ω. Inserting this
expression is Eqn. (7.28), we get

1

2
M v2 + 

1

2
 I 

v 2

2R
= M g h (7.29)

To take a simple example, let the body be a hoop. Table 7.2 shows that its moment of
inertia about its own axis is MR2. Eqn.(7.29) then gives

1

2
M v2 + 

1

2

2 2

2

M R

R

v
= M g h

or v = g h (7.30)

Do you notice any thing interesting in this equation? The linear velocity is independent
of mass and radius of the hoop. Its means that a hoop of any material and any
radius rolls down with the same speed on the inclined plane.

h

M

R
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Intext Questions 7.5

1. A solid sphere rolls down a slope without slipping. What will be its velocity in terms of
the height of the slope?

..................................................................................................................................

2. A solid cylinder rolls down an inclined plane without slipping. What fraction of its
kinetic energy is translational? What is the magnitude of its velocity after falling
through a height h?

..................................................................................................................................

3. A uniform sphere of mass 2 kg and radius 10cm is released from rest on an inclined
plane which makes an angle of 300 with the horizontal. Deduce its (a) angular
acceleration, (b) linear acceleration along the plane, and (c) kinetic energy as it travels
2m along the plane.

..................................................................................................................................

SECRET OF PULSARS

An interesting example of the conservation of angular momentum is provided by
pulsating stars. These are called pulsars. These stars send pulses of radiation of
great intensity towards us. The pulses are periodic and the periodicity is extremely
precise. The time periods range between a few milliseconds to a few seconds. Such
short time periods show that the stars are rotating very fast. Most of the matter of
these stars is in the form of neutrons. (The neutrons and protons are the building
blocks of the atomic nuclei.) These stars are also called neutron stars. These stars
represent the last stage in their life. The secret of their fast rotation is their tiny size.
The radius of a typical neutron star is only 10 km. Compare this with the radius of
the Sun, which is about 7 × 105 km. The Sun rotates on its axis with a period of about
25 days. Imagine that the Sun suddenly shrinks to the size of a neutron star without
any change in its mass. In order to conserve its angular momentum, the Sun will
have to rotate with a period as short as the fraction of a millisecond.

What You Have Learnt

� A rigid body can have rotational as well as translational motion.

� The equation of translational motion far a rigid body may be written in the same form
as for a single particle in terms of the motion of its centre of mass.

� If a point in the rigid body is fixed, then it can possess only rotational motion.

� The moment of inertia about an axis of rotation is defined as 
i
Σ m ri i

2 .

� The moment of inertia plays the same role in rotational motion as does the mass in
linear motion.
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� The turning effect of a force F on a rigid body is given by the torque τττττ = r ××××× F.

� Two equal and opposite forces constitute a couple. The magnitude of turning effect
of torque is equal to the product of one of the forces and the perpendicular distance
between the line of action of forces.

� The application of an external torque changes the angular momentum of the body.

� When no net torque acts on a body, the angular momentum of the body remains
constant.

� When a cylindrical or a spherical body rolls down an inclined plane without slipping,
its speed is independent of its mass and radius.

Terminal Exercise

1. The weight Mg of a body is shown generally as acting at the centre of mass of the
body. Does this mean that the earth does not attract other particles?

2. Is it possible for the centre of mass of a body to lie outside the body? Give two
examples to justify your answer?

3. In a molecule of carbon monoxide (CO), the nuclei of the two atoms are
1.13 × 10–10m apart. Locate of the centre of mass of the molecule.

4. A grinding wheel of mass 5.0 kg and diameter 0.20 m is rotating with an angular
speed of 100 rad s–1. Calculate its kinetic energy. Through what distance would it
have to be dropped in free fall to acquire this kinetic energy? (Take g = 10.0 m s–2).

5. A wheel of diameter 1.0 m is rotating about a fixed axis with an initial angular speed
of 2rev s–1. The angular acceleration is 3 rev s–2.

(a) Compute the angular velocity after 2 seconds.

(b) Through what angle would the wheel turned during this time?

(c) What is the tangential velocity of a point on the rim of the wheel at t = 2 s?

(d) What is the centripetal acceleration of a point on the rim of the wheel at
t = 2 s?

6. A wheel rotating at an angular speed of 20 rads–1 is brought to rest by a constant
torque in 4.0 seconds. If the moment of inertia of the wheel about the axis of rotation
is 0.20 kg m2, calculate the work done by the torque in the first two seconds.

7. Two wheels are mounted on the same axle. The moment of inertia of  wheel A is
5 × 10–2  kg m2, and that of wheel B is 0.2 kg m2. Wheel A is set spinning at
600 rev min–1. while wheel B is stationary. A clutch now acts to join A and B so that
they must spin together.

(a) At what speed will they rotate?

(b) How does the rotational kinetic energy before joining compare with the kinetic
energy after joining?

(c) What torque does the clutch deliver if A makes 10 revolutions during the operation
of the clutch?
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Motion, Force and Energy 8. You are given two identically looking spheres and told that one of them is hollow.
Suggest a method to detect the hollow one.

9. The moment of inertia of a wheel is 1000 kg m2. Its rotation is uniformly accelerated.
At some instant of time, its angular speed is 10 rad s–1. After the wheel has rotated
through an angle of 100 radians, the angular velocity of the wheel becomes
100 rad s–1. Calculate the torque applied to the wheel and the change in its kinetic
energy.

10. A disc of radius 10 cm and mass 1kg is rotating about its own axis. It is accelerated
uniformly from rest. During the first second it rotates through 2.5 radians. Find the
angle rotated during the next second. What is the magnitude of the torque acting on
the disc?

Answers to Intext Questions

7.1

1. Yes, because the distances between points on the frame cannot change.

2. No. Any disturbance can change the distance between sand particles. So, a heap of
sand cannot be considered a rigid body.

7.2

1. The coordinates of given five masses are A (–1, –1), B (–5, –1), C (6, 3), D (2, 6)
and E (–3, 0) and their masses are 1 kg, 2kg, 3kg, 4kg and 5kg respectively.

Hence, coordinates of centre of mass of the system are

x = 
-1 1 – 5 2 6 3 2 4 – 3 5

1 2 3 4 5

× × + × + × ×
+ + + +  = 0

y = 
–1 1 1 2 3 3 4 6 0 5

1 2 3 4 5

× − × + × + × + ×
+ + + +  = 

30

15
 = 2.0

2. Let the three particle system be as shown in the figure here.
Consider axes to be as shown with 2 kg mass at the origin.

x = 
2 0 1 0.5 3 1 3.5

1 2 3 6

× + × + × =
+ +

m = 0.5 m

y = 

3
2 0 1 3 0 32

1 2 3 12

× + × + ×
=

+ +
m

Hence, the co-ordinates of the centre of mass are 
3.5 3

,
6 12

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

3. Let the two particles be along the x-axis and let their x-coordinates be o and x. The

1 kg

2 kg
3 kg

X

Y
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coordinate of CM is

X = 
1 2

1 2

0m m x

m m

× + ×
+  = 

2

1 2

m x

m m+ , Y = 0

X is also the distance of m
1
 from the CM. The distance of m

2
 from CM is

x – X = x – 
2

1 2

m x

m m+  = 
1

1 2

m x

m m+

∴
X

Xx +  = 
2

1

m

m

Thus, the distances from the CM are inversely proportional to their masses.

7.3

1. Moment of inertia of the system about an axis perpendicular to the plane passing
through one of the corners and perpendicular to the plane of the square,

= m r2 + m (2 r2) + m r2 = 4 m r2

M.I. about the axis along the side = m r2 + m r2 = 2 m r2

Verification : Moment of inertia about the axis QP = m r2 + m r2 + 2 m r2. Now,
according to the theorem of perpendicular axes, MI about SP (2mr2)  + MI about QP
2 m r2 should be equal to MI about the axis through P and perpendicular to the plane
of the square (4 m r2). Since it is true, the results are verified.

2. M.I. of solid sphere about an axis tangential to the sphere

= 
2

5
 M R2 +M R2 = 

7

5
 M R2 according to the theorem of parallel axes.

If radius fo gyration is K, then M K2 = 
7

5
 M R2. So,

Radius of gyration K = R
7

5

7.4
1. Angular momentum

L = 

2 2

4 4

⎛ ⎞
+⎜ ⎟

⎝ ⎠

d d
m m ω

L = 
2

2

ωm d

2. Angular momentum about an axis of rotation (diameter).

L = I ω = m 
r2

4
 × ω
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as M.I about a diameter = 
2

4

m r

∴ L = 20 kg × 
2 2(0.2)

4

m
× 10 rad s–1 = 0.2 kg m2 s–1.

3. According to conservation of angular momentum
I

1
ω = (I

1
 + I

2
) ω

1

where I
1
 is M.I. of the original wheel and I

2
 that of the other wheel, ω is the initial

angular speed and ω
1
 is the common final angular speed.

m r2 ω = 
2 2

2
⎛ ⎞+⎜ ⎟⎝ ⎠

m
m r r ω

1

ω = 
3

2
ω

1 
⇒ ω

1 
= 

2

3
 ω

4. Let the present period of revolution of earth be T and earlier be T
0
. According to the

conservation of angular momentum.

2

5
M (25 R)2 × 

0

2

T

⎛ ⎞π
⎜ ⎟
⎝ ⎠

= 
2

5
 M R2 × 

2π⎛ ⎞
⎜ ⎟
⎝ ⎠T

= 
2

5
M R2 × 

2π⎛ ⎞
⎜ ⎟
⎝ ⎠T

It gives, T
0
 = 6.25 T

Thus, period of revolution of earth in the past T
0
 = 6.25 times the present time period.

7.5

1. Using (I = 
2

5
M R2), Eqn. (7.29) for a solid sphere

1

2
mv2 + 

1

2
I ω2 = m g h

or,
1

2
mv2 + 

1

2
 × 

2

5
m r2 . 

v2

2r
 = m g h

Q  ω = v /r.

It gives v = 
10

.
7

g h

2. For a solid cylinder, I = 
2R

2

m

∴ Total K.E 
1

2
m v2 + 

1

2
I ω2 = 

1

2
m v2 + 

1

2

2R

2

m
.  

v2

2R
 = 

3

4
m v2

Q  ω = v /r
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Hence, fraction of translational K.E. = 

2

2

1
2
3
4

m

m

v

v
 = 

2

3

Proceeding as in Q.1 above : v =
4

3
g h

Answers to Terminal Problems

3. At a distance 0.64 Å from carbon atom.

4. 125 J, 2.5 m

5. (a) 16 π rad s–1 (b) 20 π rad (c) 25 m s–1 (d) 1280 m s–2

6. 30 J

7. (a) 4 π rad s–1 (b) E
i
 = 5 E

f
(c) 49 π N m

9. T = 5 × 104 N m, KE = 5 × 106 J

10. 7.5 rad, τ = 5 × 10–2 J
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� Answer All the questions on a seperate sheet of paper
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about your performance.

Do not send your assignment to NIOS
1. Give an example to show that the average velocity of a moving particle may be zero, but its average speed

can not be zero. (1)

2. Why does the direction of the projectile motion become horizontal at the highest point? (1)

3. Can the law of conservation of linear  momentum be applied for a body falling under gravity ? Explain.
(1)

4. Why is the handle on a door provided at the largest possible distances form the hinges ? (1)

5. Why does moon have no atmosphere ? (1)

6. Draw velocity time graph of a body moving in a straight  line under a constant force. (1)

7. What is the radius of gyration of a disc of radius 20 cm, rotating  about an axis passing through its center
and normal to its plane? (2)

8. A light and a heavy mass have the same kinetic energy, Which one has more momentum? (1)

9. A vector A of magnitude 10 units and another vector B of magnitude 6 units make an angle of 600  with
each other.

Find the scalar product and the magnitude of the vector products of these two vectors. (2)

10. A footballer can kick a 0.5 kg ball with a maximum speed of 10m s-1. What is the maximum horizontal
distance to which he can kick the ball? (2)

11. The displacement of a particle is given by y = at +bt2, where a and b are constants and t is time. Find the
dimensional formula of b/a.

12. The length of the second’s hand of a clock is 10 cm. Calculate the speed of its tip. (2)

180



13. If by some freak of nature the earth collapses to 1/8th  of its present volume, what would be the duration
of a day ?. Explain. (4)

14. Calculate the mean distance of a hypothetical planet from the sun which has a period of revolution of 100
years. You may take the distance between the sun and the earth as 1.5

15. A block of mass 2 kg is placed on plane surface. Its inclination from the horizontal may be changed. The
block is just at the verge of sliding when the inclination of the plans is 300, calculate the acceleration with
which  the bock will slide down when the inclination of the plane is 450. (4)

16. A constant force of 20 N acts for 2s on a body of mass 2 kg initially at rest. How much distance will this
body move in 3s from start? (4)

17. Draw a load-extension graph for a spring. How will you use this graph to calculate (i) force constant of
the spring?

(ii) work done in compressing the spring by a distance x ?

18. Two masses of 3 kg and 5 kg one attached to a massless string and the string is passed
over a frictionless pulley as shown in fig. Calculate the tension in the string and acceleration
of the 3 kg block. (4)

19. Three rods each of mass per unit length 1 kg m-1  and length 20 cm form an equilateral
triangle. Determine (i) The center of mass of the system. (ii)  Moment of inertia of the
system about an axis passing through, the centre of mass and normal to its plane.                 (5)

20. A body of mass m at rest is hit head-on elastically by a body of mass m kg moving with  a speed of u. Find
the magnitude and direction of motion of each body after collision. (5)

3kg

5kg
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8

I

ELASTIC PROPERTIES OF

SOLIDS

n the previous lessons you have studied the effect of force on a body to produce
displacement. The force applied on an object may also change its shape or size. For
example, when a suitable force is applied on a spring, you will find that its shape as well as
size changes. But when you remove the force, it will regain original position. Now apply a
force on some objects like wet modelling clay or molten wax. Do they regain their original
position after the force has been removed? They do not regain their original shape and
size. Thus some objects regain their original shape and size whereas others do not. Such a
behaviour of objects depends on a property of matter called elasticity.

The elastic property of materials is of vital importance in our daily life. It is used to help us
determine the strength of cables to support the weight of bodies such as in cable cars,
cranes, lifts etc. We use this property to find the strength of beams for construction of
buildings and bridges. In this unit you will learn about nature of changes and the manner in
which these can be described.

Objectives

After studying this lesson, you should be able to :

� distinguish between three states of matter on the basis of  molecular theory;

� distinguish between elastic and plastic bodies;

� distinguish between stress and pressure;

� study stress-strain curve for an elastic solid ; and

� define Young’s modulus, bulk modulus, modulus of rigidity and Poisson’s ratio.

8.1 Molecular Theory of Matter : Inter-Molecular Forces

We know that matter is made up of atoms and molecules. The forces which act between
them are responsible for the structure of matter. The interaction forces between molecules
are known as inter-molecular forces.
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molecular forces with inter
molecular separation is
shown in Fig. 8.1.

When the separation is
large, the force between
two molecules is attractive
and weak. As the
separation decreases, the
net force of attraction
increases up to a particular
value and beyond this, the
force becomes repulsive.

At a distance R = R
 0  

the net force between the molecules is zero. This separation is called
equilibrium separation. Thus, if inter-molecular separation R > R

0
 there will be an

attractive force between molecules. When R < R
0 
, a repulsive force will act between

them.

In solids, molecules are very close to each other at their equilibrium separation
( �  10–10 m). Due to high intermolecular forces, they are almost fixed at their positions.
You may now appreciate why a solid has a definite shape.

In liquids, the average separation between the molecules is somewhat larger
 ( � 10–8 m). The attractive force is weak and the molecules are comparatively free to
move inside the whole mass of the liquid. You can understand now why a liquid does not
have fixed shape. It takes the shape of the vessel in which it is filled.

In gases, the intermolecular separation is significantly larger and the molecular force is
very weak (almost negligible). Molecules of a gas are almost free to move inside a container.
That is why gases do not have fixed shape and size.

Ancient Indian view about Atom

Kanada was the first expounder of the atomic concept in the world. He lived around
6th century B.C. He resided at Prabhasa (near Allahabad).

According to him, everything in the universe is made up of Parmanu or Atom. They
are eternal and indestructible. Atoms combine to form different molecules. If two
atoms combine to form a molecule, it is called duyanuka and a triatomic molecule is
called triyanuka. He was the author of “Vaisesika Sutra”.

The size of atom was also estimated. In the biography of Buddha (Lalitavistara), the
estimate of atomic size is recorded to be of the order 10–10 m, which is very close to
the modern estimate of atomic size.

8.2 Elasticity

You would have noticed that when an external force is applied on an object, its shape or
size (or both) change, i.e. deformation takes place. The extent of deformation depends on

Fo
rc

e 
F

Attraction R0

distance R

Repulsion

O

Fig. 8.1 : Graph between inter-molecular force and Inter
molecular separation.
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and the external force. When the
deforming forces are withdrawn,
the body tries to regain its original
shape and size.

You may compare this with a
spring loaded with a mass or a
force applied on the string of a
bow or pressing of a rubber ball.
If you apply a force on the string
of the bow to pull it ( Fig 8.2), you
will observe that its shape changes. But on releasing the string, the bow regains its original
shape and size.

The property of matter to regain its original shape and size after removal of the deforming
forces is called elasticity.

8.2.1 Elastic and Plastic Bodies

A body which regains its original state completely on removal of the deforming force is
called perfectly elastic. On the other hand, if it completely retains its modified form even
on removing the deforming force, i.e. shows no tendency to recover the deformation, it is
said to be perfectly plastic. However, in practice the behaviour of all bodies is in between
these two limits. There exists no perfectly elastic or perfectly plastic body in nature. The
nearest approach to a perfectly elastic body is quartz fiber and to the perfectly plastic is
ordinary putty. Here it can be added that the object which opposes the deformation more
is more elastic. No doubt elastic deformations are very important in science and technology,
but plastic deformations are also important in mechanical processes. You might have seen
the processes such as stamping, bending and hammering of metal pieces. These are possible
only due to plastic deformations.

The phenomenon of elasticity can be explained in terms of inter-molecular forces.

8.2.2 Molecular Theory of Elasticity

You are aware that a solid is composed of a large number of atoms arranged in a definite
order. Each atom is acted upon by forces due to neighbouring atoms. Due to inter-atomic
forces, solid takes such a shape that each atom remains in a stable equilibrium. When the
body is deformed, the atoms are displaced from their original positions and the inter-
atomic distances change. If in deformation, the separation increases beyond their equilibrium
separation (i.e., R >R

0
), strong attractive forces are developed. However, if inter–atomic

separation decreases (i.e. R < R
0
), strong repulsive forces develop. These forces, called

restoring forces, drive atoms to their original positions. The behaviour of atoms in a solid
can be compared to a system in which balls are connected with springs.

Now, let us learn how forces are applied to deform a body.

Fig 8.2 : Force applied on the string of a bow changes
it shape

string

Bow
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When an external force or system of forces is applied on a body, it undergoes a change in
the shape or size according to nature of the forces. We have explained that in the process
of deformation, internal restoring force is developed due to molecular displacements from
their positions of equilibrium. The internal restoring force opposes the deforming force.
The internal restoring force acting per unit area of cross-section of a deformed
body is called stress.

In equilibrium, the restoring force is equal in magnitude and opposite in direction to the
external deforming force. Hence, stress is measured by the external force per unit area of
cross-section when equilibrium is attained. If the magnitude of deforming force is F and it
acts on area A, we can write

Stress = 
restoring force

area
 = 

deforming force ( )

area ( )

F

A

or Stress = 
F

A
(8.1)

The unit of stress is Nm–2 . The stress may be longitudinal, normal or shearing. Let us
study them one by one.

(i) Longitudinal Stress : If the deforming forces are along the length of the body, we
call the stress produced as longitudinal stress, as shown in its two forms in Fig 8.3
(a) and Fig 8.3 (b).

F F

(a)

F F

(b)
Fig   8.3 (a) : Tensile stress;  (b) Compressive stress

(ii) Normal Stress : If the deforming forces are applied uniformly and normally all over
the surface of the body so that the change in its volume occurs without change in
shape (Fig. 8.4), we call the stress produced as normal stress. You may produce
normal stress by applying force uniformly over the entire surface of the body.  Deforming
force per unit area normal to the surface is called pressure while restoring force developed
inside the body per unit area normal to the surface is known as stress.

F

F F

F

F

F

F

F

F
F F F

F

F

(a) (b)
Fig. 8.4 : Normal stress
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(iii) Shearing Stress : If the deforming forces act tangentially or parallel to the surface
(Fig 8.5a) so that shape of the body changes without change in volume, the stress is
called shearing stress. An example of shearing stress is shown in Fig 8.5 (b) in which
a book is pushed side ways. Its opposite face is held fixed by the force of friction.

F

F
A

F
F

Fig. 8.5: (a) Shearing stress;  (b) Pushing a book side ways

8.2.4 Strain

Deforming forces produce changes in the dimensions of the body. In general, the strain is
defined as the change in dimension (e.g. length, shape or volume) per unit
dimension of the body. As the strain is ratio of two similar quantities, it is a dimensionless
quantity.

Depending on the kind of stress applied, strains are of three types : (i) linear strain,(ii)
volume (bulk) strain, and (iii) shearing strain.

(i) Linear Strain : If on application of a longitudinal deforming force, the length l of a
body changes by ∆l (Fig. 8.6), then

linear strain = 
change in length

original length  = 
∆l
l

(ii) Volume Strain : If on application of a uniform pressure ∆p, the volume V of the
body changes by ∆V ( Fig 8.7) without change of shape of the body, then

Volume strain = 
change in volume

original volume  = 
∆V

V
         →

Fig. 8.7: Volume strain

V
∆V

∆p

∆p

∆p

FA

l
∆ l

Fig. 8.6: Linear strain
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(i) Shearing strain: When the deforming forces are tangential (Fig 8.8), the shearing
strain is given by the angle θ through which a line perpendicular to the fixed plane is
turned due to deformation. (The angle θ is usually very small.) Then we can write

θ = 
∆x

y

Fig. 8.8 : Shearing strain

8.2.5  Stress-strain Curve for a Metallic Wire

Refer to Fig. 8.9 which shows variation of stress with strain when a metallic wire of
uniform cross-section is subjected to an increasing load. Let us study the regions and points

on this curve that are of particular importance.

(i) Region of Proportionality OA is a straight line which indicates that in this region,
stress is linearly proportional to strain and the body behaves like a perfectly elastic
body.

(ii) Elastic Limit : If we increase the strain a little beyond A, the stress is not linearly
proportional to strain. However, the wire still remains elastic, i.e. after removing the
deforming force (load), it regains its original state. The maximum value of strain for
which a body(wire) shows elastic property is called elastic limit. Beyond the elastic
limit,  a body behaves like a plastic body.

(iii) Point C : When the wire is stretched beyond the limit B, the strain increases more
rapidly and the body becomes plastic. It means that even if the deforming load is
removed, the wire will not recover its original length. The material follows dotted line
CD on the graph on gradual reduction of load. The left over strain on zero load strain
is known as a permanent set. After point E on the curve, no extension is recoverable.

Fig. 8.9: Stress-strain curve for a steel wire

Strain

Elastic limit

A

B
C

F
E

Plastic behaviour
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S
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s
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O
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x
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(iv) Breaking point F : Beyond point E, strain increases very rapidly and near point F,
the length of the wire increases continuously even without increasing of load. The
wire breaks at point F. This is called the breaking point or fracture point and the
corresponding stress is known as breaking stress.

The stress corresponding to breaking point F is called breaking stress or tensile strength.
Within the elastic limit, the maximum stress which an object can be subjected to is called
working stress and the ratio between working stress and breaking stress is called factor
of safety. In U.K, it is taken 10, in USA it is 5. We have adopted UK norms. If large
deformation takes place between the elastic limit and the breaking point, the material is
called ductile. If it breaks soon after the elastic limit is crossed, it is called brittle e.g.
glass.

8.2.6 Stress-Strain Curve for Rubber

When we stretch a rubber cord to a few times its natural length, it returns to its original
length after removal of the forces. That is, the elastic region is large and there is no well
defined plastic flow region. Substances having large strain are called elastomers. This
property arises from their molecular arrangements. The stress-strain curve for rubber is
distinctly different from that of a metallic wire. There are two important things to note
from Fig. 8.10. Firstly, you can observe that there is no region of proportionality. Secondly,
when the deforming force is gradually reduced, the original curve is not retraced, although
the sample finally acquires its natural length. The work done by the material in returning to
its original shape is less than the work done by the deforming force. This difference of
energy is absorbed by the material and appears as heat. (You can feel it by touching the
rubber band with your lips.) This phenomenon is called elastic hysteresis.

Elastic hysteresis has an important application in shock absorbers. A part of energy
transferred by the deforming force is retained in a shock absorber and only a small part of
it is transmitted to the body to which the shock absorber is attached.

8.2.7. Steel is more Elastic than Rubber

A body is said to be more elastic if on
applying a large deforming force on
it, the strain produced in the body is
small. If you take two identical rubber
and steel wires and apply equal
deforming forces on both of them, you
will see that the extension produced
in the steel wire is smaller than the
extension produced in the rubber wire.
But to produce same strain in the two
wires, significantly higher stress is
required in the steel wire than in rubber
wire. Large amount of stress needed
for deformation of steel indicates that

Fig. 8.10: Stress-strain curve for rubber
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magnitude of internal restoring force produced in steel is higher than that in rubber. Thus,
steel is more elastic than rubber.

Example 8.1 : A load of 100 kg is suspended by a wire of length 1.0 m and cross
sectional area 0.10 cm2. The wire is stretched by 0.20 cm. Calculate the (i) tensile stress,
and (ii) strain in the wire. Given, g = 9.80 ms–2.

Solution :

(i) Tensile stress = 
F

A
 = 

Mg

A

= 
– 2

–4 2

(100 kg) (9.80 ms )

0.10 10 m×

 = 9.8 x 107 Nm–2

(ii) Tensile strain = 
∆l
l

 = 
–20.20 10 m

1.0 m

×

= 0.20 × 10–2

Example 8.2 : Calculate the maximum length of a steel wire that can be suspended
without breaking under its own weight, if its breaking stress = 4.0 x 108 Nm–2, density =
7.9 × 103 kg m–3 and g = 9.80 ms–2

Solution :The weight of the wire W = Alρg, where, A is area of cross section of the wire,
l is the maximum length and  ρ is the density of the wire. Therefore, the breaking stress

developed in the wire due to its own weight 
W

A
= ρlg. We are told that

breaking stress is 4.0 x 108 Nm–2. Hence

l = 
8 –2

3 –3 –2

4.0 × 10 Nm

(7.9×10 kg m ) (9.8 ms )

= 0.05 × 105 m

= 5 × 103 m = 5 km.

Now it is time to take a break and check your understanding

Intext Questions 8.1

1. What will be the nature of inter-atomic forces when deforming force applied on an
object (i) increases, (ii) decreases the inter-atomic separation?

................................................................................................................................................
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2. If we clamp a rod rigidly at one end and a force is applied normally to its cross section
at the other end, name the type of stress and strain?

................................................................................................................................................

3. The ratio of stress to strain remains constant for small deformation of a metal wire.
For large deformations what will be the changes in this ratio?

................................................................................................................................................

4. Under what conditions, a stress is known as breaking stress ?

................................................................................................................................................

5. If mass of 4 kg is attached to the end of a vertical wire of length 4 m with a diameter
0.64 mm, the extension is 0.60 mm. Calculate the tensile stress and strain?

................................................................................................................................................

8.3 Hooke’s Law

In 1678, Robert Hooke obtained the stress-strain curve experimentally for a number of
solid substances and established a law of elasticity known as Hooke’s law. According to
this law: Within elastic limit, stress is directly proportional to corresponding strain.
i.e. stress α strain

or
stress

strain
 = constant (E) (8.2)

This constant of proportionality E is a measure of elasticity of the substance and is called
modulus of elasticity. As strain is a dimensionless quantity, the modulus of elasticity has
the same dimensions (or units) as stress. Its value is independent of the stress and strain
but depends on the nature of the material. To see this, you may like to do the following
activity.

Activity 8.1

Arrange a steel spring with its top fixed with a rigid support on a
wall and a  metre scale along its side, as shown in the Fig. 8.11.

Add 100 g load at a time on the bottom of the hanger in steps. It
means that while putting each 100 g load, you are increasing the
stretching force by 1N. Measure the extension. Take the reading
upto 500 g and note the extension each time.

Plot a graph between load and extension. What is the shape of
the graph? Does it obey Hooke’s law?

The graph should be a straight line indicating that the ratio (load/
extension) is constant.

Repeat this activity with rubber and other materials.

steel
spring

hanger
meter
scale

Fig. 8.11: Hooke’s law
apparatus
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You should know that the materials which obey Hooke’s law are used in spring balances
or as force measurer, as shown in the Fig. 8.11. You would have seen that when some
object is placed on the pan, the length of the spring increases. This increase in length
shown by the pointer on the scale can be treated as a measure of the increase in force
(i.e., load applied).

Robert Hooke
(1635 – 1703)

Robert Hooke, experimental genius of seventeenth century,  was a
contemporary of Sir Isaac Newton. He had varied interests and
contributed in the fields of physics, astronomy, chemistry, biology,
geology, paleontology, architecture and naval technology. Among
other accomplishments he has to his credit the invention of a uni-

versal joint, an early proto type of the respirator, the iris diaphragm, anchor escape-
ment and balancing spring for clocks. As chief surveyor, he helped rebuild London
after the great fire of 1666. He formulated Hooke’s law of eleasticity and correct
theory of combustion. He is also credited to invent or improve meteorological instru-
ments such as barometer, anemometer and hygrometer.

8.3.1 Moduli of Elasticity

In previous sections, you have learnt that there are three kinds of strain. It is therefore
clear that there should be three modulli of elasticity corresponding to these strains. These
are Young’s modulus, Bulk Modulus and Modulus of rigidity corresponding to linear
strain, volume strain and shearing strain, respectively. We now study these one by one.

(i) Young’s Modulus: The ratio of the longitudinal stress to the longitudinal strain is
called Young’s modulus for the material of the body.

Suppose that when a wire of length L and area of cross-section A is stretched by a force
of magnitude F, the change in its length is equal to ∆L. Then

Longitudinal stress = 
F

A

and Longitudinal strain = 
∆L

L

Hence, Young’s modulus  Y = 
∆ /

F/A

L L
 = 

×

×∆

F L

A L

If the wire of radius r is suspended vertically with a rigid support and a mass M hangs at
its lower end, then A = πr2 and F = M g.

∴ Y = 2
π ∆

M g L

r L (8.3)

The SI unit of Y in is N m–2. The values of Young’s modulus for a few typical substances
are given in Table. 8.1. Note that steel is most elastic.

(ii) Bulk Modulus: The ratio of normal stress to the volume strain is called bulk modulus

Table 8.1. Young’s modulus of
some typical materials

Name of
substance Y (109Nm–2)

Aluminium 70

Copper 120

Iron 190

Steel 200

Glass 65

Bone 9

Polystyrene 3
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of the material of the body.

If due to increase in pressure P, volume V of the body decreases by ∆V without change in
shape, then

Normal stress = ∆P

Volume strain = ∆V/V

Bulk modulus B = 
/

∆ ∆
∆ ∆

=
P P

V
V V V

(8.4)

The reciprocal of bulk modulus of a substance is called compressibility :

k = 
1

B
 = 

1

V
 

∆
∆

V

P
(8.5)

Gases being most compressible are least elastic while solids are most elastic or least
compressible i.e. B

solid
 > B

liquid
 > B

gas

(iii) Modulus of Rigidity or Shear Modulus: The ratio of the shearing stress to shearing
strain is called modulus of rigidity of the material of the body.

If a tangential force F acts on an area A and θ is the shearing strain, the modulus of rigidity

η = 
Shearing stress

Shearing strain  = 
/F A

θ
 = 

θ

F

Α
(8.6)

You should know that both solid and fluids have bulk modulus. However, fluids do not have
Young’s modulus and shear modulus because a liquid can not sustain a tensile or shearing
stress.

Example 8.3 : Calculate the force required to increase the length of a wire of steel of
cross sectional area 0.1 cm2 by 50%. Given Y = 2 × 1011 N m–2.

Solution : Increase in the length of wire = 50%. If  ∆L is the increase and L is the normal

length of wire then  
∆L

L
 = 

1

2

∴ Y = 
×

×∆

F L

A L

or F = 
Y × × ∆A L

L
 = 

11 – 2 –4 2(2 10 Nm ) (0.1 10 m ) 1

2

× × ×

=  0.1 × 107 N = 106 N

Example 8.4 : When a solid rubber ball is taken from the surface to the bottom of a lake,
the reduction in its volume is 0.0012 %. The depth of lake is 360 m, the density of lake
water is 103 kgm–3 and acceleration due to gravity at the place is
10 m s–2. Calculate the bulk modulus of rubber.
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Increase of pressure on the ball

P = hρg = 360m × 103 kgm–3 × 10 ms–3

= 3.6 × 106 Nm–2

Volume strain = 
∆V

V
 = 

0.0012

100
 = 1.2 × 10-5

Bulk Modulus B =  
∆
PV

V
  =  

6

–5

3.6 10

1.2 10

×
×  = 3.0 × 1011 Nm–2

8.3.2  Poisson’s Ratio

You may have noticed that when a rubber tube is
stretched along its length, there is a contraction in its
diameter (Fig.8.12). (This is also true for a wire but may
not be easily visible.) While the length increases in the
direction of forces, a contraction occurs in the
perpendicular direction. The strain perpendicular to the
applied force is called lateral strain. Poisson pointed
out that within elastic limit,  lateral strain is directly
proportional to longitudinal strain i.e. the ratio of lateral
strain to longitudinal strain is constant for a material body
and is known as Poisson’s ratio. It is denoted by a Greek
letter  σ (sigma). If  α and β are the longitudinal strain
and lateral strain respectively, then Poisson’s  ratio

σ = β / α.

If a wire (rod or tube) of length l  and diameter d is elongated by applying a stretching
force by an amount ∆ l  and its diameter decreases by  ∆d, then longitudinal strain

α = 
∆l
l

lateral strain β = 
d

d

∆

and Possion’s ratio σ =  
d/d∆

∆ /l l
 = 

d

l
 

d∆
∆l

(8.7)

Since Poisson’s ratio is a ratio of two strains, it is a pure number.

The value of Poisson’s ratio depends only on the nature of material and for most of the
substances, it lies between 0.2 and 0.4. When a body under tension suffers no change in
volume, i.e. the body is perfectly incompressible, the value of Poisson’s ratio is maximum
i.e. 0.5. Theoretically, the limiting values of Poisson’s ratio are –1 and 0.5.

Fig:  8.12  : A stretched rubber
tube.

d

l

∆ l

F

d–∆d
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Take two identical wires. Make one wire to execute torsional vibrations for some time.
After some time, set the other wire also in similar vibrations. Observe the rate of decay of
vibrations of the two wires.

You will note that the vibrations decay much faster in the wire which was vibrating for
longer time. The wire gets tired or fatigued and finds it difficult to continue vibrating. This
phenomenon is known as elastic fatigue.

Some other facts about elasticity :

1. If we add some suitable impurity to a metal, its elastic properties are modified.
For example, if carbon is added to iron or potassium is added to gold, their elasticity
increases.

2. The increase in temperature decreases elasticity of materials. For example, carbon,
which is highly elastic at ordinary temperature, becomes plastic when heated by
a current through it. Similarly, plastic becomes highly elastic when cooled in liquid
air.

3. The value of modulus of elasticity is independent of the magnitude of stress and
strain. It depends only on the nature of the material of the body.

Example 8.5: A Metal cube of side 20 cm is subjected to a shearing stress of
104 Nm–2. Calculate the modulus of rigidity, if top of the cube is displaced by
0.01 cm. with respect to bottom.

Solution : Shearing stress = 104 Nm–2, ∆x = 0.01 cm, and y = 20 cm.

∴ Shearing strain = 
x

y

∆
 = 

0.01cm

20 cm

Hence, = 0.005

Modulus of rigidity  η = 
Shearing stress

Shearing strain  = 
4 –210 Nm

.0005

      =  2 × 107 N m–2

Example 8.6 : A 10 kg mass is attached to one end of a copper wire of length 5 m long
and 1 mm in diameter. Calculate the extension and lateral strain, if Poisson’s ratio is 0.25.
Given Young’s modulus of the wire = 11 × 1010 N m–2.

Solution : Here L= 5 m, r = 0.05 × 10-3 m,  y =  11 × 1010 Nm–2  F = 10 × 9.8 N, and
σ  =  0.25.
Extension produced in the wire
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∆ l = 2

.
Y

F

rπ
l

 = 
– 2

–3 2 10 –2

(10 kg) × (9.8ms ) × (5m)

3.14 (0.5×10 m) × (11×10 Nm )

= 
4

490

8.63 10×
 m

= 5.6 × 10-3 m

longitudinal streain = α = 
∆l
l

= 
–35.6 10 m

5m

×

= 1.12 × 10-2

Poission’s ratio (σ) = 
lateral strain( )

longitudinal strain( )

β
α

∴ lateral strain β = σ × α

= 0.125 × 1.12 × 10-2

= 0.14 × 10–3.

Now take a break to check your progress.

Intext Questions 8.2

1. Is the unit of longitudinal stress same as that of Young’s modulus of elasticity? Give
reason for your answer.

................................................................................................................................................

2. Solids are more elastic than liquids and gases. Justify

................................................................................................................................................

3. The length of a wire is cut to half. What will be the effect on the increase in its length
under a given load?

................................................................................................................................................

4. Two wires are made of the same metal. The length of the first wire is half that of the
second and its diameter is double that of the second wire. If equal loads are applied
on both wires, find the ratio of increase in their lengths?

................................................................................................................................................

5. A wire increases by 10–3 of its length when a stress of 1 × 108 Nm-2 is applied to it.
Calculate Young’s modulus of material of the wire.

................................................................................................................................................
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Elastic behaviour of materials plays an important role in
our day to day life. Pillars and beams are important parts
of our structures. A uniform beam clamped at one end
and loaded at the other is called a Cantilever [Fig.(i)].
The hanging bridge of Laxman Jhula in Rishkesh and
Vidyasagar Sethu in Kolkata are supported on cantilevers.

A cantilever of length l, breadth b and thickness d undergoes a depression δ at its
free end when it is loaded by a weight of mass M :

3

3
4M g

b d

l
δ =

γ

It is now easy to understand as to why the cross-section of girders and rails is kept
I-shaped (Fig. ii). Other factors remaining same, δ α d–3. Therefore, by increasing
thickness, we can decrease depression under the same load more effectively. This
considerably saves the material without sacrificing strength for a beam clamped at
both ends and loaded in the middle (Fig.iii), the sag in the middle is given by

3

34

M g

b d
=

l
δ

γ

Thus for a given load, we will select a material with a large Young’s
modulus Y and again a large thickness to keep δ small. However, a deep
beam may have a tendency to buckle (Fig iv). To avoid this, a large load
bearing surface is provided. In the form I-shaped cross-section, both these
requirements are fulfilled.

In cranes, we use a thick metal rope to lift and move heavy loads from
one place to another. To lift a load of 10 metric tons with a steel rope of
yield strength 300 mega pascal, it can be shown, that the minimum area of
cross section required will be 10 cm or so. A single wire of this radius will
practically be a rigid rod. That is why ropes are always made of a large
number of turns of thin wires braided together. This provides ease in
manufacturing, flexibility and strength.

Do you know that the maximum height of a mountain on earth can be ~ 10 km or else

the rocks under it will shear under its load.Cantilever

(i)

(ii) (iii)

(iv)
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What You Have Learnt

� A force which causes deformation in a body is called deforming force.

� On deformation, internal restoring force is produced in a body and enables it to regain
its original shape and size after removal of deforming force.

� The property of matter to restore its original shape and size after withdrawal of
deforming force is called elasticity.

� The body which gains completely its original state on the  removal of the deforming
forces is called perfectly elastic.

� If a body completely retains its modified form after withdrawal of deforming force, it
is said to be perfectly plastic.

� The stress equals the internal restoring force per unit area. Its  units is Nm–2

� The strain equals the change in dimension (e.g. length, volum or shape) per unit
dimension. Strain has no unit.

� In normal state, the net inter-atomic force on an atom is zero. If the separation between
the atoms becomes more than the separation in normal state, the interatomic forces
become attractive. However, for smaller separation, these forces become repulsive.

� The maximum value of stress up to which a body shows elastic property is called its
elastic limit. A body beyond the elastic limit behaves like a plastic body.

� Hooke’s law states that within elastic limit, stress developed in a body is directly
proportional to strain.

� Young’s modulus is the ratio of longitudinal stress to longitudinal strain.

� Bulk modulus is the ratio of normal stress  to volume strain.

� Modulus of rigidity is the ratio of the shearing stress to shearing strain.

� Poisson’s ratio is the ratio of lateral strain to longitudinal strain.

Terminal Questions

1. Define the term elasticity. Give examples of elastic and plastic objects.

2. Explain the terms stress, strain and Hooke’s Law.

3. Explain elastic properties of matter on the basis of inter-molecular forces.

4. Define Young’s modulus, Bulk modulus and modulus of rigidity.

5. Discuss the behaviour of a metallic wire under increasing load with the help of stress-
strain graph.

6. Why steel is more elastic than rubber.

7. Why poission’s ratio has no units.

8. In the three states of matter i.e., solid, liquid and gas, which is more elastic and why?
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and Fluids 9. A metallic wire 4m in length and 1mm in diameter is stretched by putting a mass 4kg.

Determine the alongation produced. Given that the Young’s modulus of elasticity for
the material of the wire is 13.78 × 1010 N m–2.

10. A sphere contracts in volume by 0.02% when taken to the bottom of sea 1km deep.
Calculate the bulk modulus of the material of the sphere. You make take density of
sea water as 1000 kgm–3 and g = 9.8ms–2.

11. How much force is required to have an increase of 0.2% in the length of a metallic wire
of radius 0.2mm. Given Y = 9 × 1010 N m–2.

12. What are shearing stress, shearing strain and modulus of rigidity?

13. The upper face of the cube of side 10cm is displaced 2mm parallel to itself when a
tangential force of 5 × 105 N is applied on it, keeping lower face fixed. Find out the strain?

14. Property of elasticity is of vital importance in our lives. How does the plasticity helps us?

15. A wire of length L and radius r is clamped rigidly at one end. When the other end of
wire is pulled by a force F, its length increases by x. Another wire of the same
material of length 2L and radius 2r, when pulled by a force 2F, what will be the
increase in its length.

Answers to Intext Questions

8.1

1. If R > R
0 
, the nature of force is attractive and if (ii) R < R

0
 it is repulsive.

2. Longitudinal stress and linear strain.

3. The ratio will decrease.

4. The stress corresponding to breaking point is known as breaking stress.

5. 0.12 × 1010N m–2.

8.2
1. Both have same units since strain has no unit?

2. As compressibility of liquids and gases is more than solids, the bulk modulus is recip-
rocal of compressibility. Therefore solids are more elastic than liquid and gases.

3. Half.

4. 1 : 8

5. 1 × 1011N m– 2.

Answers To Terminal Problems
9. 0.15 m.

10. 4.9 × 10–10 N m–2

11. 22.7 N

13. 2 × 10–2

15. x.
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PROPERTIES OF FLUIDS

9

n the previous lesson, you have learnt that interatomic forces in solids are responsible for
determining the elastic properties of solids.Does the same hold for liquids and gases? (These
are collectively called fluids because of their nature to flow in suitable conditions). Have
you ever visited the site of a dam on a river in your area / state/ region? If so, you would
have noticed that as we go deeper, the thickness of the walls increases. Did you think of
the underlying physical principle? Similarly, can you believe that you can lift a car, truck or
an elephant by your own body weight standing on one platform of a hydraulic lift? Have
you seen a car on the platform of a hydraulic jack at a service centre? How easily is it
lifted? You might have also seen that mosquitoes can sit or walk on still water, but we
cannot do so. You can explain all these observations on the basis of properties of liquids like
hydrostatic pressure, Pascal’s law and surface tension. You will learn about these in this
lesson.

Have you experienced that you can walk faster on land than under water? If you pour
water and honey in separate funnels you will observe that water comes out more easily
than honey. In this lesson we will learn the properties of liquids which cause this difference
in their flow.

You may have experienced that when the opening of soft plastic or rubber water pipe is
pressed, the stream of water falls at larger distance. Do you know how a cricketer swings
the ball? How does an aeroplane take off? These interesting observations can be explained
on the basis of Bernoulli’s principle. You will learn about it in this lesson.

Objectives

After studying this lesson, you would be able to :

� calculate the hydrostatic pressure at a certain depth inside a liquid;

� describe buoyancy and Archimedes Principle;

� state Pascal’s law and explain the functioning of hydrostatic press , hydraulic lift
and hydraulic brakes.;

� explain surface tension  and surface energy ;

� derive an expression for the  rise of water in a capillary tube;
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� differentiate between streamline and turbulent motion of fluids;

� define critical velocity of flow of a liquid and calculate Reynold’s number;

� define viscosity and explain some daily life phenomena based on viscosity of a
liquid; and

� state Bernoulli’s Principle and apply it to some daily life experiences.

9.1  Hydrostatic Pressure

While pinning papers, you must have experienced that it is easier to work with a sharp
tipped pin than a flatter one. If area is large, you will have to apply greater force. Thus we
can say that for the same force, the effect is greater for smaller area. This effect of force
on unit area is called pressure.

Refer to Fig. 9.1. It shows the shape of the side wall of a dam. Note that it is thicker at the
base. Do we use similar shape for the walls of our house. No, the walls of rooms are of
uniform thickness. Do you know the basic physical characteristic which makes us to
introduce this change?

Fig. 9.1 : The structure of side wall of a dam

From the previous lesson you may recall that solids develop
shearing stress when deformed by an external force, because
the magnitude of inter-atomic forces is very large. But fluids
do not have shearing stress and when an object is submerged
in a fluid, the force due to the fluid acts normal to the surface
of the object (Fig. 9.2). Also, the fluid exerts a force on the
container normal to its walls at all points.

The normal force or thrust per unit area exerted by a fluid is
called pressure. We denote it by P :

P = 
Thrust

area
(9.1)

The pressure exerted by a fluid at rest is known as hydrostatic
pressure

Fig. 9.2 : Force exerted by a
fluid on a
submerged object
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The SI Unit of pressure is Nm–2 and is also called pascal (Pa) in the honour of French
scientist Blaise Pascal.

9.1.1 Hydrostatic Pressure at a point in
side a liquid

Consider a liquid in a container and an imaginary right
circular cylinder of cross sectional area A and height h, as
shown in Fig. 9.3. Let the pressure exerted by the liquid
on the bottom and top faces of the cylinder be P

1
, and P

2
,

respectively. Therefore, the upward force exerted by the
liquid on the bottom of the cylinder is P

1
A and the downward

force on the top of the cylinder is P
2
 A.

∴ The net force in upward direction is (P
1
A – P

2
A).

Now mass of the liquid in cylinder = density × volume of the cylinder
     = ρ. A. h  where ρ is the density of the liquid.

∴ Weight of the liquid in the cylinder =  ρ. g. h. A
Since the cylinder is in equilibrium, the resultant force acting or it must be equal to zero, i.e.

P
1
 A

   
 – P

2
A – ρ g h  A = 0

⇒ P
1  

– P 
2

= ρ g h (9.2)

So, the pressure P at the bottom of a column of liquid of height h is given by

P =  ρ g h

That is, hydrostatic pressure due to a fluid increases linearly with depth. It is for this reason
that the thickness of the wall of a dam has to be increased with increase in the depth of the
dam.

If we consider the upper face of the cylinder to be at the open surface of the liquid, as
shown in Fig.(9.4), then P

2  
 will have to be replaced by  P

atm
 (Atmospheric pressure). If

we denote P
1
 by P, the absolute  pressure at a depth below the surface will be

Fig. 9.3 : An imaginary
cylinder of height h
in a liquid.

P
2A

h

P
1

Fig. 9.4 : Cylinder in a liquid with one face at the surface of the liquid

P – P
atm

 + ρ g h

or P = P
atm

 + ρ g h (9.3)

free surface of 
the liquid

h

P1

P2
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Note that the expression given in Eqn. (9.3) does not show any term having area of the
cylinder It means that pressure in a liquid at a given depth is equal, irrespective of the
shape of the vessel(Fig 9.5).

Fig. 9.5 : Pressure does not depend upon shape f the versel.

Example 9.1: A cemented wall of thickness one metre can withstand a side pressure of
105 Nm–2. What should be the thickness of the side  wall at the bottom of a water dam of
depth 100 m. Take density of water = 103 kg m–3 and g = 9.8 ms–2.
Solution: The pressure on the side wall of the dam at its bottom is given by

P = h d g
= 100 × 103× 9.8
= 9.8 × 105 Nm–2

Using unitary method, we can calculate the thickness of the wall, which will withstand
pressure of 9.8×105 Nm–2. Therefore thickness of the wall

t = 
59.8 10

510

× –2

–2

Nm

Nm
= 9.8 m

9.1.2 Atmospheric Pressure

We know that the earth is surrounded by an atmosphere upto a height of about 200 km.
The pressure exerted by the atmosphere is  known as the atmospheric pressure. A German
Scientist O.V. Guericke performed an experiment to demonstrate the force exerted on
bodies due to the atmospheric pressure. He took two hollow hemispheres made of copper,
having diameter 20 inches and tightly joined them with each other. These could easily be
separated when air was inside. When air between them was exhausted with an air pump,
8 horses were required to pull the hemispheres apart.

Toricelli used the formula for hydrostatic pressure to determine
the magnitude of atmospheric pressure.

He took a tube of about 1 m long filled with mercury of density
13,600 kg m–3 and placed it vertically inverted in a mercury
tub as shown is Fig. 9.6. He observed that the column of
76 cm of mercury above the free surface remained filled in
the tube.

In equi1ibrium, atmospheric pressure equals the pressure
exerted by the mercury column. Therefore,

Fig: 9.6 : Toricelli’s
Barometer

Vacuum

76 cm = h

P

AB
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P
atm

=  h ρ g  = 0.76 × 13600 × 9.8 Nm–2

= 1.01 × 10 5   Nm–2

= 1.01 × 105   Pa

9.2 Buoyancy

It is a common experience that lifting an object in water is easier than lifting it in air. It is
because of the difference  in the upward forces exerted by these fluids on these object.
The upward force, which acts on an object when submerged in a fluid, is known as buoyant
force. The nature of buoyant force that acts on objects placed inside a fluid was discovered
by. Archimedes Based on his observations, he enunciated a law now known as Archimedes
principle. It state that when an object is submerged partially or fully in a fluid, the
magnitude of the buoyant force on it is always equal to the weight of the fluid displaced
by the object.

The different conditions of an object under buoyant force is shown in Fig 9.7.

Fig. 9.7:
(a) : The magnitude of (b) :  A totally submerged (c) : A totally submerged
buoyant force B on the object of density less than  object denser than the fluid
object is exactly equal that of the fluid sinks.
to its weight experiences a net upward
in equilibrium. force.

Another example of buoyant force is provided by the motion
of hot air balloon shown in Fig. 9.8. Since hot air has less
density than cold air, a net upward buoyant force on the balloon
makes it to float.

Floating objects

You must have observed a piece of wood floating on the
surface of water. Can you identify the forces acting on it
when it is in equilibrium? Obviously, one of the forces is due
to gravitational force, which pulls it downwards. However,
the displaced water exerts buoyant force which acts upwards.
These forces balance each other in equilibrium state and the
object is then said to be floating on water. It means that a
floating body displaces the fluid equal to its own weight.

W B

W

B

W

B

Fig. 9.8: Hot air balloon
floating in air
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( 287- 212   B.C)

A Greek physicist, engineer and mathematician was perhaps
the greatest scientist of his time. He is well known for
discovering the nature of buoyant forces acting on objects.
The Archimedes screw is used even today. It is an inclined
rotating coiled tube used originally to lift water from the hold
of ships. He also invented the catapult and devised the system
of levers and pulleys.

Once Archimedes was asked by king Hieron of his native city Syracuse to determine
whether his crown was made up of pure gold or alloyed with other metals without
damaging the crown. While taking bath, he got a solution, noting a partial loss of
weight when submerging his arm and legs in water. He was so excited about his
discovery that he ran undressed through the streets of city shouting “ Eureka, Eureka’’,
meaning I have found it.

 9.3 Pascal’s Law

While travelling by a bus, you must have observed that the driver stops the bus by applying
a little force on the brakes by his foot. Have you seen the hydraulic jack or lift which can
lift a car or truck up to a desired height? For this purpose you may visit a motor workshop.
Packing of cotton bales is also done with the help of hydraulic press which works on the
same principle.

These devices are based on Pascal’s law, which states that when pressure is applied at
any part of an enclosed liquid, it is transmitted undiminished to every point of the
liquid as well as to the walls of the container.

This law is also known as the law of transmission of liquid pressure.

9.3.1  Applications of Pascal’s Law

(A)  Hydraulic Press/Balance/Jack/Lift

It is a simple device based on Pascal’s law and is used to lift heavy loads by applying a
small force. The basic arrangement is shown in Fig.9.9. Let a force F

1 
be applied to the

smaller piston of area A
1
. On the other side, the piston of large area A

2
 is attached to a

platform where heavy load may be placed. The pressure on the smaller piston is transmitted
to the larger piston through the liquid filled in-between the two pistons. Since the pressure
is same on both the sides, we have

Fig. 9.9 : Hydraulic lift Fig. 9.10 :  Hydraulic jack

F1

A1
A2

Heavy Load

F2
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force

area
 = 

1

1

F

A

According to Pascal’s law, the same pressure is transmitted to the larger cylinder of area A
2
.

Hence the force acting on the larger piston

F
2

= pressure × area = 
1

1

F

A
 × A

2
(9.4)

It is clear from Eqn. ( 9.4) that force F
2 
> F

1
 by an amount equal to the ratio (A

2
/A

1
)

With slight modifications, the same arrangement is used in hydraulic press, hydraulic balance,
and hydraulic Jack, etc.

(B) Hydraulic Jack or Car Lifts

At automobile service stations, you would
see that cars, buses and trucks are raised
to the desired heights so that a mechanic
can work under them (Fig 9.10). This is
done by applying pressure, which is
transmited through a liquid to a large
surface to produce sufficient force needed
to lift the car.

(C) Hydraulic Brakes

While traveling in a bus or a car, we see
how a driver applies a little force by his
foot on the brake paddle to stop the
vehicle. The pressure so applied gets
transmitted through the brake oil to the piston
of slave cylinders, which, in turn, pushes the
break shoes  against the break drum in all
four wheels, simultaneously. The wheels stop
rotating at the same time and the vehicle
comes to stop instantaneously.

Intext Questions 9.1

1. Why are the shoes used for skiing on snow made big in size?

..................................................................................................................................

2 Calculate the pressure at the bottom of an ocean at a depth of 1500 m. Take the
density of sea water 1.024 × 103 kg m–3, atmospheric pressure=1.01 × 105 Pa
and g = 9.80 ms–2.

..................................................................................................................................

3. An elephant of weight 5000 kg f is standing on the bigger piston of area 10 m2  of a

Fig. 9.11(a) :  Hydraulic balance

Fig. 9.11(b) :  Hydraulic press
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hydraulic lift. Can a boy of 25 kg wt standing on the smaller piston of area 0.05m2

balance or lift the elephant?

..................................................................................................................................

4. If a pointed needle is pressed against your skin, you are hurt but if the same force is
applied by a rod on your skin nothing may happen. Why?

..................................................................................................................................

5. A body of 50 kg f is put on the smaller piston of area 0.1m2 of a big hydraulic lift.
Calculate the maximum weight that can be balanced on the bigger piston of area
10m2 of this hydraulic lift.

..................................................................................................................................

9.4  Surface Tension

It is common experience that in the absence of external forces, drops of liquid are always
spherical in shape. If you drop small amount of mercury from a small height, it spreads in
small spherical globules. The water drops falling from a tap or shower are also spherical.
Do you know why it is so? You may have enjoyed the soap bubble game in your childhood.
But you can not make pure water bubbles with same case? All the above experiences are
due to a characteristic property of liquids, which we call surface tension. To appreciate
this, we would like you to do the following activity.

Activity 9.1

1. Prepare a soap solution.

2. Add a small amount of glycerin to it.

3. Take a narrow hard plastic or glass tube. Dip its one end in the soap solution so that
some solution enters into it.

4. Take it out and blow air at the other end with your mouth.

5. Large soap bubble will be formed.

6. Give a jerk to the tube to detach the bubble which then floats in the air.

To understand as to how surface tension arises, let us refresh our knowledge of
intermolecular forces. In the previous lesson, you have studied the variation of intermolecular
forces with distance between the centres of molecules/atoms.

The intermolecular forces are of two types: cohesive and adhesive. Cohesive forces
characterise attraction between the molecules of the same substance, whereas force of
adhesion is the attractive force between the molecules of two different substances. It is
the force of adhesion which makes it possible for us to write on this paper. Gum, Fevicol
etc. show strong adhesion.

We hope that now you can explain why water wets glass while mercury does not.
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To show adhesive forces between glass and water molecule.

1. Take a clean sheet of glass

2. Put a few drops of water on it

3. Hold water containing side downward.

4. Observe the water drops.

The Adhesive forces between glass and water molecules keep the water drops sticking on
the glass sheet, as shown in Fig. 9.12.

9.4.1 Surface Energy

The surface layer of a liquid in a container exhibits
a property different from the rest of the liquid. In
Fig. 9.13, molecules are shown at different heights
in a liquid. A molecule, say P, well inside the liquid is
attracted by other molecules from all sides.
However, it is not the case for the molecules at the
surface.

Molecules S and R, which lie on the surface layer,
experience a net resultant force downward because
the number of molecules in the upper half of sphere
of influence attracting these molecules is less than
those in the lower half. If we consider the molecules of liquid on the upper half of the
surface of the liquid or liquid-air interface, even then the molecules will experience a net
downward force because of less number of molecules of liquid. Therefore, if any liquid
molecule is brought to the surface layer, work has to be done against the net inward force,
which increases their potential energy. This means that surface layer possesses an additional
energy, which is termed as surface energy.

For a system to be in equilibrium, its potential energy must be minimum. Therefore,
the area of surface must be minimum. That is why free surface of a liquid at rest tends
to attain minimum surface area. This produces a tension in the surface, called surface
tension.

Fig. 9.12 Water drops remain stuck to the glass sheet

Glass sheet

Water drops

Fig 9.13 : Resultant force acting on P
and Q is zero but molecules
R and S experience a net
vertically downward force.

B
D

A
C

Spheres of molecular attraction

S

P

R
Surface film

Q



Notes

Physics

208

MODULE - 2
Mechanics of Solids

and Fluids
Surface tension is a property of the liquid surface due to which it has the tendency
to decrease its surface area. As a result, the surface of a liquid acts like a stretched
membrane You can visualise its existence easily by placing a needle gently on water
surface and see it float.

Let us now understand this physically. Consider an imaginary line AB drawn at the surface
of a liquid at rest, as shown in Fig 9.14. The surface on either side of this line exerts a
pulling force on the surface on the other side.

The surface tension of a liquid can be defined as the force
per unit length in the plane of liquid surface :

T = F/L (9.5)

where surface tension is denoted by T and F is the magnitude
of total force acting in a direction normal to the imaginary line
of length L, (Fig 9.14) and tangential to the liquid surface. SI
unit of surface tension is Nm–1 and its dimensions are [MT–2].

Let us take a rectangular frame, as shown in Fig. 9.15 having
a sliding wire on one of its arms. Dip the frame in a soap
solution and take out. A soap film will be formed on the frame
and have two surfaces. Both the surfaces are in contact with

the sliding wire, So we can say that surface tension acts on the wire due to both these
surfaces.

Let T be the surface tension of the soap solution and L be the length of the wire.

Fig.9.15 : A Film in equilibirum

The force exerted by each surface on the wire will be equal to T × L. Therefore, the total
force F on the wire = 2TL.

Suppose that the surfaces tend to contract say, by ∆x. To keep the wire in equilibrium we
will have to apply an external uniform force equal to F. If we increase the surface area of
the film by pulling the wire with a constant speed through a distance ∆x, as shown in Fig.
9.15b, the work done on the film is given by

W = F × ∆x = T × 2L × ∆x

where 2L × ∆x is the total increase in the area of both the surfaces of the film. Let us
denote it by A. Then, the expressopm for work done on the film simplifies to

W = T × A

L
F F

F T =  ×2 l

∆x

Fig.  9.14 : Direction of
surface tension
on a liquid
surface

B

F

F

A
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This work done by the external force is stored as the potential energy of the new surface
and is called as surface energy. By rearranging terms, we get the required expresion for
surface tension :

T = W/A (9.6)

Thus, we see that surface tension of a liquid is equal to the work done in increasing
the surface area of its free surface by one unit. We can also say that surface tension
is equal to the surface energy per unit area.

We may now conclude that surface tension

� is a property of the surface layer of the liquid or the interface between a liquid and
any other substance like air;

� tends to reduce the surface area of the free surface of the liquid;

� acts perpendicular to any line at the free surface of the liquid and is tangential to its
meniscus;

� has genesis in intermolecular forces, which depend on temperature; and

� decreases with temperature.

A simple experiment described below demonstrates the property of surface tension of
liquid surfaces.

Activity 9.3

Take a thin circular frame of wire and dip it in a soap solution. You will find that a soap film
is formed on it. Now take a small circular loop of cotton thread and put it gently on the soap
film. The loop stays on the film in an irregular shape as shown in Fig. 9.16(a). Now take a
needle and touch its tip to the soap film inside the loop. What do you observe?

Fig 9.16 (a) : A soap film with Fig. 9.16 (b) : The shape of the thread
closed loop of thread without inner soap film

You will find that the loop of cotton thread takes a circular shape as shown in Fig 9.16(b).
Initially there was soap film on both sides of the thread. The surface on both sides pulled it
and net forces of surface tension were zero. When inner side was punctured by the needle,
the outside surface pulled the thread to bring it into the circular shape, so that it may
acquire minimum area.

9.4.2 Applications of Surface Tension
(a) Mosquitoes sitting on water

In rainy reason, we witness spread of diseases like dengue, malaria and chickungunya by
mosquito breeding on fresh stagnant water. Have you seen mosquitoes sitting on water
surface? They do not sink in water due to surface tension. At the points where the legs of

Thread

A Soap film

Thread

Soap film

T 
T 

T 
A

T 
T 
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the mosquito touch the liquid surface, the surface becomes concave due to the weight of
the mosquito. The surface tension acting tangentially on the free surface, therefore, acts
at a certain angle to the horizontal. Its vertical component acts upwards. The total force
acting vertically upwards all along the line of contact of certain length balances the weight
of the mosquito acting vertically downward, as shown in Fig 9.17.

(a) (b)

Fig. 9.17 : The weight of a mosquito is balanced by the force of surface tension = 2π π π π π rT cos θθθθθ
(a) Dip in the level to form concave surface, and (b) magnified image

(b)  Excess pressure on concave side of a spherical surface

Consider a small surface element with a line PQ of unit length on it, as shown in Fig.  9.18.
If the surface is plane, i.e. θ = 900, the surface tension on the two sides tangential to the
surface balances and the resultant tangential force is zero [Fig. 9.18 (a)]. If, however, the
surface is convex, [Fig. (9.18 (b)] or concave [Fig. 9.18 (c)], the forces due to surface
tension acting across the sides of the line PQ will have resultant force R towards the
center of curvature of the surface.

Thus, whenever the surface is curved, the surface tension gives rise to a pressure directed
towards the center of curvature of the surface. This pressure is balanced by an equal and
opposite pressure acting on the surface. Therefore, there is always an excess pressure on
the concave side of the curved liquid surface [Fig. (9.18 b)].

Fig. 9.18: (a)  plane surface (b) convex surface (c) concave surface

(i) Spherical drop
A liquid drop has only one surface i.e. the outer surface. (The liquid area in contact with
air is called the surface of the liquid.) Let  r be the radius of a small spherical liquid drop
and P be excess pressure inside the drop (which is concave on the inner side, but convex
on the outside). Then

P  = (P
i 
– P

0
)

where P
i
 and P

0 
are the inside and outside pressures of the drop, respectively (Fig 9.19a)

If the radius of the drop increases by ∆r due to this constant excess pressure P, then

Leg of mosquito
leg of mosquitoT  cos  θ

T  sin  θ

T  cos  θ

T  sin   θ
Tθ

mg

θ

P

T r
Q
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     force)P Q
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increase in surface area of the spherical drop is given by

∆A = 4π (r + ∆r)2 – 4πr2

= 8π r ∆r

where we have neglected the term containing second power
of ∆r.

The work done on the drop for this increase in area is given
by

W = Extra surface energy = T∆A = T. 8π r ∆r (9.7)

If the drop is in equilibrium, this extra surface energy is equal to the work  done due to
expansion under the pressure difference or excess pressure P:

Work done = P ∆V = P. 4π r2 ∆r (9.8)

On combining Eqns. (9.7) and (9.8), we get

P. 4π r2 ∆r = T.8 π r ∆r

Or P =   2 T/ r (9.9)

(ii) Air Bubble in water

An air bubble also has a single surface, which is the inner surface
(Fig. 9.19b). Hence, the excess of pressure P inside an air bubble
of radius r in a liquid of surface tension T is given by

P =   2T/ r (9.10)

  (iii) Soap bubble floating in air

The soap bubble has two surfaces of equal surface area (i.e.
the outer and inner), as shown in Fig. 9.19(c). Hence, excess
pressure inside a soap bubble floating in air is given by

P = 4T/ r (9.11)

where T is suface tension of soap solution.

This is twice that inside a spherical drop of same radius or an air
bubble in water. Now you can understand why a little extra pressure
is needed to form a soap bubble.

Example 9.3:  Calculate the difference of pressure between inside and outside of a
(i) spherical soap bubble in air, (ii) air bubble in water, and (iii) spherical drop of water,
each of radius 1 mm. Given surface tension of water = 7.2 × 10–2 Nm–1 and surface
tension of soap solution = 2.5 × 10–2 Nm–1.

Solution:

(i) Excess pressure inside a soap bubble of radius r is

Fig. 9.19 (a) : A spherical
drop

p
0

r + ∆r

air

Fig. 9.19 b : Air Bubble

p
0

p
c

air

Fig.9.19 (c)

p
0

p
c

air

air
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P = 4T/r

= 
–24 2.5 10

–31 10 m

× ×

×
 Nm–1

= 100 Nm–2

(ii)   Excess pressure inside an air bubble in water

= 2T ′/ r

= 
–2 –12 7.2 10 Nm

–31 10 m

× ×
×

= 144 Nm–2

(iii)  Excess pressure inside a spherical drop of water =2T ′/ r

= 144 Nm–2

(c)  Detergents and surface tension

You may have seen different advertisements highlighting that detergents can remove oil
stains from clothes. Water is used as cleaning agent. Soap and detergents lower the surface
tension of water. This is desirable for washing and cleaning since high surface tension of
pure water does not allow it to penetrate easily between the fibers of materials, where dirt
particles or oil molecules are held up.

You now know that surface tension of soap solution is smaller than that of pure water but the
surface tension of detergent solutions is smaller than that of soap solution. That is why
detergents are more effective than soap. A detergent dissolved in water weakens the hold of
dirt particles on the cloth fibers which therefore, get easily detached on squeezing the cloth.

Fig: 9.20 : Detergent action

The addition of detergent, whose molecules attract water as well as oil, drastically reduces
the surface tension (T) of water-oil. It may even become favourable to form such interfaces,

Inert ends surround dirt and the platter dirt 
can now be dislodged say by moving water. Platter with particles of greasy dirt

Water is added; dirt is not dislooged

Detergent is added the inert waxy ends of its
molecules are attracted to boundary where 
water meals dirt.

Soap
molecules

water 

Soap molecules with head attracted to water

Dirt is held suspended, surrounded by soap
molecules.
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i.e. globes of dirt surrounded by detergent and then by water. This kind of process using
surface active detergents is important for not only cleaning the clothes but also in recovering
oil, mineral ores etc.

(d) Wax-Duck floating on water

You have learnt that the surface tension of liquids decreases due to dissolved impurities. If
you stick a tablet of camphor to the bottom of a wax-duck and float it on still water
surface, you will observe that it begins to move randomly after a minute or two. This is
because camphor dissolves in water and the surface tension of water just below the duck
becomes smaller than the surrounding liquid. This creates a net difference of force of
surface tension which makes the duck to move.

Now, it is time for you to check how much you have learnt. Therefore, answer the following
questions.

Intext Questions 9.2

1. What is the difference between force of cohesion and force of adhesion?

................................................................................................................................................

2. Why do small liquid drops assume a spherical shape.

................................................................................................................................................

3. Do solids also show the property of surface tension? Why?

................................................................................................................................................

4. Why does mercury collect into globules when poured on plane surface?

................................................................................................................................................

5. Which of the following has more excess pressure?

(i) An air bubble in water of radius 2 cm. Surface tension of water is 727 × 10–3 Nm–1 or

(ii) A soap bubble in air of radius 4 cm. Surface tension of soap solution is 25 × 10–3 Nm–1.

9.5 Angle of Contact

You can observe that the free surface of a liquid kept in a container is curved. For example,
when water is filled in a glass jar, it becomes concave but if we fill water in a paraffin wax
container, the surface of water becomes convex. Similarly, when mercury is filled in a
glass jar, its surface become convex. Thus, we see that shape of the liquid surface in a
container depends on the nature of the liquid, material of container and the medium above
free surface of the liquid. To characterize it, we introduce the concept of angle of contact.

It is the angle that the tangential plane to the liquid surface makes with the tangential
plane to the wall of the container, to the point of contact, as measured from within
the liquid, is known as angle of contact.
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Fig. 9.21 shows the angles of contact
for water in a glass jar and paraffin jar.
The angle of contact is acute for concave
spherical meniscus, e.g. water with glass
and obtuse (or greater than 900) for
convex spherical meniscus e.g. water
in paraffin or mercury in glass tube.

Various forces act on a molecule in the
surface of a liquid contained in a vessel
near the boundary of the menisus. As
the liquid is present only in the lower
quadrant, the resultant cohesive force
acts on the molecule at P symmetrically,
as shown in the Fig.9.22(a). Similarly due
to symmetry, the resultant adhesive

force Fa acts outwards at right angles to the walls of the container vessel . The force F
c

can be resolved into two mutually perpendicular components Fc cos θ acting vertically
downwards and Fc sin θ acting at right angled to the boundary, The value of the angle of
contact depends upon the relative values of Fc and Fa.

Fig. 9.22 : Different shapes of liquid meniscuses

CASE 1:  If  Fa > Fc sin θ, the net horizontal force is outward and the resultant of (Fa – Fc

sin θ) and Fc cos θ lies outside the wall. Since liquids can not sustain constant shear, the
liquid surface and hence all the molecules in it near the boundary adjust themselves at right
angles to Fc so that no component of F acts  tangential to the liquid surface. Obviously
such a surface at the boundary is concave spherical ( Since radius of a circle is perpendicular
to the circumference at every point.) This is true in the case of water filled in a glass tube.

Case 2 : If  Fa <  Fc sin θ the resultant F of (Fc sin θ – Fa) acting horizontally and
Fc cos θ  acting vertically down wards is in the lower quadrant acting into the liquid. The

θ θ

Fig 9.21 : Nature of free surface when water is
filled in (a) glass jar, and
(b) paraffin wax jar

Fa
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Fa

FcFc  cos θ

Fc  sin θ
θFc
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(a) (b) (c)
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liquid surface at the boundary, therefore, adjusts itself at right angles to this and hence
becomes convex spherical. This is true for the case of mercury filled in the glass tube.

Case 3 :When Fa = Fc sinθ,  the resultant force acts vertically downwards and hence the
liquid surface near the boundary becomes horizontal or plane.

9.6 Capillary Action

You might have used blotting paper to absorb extra ink from your notebook. The ink rises

in the narrow air gaps in the blotting paper. Similarly, if the lower end of a cloth gets wet,

water slowly rises upward. Also water given to the fields rises in the innumerable capillaries

in the stems of plants and trees and reaches the branches and leaves. Do you know that

farmers plough their fields only after rains so that the capillaries formed in the upper layers

of the soil are broken. Thus, water trapped in the soil is taken up by the plants. On the other

hand, we find that when a capillary tube is dipped into mercury, the level of mercury inside

it is below the outside level. Such an important phenomenon of the elevation or depression

of a liquid in an open tube of small  cross- section (i.e., capillary tube) is basically due to

surface tension and is known as capillary action.

The phenomenon of rise or depression of liquids in capillary tubes is known as
capillary action or capillarity.

9.6.1 Rise of a Liquid in a Capillary Tube

Let us take a capillary tube dipped in a liquid, say water. The meniscus inside the tube will
be concave, as shown in Fig. 9.23 (a). This is essentially because the forces of adhesion
between glass and water are greater than cohesive forces.

Fig. 9.23 : Capillary action

Let us consider four points A, B, C and D near the liquid-air interface Fig. 9.23(a). We
know that pressure just below the meniscus is less than the pressure just above it by 2T/R, i.e.

P
B

= P
A  

– 2T/R (9.12)

where T is surface tension at liquid-air interface and R is the radius of concave surface.

But pressure at A is equal to the pressure at D and is equal to the atmospheric pressure
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h

D

C

A

B
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P (say). And pressure at D is equal to pressure at C . Therefore, pressure at B is less than
pressure at D. But we know that the pressure at all points at the same level in a liquid must
be same. That’s why water begins to flow from the outside region into the tube to make up
the deficiency of pressure at point B.

Thus liquid begins to rise in the capillary tube to a certain height h (Fig 9.23 b) till the
pressure of liquid column of height h becomes equal to 2T/R..Thereafter, water stops
rising. In this condition

h ρ g = 2 T/R (9.13)

where ρ is the density of the liquid and g is the acceleration due to gravity. If r be radius
of capillary tube  and θ be the angle of contact, then from
Fig. 9.24, we can write

  R  = r /cosθ

Substituting this value of R in Equation (9.13)

h p g = 2T/ r /cos θ

or     h = 2T  cosθ  /  r ρ g (9.14)

It is clear from the above expression that if the radius of
tube is less (i.e. in a  very fine bore capillary), liquid rise
will be high.

Intext Questions  9.3

1. Does the value of angle of contact depend on the surface tension of the liquid?

..................................................................................................................................

2. The angle of contact for a solid and liquid is less than the 900. Will the liquid wet the
solid? If a capillary is made of that solid, will the liquid rise or fall in it?

..................................................................................................................................

3. Why it is difficult to enter mercury in a capillary tube, by simply dipping it into a vessel
containing mercury while designing a thermometer.

..................................................................................................................................

4. Calculate the radius of a capillary to have a rise of 3 cm when dipped in a vessel
containing water of surface tension 7.2 × 10–2 N m–1. The density of water is
1000 kg m–3, angle of contact is zero, and g = 10 m s–2.

..................................................................................................................................

5. How does kerosene oil rise in the wick of a lantern?

................................................................................................................................................

Fig.9.24 : Angle of contactS
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If you stir a liquid taken in a beaker with a glass rod in the
middle, you will note that the motion of the liquid near the
walls and in the middle is not same (Fig.9.25). Next watch
the flow of two liquids (e.g. glycerin and water) through
identical pipes. You will find that water flows rapidly out of
the vessel whereas glycerine flows slowly. Drop a steel ball
through each liquid. The ball falls more slowly in glycerin
than in water. These observations indicate a characteristic
property of the liquid that determines their motion. This
property is known as viscosity. Let us now learn how it
arises.

9.7.1 Viscosity

We know that when one body slides over the other, a frictional force acts between them.
Similarly, whenever a fluid flows, two adjacent layers of the fluid exert a tangential force
on each other; this force acts as a drag and opposes the relative motion between them.
The property of a fluid by virtue of which it opposes the relative motion in its adjacent
layers is known as viscosity.

Fig. 9.26 shows a liquid flowing through a tube. The layer of the liquid in touch with the
wall of the tube can be assumed to be stationary due to friction between the solid wall
and the liquid. Other layers are in motion and have different velocities Let v be the velocity
of the layer at a distance x from the surface and v + dv be the velocity at a distance x +
dx.

Fig. 9.26 : Flow of a liquid in a tube: Different layers move with different velocities

Thus, the velocity changes by dv in going through a distance dx perpendicular to it. The
quantity dv/dx is called the velocity gradient.

The viscous force F between two layers of the fluid is proportional to

•  area (A) of the layer in contact : F α A

Fig. 9.25: Water being
stirred with a
glass rod

Moving
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•  velocity gradient (dv/dx) in a direction perpendicular to the flow of liquid : F α dv/dx

On combining these, we can write

F α A dv/dx

or F = – η A (dv/dx) (9.15)

where η  is constant of proportionality and is called coefficient of viscosity. The negative
sign indicates that force is frictional in nature and opposes motion.

The SI unit of coefficient of viscosity is Nsm–2. In cgs system, the unit of viscosity is poise.

1 poise = 0.1 Nsm–2

Dimensions of coefficient of viscosity are [ML–1 T–1]

9.8 Types of Liquid Flow

Have you ever seen a river in floods? Is it similar to the flow of water in a city water
supply system? If not, how are the two different? To discover answer to such questions,

let as study the flow of liquids.

9.8.1 Streamline Motion

The path followed by fluid particles is
called line of flow. If every particle
passing through a given point of the path
follows the same line of flow as that of
preceding particles, the flow is said to
be streamlined. A streamline can be
represented as the curve or path whose
tangent at any point gives the direction

of the liquid velocity at that point. In steady flow, the streamlines coincide with the line of
flow (Fig. 9.27).

Note that streamlines do not intersect each other because two tangents can then be drawn
at the point of intersection giving two directions of velocities, which is not possible.

When the velocity of flow is less than the critical velocity of a given liquid flowing through
a tube, the motion is streamlined. In such a case, we can imagine the entire thickness
of the stream of the liquid to be made up of a large number of plane layers (laminae)
one sliding past the other, i.e. one flowing over the other. Such a flow is called laminar
flow.

If the velocity of flow exceeds the critical velocity v
c
, the mixing of streamlines takes

place and the flow path becomes zig-zag. Such a motion is said to be turbulent.

9.8.2  Equation of Continuity

If an incompressible, non-viscous fluid flows through a tube of non-uniform cross section,

Fig. 9.27: Streamline flow

Table 10.1 : Viscosity of a
few typical fluids

Name T [0C] Viscosity η
of fluid (PR)

Water 20 1.0 × 10–3

Water 100 0.3 × 10–3

blood 37 2.7 × 10–3

Air 40 1.9 × 10–5
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the product of the area of cross section and the fluid speed at any
point in the tube is constant for a streamline flow. Let A

1
 and A

2

denote the areas of cross section of the tube where the
fluid is entering and leaving, as shown in Fig. 9.28.
If v

1
 and v

2
 are the speeds of the fluid at

the ends A and B respectively, and
ρ is the density of the fluid, then
the liquid entering the tube at A
covers a distance v

1
 in one

second. So volume of the liquid entering per second= A
1
 × v

1
. Therefore

Mass of the liquid entering per second at point A = A
1 
v

1 
ρ

Similarly, mass of the liquid leaving per second at point B = A
2
 v

2
 ρ

Since there is no accumulation of fluid inside the tube, the mass of the liquid crossing any
section of the tube must be same. Therefore, we get

A
1 
v

1 
ρ = A

2
 v

2
 ρ

or A
1 
v

1
= A

2
 v

2

This expression is called equation of continuity.

9.8.3  Critical Velocity and Reynolds’s Number

We now know that when the velocity of flow is less than a certain value, valled critical
velocity, the flow remains streamlined. But when the velocity of flow exceeds the critical
velocity, the flow becomes turbulent.

The value of critical velocity of any liquid depends on the

• nature of the liquid, i.e. coefficient of viscosity ( η ) of the liquid;

• diameter of the tube (d) through which the liquid flows; and

• density of the liquid  (ρ).

Experiments show that v
c
 α η ; v

c
 α 

1

ρ
 and v

c
 α 

1

d
.

Hence, we can write

v
c

= R .η/ρ d (9.16)

where R is constant of proportionality and is called Reynolds’s Number. It has no dimensions.
Experiments show that if R is below 1000, the flow is laminar. The flow becomes unsteady
when R is between 1000 and 2000 and the flow becomes turbulent for R greater than 2000.

Example 9.1: The average speed of blood in the artery (d =2.0 cm) during the resting
part of heart’s cycle is about 30 cm s–1. Is the flow laminar or turbulent? Density of blood
1.05 g cm–3; and η = 4.0 × 10–2 poise.

Solution: From Eqn. (9.16) we recall that Reynold’s number R = v
c
  ρ d/η.  On substituting

Fig. 9.28: Liquid flowing through a tube

A2

B

A1

A
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the given values, we get

R =  
–1 –3

–2 –1 –1

(30 cm s ) 2cm (1.05gcm )

(4.0 10 gcm s )

× ×
×

= 1575

Since 1575 < 2000, the flow is unsteady.

9.9  Stokes’ Law

George Stokes gave an empirical law for the magnitude of the tangential backward viscous
force F acting on a freely falling smooth spherical body of radius r  in a highly viscous
liquid of coefficient of viscosity η moving with velocity v. This is known as Stokes’ law.

According to Stokes’ law

F α η  r v

or F = K η r v

where K  is constant of proportionality. It has been found experimentally that K = 6π.

Hence Stokes’ law can be written as

F = 6π η r v (9.17)

Stokes’ Law can also be derived using the method of dimensions as follows:

According to Stokes, the viscous force depends on:

� coefficient of viscosity (η) of the medium

� radius of the spherical body (r)

� velocity of the body (v)

Then F α ηa  rb vc

or F = K ηa  rb vc

where K is constant of proportionality

Taking dimensions on both the sides, we get

[MLT–2] = [ML–1T–1]a [L]b [LT–1]c

or [MLT–2] = [Ma L–a+b+c T–a-c]

Comparing the exponents on both the sides and solving the equations we get a = b = c = 1.

Hence F = K η r v
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9.9.1 Terminal Velocity

Let us consider a spherical body of radius r and density ρ  falling
through a liquid of density σ.

The forces acting on the body will be

(i) Weight of the body W acting downward.

(ii) The viscous force F acting vertically upward.

(iii) The buoyant force B acting upward.

Under the action of these forces, at some instant the net force on the body becomes zero,
(since the viscous force increases with the increase of velocity). Then, the body falls with
a constant velocity known as terminal velocity. We know that magnitude of these forces
are

F = 6π η r v
0

where v
0
  is the terminal velocity.

W = (4/3) π r3  ρg

and B = (4/3) π r3  σg

The net force is zero when object attains terminal velocity. Hence

6π η r v
0

= 
4

3
 π r3  ρg  –  

4

3
 π r3  σg

Hence v
0  

= 
22 ( – )

9

r gρ σ
η (9.18)

9.9.2 Applications of Stokes’ Law

A. Parachute

When a soldier jumps from a flying aeroplane, he falls with acceleration due to gravity  g
but due to viscous drag in air, the acceleration goes on decreasing till he acquires terminal
velocity. The soldier then descends with constant velocity and opens his parachute close
to the ground at a pre-calculated moment, so that he may land safely near his destination.

B. Velocity of rain drops

When raindrops fall under gravity, their motion is opposed by the viscous drag in air. When
viscous force becomes equal to the force of gravity, the drop attains a terminal velocity.
That is why rain drops reaching the earth do not have very high kinetic energy.

Example 9.2: Determine the radius of a drop of rain falling through air with terminal
velocity 0.12 ms–1. Given η = 1.8 × 10–5 kg m–1 s–1, ρ = 1.21 kg  m–3, σ = 1.0 × 103  kg m–3

and g = 9.8 m s–2.

Solution: We know that terminal velocity is given by

Fig. 9.29 : Force acting on a sphere
falling in viscous fluid

B F

W

viscous liquid

v
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0

= 
22 ( – )

9

ρ σ
η

r g

On rearranging terms, we can write

r = 
09

2 ( – )g

η 
ρ σ

v

=   
–59 1.8 10 0.12

2 (1000 –1.21) 9.8

× × ×
m

= 10–5 m

Intext Questions  9.4

1. Differentiate between streamline flow and turbulent flow?
..................................................................................................................................

2. Can two streamlines cross each other in a flowing liquid?

..................................................................................................................................

3. Name the physical quantities on which critical velocity of a viscous liquid depends.

..................................................................................................................................

4. Calculate the terminal velocity of a rain drop of radius 0.01m if the coeflicient of
viscosity of air is 1.8 × 10–5 Ns m–2 and its density is 1.2 kg m–3. Density of water =
1000 kg m–3. Take g = 10 m s–2.

..................................................................................................................................

5. When a liquid contained in a tumbler is stirred and placed for some time, it comes to
rest, Why?

..................................................................................................................................

Daniel Bernoulli (1700-1782)

Daniel Bernoulli, a Swiss Physicist and mathematician was born
in a family of mathematicians on February 8, 1700. He made
important contributions in hydrodynamics. His famous work,
Hydrodyanamica was published in 1738. He also explained the
behavior of gases with changing pressure and temperature, which
led to the development of kinetic theory of gases.

He is known as the founder of mathematical physics. Bernoulli’s principle is used to
produce vacuum in chemical laboratories by connecting a vessel to a tube through
which water is running rapidly.
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Have you ever thought how air circulates in a dog’s burrow, smoke comes quickly out of a
chimney or why car’s convertible top bulges upward at high speed? You must have definitely
experienced the bulging upwards of your umbrella on a stormy- rainy day. All these can be
understood on the basis of Bernoulli’s principle.

Bernoulli’s Principle states that where the velocity of a fluid is high, the pressure is
low and where the velocity of the fluid is low, pressure is high.

9.10.1 Energy of a Flowing Fluid

Flowing fluids possess three types of energy. We are familiar with the kinetic and potential
energies. The third type of energy possessed by the fluid is pressure energy. It is due to the
pressure of the fluid. The pressure energy can be taken as the product of pressure difference
and its volume. If an element of liquid of mass m, and density d is moving under a pressure
difference p, then

Pressure energy = p × (m/d) joule

Pressure energy per unit mass = (p/d) J kg–1

9.10.2  Bernoulli’s Equation
Bernoulli developed an equation that expresses this principle quantitatively. Three important
assumptions were made to develop this equation:

1.The fluid is incompressible, i.e. its density does not change when it passes from a wide
bore tube to a narrow bore tube.

2.The fluid is non-viscous or the effect of viscosity is not to be taken into account.

3.The motion of the fluid is streamlined.

Fig. 9.30

We consider a tube of varying cross section shown in the Fig. 9.30. Suppose at point A the
pressure is P

1
, area of cross section A

1
, velocity of flow v

1
, height above the ground h

1
 and

at B, the pressure is P
2
 ,area of cross-section A

2      
velocity of flow = v

2 
, and height above

the ground h
2
.

P A2 2 

U  2

P A 1 1

U  1

h2 

h2 

U  2
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Since points A and B can be any two points along a tube of flow, we write Bernoulli’s
equation
P + 1/2 dv2 + h dg = Constant.
That is, the sum of pressure energy, kinetic energy and potential energy of a fluid remains
constant in streamline motion.

Activity 9.4

1. Take a sheet of paper in your hand.

2. Press down lightly on horizontal part of the paper as shown
in Fig. 9.31 so that the paper curves down.

3. Blow on the paper along the horizontal line.

Watch the paper. It lifts up because speed increases and pressure
on the upper side of the paper decreases.

9.10.3 Applications of Bernoulli’s Theorem

Bernoulli’s theorem finds many applications in our lives. Some commonly observed
phenomena can also be explained on the basis of Bernoulli’s theorem.

A. Flow meter or Venturimeter

It is a device used to measure the rate of flow of liquids through pipes. The device is
inserted in the flow pipe, as shown in the Fig. 9.32

Fig. 9.32 : A Venturimeter

It consists of a manometer, whose two limbs are connected to a tube having two different
cross-sectional areas say A

1
 and A

2
 at A and B, respectively. Suppose the main pipe is

horizontal at a height h above the ground. Then applying Bernoulli’s theorem for the steady
flow of liquid through the venturimeter at A and B, we can write

Total Energy at A = Total Energy At B

1

2
m 2

1υ + mgh + 1mp

d
=   

1

2
m 2

2υ  + mgh + 2mp

d

On rearranging terms we can write,

( p
1 

– p
2
) = 

2

d
 ( 2

2v  – 2
1v ) = 

22
1 2

1

1
2

⎡ ⎤⎛ ⎞ −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

dv v
v (9.19)

P1

H1
h

P1

h1

Venturimeter
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A2
v2 A1A2 r1
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vv

P2

h2

Fig. 9.31
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It shows that points of higher velocities are the points of lower pressure (because of the
sum of pressure energy and K.E. remain constant). This is called Venturi’s Principle.

For steady flow through the  ventrurimeter, volume of liquid entering per second at A =
liquid volume leaving per second at B. Therefore

A
1
v

1
= A

2
v

2
(9.20)

(The liquid is assumed incompressible i.e., velocity is more at narrow ends and vice versa.

Using this result in Eqn. (9.19), we conclude that pressure is lesser at the narrow ends;

p
1 

– p
2

= 
2 2
1 1

2
2

A
1

2 A

⎡ ⎤
−⎢ ⎥

⎣ ⎦

dv

= 
2
1

1

2
dv  

2

1

2

A
1

A

⎡ ⎤⎛ ⎞
⎢ − ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

v
1

=   

1 2
2
1
2
2

2( – )

A
–1

A

p p

d
⎛ ⎞
⎜ ⎟
⎝ ⎠

(9.21)

If h denotes level difference between the two limbs of the venturimeter, then

p
1 

– p
2

= h d g

and v
1

= 2 2
1 22 [(A / A ) –1]hg

From this we note that v
1
 ∝ h  since all other parameters are constant for a given

venturimeter. Thus

v
1

= K h ;

where K is constant.

The volume of liquid flowing per second is given by

V = A
1
 v

1
 = A

1  
× K h

or V = K′h

where K′  =  K A
1
  is another constant.

Bernaulli’s principle has many applications in the design of many useful appliances like
atomizer, spray gun, Bunsen burner, carburetor, Aerofoil, etc.

(i) Atomizer : An atomizer is shown in Fig. 9.33. When the rubber bulb A is squeezed, air
blows through the tube B and  comes out of the narrow orifice with larger velocity creating
a region of low pressure in its neighborhood. The liquid (scent or paint) from the vessel is,
therefore, sucked into the tube to come out to the nozzles N. As the liquid reaches the
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nozzle, the air stream from the tube B blows it into a fine spray.

(ii) Spray gun : When the piston is moved in, it blows the air out of the narrow hole ‘O’
with large velocity creating a region of low pressure in its neighborhood. The liquid (e.g.
insecticide) is sucked through the narrow tube attached to the vessel end having its opening
just below ‘O’. The liquid on reaching the end gets sprayed by out blown air from the
piston (Fig. 9.34).

(iii) Bunsen Burner : When the gas emerges out of the
nozzle N, its velocity being high the pressure  becomes low in
its vicinity. The air, therefore, rushed in through the side hole
A and gets mixed with the gas. The mixture then burns at the
mouth when ignited, to give a hot blue flame (Fig.9.35).

(iv) Carburetor : The carburetor shown in Fig. 9.36. is a
device used in motor cars for supplying a proper mixture of
air and  petrol vapours to the cylinder of the engine. The
energy is supplied by the explosion of this mixture inside the
cylinders of the engine. Petrol is contained in the float
chamber. There is a decrease in the pressure on the side A
due to motion of the piston.This causes the air from outside
to be sucked in with large velocity. This causes a low pressure
near the nozzle B (due to constriction,  velocity of air sucked
is more near B) and, therefore, petrol  comes out of the  nozzle
B which gets mixed with the incoming. Air. The mixture of
vaporized petrol and air forming the fuel then enters the
cylinder through the tube A.

Fig. 9.36 : Carburettor

(Sometimes when the nozzle B gets choked due to deposition of carbon or some impurities,
it checks the flow of petrol and the engine not getting fuel stops working. The nozzle has
therefore, to be opened and cleaned.

(v) Aerofoil :  When a solid moves in air , streamlines  are formed . The shape of the body
of the aeroplane is designed specially as shown in the Fig. 9.37.  When the aeroplane runs
on its runway, high velocity streamlines of air are formed. Due to crowding of more
streamlines on the upper side, it becomes  a region of more velocity and hence of
comparatively low pressure region than below it. This pressure difference gives the lift to
the aeroplane.

Fig. 9.33 : Atomizer

Fig. 9.34  : Spray gun

Fig. 9.35  : Bunsen Burner
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Fig. 9.37 : Crowding of streamlines on the upper side.

Based on this very principle i.e., the regions of high velocities due to crowding of steam

lines are the regions of low pressure, following are interesting demonstrations.

(a) Attracted disc paradox :  When air is blown through a narrow tube handle into the

space between two cardboard sheets [Fig. 9.38] placed one above the other and the upper

disc is lifted with the handle, the lower disc is attracted to stick to the upper disc and is

lifted with it. This is called attracted disc paradox,

Fig. 9.38 : Attracted disc paradox

(b) Dancing of a ping pong ball on a jet of water:

If a light hollow spherical ball  (ping-pong ball or table tennis
ball) is gently put on a vertical stream of water coming out of
a vertically upward directed jet end of a tube, it keeps on
dancing this way and that way without falling to the ground
(Fig.9.39). When the ball shifts to the lefts , then most of the
jet streams pass by its right side thereby creating a region of
high velocity and hence low pressure on its right side in
comparison to that on the left side and the ball is again pushed
back to the center of the jet stream .

(c) Water vacuum pump or aspirator or filter pump : Fig.
9.40 shows a filter pump used for producing moderately low
pressures. Water from the tap is allowed to come out of the
narrow jet end of the tube A . Due to small aperture of the nozzle, the velocity becomes
high and hence a low-pressure region is created around the nozzle N.  Air is, therefore,
sucked from the vessel to be evacuated through the tube B; gets mixed with the steam of
water and goes out through the outlet.  After a few minutes., the pressure of air in the
vessel  is decreased to about  1 cm of mercury by such a pump

Fig. 9.39 :Dancing Pring
Pongball
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(d) Swing of a cricket ball:

When a cricketer throws a spinning ball, it moves along a curved
path in the air. This is called swing of the ball. It is clear from
Fig. 9.41. That when a ball is moved forward, the air occupies
the space left by the ball with a velocity v (say). When the ball
spins, the layer of air around it also moves with the ball, say
with the velocity ‘u’. So the resultant velocity of air above the
ball becomes (v – u) and below the ball becomes (v + u).
Hence, the pressure difference above and below the ball moves
the ball in a curved path.

Fig. 9.41 : Swing of a cricket ball

Example 9.3: Water flows out of a small hole in the
wall of a large tank near its bottom (Fig. 942). What is
the speed of efflux of water when the height of water
level in the tank is 2.5m?

Solution: Let B be the hole near the bottom. Imagine a
tube of flow A to B for the water to flow from the surface
point A to the hole B. We can apply the Bernoulli’s
theorem to the points A and B for the streamline flow of
small mass m .

Total energy at B = Total energy at A

At A, v
A
= 0, p

A
= p = atmospheric pressure, h

 
= height above the ground.

At B, v
B 

= v = ?, p
B 

= p, h
B 

= height of the hole above the ground.

Let h
A 

– h
B 

= H = height of the water level in the vessel = 2.5m

and d = density of the water.

Applying the Bernoulli’s Principle and substituting the values we get,

½m 2
Bv = mg (h

A 
– h

B
)

or v
B

= 2 ( – )A Bg h h

= 2 9.8 2.5× ×

=  7 m s–1

Curved path 
of the ball

u
v

u
v

Fig. 9.40 : Filter Pump

hA

A V  = 0A

B
VB

hB

Fig. 9.42
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1. The windstorm often blows off the tin roof of the houses, How does Bernoulli’s
equation explain the phenomenon?

..................................................................................................................................

2. When you press the mouth of a water pipe used for watering the plants, water goes
to a longer distance, why?

..................................................................................................................................

3 What are the conditions necessary for the application of Bernoulli’s theorem to solve
the problems of flowing liquid?

..................................................................................................................................

4. Water flows along a horizontal pipe having non-uniform cross section.  The pressure is
20 mm of mercury where the velocity is 0.20m/s. find the pressure at a point where the
velocity is 1.50 m/s?

..................................................................................................................................

5. Why do bowlers in a cricket match shine only one side of the ball?

..................................................................................................................................

What You Have Learnt

� Hydrostatic pressure P at a depth h below the free surface of a liquid of density is
given by

P = hdg

� The upward force acting on an object submerged in a fluid is known as buoyant
force.

� According to Pascal’s law, when pressure is applied to any part of an enclosed liquid,
it is transmitted undiminished to every point of the liquid as well as to the walls of the
container.

� The liquid molecules in the liquid surface have potential energy called surface energy.

� The surface tension of a liquid may be defined as force per unit length acting on a
imaginary line drawn in the surface. It is measured in Nm–1.

� Surface tension of any liquid is the property by virtue of which a liquid surface acts
like a stretched membrane.

� Angle of contact is defined as the angle between the tangent to the liquid surface and
the wall of the container at the point of contact as measured from within the liquid.

� The liquid surface in a capillary tube is either concave or convex. This curvature is
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due to surface tension. The rise in capillary is given by

h = 
2 cos θT

r d g

� The excess pressure P on the concave side of the liquid surface is given by

P = 
2

R

T
, where T is  surface tension of the liquid

 P = 
2

R

T
, for air bubble in the liquid and

P = 
4T

r

′
, where T ′ is surface tension of soap solution, for soap bubble in air

� Detergents are considered better cleaner of clothes because they reduce the surface
tension of water-oil.

� The property of a fluid by virtue of which it opposes the relative motion between its
adjacent layers is known as viscosity.

� The flow of liquid becomes turbulent when the velocity is greater than a certain value
called critical velocity (v

c
) which depends upon the nature of the liquid and the diameter

of the tube i.e. (η.P and d).

� Coefficient of viscosity of any liquid may be defined as the magnitude of tangential
backward viscus force acting between two successive layers of unit area in contact
with each other moving in a region of unit velocity gradient.

� Stokes’ law states that tangential backward viscous force acting on a spherical mass
of radius r falling with velocity ‘v’ in a liquid of coefficient of viscosity η is given by

F = 6π η r v.

� Bernoulli’s theorem states that the total energy of an element of mass (m) of an
incompressible liquid moving steadily remains constant throughout the motion.
Mathematically, Bernoullis’s equation as applied to any two points A and B of tube of
flow

1

2
m 2

Av  + m g h
A
+ 

APm

d
= 

1

2
m 2

Bv  + m g h
B
 + 

BPm

d

Terminal Exercises

1. Derive an expression for hyhostatic pressure due to a liquid column.

2. State pascal’s law. Explain the working of hydraulic press.
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3. Define surface tension. Find its dimensional formula.

4. Describe an experiment to show that liquid surfaces behave like a stretched membrane.

5. The hydrostatic pressure due to a liquid filled in a vessel at a depth 0.9 m is 3.0 N m2.
What will be the hydrostatic pressure at a hole in the side wall of the same vessel at a
depth of 0.8 m.

6. In a hydraulic lift, how much weight is needed to lift a heavy stone of mass 1000 kg?
Given the ratio of the areas of cross section of the two pistons is 5. Is the work output
greater than the work input? Explain.

7. A liquid filled in a capillary tube has convex meniscus. If Fa is force of adhesion,
Fc is  force of cohesion and θ = angle of contact, which of the following relations
should hold good?
(a) Fa > Fc sinθ; (b) Fa < Fc sinθ; (c) Fa cosθ = Fc; (d) Fa sinθ > Fc

8. 1000 drops of water of same radius coalesce to form a larger drop. What happens to
the temperature of the water drop? Why?

9. What is capillary action? What are the factors on which the rise or fall of a liquid in a
capillary tube depends?

10. Calculate the approximate rise of a liquid of density 103 kg m–3 in a capillary tube of
length 0.05 m and radius 0.2 × 10–3 m. Given surface tension of the liquid for the
material of that capillary is 7.27 × 10–2 N m–1.

11. Why is it difficult to blow water bubbles in air while it is easier to blow soap bubble in
air?

12. Why the detergents have replaced soaps to clean oily clothes.

13. Two identical spherical balloons have been inflated with air to different sizes and
connected with the help of a thin pipe. What do you expect out of the following
observations?

(i) The air from smaller balloon will rush into the bigger balloon till whole of its air
flows into the later.

(ii) The air from the bigger balloon will rush into the smaller balloon till the sizes of the
two become equal.

What will be your answer if the balloons are replaced by two soap bubbles of different
sizes.

14. Which process involves more pressure to blow a air bubble of radius 3 cm inside a
soap solution or a soap bubble in air? Why?

15. Differentiate between laminar flow and turbulent flow and hence define critical velocity.

16. Define viscosity and coefficient of viscosity. Derive the units and dimensional formula
of coefficient of viscosity. Which is more viscous : water or glycerine? Why?

17. What is Reynold’s number? What is its significance? Define critical velocity on the
basis of Reynold’s number.

18. State Bernoulli’s principle. Explain its application in the design of the body of an
aeroplane.
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19. Explain Why :

(i) A spinning tennis ball curves during the flight?

(ii) A ping pong ball keeps on dancing on a jet of water without falling on to either
side?
(iii) The velocity of flow increases when the aperture of water pipe is decreased by
squeezing its opening.
(iv) A small spherical ball falling in a viscous fluid attains a constant velocity after
some time.
(v) If mercury is poured on a flat glass plate; it breaks up into small spherical droplets.

20. Calculate the terminal velocity of an air bubble with 0.8 mm in diameter which rises
in a liquid of viscosity of 0.15 kg m–1 s–1 and density 0.9 g m–3. What will be the terminal
velocity of the same bubble while rising in water? For water η = 10–2 kg m–1 s–1.

21. A pipe line 0.2 m in diameter, flowing full of water has a constriction of diameter 0.1
m. If the velocity in the 0.2 m pipe-line is 2 m s–1. Calculate
(i) the velocity in the constriction, and
(ii) the discharge rate in cubic meters per second.

22. (i) With what velocity in a steel ball 1 mm is radius falling in a tank of glycerine at an
instant when its acceleration is one-half that of a freely falling body?
(ii) What is the terminal velocity of the ball? The density of steel and of glycerine are
8.5 gm cm–3 and 1.32 g cm–3 respectively; viscosity of glycerine is 8.3 Poise.

23. Water at 20ºC flows with a speed of 50 cm s–1 through a pipe of diameter of 3 mm.

(i) What is Reynold’s number?

(ii) What is the nature of flow?

Given, viscosity of water at 20ºC as = 1.005 × 10–2 Poise; and

Density of water at 20ºC as = 1 g cm–3.

24. Modern aeroplane design calls for a lift of about 1000 N m–2 of wing area. Assume
that air flows past the wing of an aircraft with streamline flow. If the velocity of flow
past the lower wing surface is 100 m s–1, what is the required velocity over the upper
surface to give a desired lift of 1000 N m–2? The density of air is 1.3 kg m–3.

25. Water flows horizontally through a pipe of varying cross-section. If the pressure of
water equals 5 cm of mercury at a point where the velocity of flow is 28 cm s–1, then
what is the pressure at another point, where the velocity of flow is 70 cm s–1? [Tube
density of water 1 g cm–3].

Answers to Intext Questions

9.1

1. Because then the weight of the person applies on a larger area hence pressure on
snow decreases.
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2. P = P
a
 + ρ gh

P = 1.5 × 107 Pa

3. Pressure applied by the weight of the boy = 
2.5

0.05
 = 500 N m–2.

Pressure due to the weight of the elephant = 
5000

10
 = 500 N m–2.

∴ The boy can balance the elephant.
4. Because of the larger area of the rod, pressure on the skin is small.

5.
50

0.1
 = 

10

w
, w = 5000 kg wt.

9.2

1. Force of attraction between molecules of same substance is called force of cohesion
and the force of attractive between molecules of different substance is called force of
adhesion.

2. Surface tension leads to the minimum surface area and for a given volume, sphere has
minimum surface area.

3. No, they have tightly bound molecules.

4. Due to surface tension forces.

5. For air bubble in water

P = 
2T

r
 = 

–3

–2

2 727 10

2 10

× ×
×

 = 72.7 N m–2.

For soap bubble in air

P′ = 
4T

r

′
′  = 

–3

–2

4 25 10

4 10

× ×
×

 = 2.5 N m–2.

9.3

1. No.

2. Yes, the liquid will rise.

3. Mercury has a convex meniscus and the angle of contact is obtuse. The fall in the
level of mercury in capillary makes it difficult to enter.

4. r = 
2T

h gρ  = 
–22 7.2 10

3 1000 10

× ×
× ×

= 4.8 × 10–6m.

5. Due to capillary action.
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9.4

1. If every particle passing through a given point of path follows the same line of flow as
that of preceding particle the flow is stream lined, if its zig-zag, the flow is turbulent.

2. No, otherwise the same flow will have two directions.

3. Critical velocity depends upon the viscous nature of the liquid, the diameter of the tube
and density of the liquid.

4. .012 ms–1

5. Due to viscous force.

9.5

1. High velocity of air creates low pressure on the upper part.

2. Decreasing in the area creates large pressure.

3. The fluid should be incompressible and non-viscous on (very less). The motion should
be steamlined.

4. (P
1
 – P

2
) = 

1

2
d ( 2

2v  – 2
1v )

5. So that the stream lines with the two surfaces are different. More swing in the ball will
be obtained.

Answers to the Terminal Exercises

5. 2.67 N m–2.

6. 200 N, No.

20. 2.1 mm s–1, 35 cm s–1.

21. 8 m s–1, 6.3 × 10–2 m3 s–1.

22. 7.8 mm s–1, 0.19 m s–1.

23. 1500, Unsteady.

24. 2 cm of mercury.
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SENIOR SECONDARY COURSE

PHYSICS

STUDENT’S ASSIGNMENT – 2

Maximum Marks: 50 Time : 
1

1
2

 Hours

INSTRUCTIONS

� Answer All the questions on a seperate sheet of paper

� Give the following information on your answer sheet:

� Name

� Enrolment Number

� Subject

� Assignment Number

� Address

� Get your assignment checked by the subject teacher at your study centre so that you get positive feedback
about your performance.

Do not send your assignment to NIOS

1. Stress-straits graph for two samples of rubber are shown in the figures given below. Which of the two
 will serve as better shock absorber? (1)

Strain

Stress

(a)

Strain

Stress

(b)

2. Two wires A and B having equal lengths and made of the same metal are subjected to equal loads. If
extension in A is twice the extension in B what is the ratio of the radii of A and B. (1)

3. Why are the walls of a dam made thicker at the base? (1)

4. A balloon filled with helium gas does not rise in air indefinitely but halts after a certain height.
Why? (1)

5. How does the viscosity of a gas change with increase in temperature of the gas? (1)

6. Which is more elastic iron or rubber? (1)
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7. Is Surface tension dependent on the area of the surface? (1)

8. For what values of Raynold number is the flow of a fluid stream-lined. (1)

9. When solid rubber ball is taken from the surface to bottom of a lake the reduction in its volume is 0.0012%.
The depth of the lake is 0.360 km, density of water is 1g cm–3 and acceleration due to gravity is 10 N kg–

1. Calculate bulk modulus of rubber. [Ans : 3 × 1011N m–2] (2)

10. Show the variation of stress with strain when a metallic wire of uniform cross.section is subjected to an
increasing load. (2)

11. Explain why the detergents should have small angle of contact. (2)

12. A 40 kg girl, wearing high heel shoes, balances on a single heel which is circular and has a diameter
10 mm. What is the pressure exerted by the heel on the floor? (2)

13. (i) Why does a spinning cricket ball in air not follow a parabolic trajectory?

(ii) Discuss the magnus effect. (2 + 2)

14. State Bernoulli’s principle.

A fully loaded aircraft has a mass 330 tonnes and total wing area 500 m2. It is in level flight with a speed
of 960 km h–1. Estimate the pressure difference between the lower and upper surfaces of the wings. Also
estimate the fractional increase in the speed of the air on the upper surface of the wing relative to the
lower surface. The density of air is 1.2 kg m–3.

Hint :

∆⎧ ⎫∆ = × = =⎪ ⎪
⎪ ⎪
⎨ ⎬∆⎪ ⎪=
⎪ ⎪+⎩ ⎭

3 –2 2 1
2

2 1
2 1

–F
P' = 6.5 10 Nm , 0.08

A
2

–
( )

av

V V P
V Pv

P
V V

P V V
(4)

15. A smooth spherical body of density(ρ) and radius(r), falling freely in a highly viscous liquid of density σ
and coefficient of viscosity(η) with a velocity (v), state the law for the magnitude of the tangential
backward viscous force (F) acting on the body. Obtain the expression for the constant velocity acquired
by the spherical body in the liquid. (4)

16. Increasing surface area costs energy. Discuss the behaviour of molecules in a liquid and hence explain
surface energy. (4)

17. A soap bubble has two surfaces of equal surface area i.e. the outer and the inner but pressure inside is
different from the pressure outside. Obtain the expression for the difference in pressure inside a soap
bubble floating in air. (4)

18. State equation of continuity and prove it. (4)

19. What is the function of a flow meter? Obtain the expression for the volume of liquid flowing per second
through a venturimeter. (5)

20. State three assumptions required to develop Bernoulli’s equation. Show that pressure energy, kinetic energy,
and potential energy per unit Volume of a fluid remains constant in a stream line motion. (5)

or

If a capillary tube is dipped in water what do you observe? What do you call this phenomenon? Obtain the
expression for this phenomenon relating the symbols T, r, h, θ, f and g where symbols have their usual
meaning. Also discuss what would happen if the thin tube of uniform bore immersed in water is of
insufficient length.
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10

A

KINETIC THEORY OF GASES

s you have studied in the previous lessons, at standard temperature and pressure,
matter exists in three states – solid, liquid and gas. These are composed of atoms/molecules
which are held together by intermolecular forces. At room temperature, these atoms/
molecules have finite thermal energy. If thermal energy increases, molecules begin to
move more freely. This state of matter is said to be the gaseous state. In this state,
intermolecular forces are very weak and very small compared to their kinetic energy.

Under different conditions of temperature, pressure and volume, gases exhibit different
properties. For example, when the temperature of a gas is increased at constant volume,
its pressure increases. In this lesson you will learn the kinetic theory of gases which  is
based on certain simplifying assumptions.You will also learn the kinetic interpretation of
temperature and its relationship with the kinetic energy of the molecules. Why the gases
have two types of heat capacities will also be explained in this lesson.

Objectives

After studying this lesson, you should be able to :

� state the assumptions of kinetic theory of gases;

� derive the expression for pressure P  = 
1

3
2cρ ;

� explain how rms velocity and average velocity are related to temperature;

� derive gas laws on the basis of kinetic theory of gases;

� give kinetic interpretation of temperature and compute the mean kinetic energy
of a gas;

� explain the law of equipartition of energy;

� explain why a gas has two heat capacities; and

� derive the relation c
p
 – c

V
 = R/J.
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10.1 Kinetic Theory of Gases

You now know that matter is composed of very large number of atoms and molecules.
Each of these molecules shows the characteristic properties of the substance of which it
is a part. Kinetic theory of gases attempts to relate the macroscopic or bulk properties
such as pressure, volume and temperature of an ideal gas with its microscopic properties
such as speed and mass of its individual molecules.  The kinetic theory is based on certain
assumptions. (A gas whose molecules can be treated as point masses and there is no
intermolecular force between them is said to be ideal.) A gas at room temperature and
atmospheric pressure (low pressure) behaves like an ideal gas.

10.1.1 Assumptions of Kinetic Theory of Gases

Clark Maxwell in 1860 showed that the observed properties of a gas can be explained on
the basis of certain assumptions about the nature of molecules, their motion and interaction
between them. These resulted in considerable simplification. We now state these.

(i) A gas consists of a very large number of identical rigid molecules, which move with
all possible velocities randomly. The intermolecular forces between them are negligible.

(ii) Gas molecules collide with each other and with  the walls of the container. These
collisions are perfectly elastic.

(iii) Size of the molecules is negligible compared to the separation between them.

(iv) Between collisions, molecules move in straight lines with uniform velocities.

(v) Time taken in a collision is negligible as compared to the time taken by a molecule
between two successive collisions.

(vi) Distribution of molecules is uniform throughout the container.

To derive an expression for the pressure exerted by a gas on the walls of the container, we
consider the motion of only one molecule because all molecules are identical
(Assumption i). Moreover, since a molecule moving in space will have velocity components
along x, y and z–directions, in view of assumption (vi)it is enough for us to consider the
motion only along one dimension, say x-axis.(Fig. 10.1). Note that if there were
N (= 6 ×1026 molecules m–3), instead of considering 3N paths, the assumptions have reduced
the roblem to only one molecule in one dimension. Let us consider a molecule having
velocity C in the face LMNO. Its x, y and z components are u, v and w, respectively. If the
mass of the molecule is m and it is moving with a speed u along x–axis, its momentum will
be mu towards the wall and normal to it. On striking the wall, this molecule will rebound in
the opposite direction with the same speed u, since the collision has been assumed to be
perfectly elastic (Assumption ii). The momentum of the molecule after it rebounds is (–
mu). Hence, the change in momentum of a molecule is

mu – (–mu) = 2mu

If the molecule travels from face LMNO to the face ABCD with speed u along x–axis
and rebounds back without striking any other molecule on the way, it covers a distance 2l
in time 2l/u. That is, the time interval between two successive collisions of the molecules with
the wall is 2l/u.
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According to Newton’s second law of motion, the rate of change of momentum is equal to
the impressed force. Therefore

Rate of change of

momentum at ABCD = 
Change in momentum

Time

= 
2

2 /

mu

l u
 = 

2mu

l

This is the rate of change of momentum of one
molecule. Since there are N molecules of the gas, the
total rate of change of momentum or the total force
exerted on the wall ABCD due to  the impact of all the
N molecules moving along x-axis with speeds, u

1
, u

2
, ..., u

N 
is given by

Force on ABCD = 
m

l
( )2 2 2 2

1 2 3 N...u u u u+ + + +

We know that pressure is force per unit area. Therefore, the pressure P exerted on the
wall ABCD of areas l 2 by the molecules moving along x-axis is given by

P = 
( )2 2 2

1 2 N

2

...
m

u u u
l

l

+ + +

= ( )2 2 2
1 2 N...

3

m
u u u

l
+ + + (10.1)

If 2–
u  represents the mean value of the squares of all the speed components along x-axis,

we can write

2–
u = 

2 2 2 2
1 2 3 N...u u u u

N

+ + + +

or N 2–
u = 2 2 2 2

1 2 3 N...+ + + +u u u u

Substituting this result in Eqn. (10.1), we get

P =   
2

3

Nmu

l
(10.2)

It can be shown by geometry that

c2 = u2 + v2 + w2

Fig. 10.1 : Motion of a molecule
in a container
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since u, v and w are components of c along the three orthogonal axes. This relation also
holds for the mean square values, i.e.

2–c = 2–
u  + 2v  + 2–w

Since the molecular distribution has been assumed to be isotropic, there is no preferential
motion along any one edge of the cube. This means that the mean value of u2, v2, w2 are
equal :

2–
u = 2v  = 2–w

so that 2–
u = 

2–

3
c

Substituting this result in Eqn. (10.2), we get

P = 
1

3 3

Nm

l

2–c

But 3l  defines the volume  V of the container or the volume of the gas. Hence, we get

PV = 
1

3
Nm 2–c = 

1

3
M 2–c (10.3)

Note that the left hand side has macroscopic properties i.e. pressure and volume and the
right hand side has only microscopic properties i.e. mass and mean square speed of the
molecules.

Eqn (10.3) can be re-written as

P = 
1

3 V

Nm
2–c

If ρ = 
V

mN
 is the density of the gas, we can write

P = 
1

3
ρ 2–c

or 2–c = 
3P
ρ (10.4)

If we denote the ratio N/V by number density n, Eqn. (10.3) can also be expressed as

P = 21
3

m n c (10.3a)

The following points about the above derivation should be noted:

(i) From Eqn. (10.4) it is clear that the shape of the container does not play any
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role in kinetic theory;  only volume is of significance. Instead of a cube we
could have taken any other container. A cube only simplifies our calculations.

(ii) We ignored the intermolecular collisions but these would not have affected the
result, because, the average momentum of the molecules on striking the walls is
unchanged by their collision; same is the cose when they collide with each
other.

(iii) The mean square speed 2–c  is not the same as the square of the mean speed.
This is illustrated by the following example.

Suppose we have five molecules and their speeds are 1, 2, 3, 4, 5 units, respectively. Then
their mean speed is

1 2 3 4 5

5

+ + + +
= 3 units

Its square is 9 (nine).

On the other hand, the mean square speed is

2 2 2 2 21 2 3 4 5

5

+ + + +
= 

55

5
 = 11

Thus we see that mean square speed is not the same as square of mean speed.

Example 10.1 : Calculate the pressure exerted by 1022 molecules of oxygen, each of
mass 5 × 10–2 6 kg, in a hollow cube of side 10 cm where the average translational speed of
molecule is 500 m s–1.

Solution : Change in momentum 2m u = 2 × (5 × 10–26  kg) × (500 ms –1)

 = 5 × 10–23 kg ms–1.

Time taken to make successive impacts on the same face is equal to the time spent in
travelling a distance of 2 × 10 cm or 2 × 10–1 m. Hence

Time = 
–2

–1

2 10 m

500 ms

×
 = 4 × 10–4 s

∴ Rate of change of momentum = 
23 1

4

5 10 kg ms

4 10 s

− −

−

×
×

 = 1.25 × 10–19 N

The force on the side due to one third molecules

and f = 
1

3
 × 1.25 × 10–19 × 1022 = 416.7 N

pressure = 
Force

Area
 = –4 2

417 N

100 10 m×

= 4.2 × 10–4 N m–2
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Intext Questions 10.1

1. (i) A gas fills a container of any size but a liquid does not. Why?

(ii) Solids have more ordered structure than gases. Why?

..................................................................................................................................

2. What is an ideal gas?

..................................................................................................................................

3. How is pressure related to density of molecules?

..................................................................................................................................

10.2 Kinetic Interpretation of Temperature

From Eqn. (10.3) we recall that

P V= 
1

3
m N 2–c

Also, for n moles of a gas, the equation of state is PV = n RT, where gas constant R is
equal to 8.3 J mol–1  K–1. On combining this result with the expression for pressure, we get

n R T = 
1

3
m N 2–c

Multiplying both sides by 
3

2n we have

3

2
R T = 

1

2

2Nmc

n
 = 

1

2
m N

A 
2–c

where 
N

n
 = N

A
 is Avogadro’s number. It denotes the number of atoms or molecules in

one mole of a substance. Its value is 6.023×1023 per gram mole. In terms of N
A
, we can

write

3

2 A

R
T

N

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 
1

2
m 2–c

But 
1

2
m 2–c  is the mean kinetic energy of a molecule. Therefore, we can write

1

2
m 2–c = 

3

2 A

R

N

⎛ ⎞
⎜ ⎟
⎝ ⎠

T  =  
3

2
 k T (10.5)
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where

k = 
A

R

N (10.6)

is Boltzmamn constant. The value of k is 1.38 × 10–23 J K–1.

In terms of k, the mean kinetic energy of a molecule of the gas is given as

ε  =
1

2
m 2–c = 

3

2
k T (10.7)

Hence, kinetic energy of a gram mole of a gas is 
3

2
R T

This relationship tells us that the kinetic energy of a molecule depends only on the absolute
temperature T of the gas and it is quite independent of its mass. This fact is known as the
kinetic interpretation of temperature.

Clearly, at T = 0, the gas has no kinetic energy. In other words, all molecular motion
ceases to exist at absolute zero and the molecules behave as if they are frozen in space.
According to modern concepts, the energy of the system of electrons is not zero even at
the absolute zero. The energy at absolute zero is known as zero point energy.

From Eqn.(10.5), we can write the expression for the square root of 2–c , called root mean
square speed :

c
rms

 = 2c  = 
3kT

m
 = 

3RT

M
This expression shows that at any temperature T, the c

rms
 is inversely proportional to the

square root of molar mass. It means that lighter molecule, on an average, move faster than
heavier molecules. For example, the molar mass of oxygen is 16 times the molar mass of
hydrogen. So according to kinetic theory, the hydrogen molecules should move 4 times
faster then oxygen molecules. It is for this reason that lighter gases are in the above part
of our atmosphere. This observed fact provided an early important evidence for the validity
of kinetic theory.

10.3 Deduction of Gas Laws from Kinetic Theory

(i) Boyle’s Law

We know that the pressure P exerted by a gas is given by Eqn. (11.3) :

P V = 
1

3
M 2–c

When the temperature of a given mass of the gas is constant, the mean square speed is
constant. Thus, both M and 2–c  on the right hand side of Eqn. (10.3) are constant. Thus,
we can write
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P V = Constant (10.9)

This is Boyle’s law, which states that at constant temperature, the pressure of a given
mass of a gas is inversely proportional to the volume of the gas.

(ii)  Charle’s Law

From Eqn. (10.3) we know that

P V = 
1

3
M 2–c

or V = 
1

3 P
M

2–c

i.e, V ∝ 2–c , if M and P do not vary or M and P are constant. But 2–c  ∝ T

∴ V ∝ T (10.9)

This is Charle’s law : The volume of a given mass of a gas at constant pressure is
directly proportional to temperature.

Robert Boyle
(1627 – 1691)

British experimentalist Robert Boyle is famous for his law relating
the pressure and volume of a gas (PV = constant). Using a
vacuum pump designed by Robert Hook, he demonstrated that
sound does not travel in vacuum. He proved that air was required
for burning and studied the elastic properties of air.

A founding fellow of Royal Society of London, Robert Boyle remained a bachalor
throughout his life to pursue his scientific interests. Crater Boyle on the moon is
named in his honour.

(iii) Gay Lussac’s Law – According to kinetic theory of gases, for an ideal gas

P = 
1

3
 

V
M

2–c

For a given mass (M constant) and at constant volume (V constant),

P ∝ 2–c

But 2–c  ∝ T

∴ P ∝ T (10:11)

which is Gay Lussac’s law. It states that the pressure of a given mass of a gas is
directly proportional to its absolute temperature T, if its volume remains constant.

(iv) Avogadro’s Law

Let us consider two different gases 1 and 2. Then from Eqn. (10.3), we recall that
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P
1 

V
1

= 
1

3
m

1 
N

1 
2
1

–c

and P
2 

V
2

= 
1

3
m

2 
N

2 
2
2

–c

If their pressure and volume are the same, we can write

P
1
V

2
 = P

2
V

2

Hence
1

3
m

1 
N

1 
2
1

–c = 
1

3
m

2 
N

2 
2
2

–c

Since the temperature is constant, their kinetic energies will be the same, i.e.

1

2
m

1  
2
1

–c = 
1

2
m

2  
2
2

–c

Using this result in the above expression, we get N
1
 = N

2
. (10.12)

That is, equal volume of ideal gases under the same conditions of temperature and
pressure contain equal number of molecules. This statement is Avogadro’s Law.

(v) Dalton’s Law of Partial Pressure

Suppose we have a number of gases or vapours, which do not react chemically. Let their

densities be ρ
1
, ρ

2
, ρ

3
 ... and mean square speeds 2

1

–c , 2
2

–c , 2
3

–c ... respectively. We put these

gases in the same enclosure. They all will have the same volume. Then the resultant
pressure P will be given by

P = 
1

3
ρ

1
2
1

–c  +  
1

3
ρ

2
2
2

–c  + 
1

3
ρ

3
2
3

–c  + ...

Here 
1

3
ρ

1
2
1

–c , 
1

3
ρ

2
2
2

–c , 
1

3
ρ

3
2
3

–c  ... signify individual (or partial) pressures of different

gases or vapours. If we denote these by P
1
, P

2
, P

3
, respectively we get

P = P
1
 + P

2
 + P

3
 +.... (10.13)

In other words, the total pressure exerted by a gaseous mixture is the sum of the
partial pressures that would be exerted, if individual gases occupied the space in
turn. This is Dalton’s law of partial pressures.

(vi) Graham’s law of diffusion of gases

Graham investigated the diffusion of gases through porous substances and found that the
rate of diffusion of a gas through a porous partition is inversely proportional to the
square root of its density. This is known as Graham’s law of diffusion.

On the basis of kinetic theory of gases, the rate of diffusion through a fine hole will be
proportional to the average or root mean square velocity c

rms
. From Eqn. (10.4) we recall that
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2–c = 
3P

ρ

or —
2c  = c

rms
= 

3P

ρ

That is, the root mean square velocities of the molecules of two gases of densities ρ
1
 and

ρ
2
 respectively at a pressure P are given by

(c
rms

)
1

= 
3P

1
ρ

and (c
rms

)
2
= 

2

3P

ρ

Thus,

Rate of diffusion of one gas

Rate of diffusion of other gas = 
1

2

( )

( )
rms

rms

c

c  = 
2

1

ρ

ρ
(10.14)

Thus, rate of diffusion of gases is inversely proportional to the square root of their densities
at the same pressure, which is Graham’s law of diffusion.

Example 10.2 : Calculate is the root mean square speed of hydrogen molecules at
300 k. Take m(H

2
) as 3.347 × 10–27 kg and k = 1.38 × 10–23 J mol–1  K–1

Solution : We know that

c
rms

= 
3kT

m
 = 

–27 –1

–27

3 (1.38 10 J K ) (300 K)

3.347 10 kg

´ ´
´

= 1927 m s–1

Intext Questions 10.2

1. Five gas molecules chosen at random are found to have speeds 500 ms–1, 600 ms–1,
700 ms–1, 800 ms–1, and 900 ms–1. Calculate their RMS speed.

..................................................................................................................................

2. If equal volumes of two non–reactive gases are mixed, what would be the resultant
pressure of the mixture?

..................................................................................................................................

3. When we blow air in a balloon, its volume increases and the pressure inside is also
more than when air was not blown in. Does this situation contradict Boyle’s law?

..................................................................................................................................

Example 10.3 : At what temperature will the root mean square velocity of hydrogen be
double of its value at S.T.P., pressure being constant (STP = Standard temperature and
pressure).
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Solution : From Eqn. (10.8), we recall that

c
rms

 α T

Let the rms velocity at S.T.P. be 0c .

If T K is the required temperature, the velocity c  = 2 0c  as given in the problem

∴
0

c

c = 
0

0

2c

c  = 
0

T

T

Squaring both sides, we get

4 = 
0

T

T

or T = 4T
0

Since T
0
 = 273K, we get

T = 4×273K = 1092K = 8190C

Example 10.4 : Calculate the average kinetic energy of a gas at 300 K. Given k = 1.38
× 10–23 JK–1.

Solution : We know that

1

2
M 2–c = 

3

2
k T

Since k = 1.38 × 10–23 J K–1 and T= 300 K, we get

∴ E = 
3

2
 (1.38 × 10–23 J K–1) (300 K)

= 6.21 × 10–21  J

10.4.1 The Law of Equipartition of Energy

We now know that kinetic energy of a molecule of a gas is given by  
—

2
1 3

kT
2 2

=mc .

Since the motion of a molecule can be along x, y, and z directions equally probably, the
average value of the components of velocity c (i.e., u, v and w) along the three directions
should be equal. That is to say, for a molecule all the three directions are equivalent :

u = v  = w

and 2–u = 2–v  = 2–
w  = 

1

3
2–c

Since c2 = u2 + 2–v  + w2
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2–c = 2–u  + 2–v  + 2–

w

Multiplying throughout by 
1

2
m, where m is the mass of a molecule, we have

1

2
m 2–u = 

1

2
m 2–v  = 

1

2
m 2–

w

But 
1

2
m 2–u  = E = total mean kinetic energy of a molecule along x–axis. Therefore,

E
x
 = E

y
 = E

z
. But the total mean kinetic energy of a molecule is  

3

2
k T. Hence, we get an

important result :

E
x
 = E

y
 = E

z
= 

1

2
k T

Since three velocity components u, v and w correspond to the three degree of freedom of
the molecule, we can conclude that total kinetic energy of a dynamical system is equally

divided among all its degrees of freedom and it is equal to 
1

2
 k T for each degree of

freedom. This is the law of equipartition of energy and was deduced by Ludwing Boltzmann.
Let us apply this law for different types of gases.

So far we have been considering only translational motion. For a monoatomic molecule,
we have only translational motion because they are not capable of rotation (although they
can spin about any one of the three mutually perpendicular axes if it is like a finite sphere).
Hence, for one molecule of a monoatomic gas, total energy

E = 
3

2
k T (10.15)

A diatomic molecule can be visualised as if two spheres are joined by a rigid rod. Such a
molecule can rotate about any one of the three mutually perpendicular axes. However, the
rotational inertia about an axis along the rigid rod is negligible compared to that about an
axis perpendicular to the rod. It means that rotational energy consists of two terms such as

1

2
I 2

yω  and 
1

2
I 2

zω .

Now the special description of the centre of mass of a diatomic gas molecules will require
three coordinates. Thus, for a diatomic gas molecule, both rotational and translational
motion are present but it has 5 degrees of freedom. Hence

E = 3 
1

kT
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + 2
1

kT
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 
5

2
k T (10.16)
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Ludwing Boltzmann

(1844 – 1906)
Born and brought up in Vienna (Austria), Boltzmann completed his
doctorate under the supervision of Josef Stefan in 1866. He also
worked with Bunsen, Kirchhoff and Helmholtz. A very emotional
person, he tried to commit suicide twice in his life and succeeded in his second
attempt. The cause behind these attempts, people say, were his differences with
Mach and Ostwald.

He is famous for his contributions to kinetic theory of gases, statistical mechanics
and thermodynamics. Crater Bolzmann on moon is named in his memory and honour.

10.5 Heat Capacities of Gases

We know that the temperature of a gas can be raised under different conditions of volume
and pressure. For example, the volume or the pressure may be kept constant or both may
be allowed to vary in some arbitrary manner. In each of these cases, the amount of
thermal energy required to increase unit rise of temperature in unit mass is different.
Hence, we say that a gas has two different heat capacities.

If we supply an amount of heat ∆Q to a gas to raise its temperature through ∆T, the heat
capacity is defined as

Heat capacity = 
Q

T

∆
∆

The heat capacity of a body per unit mass of the body is termed as specific heat capacity
of the substance and is usually denoted by c. Thus

Specific heat capacity, c = 
heat capacity

m
(10.17)

Eqns. (10.16) and (10.17) may be combined to get

c = 
Q

Tm

∆
∆ (10.18)

Thus, specific heat capacity of a material is the heat required to raise the temperature
of its unit mass by 1 ºC (or 1 K).

The SI unit of specific heat capacity is kilo calories per kilogram per kelvin (kcal kg–1K–1).
It may also the expressed in joules per kg per K. For example the specific heat capacity of
water is

1 kilo cal kg–1 K–1 = 4.2 × 103 J kg–1 K–1.

The above definition of specific heat capacity holds good for solids and liquids but not for
gases, because it can vary with external conditions. In order to study the heat capacity of
a gas, we keep the pressure or the volume of a gas constant. Consequently, we define two
specific heat capacities :
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(i) Specific heat at constant volume, denoted as c

V
.

(ii) Specific heat at constant pressure, denoted as c
P
.

(a) The specific heat capacity of a gas at constant volume (c
v
) is defined as the

amount of heat required to raise the temperature of unit mass of a gas through 1K,
when its volume is kept constant :

c
v

= 
V

Q

T

∆⎛ ⎞
⎜ ⎟∆⎝ ⎠

(10.19)

(b) The specific heat capacity of a gas at constant pressure (c
P
) is defined as the

amount of heat required to raise the temperature of unit mass of a gas through 1K
when its pressure is kept constant.

c
p

= 
Q

T

∆⎛ ⎞
⎜ ⎟∆⎝ ⎠ P

(10.20)

When 1 mole of a gas is considered, we define molar heat capacity.

We know that when pressure is kept constant, the volume of the gas increases. Hence in
the second case note that the heat required to raise the temperature of unit mass through
1 degree at constant pressure is used up in two parts :

(i) heat required to do external work to produce a change in volume of the gas, and

(ii) heat required to raise the temperature of the gas through one degree (c
v
).

This means the specific heat capacity of a gas at constant pressure is greater than its
specific heat capacity at constant volume by an amount which is thermal equivalent of the
work done in expending the gas against external pressure. That is

c
p

= W + c
v

(10.21)

10.6 Relation between cp and cv

Let us consider one mole of an ideal gas enclosed in a cylinder fitted with a frictionless
movable piston (Fig. 10.2). Since the gas has been assumed to be ideal (perfect), there is
no intermolecular force between its molecules. When such a gas expands, some work is
done in overcoming internal pressure.

Fig.10.2 : Gas heated at constant pressure

Let P be the external pressure and A be the cross sectional area of the piston. The force
acting on the piston = P × A. Now suppose that the gas is heated at constant pressure by
1K and as a result, the piston moves outward through a distance x, as shown in Fig. 10.2.

A

P

V
1

V
2
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Let V

1
 be the initial volume of the gas and V

2
 be the volume after heating. Therefore, the

work W done by the gas in pushing the piston through a distance x, against external pressure
P is given by

W = P × A × x

= P × (Increase in volume)

= P (V
2
 – V

1
)

We know from Eqn. (10.22) that c
p
 – c

v
 = Work done (W) against the external pressure in

raising the temperature of 1 mol of a gas through 1 K, i.e.

c
p
 – c

v
= P (V

2
 – V

1
) (10.22)

Now applying perfect gas equation to these two stages of the gas i.e. before and after
heating, we have

PV
1

= RT (10.23)

PV
2

= R (T + 1) (10.24)

Substracting Eqn. (10.23) from Eqn.(10.24), we get

P (V
2
 – V

1
) = R (10.25)

Hence from Eqns. (10.19) and (10.22) we get

c
p
 – c

v
= R (10.26)

where R is in J mol–1 K–1

Converting joules into calories, we can write

c
p
 – c

v
= 

R

J
(10.27)

where J = 4.18 cal is the mechanical equivalent of heat.

Example 10.5 : Calculate the value of c
p
 and c

v
 for a monoatomic, diatomic and triatomic

gas molecules.

Solution : We know that the average KE for 1 mol of a gas is given as

E = 
3

2
R T

Now c
v
 is defined as the heat required to raise the temperature of 1 mole of a gas at

constant volume by one degree i.e. if E
T
 denotes total energy of gas at T K and

E
T + 1

signifies total energy of gas at (T + 1) K, then c
v
 = E

T+1
 – E

T
 .

(i)  We know that for monoatomic gas, total energy = 
3

2
 R T
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∴ monoatomic gas c
V

= 
3

2
R (T + 1) – 

3

2
R T = 

3

2
R.

Hence c
p

= c
V
 + R = 

3

2
R + R = 

5

2
R.

(ii)  For diatomic gases, total energy = 
5

2
R T

∴ c
V

= 
5

2
R (T + 1) – R 

5

2
R T = 

5
R

2

c
p

= cV + R =  
5

2
R + R = 

7

2
R.

(iii)  You should now find out c
V
 and c

p
 for triatomic gas.

Intext Questions 10.3

1. What is the total energy of a nitrogen molecule?

..................................................................................................................................

2. Calculate the value of c
p
 and cV for nitrogen (given, R = 8.3J mol–1 K–1).

..................................................................................................................................

3. Why do gases have two types of specific heat capacities?

..................................................................................................................................

Brownian Motion and Mean Free Path

Scottish botanist Robert Brown, while observing the pollen grains of a flower
suspended in water, under his microscope, found that the pollen grains were tumbling
and tossing and moving about in a zigzag random fashion. The random motion of
pollen grains, was initially attributed to live objects. But when motion of pollens of
dead plants and particles of mica and stone were seen to exhibit the same behaviour,
it became clear that the motion of the particles, now called Brownian motion, was
caused by unbalanced forces due to impacts of water molecules. Brownian motion
provided a direct evidence in favour of kinetic theory of matter. The Brownian
displacement was found to depend on.

(i) Size of the particles of the suspension – smaller the particles, more the chances
of inbalanced impacts and more pronounced the Brownian motion.

(ii) The Brownian motion also increases with the increase in the temperature and
decreases with the viscosity of the medium.

Due to mutual collisions, the molecules of a fluid also move on zig-zag paths. The
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average distance between two successive collisions of the molecules is called mean
free path. The mean free path of a molecule is given by

σ = 2

1

2 πn d

where n is the number density and d the diameter of the molecules.

What You Have Learnt

� Kinetic theory assumes the existence of atoms and molecules of a gas and applies
the law of mechanics to large number of them using averaging technique.

� Kinetic theory relates macroscopic properties to microscopic properties of individual
molecules.

� The pressure of a gas is the average impact of its molecules on the unit area of the
walls of the container.

� Kinetic energy of a molecule depends on the absolute temperature T and is independent
of its mass.

� At absolute zero  of temperature, the kinetic energy of a gas is zero and molecular
motion ceases to exist.

� Gas law can be derived on the basis of kinetic theory. This provided an early evidence
in favour of kinetic theory.

� Depending on whether the volume or the pressure is kept constant, the amount of
heat required to raise the temperature of unit mass of  a gas by 1ºC is different.
Hence there are two specific heats of gas :

      i) Specific heat capacity at constant volume (cV)

      ii) Specific heat capacity at constant pressure (c
p
)

These are related as c
p

= W + cV

c
p
 – cV = 

J

R

� The law of equipartition of the energy states that the total kinetic energy of a dynamical
system is distributed equally among all its degrees of  freedom and it is equal to

1

2
 k T per degree of freedom.

� Total energy for a molecule of (i) a monatomic gas is 
3

2
 k T, (ii) a diatomic gas is

5

2
 , and (iii) a triatomic gas is 3 k T.
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Terminal Exercise

1. Can we use Boyle’s law to compare two different ideal gases?

2. What will be the velocity and kinetic energy of the molecules of a substance at
absolute zero temperature?

3. If the absolute temperature of a gas is raised four times, what will happen to its
kinetic energy, root-mean square velocity and pressure?

4. What should be the ratio of the average velocities of hydrogen molecules (molecular
mass = 2) and that of oxygen molecules (molecular mass = 32) in a mixture of two
gases to have the same kinetic energy per molecule?

5. If three molecules have velocities 0.5, 1 and 2 km s–1 respectively, calculate the ratio
between their root mean square and average speeds.

6. Explain what is meant by the root-mean square velocity of the molecules of a gas.
Use the concepts of kinetic theory of gases  to derives an expression for the root-
mean square velocity of the molecules in term of pressure and density of the gas.

7. i) Calculate the average translational kinetic energy of a neon atom at 25 0C.

ii) At what temperature does the average energy have half this value?

8. A container of  volume of 50 cm3 contains hydrogen at a pressure of 1.0 Pa and at a
temperature of 27 0C. Calculate (a)the number of molecules of the gas in the con-
tainer, and  (b)their root-mean square speed.

( R= 8.3 J mol–1 K–1 , N = 6 × 1023 mol–1. Mass of 1 mole of hydrogen molecule =
20 × 10–3 kg mol–1).

9. A closed container contains hydrogen which exerts pressure of 20.0 mm Hg at a
temperature of 50 K.

(a)At what temperature will it exert pressure of 180 mm Hg?

b) If the root-mean square velocity of the hydrogen molecules at 10.0 K is
800 m s–1, what will be their root-mean square velocity at this new temperature?

10. State the assumptions of kinetic theory of gases.

11. Find an expression for the pressure of a gas.

12. Deduce Boyle’s law and Charle’s law from kinetic the theory of  gases.

13. What is the interpretation of temperature on the basis of kinetic theory of gases?.

14. What is Avagardo’s law? How can it be deduced from kinetic theory of gases

15. Calculate the root-mean square of the molecules of hydrogen at 0 0C and at 100 0C

( Density of hydrogen at 00C and 760 mm of mercury pressure = 0.09 kg m–3).

16. Calculate the pressure in mm of mercury exerted by hydrogen gas if the number of
molecules per m3 is 6.8 × 1024 and the root-mean square speed of the molecules is
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1.90 × 10 m s–1. Avogadro’s number 6.02 × 1023 and molecular weight of hydrogen =
2.02).

17. Define specific heat of a gas at constant pressure. Derive the relationship between
c

p
 and c

V
.

18. Define specific heat of gases at constant volume. Prove that for a triatomic gas
c

V
 = 3R

19. Calculate c
P
 and cV for argon. Given R = 8.3 J mol–1 K–1.

Answers to Intext Questions

10.1

1. (i) Because in a gas the cohesive force between the molecules are extremely small
as compared to the molecules in a liquid.

(ii) Because the molecules in a solid are closely packed. The bonds between the
molecules are stronger giving a ordered structure.

2. The gas which follows the kinetic theory of molecules is called as an ideal gas.

3. P = 
1

3
ρ 2–c

10.2

1. Average speed –c

= 
500 600 700 800 900

5

+ + + +

= 700 m s–1

Average value of  2–c

=  
2 2 2 2 2500 600 700 800 900

5

+ + + +

= 510,000 m2  s–2

c
rms

 = 2c  = 510,000  = 714 m s–1

c
rms

 and c  are not same

2. The resultant pressure of the mixture will be the sum of the pressure of gases 1 and
2 respectively i.e. P = P

1
 + P

2
.

3. Boyle’s law is not applicable.
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10.3

1. For each degree of freedom, energy = 
1

2
k T

∴ for 5 degrees of freedom for a molecule of nitrogen, total energy = 
5

2
k T.

2. c
V
 for a diatomic molecule = 

5

2
 R

c
V
 = 

5

2
 × 8.3 J mol–1 K–1 = 20.75 J mol–1 K–1.

c
p
 = c

V
 + R = 29.05 J mol–1 C–1.

Answers to Terminal Problem

2. zero

3. becomes 4 times, doubles, becomes 4 time.

4. 4 : 1

5. 2

7. 6.18 × 10–21 ms–1, – 124 ºC

8. 12 × 1020, 7.9 × 1011 m  s–1

9. 2634ºC, 2560 ms–1

15. 1800 ms–1, 2088 ms–1

16. 3.97 × 103 Nm– 2

17. 12.45 J mol–1 K–1, 20.75 J mol–1 K–1.
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11

Y

THERMODYNAMICS

ou are familiar with the sensation of hotness and coldness. When you rub your hands
together, you get the feeling of warmth. You will agree that the cause of heating in this
case is mechanical work.This suggests that there is a relationship between mechanical
work and thermal effect. A study of phenomena involving thermal energy transfer between
bodies at different temperatures forms the subject matter of thermodynamics, which is a
phenomenological science based on experience. A quantitative description of thermal
phenomena requires a definition of temperature, thermal energy and internal energy. And
the laws of thermodynamics provide  relationship between the direction of flow of heat,
work done on/by a system and the internal energy of a system.

In this lesson you will learn three laws of thermodynamics : the zeroth law, the first law
and the second law of thermodynamics. These laws are based on experience and need no
proof. As such, the zeroth, first and second law introduce the concept of temperature,
internal energy and entropy, respectively. While the first law is essentially the law of
conservation of energy for a thermodynamic system, the second law deals with conversion
of heat into work and vice versa.You will also learn that Carnot’s engine has maximum
efficiency for conversion of heat into work.

Objectives

After studying this lesson, you should be able to :

� draw indicator diagrams for different thermodynamic processes and show that
the area under the indicator diagram represents the work done in the process;

� explain thermodynamic equilibrium and state the Zeroth law of thermodynamics;

� explain the concept of internal energy of a system and state first law of
thermodynamics;

� apply first law of thermodynamics to simple systems and state its limitations;

� define triple point;

� state the second law of thermodynamics in different forms; and

� describe Carnot cycle and calculate its efficiency.



Notes

Physics

258

MODULE - 3
Thermal Physics

11.1  Concept of Heat and Temperature

11.1.1  Heat

Energy has pervaded all facets of human activity ever since man lived in caves. In its
manifestation as heat, energy is intimate to our existence. The energy that cooks our food,
lights our houses, runs trains and aeroplanes originates in heat released in burning of wood,
coal, gas or oil. You may like to ask : What is heat? To discover answer to this question, let
us consider as to what happens when we inflate the tyre of a bicycle using a pump. If you
touch the nozzle, you will observe that pump gets hot. Similarly, when you rub you hands
together, you get the feeling of warmth. You will agree that in these processes heating is
not caused by putting a flame or something hot underneath the pump or the hand. Instead,
heat is arising as a result of mechanical work that is done in compressing the gas in the
pump and forcing the hand to move against friction. These examples, in fact, indicate a
relation between mechanical work and thermal effect.

We know from experience that a glass of ice cold water left to itself on a hot summer day
eventually warms up. But a cup of hot coffee placed on the table cools down. It means
that energy has been exchanged between the sysem – water or coffee – and its surrounding
medium. This energy transfer continues till thermal equilibrium is reached. That is until
both – the system and the suroundings – are as the same temperature. It also shows that
the direction of energy transfer is always from the body at high temprature to a body at
lower temperature. You may now ask : In what form is energy being transferred? In the
above examples, energy is said to be transfered in the form of heat. So we can say that
heat is the form of energy transferred between two (or more) systems or a system and
its surroundings because of temperature difference.

You may now ask. What is the nature of this form of energy? The answer to this question
was provided by Joule through his work on the equivalence of heat and mechanical work :
Mechanical motion of molecules making up the system  is associated with heat.

The unit of heat is calorie. One calorie is defined as  the quantity of heat energy required
to raise the temperature of 1 gram of water from 14.5oC to 15.5oC. It is denoted as cal.

Kilocalorie (k cal) is the larger unit of heat energy :

1 kcal = 103 cal.

Also 1 cal = 4.18 J

11.1.2 Concept of Temperature

While studying the nature of heat, you learnt that energy exchange between a glass of
cold water and its surroundings continues until thermal equilibrium was reached. All bodies
in thermal equilibrium have a common property, called temperature, whose value is same
for all of them. Thus, we can say that temperature of a body is the property which determines
whether or not it is in thermal equilibrium with other bodies.
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11.1.3. Thermodynamic Terms

(i) Thermodynamic system : A thermodynamic system refers to a definite quantity of
matter which is considered unique and separated from everything else, which can
influence it. Every system is enclosed by an arbitrary surface, which is called its
boundary. The boundary may enclose a solid, a liquid or a gas. It may be real or
imaginary, either at rest or in motion and may change its size and shape. The region
of space outside the boundary of a system constitutes its surroundings.

(a) Open System : It is a system which can exchange mass and energy with the
surroundings. A water heater is an open system.

(b) Closed system : It is a system which can exchange energy but not mass with
the surroundings. A gas enclosed in a cylinder fitted with a piston is a closed
system.

(c) Isolated system : It is a system which can exchange neither mass nor energy
with the surrounding. A filled thermos flank is an ideal example of an isolated
system.

(ii) Thermodynamic Variables or Coordinates : In module–1, we have studied the
motion of a body (or a system) in terms of its mass, position and velocity. To describe
a thermodynamic system, we use its physical properties such on temperature (T),
pressure (P), and volume (V). These are called thermodynamic variables.

(iii) Indicator diagram : You have learnt about displacement–time and velocity–time
graphs in lesson 2. To study a thermodynamic system, we use a pressure-volume
graph. This graph indicates how pressure (P) of a system varies with its volume (V)
during a thermodynamic process and is known as an indicator diagram.

The indicator diagram can be used to obtain an expression for the work done.  It is equal
to the area under the P-V diagram (Fig. 11.1). Suppose that pressure is P at the start of a
very small expansion ∆V. Then, work done by the system.

∆W = P ∆V (11.1)

= Area of a shaded strip ABCD

Now total work done by the system when it
expands from V

1
 to V

2
 = Area of P

1
P

2
V

2
V

1
P

1

Note that the area depends upon the shape of
the indicator diagram.

The indicator diagram is widely used in
calculating the work done in the process of
expansion or compression. It is found more
useful in processes where relationship between
P and V is not known.  The work done on the
system increases its energy and work done by
the system reduces it. For this reason, work done
on the system is taken as negative. You must note that the area enclosed by an isotherm

Fig. 11.1 : Indicater Diagram
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work done by or on a system depends on the path. That is, work does not depend on the
initial and final states.

11.2  Thermodynamic Equilibrium

Imagine that a container is filled with a liquid (water, tea, milk, coffee) at 60º C. If it is left
to itself, it is common experience that after some time, the liquid attains the room
temperature. We then say that water in the container has attained thermal equilibrium with
the surroundings.

If within the system, there are variations in pressure or elastic stress, then parts of the
system may undergo some changes. However, these changes cease ultimately, and no
unbalanced force will act on the system. Then we say that it is in mechanical equilibrium.
Do you know that our earth bulged out at the equator in the process of attaining mechanical
equilibrium in its formation from a molten state?

If a system has components which react chemically, after some time, all possible chemical
reactions will cease to occur. Then the system is said to be in chemical equilibrium.

A system which exhibits thermal, mechanical and chemical equilibria is said to be in
thermodynamic equilibrium. The macroscopic properties of a system in this state do not
change with time.

11.2.1  Thermodynamic Process

If any of the thermodynamic variables of a system change while going from one equilibrium
state to another, the system is said to execute a thermodynamic process. For example, the
expansion of a gas in a cylinder at constant pressure due to heating is a thermodynamic
process. A graphical representation of a thermodynamic process is called a path.

Now we will consider different types of thermodynamic processes.

(i) Reversible process : If a process is executed so that all intermediate stages
between the inital and final states are equilibrium states and the process can be
executed back along the same equilibrium states from its final state to its initial state,
it is called reversible process. A reversible process is executed very slowly and in a
controlled manner. Consider the following examples :

• Take a piece of ice in a beaker and heat it. You will see that it changes to water.
If you remove the same quantity of heat of water by keeping it inside a
refrigerator, it again changes to ice (initial state).

• Consider a spring supported at one end. Put some masses at its free end one by
one. You will note that the spring elongates (increases in length). Now remove
the masses one by one. You will see that spring retraces its initial positions.
Hence it is a reversible process.

As such, a reversible process can only be idealised and never achieved in practice.

(ii) Irreversible process : A process which cannot be retraced along the same
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equilibrium state from final to the initial state is called irreversible process.

All natural process are irrerersible. For example, heat poduced during friction, sugar
dissolved in water, or rusting of iron in the air. It means that for irrerersible process,
the intermediate states are not equilibrium states and hence such process can not be
represented by a path. Does this mean that we can not analyse an irrerersible
process? To do so, we use quasi-static process, which is infinitesimally close to the
equilibrium state.

(iii) Isothermal process : A thermodynamic process that occurs at constant temperature
is an isothermal process. The expansion and compression of a perfect gas in a cylinder
made of perfectly conducting walls are isothermal processes. The change in pressure
or volume is carried out very slowly so that any heat developed is transferred into the
surroundings and the temperature of the system remains constant. The thermal
equilibrium is always maintained. In such a process, ∆Q, ∆U and ∆W are finite.

(iv) Adiabatic process : A thermodynamic process in which no exchange of thermal
energy occurs is an adiabatic process. For example, the expansion and compression
of a perfect gas in a cylinder made of perfect insulating walls. The system is isolated
from the surroundings. Neither any amount of heat leaves the system nor enters it
from the surroundings. In this process, therefore ∆Q = 0 and ∆U = –∆W.

The change in the internal energy of the system is equal to the work done on the
system. When the gas is compressed, work is done on the system. So, ∆U becomes
positive and the internal energy of the system increases. When the gas expands,
work is done by the system. It is  taken as positive and ∆U becomes negative. The
internal energy of the system decreases.

(v) Isobaric process : A thermodynamic process that occurs at constant pressure is an
isobaric process. Heating of water under atmospheric pressure is an isobaric process.

(vi) Isochoric process : A thermodynamic process that occurs at constant volume is an
isochoric process. For example, heating of a gas in a vessel of constant volume is an
isochoric process. In this process, volume of the gas remains constant so that no
work is done, i.e. ∆W = 0.  We therefore get ∆Q = ∆U.

In a Cyclic Process the system returns back to its initial state. It means that there is no
change in the internal energy of the system. ∆U = 0.

∴ ∆Q = ∆W.

11.2.2 Zeroth Law of Thermodynamics

Let us consider three metal blocks A, B and C. Suppose block A is in thermal equilibrium
with block B. Further suppose that block A is also in thermal equilibrium with block C. It
means the temperature of the block A is equal to the temperature of block B as well as of
block C. It follows that the temperatures of blocks B and C are equal. We summarize this
result in the statement known as Zeroth Law of Thermodynamics :

If two bodies or systems A and B are separately in thermal equilibrium with a third
body C, then A and B are in thermal equilibrium with each other.
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Phase Change and Phase Diagram
You have learnt that at STP, matter exists in three states : solid, liquid and gas. The
different states of matter are called its phases. For example, ice (solid), water
(liquid) and steam (gas) are three phases of water. We can discuss these three
phases using a three dimensional diagram drawn in pressure (P), temperature (T)
and volume (V). It is difficult to draw three dimensional diagram. Thus, we discuss
the three phases of matter by drawing a pressure-temperature diagram. This is called
phase diagram.

Fig. 11.3: Phase diagram of water

Refer to Fig. 11.3, which shows phase diagram of water. You can see three curves
CD; AB and EF. Curve CD shows the variation of melting point of ice with pressure.
It is known as a fusion curve. Curve AB shows variation of boiling point of water
with pressure. It is known as vaporization curve. Curve EF shows change of ice
directly to steam. It is known as a sublimation curve. This curve is also known as
Hoarfrost Line.

If you extend the curve AB, CD and EF (as shown in the figure with dotted lines),
they meet at point P. This point is called triple point. At triple point, all three phases
co-exist.

When we heat a solid, its temperature increases till it reaches a temperature at
which it starts melting. This temperature is called melting point of the solid. During
this change of state, we supply heat continuously but the temperature does not rise.
The heat required to completely change unit mass of a solid into its corresponding
liquid state at its melting point is called latent heat of fusion of the solid.

On heating a liquid, its temperature also rises till its boiling point is reached. At the
boiling point, the heat we supply is used up in converting the liquid into its gaseous
state. The amount of heat required to convert unit mass of liquid in its gaseous state
at constant temperature is called latent heat of vaporization of the liquid.

11.2.3 Triple Point of Water
Triple point of a pure substance is a very stable state signified by precisely constant
temperature and pressure values. For this reason, in kelvin’s scale of thermometry, triple
point of water is taken as the upper fixed point.

On increasing pressure, the melting point of a solid decreases and boiling point of the liquid
increases. It is possible that by adjusting temperature and pressure, we can obtain all the
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three states of matter to co-exist simultaneously. These values of temperature and pressure
signify the triple point.

Intext Questions 11.1

1. Fill in the blanks

(i) Zeroth law of thermodynamics provides the
basis for the concept of .............

(ii) If a system A is in thermal equilibrium with
a system B and B is in thermal equilibrium
with another system C, then system A will
also be in thermal equilibrium with
system...............

(iii) The unit of heat is

..................................................................................................................................

2. Fig. 11.2 is an indicator diagram of a thermodynamic process. Calculate the work
done by the system in the process :

(a) along the path ABC from A to C

(b) If the system is returned from C to A along the same path, how much work is
done by the system.

..................................................................................................................................

3. Fill in the blanks.

(i) A reversible process is that which can be ...................... in the opposite direction
from its final state to its initial state.

(ii) An ............................. process is that which cannot be retraced along the same
equilibrium states from final state to the initial state.

4. State the basic difference between isothermal and adiabatic processes.

..................................................................................................................................

5. State one characteristic of the triple point.

..................................................................................................................................

11.3  Internal Energy of a System

Have you ever thought about the energy which is released when water freezes into ice ?
Don’t you think that there is some kind of energy stored in water. This energy is released
when water changes into ice. This stored energy is called the internal energy. On the
basis of kinetic theory of matter, we can discuss the concept of internal energy as sum of
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their random motion and their potential energy due to interactions amongst them. Let us
now discuss these.

(a) Internal kinetic energy : As you now know, according to kinetic theory, matter is
made up of a large number of molecules. These molecules are in a state of constant
rapid motion and hence possess kinetic energy. The total kinetic energy of the
molecules constitutes the internal kinetic energy of the body.

(b) Internal potential energy : The energy arising due to the inter-molecular forces is
called the internal potential energy.

The internal energy of a metallic rod is made up of the kinetic energies of conduction
electrons, potential energies of atoms of the metal and the vibrational energies about their
equilibrium positions. The energy of the system may be increased by causing its molecules
to move faster (gain in kinetic energy by adding thermal energy). It can also be increased
by causing the molecules to move against inter-molecular forces, i.e., by doing work on it.
Internal energy is denoted by the letter U.

Internal energy of a system = Kinetic energy of molecules + Potential energy of
molecules

Let us consider an isolated thermodynamic system subjected to an external force. Suppose
W amount of work is done on the system in going from initial state i to final state f
adiabatically. Let U

i
 and U

f
 be internal energies of the system in its initial and final states

respectively. Since work is done on the system, internal energy of final state will be higher
than that of the initial state.

According to the law of conservation of energy, we can write

U
i
 – U

f
= – W

Negative sign signifies that work is done on the system.

We may point out here that unlike work, internal energy depends on the initial and final
states, irrespective of the path followed. We express this fact by saying that U is a function
of state and depends only on state variables P, V, and T. Note that if some work is done by
the system, its internal energy will decrease.

11.4  First Law of Thermodynamics

You now know that the zeroth law of thermodynamics tells us about thermal equilibrium
among different systems characterised by same temperature. However, this law does not
tell us anything about the non-equilibrium state. Let us consider two examples : (i) Two
systems at different temperatures are put in thermal contact and (ii) Mechanical rubbing
between two systems. In both cases, change in their temperatures occurs but it cannot be
explained by the Zeroth law. To explain such processes, the first law of thermodynamics
was postulated.

The first law of thermodynamics is, in fact, the law of conservation of energy for a
thermodynamic system. It states that change in internal energy of a system during a
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thermodynamic process is equal to the sum of the heat given to it and the work done
on it.

Suppose that ∆Q amount of heat is given to the system and – ∆W work is done on the
system. Then increase in internal energy of the system, ∆U, according to the first law of
thermodynamics is given by

∆U = ∆Q – ∆W (11.3 a)

This is the mathematical form of the first law of thermodynamics. Here ∆Q, ∆U and ∆W
all are in SI units.

The first law of thermodynamics can also be written as

∆Q = ∆U + ∆W (11.3 b)

The signs of ∆Q, ∆U and ∆W are known from the following sign conventions :

1. Work done (∆W) by a system is taken as positive whereas the work done on a system
is taken as negative. The work is positive when a system expands. When a system is
compressed, the volume decreases, the work done is negative. The work done does
not depend on the initial and final thermodynamic states; it depends on the path followed
to bring a change.

2. Heat gained by (added to) a system is taken as positive, whereas heat lost by a system
is taken as negative.

3. The increase in internal energy is taken as positive and a decrease in internal energy
is taken as negative.

If a system is taken from state 1 to state 2, it is found that both ∆Q and ∆W depend on the
path of transformation. However, the difference (∆Q – ∆W) which represents ∆U, remains
the same for all paths of transformations.

We therefore say that the change in internal energy ∆U of a system does not depend on
the path of the thermodynamic transformations.

11.4.1  Limitations of the First Law of Thermodynamics

The first law of thermodynamics asserts the equivalence of heat and other forms of energy.
This equivalence makes the world around us work. The electrical energy that lights our
houses, operates machines and runs trains originates in heat released in burning of fossil or
nuclear fuel. In a sense, it is universal. It explains the fall in temperature with height; the
adiabatic lapse rate in upper atmosphere. Its applications to flow process and chemical
reations are also very interesting. However, consider the following processes :

• You know that heat always flows from a hot body to a cold body. But first law of
thermodynamics does not prohibit flow of heat from a cold body to a hot body. It
means that this law fails to indicate the direction of heat flow.

• You know that when a bullet strikes a target, the kinetic energy of the bullet is
converted into heat. This law does not indicate as to why heat developed in the
target cannot be changed into the kinetic energy of bullet to make it fly. It means that
this law fails to provide the conditions under which heat can be changed into work.
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converted into work.

Now take a pause and answer the following questions :

Intext Questions  11.2

1. Fill in the blanks

(i) The total of kinetic energy and potential energy of molecules of a system is called
its..........................

(ii) Work done = – W indicates that work is done.......................... the system.

2. The first law of thermodynamics states that ........................................................

..................................................................................................................................

11.5 Second Law of Thermodynamics

You now know that the first law of thermodynamics has inherent limitations in respect of
the direction of flow of heat and the extent of convertibility of heat into work. So a question
may arise in your mind : Can heat be wholly converted into work? Under what conditions
this conversion occurs? The answers of such questions are contained in the postulate of
Second law of thermodynamics. The second law of thermodynamics is stated in several
ways. However, here you will study Kelvin-Planck and Clausius statements of second
law of thermodynamics.

The Kelvin-Planck’s statement is based on the experience about the performance of
heat engines. (Heat engine is discussed in next section.) In a heat engine, the working
substance extracts heat from the source (hot body), converts a part of it into work and
rejects the rest of heat to the sink (environment). There is no engine which converts the
whole heat into work, without rejecting some heat to the sink. These observations led
Kelvin and Planck to state the second law of thermodynamics as

It is impossible for any system to absorb heat from a reservoir at a fixed
temperature and convert whole of it into work.

Clausius statement of second law of thermodynamics is based on the performance of
a refrigerator. A refrigerator is a heat engine working in the opposite direction. It transfers
heat from a colder body to a hotter body when external work is done on it. Here concept
of external work done on the system is important. To do this external work, supply of
energy from some external source is a must. These observations led Clausius to state the
second law of thermodynamics in the following form.

It is impossible for any process to have as its sole result to transfer heat from a
colder body to a hotter body without any external work.

Thus, the second law of thermodynamics plays a unique role for practical devices like heat
engine and refrigerator.
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11.5.1 Carnot Cycle

You must have noticed that when water is boiled in a vessel having a lid, the steam
generated inside throws off the lid. This shows that high pressure steam can be made to
do useful work. A device which can convert heat into work is called a heat engine.
Modern engines which we use in our daily life are based on the principle of heat engine.
These may be categorised in three types : steam engine, internal combustion engine and
gas turbine. However, their working can be understood in terms of Carnot’s reversible
engine. Let us learn about it now.

Fig. 11.4 : Indicator diagram of Carnot cycle

In Carnot cycle, the working substance is subjected to four operations : (a) isothermal
expansion, (b) adiabatic expansion, (c) isothermal compression and (d) adiabatic
compression. Such a cycle is represented on the P-V diagram in Fig. 11.4. To describe
four operations of Carnot’s cycle, let us fill one gram. mol. of the working substance in the
cylinder (Fig. 11.5). Original condition of the substance is represented by point A on the
indicator diagram. At this point, the substance is at temperature T

1
, pressure P

1
 and

volume V
1
.

(a) Isothermal expansion : The cylinder is put in thermal contact with the source and
allowed to expand. The volume of the working substance increases to V

2
. Thus

working substance does work in raising the piston. In this way, the temperature of
the working substance would tend to fall. But it is in thermal contact with the source.

Fig. 11.5 : The cylinder with working substance
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So it will absorb a quantity of heat  H
1
 from the source at temperature T

1
. This is

represented by the point B. At B, the values of pressure and volume are P
2
 and V

2

respectively. On the indicator diagram (Fig. 11.4), you see that in going from A to B,
temperature of the system remains constant and working substance expands. We
call it isothermal expansion process. H

1
 is the amount of heat absorbed in the

isothermal expansion process. Then, in accordance with the first law of
thermodynamics, H

1
 will be equal to the external work done by the gas during

isothermal expansion from A to B at temperature T
1
. Suppose W

1
 is the external

work done by the gas during isothermal expansion AB. Then it will be equal to the
area ABGEA. Hence

W
1

= Area ABGEA

(b) Adiabatic expansion : Next the cylinder is removed from the source and placed
on a perfectly non-conducting stand. It further decreases the load on the piston to
P

3
. The expansion is completely adiabatic because no heat can enter or leave the

working substance. Therefore, the working substance performs external work in
raising the piston at the expense of its internal energy. Hence its temperature falls.
The gas is thus allowed to expand adiabatically until its temperature falls to T

2
, the

temperature of the sink. It has been represented by the adiabatic curve BC on the
indicator diagram. We call it adiabatic expansion. If the pressure and volume of
the substance are P

3
 and V

3
, respectively at C, and W

2
 is the work done by the

substance from B to C, then

W
2

= Area BCHGB.

(c) Isothermal compression : Remove the cylinder from the non-conducting stand
and place it on the sink at temperature T

2
. In order to compress the gas slowly,

increase the load (pressure) on the piston until its pressure and volume become P
4

and V
4
, respectively. It is represented by the point D on the indicator diagram (Fig.

11.4). The heat developed (H
2
) due to compression will pass to the sink. Thus, there

is no change in the temperature of the system. Therefore, it is called an isothermal
compression process. It is shown by the curve  CD (Fig. 11.4). The quantity of heat
rejected (H

2
) to the sink during this process is equal to the work done (say W

3
) on

the working substance. Hence

W
3

= Area CHFDC

(d) Adiabatic compression : Once again place the system on the non-conducting stand.
Increase the load on the piston slowly. The substance will under go an adiabatic
compression. This compression continues until the temperature rises to T

1
 and the

substance  comes back to its original pressure P
1
 and volume V

1
. This is an adiabatic

compression process and represented by the curve DA on the indicator diagram
(Fig. 11.4). Suppose W

4
 is the work done during this adiabatic compression from D

to A. Then

W
4

= Area DFEAD

During the above cycle of operations, the working substance takes H
1
 amount of heat

from the source and rejects H
2
 amount of heat to the sink. Hence the net amount of heat

absorbed by the working substance is
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1
 – H

2

Also the net work done (say W) by the engine in one complete cycle

W = Area ABCHEA – Area CHEADC

= Area ABCD

Thus, the work done in one cycle is represented on a P-V diagram by the area of the
cycle.

You have studied that the initial and final states of the substance are the same. It means
that its internal energy remains unchanged. Hence according to the first law of
thermodynamics

W = H
1
 – H

2

Therefore, heat has been converted into work by the system, and any amount of work can
be obtained by merely repeating the cycle.

11.7.2 Efficiency of Carnot Engine

Efficiency is defined as the ratio of heat converted into work in a cycle to heat taken from
the source by the working substance. It is denoted as η:

η = 
Heat converted into work
Heat taken from source

or η = 
1 2 2

1 1

H - H H
=1-

H H

It can be shown that for Carnot’s engine,

2 2

1 1

H T
H T

=

Hence, η = 1 – 
2

1

T
T

Note that efficiency of carnot engine does not depend on the nature of the working
substance. Further, if no heat is rejected to the sink, η will be equal to one. But for H

2
 to

be zero, T
2
 must be zero. It means that efficiency η can be100% only when T

2
 = 0. The

entire heat taken from the hot source is converted into work. This violates the second law
of thermodynamics. Therefore, a steam engine can operate only between finite temperature
limits and its efficiency will be less than one.

It can also be argued that the Carnot cycle, being a reversible cycle, is most efficient; no
engine can be more efficient than a Carnot engine operating between the same two
temperatures.

11.7.3  Limitation of Carnot’s Engine

You have studied about Carnot’s cycle in terms of isothermal and adiabatic processes.
Here it is important to note that the isothermal process will take place only when piston
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from the working substance to the source. On the other hand, during the adiabatic process,
the piston moves extremely fast to avoid heat transfer. In practice, it is not possible to fulfill
these vital conditions. Due to these very reasons, all practical engines have an efficiency
less than that of Carnot’s engine.

Intext Questions 11.3

1. State whether the following statements are true or false.

(i) In a Carnot engine, when heat is taken by a perfect gas from a hot source, the
temperature of the source decreases.

..................................................................................................................................

(ii) In Carnot engine, if temperature of the sink is decreased the efficiency of engine
also decreases.

............................................................................................................................

2.  (i) A Carnot engine has the same efficiency between 1000K and 500K and between
TK and 1000K. Calculate T.

..................................................................................................................................

(ii) A Carnot engine working between an unknown temperature T and ice point
gives an efficiency of 0.68. Deduce the value of T.

..................................................................................................................................

What You Have Learnt

� Heat is a form of energy which produces in us the sensation of warmth.

� The energy which flows from a body at higher temperature to a body at lower
temperature because of temperature difference is called heat energy.

� The most commonly known unit of heat energy is calorie. 1 cal = 4.18 J and
1k cal = 103 cal.

� A graph which indicates how the pressure (P) of a system varies with its volume
during a thermodynamic process is known as indicator diagram.

� Work done during expansion or compression of a gas is P∆V = P(V
f 
 – V

i
).

� Zeroth law of thermodynamics states that if two systems are separately in thermal
equilibrium with a third system, then they must also be in thermal equilibrium with each
other.

� The sum of kinetic energy and potential energy of the molecules of a body gives the
internal energy. The relation between internal energy and work is U

i
 – U

f 
= –W.
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� The first law of thermodynamics states that the amount of heat given to a system is
equal to the sum of change in internal energy of the system and the external work
done.

� First law of thermodynamics tells nothing about the direction of the process.

� The process which can be retraced in the opposite direction from its final state to
initial state is called a reversible process.

� The process which can not be retraced along the same equilibrium state from final to
the initial state is called an irreversible process. A process that occurs at constant
temperature is an isothermal process.

� Any thermodynamic process that occurs at constant heat is an adiabatic process.

� The different states  of matter are called its phase and the pressure and temperature
diagram showing three phases of matter is called a phase diagram.

� Triple point is a point (on the phase diagram) at which solid, liquid and vapour states of
matter can co-exist. It is characterised by a particular temperature and pressure.

� According to Kelvin-Planck’s statement of second law, it is not possible to obtain a
continuous supply of work from a single source of heat.

� According to Clausius statement of second law, heat can not flow from a colder body
to a hotter body without doing external work on the working substance.

� The three essential requirements of any heat engine are :

(i)source from which heat can be drawn

(ii)a sink into which heat can be rejected.

(iii)working substance which performs mechanical work after being supplied with
heat.

� Carnot’s engine is an ideal engine in which the working substance is subjected to four
operations (i) Isothermal expansion (ii) adiabatic expansion (iii) isothermal compression
and (iv) adiabatic compression. Such a cycle is called a Carnot cycle.

� Efficiency of a Carnot engine is given only

η = 1 –  2

1

H
H , H

1
 = Amount of heat absorbed and H

2
 = Amount of heat rejected.

   = 1 – 2

1

T
T , T

1
 = Temperature of the source, and T

2
 = Temperature of the sink.

� Efficiency does not depend upon the nature of the working substance.

Terminal Exercise

1. Distinguish between the terms internal energy and heat energy.
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during expansion of an ideal gas.

3. Define temperature using the Zeroth law of thermodynamics.

4. State the first law of thermodynamics and its limitations.

5. What is the difference between isothermal, adiabetic, isobaric and isochoric
processes?

6. State the Second law of thermodynamics.

7. Discuss reversible and irreversible processes with examples.

8. Explain Carnot’s cycle. Use the indicator diagram to calculate its efficiency.

9. Calculate the change in the internal energy of a system when (a) the system absorbs
2000J of heat and produces 500 J of work (b) the system absorbs 1100J of heat and
400J of work is done on it.

10. A Carnot’s engine whose temperature of the source is 400K takes 200 calories of
heat at this temperature and rejects 150 calories of heat to the sink. (i) What is the
temperature of the sink. (ii) Calculate the efficiency of the engine.

Answers to Intext Questions

11.1

1. (i) Temperature (ii) C (iii) Joule or Calorie

2. (a) P
2
 (V

2
 – V

1
) (b) –P

2
 (V

2
 – V

1
)

3. (i)  retrace (ii) irreversible

4. An isothermal process occurs at a constant temperature whereas an adiabatic process
occurs at constant heat.

5. At triple point all three states of matter i.e. solid, liquid and vapour can co-exist.

11.2

1. (i) Internal energy (ii) on

2. It states that the amount of heat given to a system is equal to the sum of the change
in internal energy of the system and the external energy.

11.3

1. (i) False (ii) True

2. (i) 2000 K (ii) 8583.1K

Answers to Terminal Problems
9. (a) 1500 J (b) 1500 J.

10. 300K, 25%
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12

HEAT TRANSFER AND

SOLAR ENERGY

I n the previous lesson you have studied the laws of thermodynamics, which govern the
flow and direction of thermal energy in a thermodynamic system. In this lesson you will
learn about the processes of  heat transfer. The energy from the sun is responsible for life
on our beautiful planet. Before reaching the earth, it passes through vacuum as well as
material medium between the earth and the sun. Do you know that each one of us also
radiates energy at the rate of nearly 70 watt? Here we will study the radiation in detail.
This study enables us to determine the temperatures of stars even though they are very
far away from us.

Another process of heat transfer is conduction, which requires the presence of a material
medium. When one end of a metal rod is heated, its other end also becomes hot after some
time. That is why we use handles of wood or similar other bad conductor of heat in various
appliances. Heat energy falling on the walls of our homes also enters inside through
conduction. But when you heat water in a pot, water molecules near the bottom get the
heat first. They move from the bottom of  the pot to the water surface and carry heat
energy. This mode of heat transfer is called convection. These processes are responsible
for various natural phenomena, like monsoon which are crucial for existence of life on the
globe.You will learn more about these processes of heat transfer in this unit.

Objectives

After studying this lesson, you should be able to :

� distinguish between conduction convection and radiation;

� define the coefficient of thermal conductivity;

� describe green house effect and its consequenies for life on earth; and

� apply laws governing black body radiation.
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Fig. 12.1 : Heat conduction in a
metal rod

12.1 Processes of Heat Transfer

You have learnt the laws of thermodynamics in the previous lesson. The second law
postulates that the natural tendency of heat is to flow spontaneously from a body at higher
temperature to a body at lower temperature. The transfer of heat continues until the
temperatures of the two bodies become equal. From kinetic theory, you may recall that
temperature of a gas is related to its average kinetic energy. It means that molecules of a
gas at different temperatures have different average kinetic energies.

There are three processes by which transfer of heat takes place. These are : conduction,
convection and radiation. In conduction and convection, heat transfer takes place through
molecular motion. Let us understand how this happens.

Heat transfer through conduction is more common
in solids. We know that atoms in solids are tightly
bound. When heated, they can not leave their sites;
they are constrained to vibrate about their respective
equilibrium positions. Let us understand as to what
happens to their motion when we heat a metal rod at
one end (Fig.12.1). The atoms near the end A become
hot and their kinetic energy increases. They vibrate
about their mean positions with increased kinetic

energy and being in contact with their nearest neighbouring atoms, pass on some of
their kinetic energy (K.E.) to them. These atoms further transfer some K.E to their
neighboures and so on. This process continues and kinetic energy is transferred to
atoms at the other end B of the rod. As average kinetic energy is proportional to
temperature, the end B gets hot. Thus, heat is transferred from atom to atom by
conduction. In this process, the atoms do not  bodily move but simply vibrate
about their mean equilbrium positions and pass energy from one to another.

In convection, molecules of fluids receive thermal energy
and move up bodily. To see this, take some water in a
flask and put some grains of potassium permanganate
(KMnO

4
) at its bottom. Put a bunsen flame under the

flask. As the fluid near the bottom gets heated, it expands.
The density of water decreases and the buoyant force
causes it to move upward (Fig.12.2). The space occupied
by hot water is taken by the cooler and denser water,
which moves downwards. Thus, a convection current of
hotter water going up and cooler water coming down is
set up. The water gradually heats up. These convection
currents can be seen as KMnO

4 
 colours them red.

In radiation, heat energy moves in the form of waves. You will learn about the
characteristics of these waves in a later section. These waves can pass through vacuum
and do not require the presence of any material medium for their propagation. Heat from
the sun comes to us mostly by radiation.

We now study these processes in detail.

Fig. 12.2 : Convection
currents are
formed in water
when heated
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Fig. 12.3 : Heat conduction
through a slab of
thickness d and
surface area A, when
the faces are kept at
temperatures T

h 
and

T
c
.

12.1.1 Conduction

Consider a rectangular slab of area of cross-section A
and thickness d. Its two faces are maintained at
temperatures T

h 
and T

c    
(< T

h 
), as shown in Fig. 12.3. Let

us consider all the factors on which the quantity of heat
Q transferred from one face to another depends. We
can intuitively feel that larger the area A, the greater will
be the heat transferd (Q α A). Also, greater the thickness,
lesser will be the heat transfer (Q α 1/d). Heat transfer
will be more if the temperature difference between the
faces, (T

h
 – T

c    
), is large. Finally longer the time t allowed

for heat transfer, greater will be the value of Q.
Mathematically, we can write

Q α 
h c(T – T ) .A t

d

Q = h c(T – T )KA t

d
(12.1)

where K is a constant which depends on the nature of the material of the slab. It is called
the coefficient of thermal conductivity,or simply, thermal conductivity of the material.
Thermal conductivity of a material is defined as the amount of heat transferred in one
second across a piece of the material having area of cross-section 1m2 and edge 1m when
its opposite faces are maintained at a temperature difference of 1 K. The SI unit of
thermal conductivity is W m–1 k–1. The value of K for some materials is given in Table 12.1

Example 12.1 :  A cubical thermocole box, full of ice. has side 30 cm and thickness of
5.0 cm. If outside temperature is 45°C, estimate the amount of ice melted in 6 h. (K for

thermacole is 0.01 J s–1 m–1 °C–1 and latent heat of fusion of ice is 335 J g–1.

Solution : The quantity of heat transferred into the box through its one face can be
obtained using Eq. (12.1) :

Q = h c(T – T )KA t

d
= (0.01 J s–1 m–1  ° C–1) × (900 × 10–4 m2) × (45 ºC)
   × (6 ×  60 × 60 s) / (5 × 10–2 m)

= 10496 J

Since the box has six faces, total heat passing into the box

Q = 10496 × 6 J

The mass of ice melted m, can be obtained by dividing Q by L :
m = Q/L

= –1

10496J
 6
335 Jg

×

= 313 × 6 g = 1878 g

d

Tc

Th

A
A

Table 12.1 : Thermal
Conductivity of some

materials

Material Thermal
conductivity
(Wm–1 K–1)

Copper 400

Aluminium 240

Concrete 1.2

Glass 0.8

Water 0.60

Body talc 0.20

Air 0.025

Thermocole 0.01
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conductivity. This implies that heat flows with more ease through copper.This is the reason
why cooking vessels and heating pots are made of copper. On the other hand, air and
thermocole have very low thermal conductivities. Substances having low value of K are
sometimes called thermal insulators. We wear woollen clothes during winter because air
trapped in wool fibres prevents heat loss from our body. Wool is a good thermal insulator
because air is trapped between its fibres. The trapped heat gives us a feeling of warmth.
Even if a few cotton clothes are put on one above another, the air trapped in-between
layers stops cold. In the summer days, to protect a slab of ice from melting, we put it in a
ice box made of thermocole. Sometimes we wrap the ice slab in jute bag, which also has
low thermal conductivity.

12.1.2 Convection

It is common experience that while walking by the side of a lake or a sea shore on a hot
day, we feel a cool breeze. Do you know the
reason? Let us discover it.

Due to  continuous evaporation of water from
the surface of lake or sea, the temperature
of water falls. Warm air from the shore rises
and moves upwards (Fig.12.4). This creates
low pressure area on the shore and causes
cooler air from water surface to move to the
shore. The net effect of these convection
currents is the transfer of heat from the
shore,which is hotter, to water, which is
cooler. The rate of heat transfer depends on
many  factors.There is no simple equation

for convection as for conduction. However, the rate of heat transfer by convection
depends on the  temperature difference between the surfaces and also on their areas.

Now let us check how much you have learnt about the methods of heat transfer.

Intext Questions  12.1

1. Distinguish between  conduction and convection.

..................................................................................................................................

2. Verify that the units of K are Js –1 m–1 °C–1.

..................................................................................................................................

3. Explain why do humans wrap themselves in woollens in winter season?

..................................................................................................................................

4. A cubical slab of surface area 1 m2, thickness 1 m, and made of a material of thermal
conductivity K. The opposite faces of the slab are maintained at 1°C temperature
difference. Compute the energy transferred across the surface in one second. and
hence give a numerical definition of K.

..................................................................................................................................

Fig. 12.4 : Convection currents. Hot air from
the shore rises and moves towards
cooler water. The convection current
from water to the shores is
experienced as cool breeze.
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get as hot. This results in the onset of sea breezes. Explain.

..................................................................................................................................

12.1.3 Radiation

Radiation refers to continuous emission of energy from the surface of a body. This energy
is called radiant energy and is in the form of electromagnetic waves. These waves travel
with the velocity of light (3 × l08 ms–1) and can travel through vacuum as well as through
air. They can easily be reflected from polished surfaces and focussed using a lens.

All bodies emit radiation with wavelengths that are chracteristic of their temperature. The
sun, at 6000 K emits energy mainly in the visible spectrum. The earth at an ideal radiation
temperature of 295 K radiates energy mainly in the far infra-red (thermal) region of
electromagnetic spectrum. The human body also radiates energy in the infra-red region.

Let us now perform a simple experiment. Take a piece of blackened platinum wire in a
dark room. Pass an electrical current through it. You will note that the wire has become
hot. Gradually increase the magnitude of the current. After sometime, the wire will begin
to radiate. When you pass a slightly stronger current, the wire will begin to glow with dull
red light. This shows that the wire is just emitting red radiation of sufficient intensity to
affect the human eye. This takes place at nearly 525°C. With further increase in temperature,
the colour of the emitted rediation will change from dull red to cherry red (at nearly
900°C) to orange (at nearly 1100°C), to yellow (at nearly 1250°C) until at about 1600°C,
it becomes white. What do you infer from this? It shows that the temperature of a luminous
body can be estimated from its colour. Secondly, with increase in temperature, waves
of shorter wavelengths (since red light is of longer wavelength than orange. yellow etc.)
are also emitted with sufficient intensity. Considering in reverse order, you may argue
that when the temperature of the wire is below 525°C, it emits waves longer than red but
these waves can be detected only by their heating effect.

12.2 Radiation Laws

At any temperature, the radiant energy emitted by a body is a mixture of waves of different
wavelengths.The most intense of these
waves will have a particular wavelength
(sayλ

m
).At 400°C, the λ

m
 will be about 5

×10– 4 cm or 5 µm (1 micron (µ) =10–6m)
for a copper block.The intensity
decreases for wavelengths either greater
or less than this value (Fig. 12.5).

Evidently area between each curve and
the horizontial axis represents the total
rate of radiation at that temperature. You
may study the curves shown in Fig. 12.5
and verify the following two facts.

1) The rate of radiation at a particular
temperature (represented by the

Fig. 12.5 : Variation in intensity with
wavelength for a black body at
different temperatures

4000 K

3000 K

λ 

I
m

 (
 

) 
ω

→
–2

( m)µ  

0ºC



Notes

Physics

278

MODULE - 3
Thermal Physics area between each curve and the holizontal axis) increases rapidly with temperature.

2) Each curve has a definite energy maximum and a corresponding wavelength λ
m
 (i.e.

wavelength of the most intense wave). The λ
m
 shifts towards shorter wavelengths

with increasing temperature.

This second fact is expressed quantitatively by what is known as Wien’s displacement
law. It states that λλλλλm

 shifts towards shorter wavelengths as the temperature of a
body is increased. This law is., strictly valid only for black bodies. Mathematically, we
say that the product λλλλλm T is constant for a body emitting radiation at temperature T:

λ
m
 T = constant (12.2)

The constant in Eqn. (12.2) has a value 2.884 × 10–3 mK. This law furnishes us with a
simple  method of determining the temperature of all radiating bodies including those in
space. The radiation spectrum of the moon has a peak at λ

m 
= 14 micron. Using  Eqn.

(12.2), we get

T =  
2884 micron K

14 micron  = 206K

That is, the temperature of the lunar surface is 206K

Wilhelm Wien
(1864 – 1928)

The 1911 Nobel Leureate in physics, Wilhelm Wien, was son of a
land owner in East Prussia. After schooling at Prussia, he went to
Germany for his college. At the University of Berlin, he studied under

great physicist Helmholtz and got his doctorate on diffraction of light from metal
surfaces in 1886.

He had a very brilliant professional carrer. In 1896, he succeeded Philip Lenard as
Professor of Physics at Aix-la-chappelle. In 1899, he become Professor of Physics
at University of Giessen and in 1900, he succeeded W.C. Roentgen at Wurzberg. In
1902, he was invited to succeed Ludwig Boltzmann at University of Leipzig and in
1906 to succeed Drude at University of Berlin. But he refused these invitations. In
1920, he was appointed Professor of Physics at munich and he remained there till his
last.

12.2.1 Kirchhoff’s Law

As pointed out earlier, when radiation falls on matter, it may be partly reflected, partly
absorbed and partly transmitted. If for a particular wavelength λ  and a given surface,
rλ, aλ  and tλ, respectively denote the fraction of total incident energy reflected, absorbed
and transmitted, we can write

1 = rλ + aλ + tλ (12.3)
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incident on black bodies will be completely absorbed. As such, perfectly black body does
not exist in nature. Lamp black is the nearest approximation to a black body. It absorbs
about 96% of visible light and platinum black absorbs about 98%. It is found to transmit
light of long wavelength.

A perfectly white body, in contrast, defined as a body with aλ= 0, tλ = 0 and rλ = 1. A piece
of white chalk approximates to a perfectly white body.

This implies that good emitters are also good absorbers. But each body must either absorb
or reflect the radiant energy reaching it. So we can say that a good absorber must be a
poor reflector (or good emitter).

Designing a Black Body

Kirchoff’s law also enables us to design a perfectly black body for experimental
purposes. We go back to an enclosure at constant temperature containing radiations
between wavelength range λ  and λ  + dλ. Now let us make a small hole in the
enclosure and examine the radiation escaping out of it.This radiation undergoes multiple
reflections from the walls. Thus, if the reflecting power of the surface of  the wall is
r, and emissive power is eλ, the total radiation escaping out is given by

Eλ = eλ  + eλrλ + eλr2 + eλrλ
3 +...

= eλ (1 + rλ + rλ
2 + rλ

3 +...)

= 1–

e

r
λ

λ
(12.4)

But from Kirchoffs Law 
e

a
λ

λ
 = Eλ

eλ =  Eλaλ (12.5)

where Eλ is the emission from a black body. If now walls are assumed to be opaque
(i.e. t = 0), from Eqn. (12.3), we can write

aλ = 1 –  rλ (12.6)

Substituting this result in Eqn. (12.5), we get

eλ =  Eλ (1 –  rλ)

or Eλ = 
1–

e

r
λ

λ

(12.7)

On comparing Eqns. (12.4) and (l2.7), we note that the radiation emerging out of the
hole will be identical to the radiation from a perfectly black emissive surface. Smaller
the hole, the more completely black the emitted radiation is. So we see that the
uniformly heated enclosure with a small cavity behaves as a black body for
emission.

Such an enclosure behaves as a perfectly black body towards incident radiation also.
Any radiation passing into the hole will undergo multiple reflections internally within
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the enclosure and will be unable to escape
outside. This may be further improved by
blackening the inside.Hence the enclosure is a
perfect absorber and behaves as a perfectly black
body.

Fig. 12.6 shows a black body due to Fery. There
is a cavity in the form of a hollow sphere and its
inside is coated with black material. It has a small
conical opening O. Note the conical projection P
opposite the hole O. This is to avoid direct
radiation from the surface opposite the hole which

would otherwise render the body not perfectly black.

Activity 12.1

You have studied that black surface absorbs heat radiations more quickly than a shiny
white surface. You can perform the following simple experiment to observe this effect.

Take two metal plates A and B. Coat one surface of A as black and polish one surface of
B. Take an electric heater. Support these on vertical stands such that the coated black
surface and coated white surface face the heater. Ensure that coated plates are equidstant
from the heater. Fix one cork each with wax on the uncoated sides of the plates.

Fig. 12.7 : Showing the difference in heat absorption of a black and a shining surface

Switch on the electric heater. Since both metal plates are identical and placed at the same
distance from the heater, they receive the same amount of radiation from it. You will
observe that the cork on the blackened plate falls first. This is becasuse the black surface
absorbs more heat than the white surface. This proves that black surfaces are good
aborbers of heat radiations.

Fig. 12.6 : Fery’s black body
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On the basis of experimental measurements, Stefan and Boltzmann concluded that the
radiant energy emitted per second from a surface of area A is proportional to fourth power
of temperature :

E =Ae σ  T4 (12.8)

where σ is Stefan-Boltzmann constant and has the value 5.672 × 10-8J m–2 s–1 K–4. The
temperature is expressed is kelvin, e is emissivity or relative emittance. It depends on the
nature of the surface and temperature. The value of e lies between 0 and 1; being small
for polished metals and 1 for perfectly black materials.

From Eqn. (12.8) you may think that if the surfaces of all bodies are continually radiating
energy, why don’t they eventually radiate away all their internal energy and cool down to
absolute zero. They would have done so if energy were not supplied to them in some way.
In fact, all objects radiate and absorb energy simultaneously. If a body is at the same
temperaturture as its surroundings, the rate of emission is same as the rate of absorption;
there is no net gain or loss of energy and no change in temperature. However, if a body is
at a lower temperture than its surroundings, the rate of absorption will be greater than the
rate of emission. Its temperature will rise till it is equal to the room temperature. Similarly,
if a body is at higher temperature, the rate of emission will be greater than the rate of
absorption. There will be a net energy loss. Hence, when a body at a temperature T

1
 is

placed in surroundings at temperature T
2
, the amount of net energy loss per second is

given by

E
net

= Ae σ  (T
1

4 – T
2

4)  for T
1
 > T

2
(12.5)

Example 12.2 : Determine the surface area of the filament of a 100 W incandescent
lamp at 3000 K. Given σ = 5.7 × 10-8 W m–2 K–4, and emissivity e of the filament = 0.3.

Solution: According to Stefan-Boltzmann law

E = eA σ  T4

where E is rate at which energy is emitted, A is surface area, and T is tempeature of the
surface. Hence we can rewrite it as

A = 4T

E

eσ

On substituting the given data, we get

A = –8 2 4 4

100 W

0.3 (5.7 10 Wm K (3000K)− −× × ×

= 7.25 × 10 –5 m2

Now it is time for you to check your understanding.
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Intext Questions 12.2

1. At what wavelength does a cavity radiator at 300K emit most radiation?

..................................................................................................................................

2. Why do we wear light colour clothing during summer?

..................................................................................................................................

3. State the important fact which we can obtain from the experimental  study of the
spectrum of black body radiation.

..................................................................................................................................

4. A person with skin temperature 28oC is present in a room at temperature
22oC.Assuming the emissivity of skin  to be unity and surface area of the person  as
1.9m2, compute the radiant power of this person.

..................................................................................................................................

12.3 Solar Energy

You have learnt in your previous classes that sun is the ultimate source of all energy
available on the earth. The sun is radiating tremendous amount of energy in the form of
light and heat and even the small fraction of that radiation received by earth is more than
enough to meet the needs of living beings on its surface. The effective use of solar energy,
therefore, may some day provide solution to our energy needs.

Some basic issues related with solar radiations are discussed below.

1. Solar Constant

To calculate the total solar energy reaching the earth, we first determine the amount of
energy received per unit area in one second. The energy is called solar constant. Solar
constant for earth is found to be 1.36 × 103 W m–2. Solar constant multiplied by the surface
area of earth gives us the total energy received by earth per second. Mathematically,

Q = 2π R
e

2C

where R
e
 is radius of earth and C is solar constant

Note that Only half of the earth’s surface has been taken into account as only this much of
the surface is illuminated at one time. Therefore,

Q = 2 × 3.14 × (6.4 × 106 m)2 × (1.36 × 103 W m–2)

~ 3.5 × 1017 W

~ 3.5 × 1011 MW

To determine solar constant for other planets of the solar system, we may make use of
Stefan-Boltzman law, which gives the total energy emitted by the sun in one second :
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where r is radius of sun and T is its temperature.

If R is radius of the orbit of the planet, then

E = 
2

4
2

T
4

r

RR

∈ ⎛ ⎞= σ⎜ ⎟
⎝ ⎠π

(12.6)

And the solar constant (E′) at any other planet orbiting at distance R′ from the sun would
be

E′ = 
2

4T
r

R
⎛ ⎞ σ⎜ ⎟′⎝ ⎠

(12.7)

Hence
E

E

′
= 

2R

R
⎛ ⎞
⎜ ⎟′⎝ ⎠

(12.8)

The distance of mars is 1.52 times the distance of earth from the sun. Therefore, the solar
constant at mars

E′ = E × 
21

1.52
⎛ ⎞
⎜ ⎟⎝ ⎠

= 6 × 102 W m–2

2. Greenhouse Effect

The solar radiations in appropriate amount are necessary for
life to flourish on earth. The atmosphere of earth plays an
important role to provide a comfortable temperature for the
living organisms. One of the processes by which this is done
is greenhouse effect.

In a greenhouse, plants, flowers, grass etc. are enclosed in a
glass structure. The glass allows short wavelength radiation
of light to enter. This radiation is absorbed by plants. It is
subsequently re-radiated in the form of  longer wavelength
heat radiations – the infrared. The longer wavelength
radiations are not allowed to escape from the greenhouse as
glass is effectively opaque to heat. These heat radiations are
thus trapped in the greenhouse keeping it warm.

An analogous effect takes place in our atmosphere. The atmosphere, which contains a
trace of carbon dioxide, is transparent to visible light. Thus, the sun’s light passes through
the atmosphere and reaches the earth’s surface. The earth absorbs this light and
subsequently emits it as infrared radiation. But carbon dioxide in air is opaque to infra-red
radiations.CO

2
 reflects these radiations back rather than allowing them to escape into the

atmosphere. As a result, the temperature of earth increases. This effect is referred to as
the greenhouse effect.

Fig. 12.8 : Green house
effect

CO
2
 blanket
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2
 in our atmosphere by the developed as well as

developing countries, the greenhouse effect is adding to global warming and likely to pose
serious problems to the existence of life on the earth. A recent report by the UN has urged
all countries to cut down on their emissions of CO

2
, because glaciers have begun to shrink

at a rapid rate. In the  foreseable future, these can cause disasters beyond imagination
beginning with flooding of major rivers and rise in the sea level. Once the glaciers melt,
there will be scarcity of water and erosion in the quality of soil. There is a lurking fear that
these together will create problems of food security. Moreover, changing weather patterns
can cause droughts & famines in some regions and floods in others.

In Indian context, it has been estimated that lack of positive action can lead to serious
problems in Gangetic plains by 2030. Also the sea will reclaim vast areas along our coast
lie, inundating millions of people and bring unimaginable misery and devastation. How can
you contribute in this historical event?

12.4 Newton’s Law of Cooling

Newton’s law of cooling states that the rate of cooling of a hot body is directly proportional
to the mean excess temperature of the hot body over that of its surroundings provided
the difference of temperature is small. The law can be deduced from stefan-
Boltzmann law.

Let a body at temperature T be surrounded by another body at Tο. The rate at which heat
is lost per unit area per second by the hot body is

E = eσ (T4 – 4
0T )A (12.9)

As T4 – 4
0T  = 2 2 2 2 2 2

0 0 0 0 0( ) ( ) ( ) (T ) ( )T T T T T T T T T− + = − − + . Hence  (12.10)

E = eσ (T – T
0
) (T3 + T2 T

0
 + T 2

0T  + 
3

0T )A

If (T–T
0
) is very small, each of the term T3, T2T

0
 , T 2

0T  and 3
0T  may be approximated to 3

0T .

Hence

∴ E = eσ (T – T
0
) 4 3

0T A

= k (T – T
0
)

where k = 4eσ 3
0T A. Hence,

Eα (T – T
0
) (12.11)

This is Newton’s law of cooling.

Intext Questions 12.3

1. Calculate the power received from sun by a region 40m wide and 50m long located
on the surface of the earth?

..................................................................................................................................

2. What threats are being posed for life on the earth due to rapid consumption of fossil
fuels by human beings?

..................................................................................................................................
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..................................................................................................................................

What You Have Learnt

� Heat flows from a body at higher temperature to a body at lower temperature. There
are three processes by which heat is transferred : conduction, convection and radiation.

� In conduction, heat is transferred from one atom/ molecule to another atom/molecule
which vibrate about their fixed positions.

� In convection, heat is transferred by bodily motion of molecules. In radiation, heat is
transferred through electromagnetic waves.

� The quantity of heat transferred by conduction is given by

Q = h c(T – T )K At

d
� Wien’ s Law. The spectrum of energy radiated by a body at temperature T(K) has a

maxima at wavelength λ
m
’ such that λ

m
T = constant ( = 2880 µK)

� Stefan-Boltzmann Law. The rate of energy radiated by a source at T(K) is given by
E =eσAT4

The absorptive power a is defined as

Total amount of energy absorbed between λ and λ +
=

Total amount of incident energy between λ and λ +

d

d

λ
λ

a

� The emissive power of a surface eλ  is the amount of radiant energy emitted per
square metre area per second per unit wavelongth range at a given temperature.

� The solar constant for the earth is 1.36 × 103   Jm-2  s–1

� Newton’s Law of cooling states that the rate of cooling of a body is linearly proportional
to the excess of temperature of the body above its surroundings.

Terminal Exercise

1.  A thermosflask (Fig.12.9) is made of a
double walled glass bottle enclosed in
metal container. The bottle contains
some liquid whose temperature we
want to maintain, Look at the diagram
carefully and explain how the
construction of the flask helps in
minimizing heat transfer due to
conduction convection and radiation.

2. The wavelength corresponding, to
emission of energy maxima of a star is
4000 Aº. Compute the temperature of the star.(1Aº = 10–8 cm).

3. A blackened solid copper sphere of radius 2cm is placed in an evacuated enclosure

Fig. 12.9
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to keep its temperature constant at 127° C.

4. Comment on the statement “A good absorber must be a good emitter”

5. A copper pot whose bottm surface is 0.5cm thick and 50 cm in diameter rests on a
burner which maintains the bottom surface of the pot at 110°C. A steady heat flows
through the bottom into the pot where water boils at atmospheric pressure. The actual
temperature of the inside surface of the bottom of the pot is 105°C. How many
kilograms of  water boils off in one hour?

6. Define the coefficient of thermal conductivity. List the factors on which it depends.

7. Distinguish between conduction and convection methods of heat (transfer).

8. If two or more rods of equal area of cross-section are connected in series, show that
their equivalent thermal resistance is equal to the sum of thermal resistance of each
rod. [Note : Thermal resistance is reciprocal of thermal conductivity]

9.  Ratio of coefficient of thermal conductivities of the different materials is 4:3. To have
the same thermal resistance of the two rods of these materials of equal thickness.
what should be the ratio of their lengths?

10. Why do we feel warmer on a winter night when clouds cover the sky than when the
sky is clear?

11. Why does a peice of copper or iron appear hotter to touch than a smilar piece of wood
even when both are at the same temperature?

12. Why is it more difficult to sip hot tea from a metal cup than from a china-clay cup?

13. Why are the woollen clothes warmer than cotton clothes?

14.  Why do two layers of cloth of equal thickness provide warmer covering than a single
layer of cloth of double the thickness?

15. Can the water be boiled by convection inside an earth satellite?

16. A. 500 W bulb is glowing. We keep our one hand 5 cm above it and other 5 cm below
it. Why more heat is experienced at the upper hand?

17. Two vessels of different materials are identical in  size and in dimensions. They are
filled with equal quantity of ice at O°C. If ice in both vessles metls completely in 25
minutes and in 20 minutes respectively compare the (thermal conductivities) of metals
of both vessels.

18. Calculate the thermal resistivity of a copper rod 20.0 cm. length and 4.0 cm. in diamter.

Thermal conductivity of copper = 9.2 x 10–2 temperature different acrosss the ends of
the rod be 50°C. Calculate the rate of heat flow.



3.287

Notes

287

Heat Transfer and Solar Energy MODULE - 3
Thermal Physics

Answers to Intext Questions

12.1

1. Conduction is the principal mode of transfer of heat in solids in which the particles
transfer energy to the adjoining molecules.

In convection the particles of the fluid bodily move from high temperature region to
low temperature region and vice-versa.

2. K = 
2 1( – )

Qd

t A Q Q

= 2

J m

s m ºC

= J s–1 m–1 ºC–1

3. The trapped air in wool fibres prevents body heat from escaping out and thus keeps
the wearer warm.

4. The coefficient of thermal conductivity is numerically equal to the amount of heat
energy transferred in one second across the faces of a cubical slab of surface area
1m2 and thickness 1m, when they are kept at a temperature difference of 1°C.

5. During the day, land becomes hotter than water and air over the ocean is cooler than
the air near the land. The hot dry air over the land rises up and creates a low pressure
region. This causes see breeze because the moist air from the ocean moves to the
land. Since specific thermal capacity of water is higher than that of sand, the latter
gets cooled faster and is responsible for the reverse process during the night causing
land breezes.

12.2

1.   m
Wien 's constant

Temperature
λ =

= 
2880 K

300

µ
Κ

= 9.6µ
2. Hint: Because light colours absorb less heat.

3. Hint: (a) λ
m
T = S (b) t = σ T4

4. 66.4 W.

12.3

1. Solar constant x .area

= 2.7 × 105 W

2. Constant addition of CO
2
 in air will increase greenhouse effect causing global warming

due to which glaciers are likely to melt and flood the land mass of the earth.
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Answers to Terminal Problem

2. 7210 K

3. 71.6 × 50–11 W

5. 4.7 × 105 kg

9. 3 : 4

17. 4 : 5

18. 10.9 m ºC–1 W–1, 0.298 W
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SENIOR SECONDARY COURSE

PHYSICS

STUDENT’S ASSIGNMENT – 3

Maximum Marks: 50 Time : 1½ Hours

INSTRUCTIONS

� Answer All the questions on a seperate sheet of paper

� Give the following information on your answer sheet:

� Name

� Enrolment Number

� Subject

� Assignment Number

� Address

� Get your assignment checked by the subject teacher at your study centre so that you get positive feedback
about your performance.

Do not send your assignment to NIOS

1. At what temperature molecular motion ceases. (1)

2. What is the type (kinetic/or potential) of internal energy of an ideal gas? (1)

3. Why change in temperature of water from 14.5° C to 15.5° C is specified in defining one calorie? (1)

4. At what temperature do the Celsius and Fahrenheit scales coincide? (1)

5. What is indicated by the statement. “Internal energy is positive”? (1)

6. State two reasons due to which all practical engines have an efficiency less than the carnot’s engine.
(1)

7. Which diagram plays important role to explain the theory of heat engine? (1)

8. Write the dimension of coefficient of thermal conductivity. (1)

9. State two limitations of carnot’s engine. (2)

10. Every gas has two specific heats where as each liquid and solid has only one specific value of specific
heat, why? (2)

11. A refrigerator transfers heat from the cooling coil at low temperature to the warm surroundings. Is it
against the second law of thermodynamics? Justify your answer. (2)

12. Two rods X and Y are of equal lengths. Each rod has its ends at temperature T
1
 and T

2 
respectively

(T
1
 > T

2
). What is the condition that will ensure equal rates of flow of heat through the rods X and Y?

(2)

1 2 1 1 2 2 1 2

2 1

Hint :
⎡ ⎤∆ ∆= ⇒ = ⇒ =⎢ ⎥∆ ∆⎣ ⎦

dQ dQ K A T K A T A K

dt dt x x A K (2)
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13. State first law of thermodynamics. Figure shows three paths through which a gas can be taken from the
state 1 to state 2. Calculate the work done by the gas in each of the three paths. (4)

[Hint : Path 1 → 3 → 2 w
13

 + w
32

 = 0 + p∆v = 0.455

Path1 → 2 
3 6

12

1
(10 3) 10 15 10 0.3

2
w t−= + × × × =

Path 1→  4 ⇒ 2 w
14

 + w
42

 = p∆v + 0 = 0.15t]

14. The P - V diagram of a certain process (carnot cycle) is reflected in figure a.Represent it on T-V and T-
S diagrams. (4)

A B

D C

O

T
em

pe
ra

tu
re

 (
T

)

→ Volume (V)

(a)

Hint :

A B

D C

O

Pr
es

su
re

 (
P

)

→ Volume (V)

A B

D C

O

Te
m

pe
ra

tu
re

 (
T

)

→ Entropy (s)

15. Differentiate between isothermal, adiabatic, isobaric and isochoric processes. (4)

16. State Zeroth and first law of thermodynamics. Discuss the limitations of first law of thermodynamics.
(4)

17. State and explain second law of thermodynamics. (4)

18. What do you mean by the following terms :

(i) thermal conductivity of a solid (ii) variable state of a metallic rod (iii) steady state of a matallic rod (iv)
coefficient of thermal conductivity. (4)

19. Briefly describe a carnot cycle and derive an expression for efficiency of this cycle. (5)

20. What is a heat engine? Obtain an expression for its efficiency. Explain the workig principle of a referigerator.
Obtain an expression for its coefficient of performance. Also obtain a relation between coefficient of
performance of a refrigerator and efficiency of a heat engine. 2 + 2 + 1 = (5)

1

2

3

430cc

25cc

20cc

10cc

10kPa 20kPa 30kPa

V
ol

um
e 

→

Pressure →
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13

Y

SIMPLE HARMONIC MOTION

ou are now familiar with motion in a straight line, projectile motion and circular motion.
These are defined by the path followed by the moving object. But some objects execute
motion which are repeated after a certain interval of time. For example, beating of heart,
the motion of the hands of a clock, to and fro motion of the swing and that of the pendulum
of a bob are localised in space and repetitive in nature. Such a motion is called periodic
motion. It is universal phenomenon.

In this lesson, you will study about the periodic motion, particularly the oscillatory motion
which we come across in daily life. You will also learn about simple harmonic motion.
Wave phenomena – types of waves and their characteristics–form the subject matter of
the next lesson.

Objectives

After studying this lesson, you should be able to :

� show that an oscillatory motion is periodic but a periodic motion may not be
necessarily oscillatory;

� define simple harmonic motion and represent it as projection of uniform circular
motion on the diameter of a circle;

� derive expressions of time period of a given harmonic oscillator;

� derive expressions for the potential and kinetic energies of a simple harmoic
oscillator; and

� distinguish between free, damped and forced oscillations.

13.1 Periodic Motion

You may have observed a clock and noticed that the pointed end of its seconds hand and
that of its minutes hand move around in a circle, each with a fixed period. The seconds
hand completes its journey around the dial in one minute but the minutes hand takes one
hour to complete one round trip. However, a pendulum bob moves to and fro about a mean
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position and completes its motion from one end to the other and back to its initial position
in a fixed time. A motion which repeats itself after a fixed interval of time is called periodic
motion. There are two types of periodic motion : (i) non–oscillatory, and (ii) oscillatory.
The motion of the hands of the clock is non-oscillatory but the to and fro motion of the
pendulum bob is oscillatory. However, both the motions are periodic. It is important to note
that an oscillatory motion is normally periodic but a periodic motion is not necessarily
oscillatory. Remember that a motion which repeats itself in equal intervals of time is periodic
and if it is about a mean position, it is oscillatory.

We know that earth completes its rotation about its own axis in 24 hours and days and
nights are formed. It also revolves around the sun and completes its revolution in 365 days.
This motion produces a sequence of seasons. Similarly all the planets move around the
Sun in elliptical orbits and each completes its revolution in a fixed interval of time. These
are examples of periodic non-oscillatory motion.

Jean Baptiste Joseph Fourier
(1768 – 1830)

French Mathematician, best known for his Fourier series to analyse a
complex oscillation in the form of series of sine and consine functions.

Fourier studied the mathematical theory of heat conduction. He
established the partial differential equation governing heat diffusion

and solved it by using infinite series of trigonometric functions.

Born as the ninth child from the second wife of a taylor, he was orphened at the age
of 10. From the training as a priest, to a teacher, a revolutionary, a mathematician
and an advisor to Nepolean Bonapart, his life had many shades.

He was a contemporary of Laplace, Lagrange, Biot, Poission, Malus, Delambre,
Arago and Carnot. Lunar crator Fourier and his name on Eiffel tower are tributes to
his contributions.

Activity 13.1

Suppose that the displacement y of a particle, executing simple harmonic motion, is
represented by the equation :

y = a sin θ (13.1)

or y = a cos θ (13.2)

From your book of mathematics, obtain the values of sin θ and cos θ for θ = 0, 300, 600,
900, 1200, 1500, 1800, 2400, 3000, 3300 and 3600. Then assuming that a = 2.5cm, determine
the values of y corresponding to each angle using the relation y = a sin θ. Choose a
suitable scale and  plot a graph between y and θ. Similarly, using the relation y = a cosθ,
plot another graph between y and θ. You will note that both graphs represents an oscillation
between +a and – a. It shows that a certain type of oscillatory motion can be represented
by an expression containing sine or cosine of an angle or by a combination of such
expressions.
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Now check your progress by answering the following questions.

Intext Questions 13.1

1. What is the difference between a periodic motion and an oscillatory motion?

..................................................................................................................................

2. Which of the following examples represent a periodic motion?

(i) A bullet fired from a gun, (ii) An electron revolving round the nucleus in an atom,
(iii) A vehicle moving with a uniform speed on a road, (iv) A comet moving around the
Sun, and (v) Motion of an oscillating mercury column in a U-tube.

..................................................................................................................................

3. Give an example of (i) an oscillatory periodic motion and (ii)Non-oscillatory periodic
motion.

..................................................................................................................................

13.2 Simple Harmonic Motion : Circle of Reference

The oscillations of a harmonic oscillator can be represented by terms containing sine and
cosine of an angle. If the displacement of an oscillatory particle from its mean position can
be represented by an equation  y = a sinθ or y = a cosθ or y = A sinθ + B cosθ, where a,
A and B are constants, the particle executes simple harmonic motion. We define simple
harmonic motion as under :

A particle is said to execute simple harmonic motion if it moves to and fro about a
fixed point periodically, under the action of a force F which is directly proportional
to its displacement x from the fixed point and the direction of the force is opposite to
that of the displacement.  We shall restrict our discussion to linear oscillations.
Mathematically, we express it as

F = – kx

where k is constant of proportionality.

Fig. 13.1 : Simple harmonic motion of P is along YOY′′′′′

P

O
X a a

ωt

ωt
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constant speed v  in a circle of radius a (Fig. 13.1) with centre O. At t = 0, let the point be
at X. The position vector OM specifies the position of the moving point at time t,. It is
obvious that the position vector OM, also called the phaser, rotates with a constant angular
velocity ω = v /a. The acceleration of the point M is v2/a = a ω2 towards the centre O. At
time t,  the component of this acceleration along OY = aω2 sin ωt. Let us draw MP
perpendicular to YOY′. Then P can be regarded as a particle of mass m moving with an
acceleration aω2 sin ωt. The force on the particle P towards O is therefore given by

F = maω2 sin ωt

But sin ωt = y/a. Therefore
F = mω2y (13.3)

The displacement is measured from O towards P and force is directed towards O. Therefore,

F = – mω2y

Since this force is directed towards O, and is proportional to displacement ‘y’ of P from O.
we can say that the particle P is executing simple harmonic motion.

Let us put mω2 = k, a constant. Then Eqn. (13.3) takes the form

F = – k y (13.4)

The constant k, which is force per unit displacement, is called force constant. The angular
frequency of oscillations is given by

ω2 = k / m (13.5)

In one complete rotation, OM describes an angle 2π and it takes time T to complete one
rotation. Hence

ω = 2π/T (13.6)

On combining Eqns. (13.5) and (13.6), we get an expression for time period :

T = 2π /k m (13.7)

This is the time taken by P to move from O to Y, then through O to Y′ and back to O.
During this time, the particle moves once on the circle and the foot of perpendicular from
its position is said to make an oscillation about O as shown in Fig.13.1.

Let us now define the basic terms used to describe simple harmonic motion.

13.2.1 Basic Terms Associated with SHM

Displacement is the distance of the harmonic oscillator from its mean (or equilibrium)
position at a given instant.

Amplitude is the maximum displacement of the oscillator on either side of its mean position.

Time period is the time taken by the oscillator to complete one oscillation. In Fig. 13.1,
OP, and OY respectively denote displacement and amplitude.

Frequency is the number of oscillations completed by an oscillator in one second. It is
denoted by v. The SI unit of frequency is hertz (symbol Hz). Since v is the number of
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oscillations per second,   the time taken to complete one oscillation is 1/v. Hence T =1/v or
v = (1/T) s–1. As harmonic oscillations can be represented by expressions containing sinθ
and or cosθ, we introduce two more important terms.

Phase  φφφφφ is the angle whose sine or cosine at a given instant indicates the position and
direction of motion of the oscillator. It is expressed in radians.

Angular Frequency ω describes the rate of change of phase angle. It is expressed in
radian per second. Since phase angle φ changes from 0 to 2π radians in one complete
oscillation, the rate of change of phase angle is ω = 2π/T = 2π v or ω = 2πv.

Example 13.1 : A tray of mass 9 kg is supported by a spring of force constant k as
shown in Fig. 13.2. The tray is pressed slightly downward and then released. It begins to

execute SHM of period 1.0s. When a block of mass M is placed on the tray, the period
increases to 2.0s. Calculate the mass of the block.

Solution: The angular frequency of the system is given by ω = /k m , where m is the
mass of the oscillatory system. Since ω = 2π/T, from Eqn. (13.7) we get

4π2/T2 = 
k

m

or m = 
2

24

kT

π
When the tray is empty, m = 9kg and T = 1s.Therefore

9 = 
2

2

(1)

4

k

π

On placing the block, m = 9 + M and T = 2s. Therefore,  9 + M = k × (2)2/4π2

From the above two equations we get

(9 )

9

M+
 = 4

Therefore, M = 27kg.

Example 13.2 : A spring of force constant 1600 N m–1 is mounted on a horizontal table
as shown in Fig. 13.3. A mass m = 4.0 kg attached to the free end of the spring is pulled
horizontally towards the right through a distance of 4.0 cm and then set free. Calculate (i)
the frequency (ii) maximum acceleration and (iii) maximum speed of the mass.

Solution : ω = /k m  = 1600 / 4

  = 20rad s–1.

Therefore v = 20/2π = 3.18 Hz. Maximum acceleration = a ω2 = 0.04 × 400 = 16 m s–2,
and v

max
 = a ω = 0.04 × 20 = 0.8 m s–1.

Fig. 13.2

M

k

Fig. 13.3
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13.3 Examples of SHM

In order to clarify the concept of SHM, some very common examples are given below.

13.3.1 Horizontal Oscillations of a Spring-Mass System

Consider a elastic spring of force constant k placed on a smooth horizontal surface and
attached to a block P of mass m. The other end of the spring is attached to a rigid wall (Fig.
13.4)). Suppose that the mass of the spring is negligible in comparison to the mass of the
block.

Fig.13.4 : Oscillations of a spring-mass system

Let us suppose that there is no loss of energy due to air resistance and friction.  We
choose x–axis along the horizontal direction. Initially, that is, at t = 0, the block is at
rest and the spring is in relaxed condition [Fig.13.4(i)]. It is then pulled horizontally
through a small distance [Fig. 13.4 (ii)]. As the spring undergoes an extension x, it
exerts a force kx on the block. The force is directed against the extension and tends
to restore the block to its equilibrium position. As the block returns to its initial position
[Fig. 13.4 (iii)], it acquires a velocity v and hence a kinetic energy K = (1/2) m v2.
Owing to inertia of motion, the block overshoots the mean position and continues
moving towards the left till it arrives at the position shown in Fig. 13.4 (iv). In this
position, the block again experiences a force kx which tries to bring it back to the
initial position [Fig. 13.4 v]. In this way, the block continues oscillating about the
mean position. The time period of oscillation is 2π /m k , where k is the force per
unit extension of the spring.

13.3.2 Vertical Oscillations of a Spring–
Mass System

Let us suspend a spring of force constant k from a rigid
support [Fig.13.5(a)]. Then let us attach a block of mass
m to the free end of the spring. As a result of this, the
spring undergoes an extension, say l [Fig.13.5(b)].
Obviously, the force constant of the spring is k = mg/l. Let
us now pull down the block through a small distance, y
(Fig.13.5 (c)]. A force ky acts on the block vertically

Fig.13.5: Vertical oscillations
of a a spring–mass
system

yl

(a) (b) (c)

P

P

P

P

P

x

m

kx

kx

(i)

(ii)

(iii)

(iv)

(v)
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upwards. Therefore, on releasing the block, the force ky pulls it upwards. As the block
returns to its initial position, it continues moving upwards on account of the velocity it has
gained. It overshoots the equilibrium position by a distance y. The compressed spring now
applies on it a restoring force downwards. The block moves downwards and again
overshoots the equilibrium position by almost the same vertical distance y. Thus, the system
continues to execute vertical oscillations. The angular frequency of vertical oscillations is

ω  = 
2 k

T m

π =

Hence T = 2π 
m

k
(13.8)

This result shows that acceleration due to gravity does not influence vertical  oscillations
of a spring–mass system.

Galileo Galilei
(1564-1642)

Son of Vincenzio Galilei, a wool merchant in Pisa, Italy, Galileo is
credited for initiating the age of reason and experimentation in modern
science. As a child, he was interested in music, art and toy making.
As a young man, he wanted to become a doctor. To pursue the study
of medicine, he entered the University of Pisa. It was here that he
made his first discovery - the isochronosity of a pendulum, which led Christian Huygen
to construct first pendulum clock.

For lack of money, Galileo could not complete his studies, but through his efforts, he
learnt and developed the subject of mechanics to a level that the Grand Duke of
Tuscany appointed him professor of mathematics at the University of Pisa.

Galileo constructed and used telescope to study celestial objects. Through his
observations, he became convinced that Copernican theory of heliocentric universe
was correct. He published his convincing arguments in the form of a book, “A Dialogue
On The Two Principal Systems of The World”, in the year 1632. The proposition
being at variance with the Aristotelian theory of geocentric universe, supported by
the Church, Galileo was prosecuted and had to apologize. But in 1636, he published
another book “Dialogue On Two New Sciences” in which he again showed the
fallacy in Aristotle’s laws of motion.

Because sophisticated measuring devices were not available in Galileo’s time, he
had to apply his ingenuity to perform his experiments. He introduced the idea of
thought-experiments, which is being used even by modern scientists, in spite of all
their sophisticated devices.
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A simple pendulum is a small spherical bob
suspended by a long cotton thread held
between the two halves of a clamped split
cork in a stand,as shown in Fig. 13.6. The
bob is considered a point mass and the string
is taken to be inextensible. The Pendulum
can oscillate freely about the point of
suspension.

When the pendulum is displaced through a
small distance from its equilibrium position
and then let free, it executes angular
oscillations in a vertical plane about its
equilibrium position. The distance between the
point of suspension and the centre of gravity

of the bob defines the length of the pendulum. The forces acting on the bob of the pendulum
in the displaced position shown in Fig. 13.6 are : (i) the weight of the bob mg vertically
downwards, and (ii) tension in the string T acting upwards along the string.

The weight mg is resolved in two components : (a) mg cosθ along the string but opposite
to T and (b) mg sinθ perpendicular to the string. The component mg cosθ balances the
tension T and the component mg sinθ produces acceleration in the bob in the direction of
the mean position. The restoring force, therefore, is mg sinθ. For small displacement x of
the bob, the restoring force is F = mgθ = mg x/l. The force per unit displacement
k = mg/l and hence

ω = 
k

m
 = 

/mg l

m
 = 

g

l

or
2

T

π
= 

g

l

Hence, T = 2π 
l

g
(13.9)

Measuring Weight using a Spring

We use a spring balance to measure weight of a body. It is based on the assumption
that within a certain limit of load, there is equal extension for equal load, i.e., load/
extension remains constant (force constant). Therefore, extension varies linearly
with load. Thus you can attach a linear scale alongside the spring and calibrate it for
known load values. The balance so prepared can be used to measure unknown
weights.

Will such a balance work in a gravity free space, as in a space-rocket or in a satellite?

Fig.13.6 : Simple Pendulum

θ

T

mg

θ

mg cosθ
mg sinθ
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Obviously not becuase in the absence of gravity, no
extension occurs in the spring. Then how do they
measure mass of astronauts during regular health
check up? It is again a spring balance based on a
different principle. The astronaut sits on a special
chair with a spring attached to each side (Fig.13.7).
The time period of oscillations of the chair with and
without the astronaut is determined with the help of an electronic clock :

2
1T = 

24 m

k

π

where m is mass of the astronaut. If m
0
 is mass of the chair, we can write

2
0T = 

2
04 m

k

π

T
1
 is time period of ocillation of the chair with the astronaut and T

0
 without the

astronaut.

On subtracting one from another, we get

2
1T  – 2

0T =  
24

k

π
(m – m

o
)

⇒ m = 24

k

π  ( 2
1T  – 2

0T ) + m
o

Because the values of T
0
 and k are fixed and known, a measure of T

1
 itself shows

the variation in mass.

Example 13.3 : Fig. 13.8 shows an oscillatory system comprising two blocks of masses
m

1
 and m

2
 joined by a massless spring of spring constant k. The blocks are pulled apart,

each with a force of magnitude F and then released. Calculate the angular frequency of
each mass. Assume that the blocks move on a smooth horizontal plane.

Solution : Let x
1
 and x

2
 be the displacements

of the blocks when pulled apart. The extension
produced in the spring is x

1
 + x

2
. Thus the

acceleration of m
1
 is k (x

1
 + x

2
)/m

1
 and

acceleration of m
2
 is k(x

1
 + x

2
)/m

2
. Since the

same spring provides the restoring force to each mass, hence the net acceleration of the
system comprising of the two masses and the massless spring equals the sum of the
acceleration produced in the two masses. Thus the acceleration of the system is

1 2

1 2

( )

1 1

k x x
a

m m

+=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 = 
k x

µ

where x = x
1
 + x

2
 is the extension of the spring and µ is the reduced mass of the system.

The angular frequency of each mass of the system is therefore,

Fig. 13.8 : Oscillatory system of masses
attached to a spring

m
1

m
2

Fig. 13.7 : Spring balance for
measuring the mass
of an astronaut
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ω = /k µ (13.10)

Such as analysis helps us to understand the vibrations of diatomic molecules like H
2
,

Cl
2
, HCl, etc.

Intext Questions 13.2

1. A small spherical ball of mass m is placed in contact with the sunface on a smooth
spherical bowl of radius r a little away from the bottom point. Calculate the time
period of oscillations of the ball (Fig. 13.9).

..................................................................................................................................

Fig. 13.9 Fig.13.10 Fig. 13.11

2. A cylinder of mass m floats vertically in a liquid of density ρ. The length of the
cylinder inside the liquid is l. Obtain an expression for the time period of its oscillations
(Fig. 13.10).

..................................................................................................................................

3. Calculate the frequency of oscillation of the mass m connected to two rubber bands
as shown in Fig. 13.11. The force constant of each band is k. (Fig. 13.11)

..................................................................................................................................

13.4 Energy of Simple Harmonic Oscillator

As you have seen, simple harmonic motion can be represented by the equation

y = a sin ωt (13.11)

When t changes to t + ∆ t,  y changes to y + ∆y. Therefore, we can write

y + ∆ y = a sinω (t + ∆t) = a sin (ωt + ω∆t)

= a [sinωt cos ω∆t + cosωt sin ω∆t]

As ∆t → 0, cos ω∆t → 1 and sin ω ∆t → ω ∆t. Then

y + ∆y = a sin ωt + a ω∆t cos ωt. (13.12)

Subtracting Eqn. (13.11) from Eqn. (13.12), we get

∆y = ∆t ωa cos ωt

C

r
0

R

mg sin θ

O mg

mg cos θ

l

Y

k k
m
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Fig.13.12 : Graph between the
displacement y and the
restoring force ky

so that ∆y/∆t = ωa cos ωt

or v = ωa cost ωt (13.13)

where v = ∆y/∆t is the velocity of the oscillator at time t. Hence, the kinetic energy of the
oscillator at that instant of time is K = (1/2) mv2 = (1/2) ω2a2 cos2 ωt           (13.14)

Let us now calculate the potential energy of the
oscillator at that time. When the displacement is
y, the restoring force is ky, where k is the force
constant. For this purpose we shall plot a graph
of restoring force ky versus the displacement y.
We get a straight line graph as shown in Fig.
13.12. Let us take two points P and Q and drop
perpendiculars PM and QN on x–axis. As points
P and Q are close to each other, trapezium
PQNM can be regarded as a rectangle. The area
of this rectangular strip is (ky ∆y). This area
equals the work done against the restoring force
ky when the displacement changes by a small
amount ∆y. The area of the triangle OBC is,
therefore, equal to the work done in the time displacement changes from O to OB (= y) =

1

2
ky2. This work done against the conservative force is the potential energy U of the

oscillator. Thus, the potential energy of the oscillator when the displacement is y is

U = 
1

2
ky2

But ω2 = k/m. Therefore, substituting k = mω2 in above expression we get

U = 
1

2
mω2y2

Further as y = a sin ωt, we can write

U = 
1

2
mω2a2sin2ωt (13.15)

On combining this result with Eqn. (13.14), we find that total energy of the oscillator at any
instant is given by

E = U + K

= 
1

2
mω2a2  (sin2ωt + cos2ωt)

 = 
1

2
ma2ω2 (13.16)

F
PQ

C

MNO B y

ky

y
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The graph of kinetic energy K, potential

energy U and the total energy E versus

displacement y is shown in Fig.13.13. From

the graph it is evident that for y = 0, K = E

and U = 0. As the displacement y from

the mean position increases, the kinetic

energy decreases but potential energy

increases. At the mean position, the

potential energy is zero but kinetic energy

is maximum. At the extreme positions, the

energy is wholly potential. However, the

sum K + U = E is constant.

Intext Questions 13.3

1. Is the kinetic energy of a harmonic oscillator maximum at its equilibrium position or at
the maximum displacement position? Where is its acceleration maximum?

..................................................................................................................................

2. Why does the amplitude of a simple pendulum decrease with time? What happens to
the energy of the pendulum when its amplitude decreases?

..................................................................................................................................

13.5 Damped Harmonic Oscillations

Every oscillating system normally has a viscous medium surrounding it. As a result in each
oscillation some of its energy is dissipated as heat. As the energy of oscillation decreases
the amplitude of oscillation also decreases. The amplitude of oscillations of a pendulum in
air decreases continuously. Such oscillations are called damped oscillations. To understand
damped oscillations perform activity 13.2.

Fig. 13.14 : Damped vibrations : (a) experimental setup; (b) graphical representation

G
S

t (s)

(b)
(a)

B

y 
(t

)

Fig.13.13 : Variation of potential energy U,
kinetic energy K, and total energy E
with displacement from equilibrium
position

U

E
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Activity 13.2

Take a simple harmonic oscillator comprising a metal block B suspended from a fixed
support S by a spring G. (Fig. 13.14(a). Place a tall glass cylinder filled two thirds with
water, so that the block is about 6 cm below the surface of water and about the same
distance above the bottom of the beaker. Paste a millimetre scale (vertically) on the side
of the cylinder just opposite the pointer attached to the block. Push the block a few
centimetres downwards and then release it. After each oscillation, note down the uppermost
position of the pointer on the millimetre scale and the time. Then plot a graph between time
and the amplitude of oscillations. Does the graph [Fig. 13.14 (b)] show that the amplitude
decreases with time. Such oscillations are said to be damped oscillations.

13.6  Free and Forced Vibrations : Resonance

To understand the difference between these phenomena, let us perform the following
activity :

Activity 13.3

Take a rigid horizontal rod fixed at both ends.
Tie a loose but strong thread and hang the four
pendulums A,B,C,D, as shown in Fig. 13.15.
The pendulums A and B are of equal lengths,
whereas C has a shorter and D has a longer
length than A and B. The pendulum B has a
heavy bob. Set pendulum B into oscillations.
You will observe that after a few minutes, the
other three pendulums also begin to oscillate. (It means that if a no. of oscillators are
coupled, they transfer their energy. This has an extremely important implication for wave
propagation.) You will note that the amplitude of A is larger. Why? Each pendulum is an
oscillatory system with natural frequency of its own. The pendulum B, which has a heavy
bob, transmits its vibrations to each of the pendulums A, C and D. As a consequence, the
pendulums C and D are forced to oscillate not with their respective natural frequency
but with the frequency of the pendulum B. The phenomenon is called forced oscillation.
By holding the bob of any one of these pendulums, you can force it to oscillate with the
frequency of C or of D. Both C and D are forced to oscillate with the frequency of B.
However, pendulum A on which too the oscillations of the pendulums B are impressed,
oscillates with a relatively large amplitude with its natural frequency. This phenomenon
is known as resonance.

When the moving part of an oscillatory system is displaced from its equilibrium position
and then set free, it oscillates to and fro about its equilibrium position with a frequency that
depends on certain parameters of the system only. Such oscillations are known as free
vibrations. The frequency with which the system oscillates is known as natural frequency.
When a body oscillates under the influence of an external periodic force, the oscillations
are called forced oscillations. In forced oscillations, the body ultimately oscillates

Fig. 13.15:  Vibrations and resonance.
A B

C

D



Notes

Physics

304

MODULE - 4
Oscillations and Waves with the frequency of the external force. The oscillatory system on which the oscillations

are impressed is called driven and the system which applies the oscillating force is known
as the driver. The particular case of forced oscillations in which natural frequencies of the
driver and the driven are equal is known as resonance. In resonant oscillations, the driver
and the driven reinforce each other’s  oscillations and hence their amplitudes are maximum.

Intext Questions 13.4

1. When the stem of a vibrating tuning fork is pressed against the top of a table, a loud
sound is heard. Does this observation demonstrate the phenomenon of resonance or
forced vibrations? Give reasons for your answer. What is the cause of the loud sound
produced?

..................................................................................................................................

2. Why are certain musical instruments provided with hollow sound boards or sound
boxes?

..................................................................................................................................

Mysterious happenings and resonance

1.Tacoma Narrows Suspension Bridge, Washington, USA collapsed during a storm
within six months of its opening in 1940. The wind blowing in gusts had frequency
equal to the natural frequency of the bridge. So it swayed the bridge with increasing
amplitude. Ultimately a stage was reached  where the structure was over stressed
and it collapsed.

The events of suspension bridge collapse also happened when groups of marching
soldiers crossed them. That is why, now, the soldiers are ordered to break steps
while crossing a bridge.

The factory chimneys and cooling towers set into oscillations by the wind and
sometimes get collapsed.

2.You might have heard about some singers with mysterious powers. Actually, no
such power exists. When they sing, the glasses of the window panes in the auditorium
are broken. They just sing the note which matches the natural frequency of the
window panes.

3.You might have wondered  how you catch a particular station you are interested in
by operating the tuner of your radio or TV? The tuner in fact, is an electronic oscillator
with a provision of changing its frequency. When the frequency of the tuner matches
the frequency transmitted by the specific station, resonance occurs and the antenna
catches the programme broadcasted by that station.
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What You Have Learnt

� Periodic motion is a motion which repeats itself after equal intervals of time.

� Oscillatory motion is to and fro motion about a mean position. An oscillatory motion is
normally periodic but a periodic motion may not necessarily be oscillatory.

� Simple harmonic motion is to and fro motion under the action of a restoring force,
which is proportional to the displacement of the particle from its equilibrium position
and is always directed towards the mean position.

� Time period is the time taken by a particle to complete one oscillation.

� Frequency is the number of vibrations completed by the oscillator in one second.

� Phase angle is the angle whose sine or cosine at the given instant indicates the position
and direction of motion of the particle.

� Angular frequency is the rate of change of phase angle. Note that ω = 2π/T = 2πv
where ω is the angular frequency in rads–1, v is the frequency in hertz (symbol : Hz)
and T is the time period in seconds.

� Equation of simple harmonic motion is
y = a sin (ωt + φ

0
)

or y = a cos (ωt + φ
0
)

where y is the displacement from the mean position at a time, φ
0
 is the initial phase

angle (at t = 0).

� When an oscillatroy system vibrates on its own, its vibrations are said to be free. If,
however, an oscillatory system is driven by an external system, its vibrations are said
to be forced vibrations. And if the frequency of the driver equals to the natural frequency
of the driven, the phenomenon of resonance is said to occur.

Terminal Exercise

1. Distinguish between a periodic and an oscillatory motion.

2. What is simple harmonic motion?

3. Which of the following functions represent (i) a simple harmonic motion (ii) a periodic
but not simple harmonic (iii) a non periodic motion? Give the period of each periodic
motion.

(1) sin ωt + cos ωt (2) 1 + ω2 + ωt

(3) 3 cos (ωt – 
4

π
)

4. The time period of oscillations of mass 0.1 kg suspended from a Hooke’s spring is 1s.
Calculate the time period of oscillation of mass 0.9 kg when suspended from the same
spring.
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6. Why is the time period of a simple pendulum independent of the mass of the bob,

when the period of a simple harmonic oscillator is T = 2π /m k ?

7. When is the magnitude of acceleration of a particle executing simple harmonic motion
maximum? When is the restoring force maximum?

8. Show that simple harmonic motion is the projection of a uniform circular motion on a
diameter of the circle. Obtain an expression for the time period of a simple harmonic
oscillator in terms of mass and force constant.

9. Obtain expressions for the instantaneous kinetic energy potential energy and the total
energy of a simple harmonic oscillator.

10. Show graphically how the potential energy U, the kinetic energy K and the total energy
E of a simple harmonic oscillator vary with the displacement from equilibrium position.

11. The displacement of a moving particle from a fixed point at any instant is given by
x = a cos ωt + b sin ωt. Is the motion of the particle simple harmonic? If your answer
is no, explain why? If your answer is yes, calculate the amplitude of vibration and the
phase angle.

12. A simple pendulum oscillates with amplitude 0.04m. If its time period is 10s, calculate
the maximum velocity.

13. Imagine a ball dropped in a frictionless tunnel cut across the earth through its centre.
Obtain an expression for its time period in terms of radius of the earth and the
acceleration due to gravity.

14. Fig. 13.16 shows a block of mass m = 2kg connected
to two springs, each of force constant k = 400Nm–1.
The block is displaced by 0.05m from equilibrium
position and then released. Calculate (a) The angular
frequency ω of the block, (b) its maximum speed;
(c) its maximum acceleration; and total energy dissipated against damping when it
comes to rest.

Answers to Intext Questions

13.1

1. A motion which repeats itself after some fixed interval of time is a periodic motion. A
to and fro motion on the same path is an oscillatory motion. A periodic motion may or
may not be oscillatory but oscillation motion is perodic.

2. (ii), (iv), (v); 

3. (i) To and fro motion of a pendulum.

(ii) Motion of a planet in its orbit.

Fig.13.16
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13.2eck Your Progress 13.2

1. Return force on the ball when displaced a distance x from the equilibrium position is

mg sin θ = mg θ = mg x/r.   ∴ ω = /g r .

2. On being pushed down through a distance y, the cylinder experiences an upthrust

yαρg. Therefore 
2 αρω = g

m
 and m = αpρ. From the law of flotation m = mass of

black. Hence, ω2 = g/l or T = 2π /l g .

3. ω2 = k/m and hence v = 1/2π /k m . Note that when the mass is displaced, only one

of the bands exerts the restoring force.

13.3

1. K.E is maximum at mean position or equilibrium position; acceleration is maximum
when displacement is maximum.

2. As the pendulum oscillates it does work against the viscous resistance of air and
friction at the support from which it is suspended. This work done is dissipated as
heat. As a consequence the amplitude decreases.

13.4

1. When an oscillatory system called the driver applies is periodic of force on another
oscillatory system called the driven and the second system is forced  to oscillate with
the frequency of the first, the phenomenon is known as forced vibrations. In the
particular case of forced vibrations in which the frequency of the driver equals the
frequency of the driven system, the phenomenon is known as resonance.

2. The table top is forced to vibrate not with its natural frequency but with the frequency
of the tuning fork. Therefore, this observation demonstrates forced vibrations. Since a
large area is set into vibrations, the intensity of the sound increases.

3. The sound board or box is forced to vibrate with the frequency of the note produced
by the instrument. Since a large area is set into vibrations, the intensity of the note
produced increases and its duration decreases.

Answers to Terminal Problems

4. 3s

11. A = 
2 2 –1, tan

a
a b

b
⎛ ⎞+ θ = ⎜ ⎟
⎝ ⎠

12.
–3 –12

10 ms×
π

14. (a) 14.14 s– 1 (b) 0.6 ms–1 (c) 0.3 ms– 2 (d) 0.5J
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14

Y

WAVE PHENOMENA

ou would have noticed that when a stone is dropped into still water in a pond, concentric
rings  of alternate elevations and depressions emerge out from the point of impact and
spread out on the surface of water. If you put a straw piece on the surface of water, you
will observe that it moves up and down at its place. Here the particles of  water are
moving up and down at their places. But still there is something which moves
outwards. We call it a wave. Waves are of different types : Progressive and stationary,
mechanical and electro-magnetic. These can also be classified as longitudinal and trnsverse
depending on the direction of motion of the material particles with respect to the direction
of propagation of wave in case of mechnical waves and electric and magnetic vectors in
case of e.m. waves. Waves are so intimate to our existance.

Sound waves travelling through air make it possible for us to listen. Light waves, which
can travel even through vacuum make us see things and radio waves carrying  different
signals at the speed of light connect us to our dear ones through differents forms of
communication. In fact, wave phenomena is universal.

The working of our musical instruments, radio, T.V require us to understand wave
phenomena. Can you imagine the quality of life without waves?  In this lesson you will
study the basics of waves and wave phenomena.

Objectives

After studying this lesson, you should be able to :

� explain propagation of transverse and longitudinal waves and establish the
relation v = vλ ;

� write Newton’s formula for velocity of longitudinal waves in a gas and explain
Laplace’s correction;

� discuss the factors on which velocity of longitudional waves in a gas depends;

� explain formation of  transverse waves on stretched strings;

� derive the equation of a simple harmonic wave;
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� explain the phenomena of beats, interference and phase change of waves on

the basis of principle of superposition

�  explain formation of stationary waves and discuss harmonics of organ pipes
and stretched strings;

� discuss Doppler effect and apply it to mechanical and optical systems;

� explain the properties of em waves, and

� state wavelength range of different parts of em spectrum and their applications.

14.1 Wave Propagation

From the motion of a piece of straw, you may think that waves carry energy; these do not
transport mass. A vivid demonstration of this aspect is seen in tidel waves. Do you recall
the devastation caused by Tsunami, waves which hit Indonesia, Thailand, Sri lanka and
India caused by a deep sea quake waves of, 20m height were generated and were
responsible for huge loss of life.

To understand how waves travel in a medium let us perform an activity.

Activity 14.1

Take a long coil spring, called slinky,  and stretch it
along a smooth floor  or bench, keeping one end fixed
and the other end free to be given movements . Hold
the free end in your hand and give it a jerk side–
ways.[Fig 14.1(a)]. You will observe that a kink is
produced which travels towards the fixed end with
definite speed . This kink is a wave of short duration.
Keep moving the free end continuously left and right.
You will observe a train  of pulses ravelling towards
the fixed end. This is a transverse wave moving
through the spring [Fig. 14.1 (b)].

There is another type of wave that you can generate
in the slinky . For this keep the slinky  straight and
give it a push along its length . A pulse of compression

thus moves on the spring. By moving the hand backwards and forwards at a constant rate
you can see ulternate compressions  and rarefactions travelling along its length . These
are called longitudinal waves [Fig. 14.1(c)].

14.1.1 Propagation of Transverse Waves

Refer to Fig 14.2. It shows a mechanical model for wave propapation. It comprises a row
of spherical  balls of equal  masses, evenly spaced and connected together by identical
springs. Let us imagine that by means of suitable device, ball-1, from left, is made to
execute S.H.M. in a direction perpendicular to the row of balls with a period T. All the
balls, owing to inertia of rest will not begin to oscillate at the same time. The motion is

Fig. 14.1 : Wave motion on a slinky
(a) pulse on a slinky,
(b) transverse wave, and
(c) longitudinal Wave

(a)

(b)

(c)
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Fig. 14.2 : Instantaneous profiles at intervals of T/8 when a transverse wave is generated on a string.

passed on from one ball to the next one by one. Let us suppose that the time taken by the
disturbance to travel from one ball to the next is T/8s. This means that in the interval T/8s,
the disturbance propagates from the particle at mark 1 to the particale at mark 2. Similarly,
in the next T/8 interval, the disturbance travels from the particle at mark 2 to the particle at
mark 3 and so on. In parts (a)—(i) in Fig. 14.2 we have shown the instantaneous positions
of particles at all nine marked positions at intervals of T/8. (The arrows indicate the directions
of motion along which particles at various marks are about to move.) You will observe that

(i) At t = 0, all the particles are at their respective mean positions.

(ii) At t = T, the first, fifth and ninth particles are at their respective mean positions. The
first and ninth particles are about to move upward whereas the fifth particle is about to
move downward. The third and seventh particles are at position of maximum displacement
but on opposite sides of the horizontal axis. The envelop joining the instantaneous positions
of all the particles at marked positions in Fig. 14.2(a) are similar to those in Fig. 14.2(i) and
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Oscillations and Wavesrepresents a transverse wave. The positions of third and seventh particles denote a trough
and a crest, respectively.

The important point to note here is that while the wave moves along the string, all
particles of the string are oscillating up and down about their respective equilibrium
positions with the same period (T) and amplitude (A). This wave remains progressive
till it reaches the fixed end.

In a wave motion, the distance between the two nearest particles vibrating in the
same phase is called a wavelength. It is denoted by λ.

It is evident that time taken by the wave to travel a distance λ is T. (See Fig. 14.2).
Therefore, the velocity of the wave is

v = 
Distance

Time
  =   

T

λ
(14.1)

But, 1/T= v, the frequency of the wave. Therefore,

v = vλ (14.2)

Further, if two consecutive particles in same state of motion are separated by a distance λ,
the phase difference between them is 2π. Therefore, the phase change per unit distance

k = 
2π
λ (14.3)

We call k the propagation constant. You may recall that ω denotes phase change per unit
time. But the phase change in time T is 2π hence

ω = 
Τ

2π
 = 2πv (14.4)

Dividing Eqn. (14.3) by Eqn. (14.4), we get an expression for the wave velocity :

v = 
k

ω
 = 

2

2

vπ
π/λ

or v = vλ (14.5)
Let us now explain how the logitudinal waves propagate.

14.1.2 Propagation of a Longitudinal Wave

(a)

Fig. 14.3 : Graphical representation of a longtudinal wave.
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Fig. 14.4 : Longitudinal waves on a spring are analogous
to sound waves.

(b)

(c)

In longitudinal waves,
the displacement of
particles is along the
direction of wave
propagation In Fig. 14.3,
the hollow circles
represent the mean
positions of equidistant
particles in a medium.
The arrows show their
(rather magnified) longitudinal displacements at a given time. You will observe that the
arrows are neither equal in length nor in the same direction. This is clear from the position
of solid circles, which describe instantaneous positions of the particles corresponding to
the heads of the arrows. The displacements to the right are shown in the graph towards +
y-axis and displacements to the left towards the –y-axis.

For every arrow directed to the right, we draw a proportionate line upward. Similarly, for
every arrow directed to the left, a proportionate line is drawn downward. On drawing a
smooth curve through the heads of these lines, we find that the graph resembles the
displacement-time curve for a transverse wave. If we look at the solid circles, we note
that around the positions A and B, the particles have crowded together while around the
position C, they have separated farther. These represent regions of compression and
rarefaction. That is, there are alternate regions where density (pressure) are higher and
lower than average.A sound wave propagating in air is very similar to the longitudinal
waves that you can generate on your spring (Fig. 14.4).

Let us now derive equation of a simple harmonic wave.

14.1.3 Equation of a Simple Harmonic Wave in One Dimension

Fig. 14.5 : Simple harmonic wave travelling along x-direction

Let us consider a simple harmonic wave propagating along OX (Fig. 14.5). We assume
that the wave is transverse and the vibrations of the particle are along YOY′. Let us
represent the displacement at t = 0 by the equation

y = a sin ωt (14.6)

Then the phase of  vibrations at that time at the point P lags behind by a phase, say φ. Then

y = a sin (ωt – φ) (14.7)

Let us put OP = x. Since phase change per unit distance is k, we can write φ = kx. Hence,

Eqn. (14.7) take the form y(x, t) = a sin (ωt – kx) (14.8)

Y

O P

Y′

X
x

λ
–A
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y (x, t) = a sin 2π –
T

t x⎛ ⎞
⎜ ⎟λ⎝ ⎠

(14.9)

In terms of wave velocity (v = λ/T), this equation can be expressed as

y = a sin 
2π
λ  (v t – x) (14.10)

In deriving Eqn. (14.8) we have taken initial phase of the wave at O as zero. However, if
the initial phase angle at O is φ

0 ,
 the equation of the wave would be

y (x,t) = a sin [(ωt – kx) + φ
0
] (14.11)

Phase difference between two points on a wave

Let us consider two simple harmonic waves travelling along OX and represented by the
equations

y = a sin (ωt – kx) (14.8)

and y = a sin [ωt – k (x + ∆x)] (14.12)

The phase difference between them is

∆φ = k∆x = 
2π
λ .∆x  = – 

2π
λ  (x

2 
– x

1
)     (14.13)

where ∆x is called the path difference between these two points. Here the negative sign
indicates that a point positioned later will acquire the same phase at a later time.

Phase difference at the same position over a time interval ∆∆∆∆∆t :

We consider two waves at the same position at a time interval ∆t. For the first wave,

phase φ , is given by

φ 1 = 
2π

T
t
1 
– 

2π

λ
x

and for the another wave phase

φ
2

= 2

2 2
–

π π
π

t x
T

.

The phase difference between them

2 1–∆φ = φ φ = 
2π

T
 (t

2
 – t

1
)

= 2πv (t
2
 – t

1
) [14.13(a)]

= 2π v ( t)∆
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Example 14.1 : A progressive harmonic wave is given by y = 10–4 sin (100πt – 0.1πx).

Calculate its (i) frequency, (ii) wavelength and (iii) velocity y and x are in metre.

Solution: comparing with the standard equation of progressive wave

y = A sin 
2 2

T

π π⎛ ⎞−⎜ ⎟λ⎝ ⎠

t x

we get (i) 2πv = 100 π  ⇒  v = 50 Hz

(ii) 
2π
λ  = 0.1 π  ⇒  λ = 20 m

(iii) v = vλ = 1000 ms–1

14.1.4 Transverse and Longitudinal Waves
We now consider transverse and longitudinal waves and summerise the difference between
them.

Transverse waves Longitudinal waves

(i) Displacements of the particles (i) Displacements of the particles are along
are perpendicular to the direction the direction of propagation
of propagation of the wave. of the wave.

(ii) Transverse waves look as crests (ii) Longitudinal waves give the
and troughs propagating in the appearance of alternate compressions
medium. and rarefaction moving forward.

(iii) Transverse waves can only be (iii) Longitudinal waves can travel in
transmitted in solids or on the solids, liquids and gases.
surface of the liquids.

(iv) In case of a transverse wave, (iv) In case of longitudinal waves, the
the displacement - distance graph graph only represents the
gives the actual picture of the wave displacement of the particles at
itself. different points at a given time.

Essential properties of the medium for propagation of longitudinal and transverse
mechanical waves are: (i) the particles of the medium must possess mass, (ii) the medium
must possess elasticity. Longitudinal waves for propagation in a medium require volume
elasticity but transverse waves need modulus of rigidity. However, light waves and other
electromagnetic waves, which are transverse, do not need any material medium for their
propagation.

Intext Questions 14.1
1. State the differences between longitudinal and transverse waves?

.................................................................................................................................

2. Write the relation between phase difference and path difference.

.................................................................................................................................

3. Two simple harmonic waves are represented by equations y
1
 = a sin (ωt – kx) and



3.315

MODULE - 4

Notes

315

Wave Phenomena

Oscillations and Waves
y

2
 = a sin [(ωt – kx) + φ]. What is the phase difference between these two waves?

.................................................................................................................................

14.2 Velocity of Longitudinal and Transverse Waves
   in an Elastic Medium

14.2.1 Newton’s Formula for Velocity of Sound in a Gas
Newton to derive a relation for the velocity of sound in a gaseous medium, assumed that
compression and rarefaction caused by the sound waves during their passage through the
gas take place under isothermal condition. This means that the changes in volume and
pressure take place at constant temperature. Under such conditions, Newton agreed that
the velocity of sound wave in a gas is given by

v = 
P

ρ (14.15)

For air, at standard temperature and pressure P = 1.01 × 105 Nm–2 and ρ = 1.29 kg m–3.
On substituting these values in Eqn.(14.15) we get

v = 51.01 10 /1.29×  = 280 ms–1

Clouds collide producing thunder and lightening, we hear sound of thunder after the lightening.
This is because the velocity of light is very much greater than the velocity of sound in air.
By measuring the time interval between observing the lightening and hearing the sound,
the velocity of sound in air can be determined. Using an improved technique, the velocity
of sound in air has been determined as 333 ms–1 at 00C. The percent error in the value

predicted by Newton’s formula and that determined experimentally is 
333 – 280

333
 × 100%

= 16%. This error is too high to be regarded as an experimental error. Obviously there is
something wrong with Newton’s assumption that during the passage of sound, the
compression and the rarefaction of air take place isothermally.

14.2.2 Laplace’s Correction
Laplace pointed out that the changes in pressure of air layers caused by passage of sound
take place under adiabatic condition owing to the following reasons.

(i) Air is bad conductor of heat and

(ii) Compression and rarefactions caused by the sound are too rapid to permit heat to
flow out during compression and flow in during rarefaction.

Under adiabatic conditions

E = γP,

Where γ = 
C

C
p

v
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Hence, v = 
Pγ
ρ (14.16)

For air, γ = 1.4. Therefore, at STP, speed of sound is given by

v = 51.4 1.01 10 /1.29× ×

= 333ms–1

This value is very close to the experimentally observed value.

14.2.3 Factors affecting velocity of sound in a gas
(i) Effect of Temperature

From Laplace’s formula

v = 
Pγ
ρ

Since density is ratio of mass perumit volume, this expression takes the form

= 
PV

M

γ

Using the equation of state PV = nRT, where n is number of moles in mass m of the gas

v = 

RT
M

n

γ

= 
RT

m

γ
(14.17 a)

Where m denotes the gram molecular mass. This result shows that

v α T

⇒ v = vo 1
2 273

t⎛ ⎞+⎜ ⎟×⎝ ⎠
 +................

~ 333 + 
333

546
t

~ 333 + 0.61t (14.17b)

Note that for small temperature variations, velocity of sound in air increases by
0.61 ms–1 with every degree celsius rise in temperature.

(ii) Effect of pressure

When we increase pressure on a gas, it gets compressed but its density increases in the
same proportion as the pressure i.e. P/ρ remains constant. It means that, pressure has no
effect on the velocity of sound in a gas.
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If we consider two gases under identical conditions of temperature and pressure, then

v α 
1

ρ
If we, compare the velocities of sound in oxygen and hydrogen, we get

oxygen

 hydrogen

v

v = 
hydrogen

oxygen

ρ
ρ = 

hydrogen

oxygen

M

M  = 
2

32
 = 

1

4

This shows that velocity of sound in hydrogen is 4 times the velocity of sound in oxygen
under identical conditions of temperature and pressure. Is this result valid for liquids and
solids as well. You will discover answer to this question in the next sub–section.

(iv) Effect of humidity on velocity of sound in air

As humidity in air increases (keeping conditions of temperature and pressure constant), its
density decreases and hence velocity of sound in air increases.

Example 14.2 : At what temperature is the speed of sound in air double of its value at
S.T.P.

Solution : We know that 
T T

2
273

= = =
m0

v

v

On squaring both sides and rearranging terms, we get

∴ T = 273 × 4 = 1092k

14.2.4 Velocity of Waves in Stretched Strings
The velocity of a transverse wave in a stretched string is given by

v = 
F

m
(14.18 a)

Where F is tension in the string and m is mass per unit length of the wire. The velocity of
longtudinal waves in an elastic medium is given by

v = E/ρ (14.18b)

where E is elasticity. It may be pointed out here that since the value of elasticity is more  in
solids, the velocity of longitudinal waves in solids is greater than that in gases and liquids.
In fact, v

g
 < v

l
 < v

s
.

Intext Questions 14.2

1. What was the assumption made by Newton in deriving his formula?

.................................................................................................................................

2. What was wrong with Newton’s formula?

.................................................................................................................................



MODULE - 4

Notes

Physics

318

Oscillations and Waves 3. Show that for every 10C rise in temperature, the velocity of sound in air increases by
0.61 ms–1.

.................................................................................................................................

4. Calculate the temperature at which the velocity in air is (3/2) times the velocity of
sound at 70C?

.................................................................................................................................

5. Write the formula for the velocity of a wave on stretched string?

.................................................................................................................................

6. Let λ be the wavelength of a wave on a stretched string of mass per unit length m
and n be its frequency. Write the relation between n, λ, F and m? Further if λ = 2l,
what would be the relation between n, l, F and m?

.................................................................................................................................

14.3 Superposition of Waves
Suppose two wave pulses travel in opposite directions on a slinky. What happens when
they meet? Do they knock each other out? To answer these questions, let us perform an
activity.

Activity 14.2
Produce two wavecrests of different amptitudes on a stretched slinky, as shown in Fig.
14.6 and watch carefully. The crests are moving in the opposite directions. They meet and
overlap at the point midway between them [Fig. 14.6(b)] and then separate out. Thereafter,
they continue to move in the same direction in which they were moving before crossing
each  other. Moreover, their shape also does not change
[Fig. 14.6(c)].

Now produce one crest and one trough on the slinky as
shown in Fig. 14.6(d). The two are moving in the opposite
direction. They meet [Fig. 14.6(e)], overlap and then
separate out. Each one moves in the same direction in
which it was moving before crossing and each one has
the same shape as it was having before crossing. Repeat
the experiment again and observe carefully what happens
at the spot of overlapping of the two pulses [(Fig. 14.6(b)
and (e)]. You will note that when crests overlap, the
resultant is more and when crest overlaps the through,
the resultant is on the side of crest but smaller size.We
may summarize this result as : At the points where the
two pulses overlap, the resultant displacement is the
vector sum of the displacements due to each of the
two wave pulses. This is called the principle of
superposition.

This activity demonstrates not only the principle of
superposition but also shows that two or more waves

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 14.6 : Illustrating principle
of superpositionof
waves
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Oscillations and Wavescan traverse the same space independent of each other. Each one travels as if the other
were not present. This important property of the waves enable us to tune to a particular
radio station even though the waves broadcast by a number of radio stations exist in space
at the same time. We make use of this principle to explain the phenomena of interference of
waves, formation of beats and stationary or standing waves.

14.3.1 Reflection and Transmission of Waves
We shall confine our discussion in respect of mechanical waves produced on strings and
springs. What happens and why does it happen when a transverse wave crest propagates
towards the fixed end of a string?  Let us perform the following activity to understand it.

Activity 14.3
Fasten one end of a slinky to a fixed support as shown in (Fig. 14.7 (a). Keeping the slinky
horizontal, give a jerk to its free end so as to produce a transverse wave pulse which
travells towards the fixed end of  the slinky (Fig. 14.7(a)). You will observe that the pulse
bounces back from the fixed end. As it bounces back, the crest becomes a trough travels
back in the opposite direction. Do you know the reason? As the pulse meets the fixed end,
it exerts a force on the support. The equal and opposite reaction not only reverses the
direction of propagation of the wave pulse but also reverses the direction of the displacement
of the wave pulse (Fig. 14.7(b)). The support being much heavier than the slinky, it can be
regarded as a denser medium. The wave pulse moving in the opposite direction is called
the reflected wave pulse. So, we can say that when reflection takes place from a
denser medium, the wave undergoes a phase change of πππππ, that is, it suffers a phase
reversal.

Fig. 14.7 : Reflection from a denser Fig.14.8(a) : A pulse travelling down towards
medium : a phase reversal.    the free end, (b) on reflection from the

        free end  direction of its displacement
  remains unchanged

Let us now see what happens on reflection from a rarer medium. For this we perform
another activity.

Activity 14.4
Suspend a fixed rubber tube from a rigid support
(Fig. 14.8 a). Then generate a wave pulse
travelling down the tube. On reflection from the
free end, the wave pulse travels upward but
without any change in the direction of its
displacements i.e. crest returns as crest. Why?
As the wave pulse reaches the free end of the
tube, it gets reflected from a rarer boundary.

(Note that air  is rarer than the rubber tube.) Hence there is no change in the direction of

Fig. 14.9 : Longitudinal waves are
reflected from a denser
medium without change of
type but with change of sign

B1

E
B2

B3 D
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change takes place.

You may now raise the question : Do longitudinal waves also behave similarly? Refer to
Fig. 14.9, which shows a row of bogies. Now suppose that the engine E moves a bit
towards the right. The buffer spring between the engine E and the first bogie gets
compressed and pushes bogie B

1
 towards the right. It then tries to go back to its original

shape. As this compressed spring expands, the spring between the 1st and the 2nd bogie
gets compressed. As the second compressed spring expands, it moves a bit towards the
3rd bogie. In this manner the compression arrives at the last buffer spring in contact with
the fixed stand D. As the spring between the fixed stand and the last bogie expands, only
the last bogie moves towards the left. As a result of this, the buffer spring between the
next two bogies on left is compressed. This process continues, till the compression reaches
between the engine and the first bogie on its right. Thus, a compression returns as a
compression. But the bogies then move towards the left. In this mechanical model, the
buffer spring and the bogies form a medium. The bogies are the particles of the medium
and the spring between them shows the forces of elasticity.

Thus, when reflection takes place from a denser medium, the longitudinal waves
are reflected without change of type but with change in sign. And on reflection from
a rare medium, a longitudinal wave is reflected back without change of sign but
with change of type. By ‘change of type’ we mean that rarefaction is reflected back as
compression and a compression is reflected back as rarefaction.

Intext Questions 14.3
1. What happens when two waves travelling in the opposite directions meet?

.................................................................................................................................

2. What happens when two marbles each of the same mass travelling with the same
velocity along the same line meet?

.................................................................................................................................

3. Two similar wave pulses travelling in the opposite directions on a string meet. What
happens (i) when the waves are in the same phase? (ii) the waves are in the opposite
phases?

.................................................................................................................................

4. What happens when a transverse wave pulse travelling along a string meets the
fixed end of the string?

.................................................................................................................................

5. What happens when a wave pulse travelling along a string meets the free end of the
string?

.................................................................................................................................

6. What happens when a wave of compression is reflected from (i) a rarer medium (ii)
a denser medium?

.................................................................................................................................
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Fig. 14.10 : Calculating
resultant
amplitude A

14.4 Superposition of Waves Travelling in the Same Direction
Superposition of waves travelling in the same direction gives rise to two different phenomena
(i) interference and (ii) beats depending on their phases and frequencies. Let us discuss
these phenomena now.

14.4.1  Interference of waves
Let us compute the ratio of maximum and minimum intensities in an interference pattern
obtained due to superposition of waves. Consider two simple harmonic waves of amplitudes
a

1
 and a

2
 each of angular frequency ω, both propagating along x – axis, with the same

velocity v = ω/k but differing in phase by a constant phase angle φ. These waves are
represented by the equations

y
1

= a
1
 sin (ωt – kx)

and y
2

= a
2
 sin [(ωt – kx) + φ]

where ω= 2π/T is angular frequency and k = 
2π
λ   is wave number.

Since, the two waves are travelling in the same direction with the same velocity along the
same line, they overlap. According to the principle of superposition,  the resultant
displacement at the given location at the given time is

y = y
1
 + y

2
 = a

1
 sin (ωt – kx) + a

2
 sin [(ωt – kx) + φ]

If we put (ωt – kx) = θ, then

y = a
1
 sinθ + a

2
 sin (θ + φ)

= a
1
 sinθ + a

2
 sinθ cosφ + a

2 
sinφ cosθ

Let us put a
2
 sinφ = A sinα

and a
1
 + a

2
 cosφ = A cos α

Then

y = A cosα sinθ + A sin αcosθ

= A sin (θ + α)

Substituting for θ we get

y = A sin [(ωt – kx) + α]

Thus, the resultant wave is of angular frequency ω and has an amplitude A given by
A2 = (a

1
 + a

2
 cosφ)2 + (a

2
 sinφ)2

= 2
1a  + 2

2a  cos2φ + 2a
1
a

2
  cosφ + 2

2a  sin2φ

A2 = 2
1a  + 2

2a  + 2 a
1
a

2
cosφ (14.18)

In Eqn. (14.18), φ is the phase difference between the two superposed waves. If path

difference, between the two waves corresponds to phase difference φ , then

φ = 
2 pπ
λ , where 

2π
λ  is the phase change per unit distance.
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When the path difference is an even multiple of 
2

λ
, i.e., p = 2m

2

λ
, then phase difference

is given by φ = (2π/λ) × (2m λ/2) = 2mπ. Since cos2π = +1, from Eqn. (14.18) we get

A2 =  2
1a  + 2

2a  + 2a
1
a

2
 = ( a

1
 + a

2
)2

That is, when the collinear waves travelling in the same directions are in phase, the amplitude
of the resultant wave on superposition is equal to sum of individual amplitudes.

As intensity of wave at a given position is directly proportional to the square of its amplitude,
we have

I
max

α ( a
1
 + a

2
)2

When p = (2m + 1) λ/2, then φ = (2m + 1) π and cosφ = –1. Then from Eqn. (14.18),

we get A2 = 2
1a  + 2

2a  – 2a
1
a

2
 = ( a

1
 – a

2
)2

This shows that when phases of two collinear waves travelling in the same direction differ
by an odd integral multiple of π , the amplitude of resultant wave generated by their
superposition is equal to the difference of their individual amplituds.

Then I
min

 α ( a
1
 – a

2
)2

Thus
max

min

I

I = 

2
1 2

2
1 2

( )

( )

+
−

a a

a a
(14.19)

If a
1
 = a

2
, the intensity of resultant wave is zero. These results show that interference is

essentially redistribution of energy in space due to superposition of waves.

14.4.2 Beats
We have seen that superposition of waves of same frequency propagating in the same
direction produces interference. Let us now investigate what would be the outcome of
superposition of waves of nearly the same frequency. First let us perform an activity.

Activity 14.5
Take two tuning forks of same frequency 512 Hz. Let us name them as A and B. Load the
prong of the tuning fork B with a little wax. Now sound them together by a rubber hammer.
Press their stems against a table top and note what you observe. You will observe that the
intensity of sound alternately becomes maximum and minimum. These alternations of
maxima and minima of intensity are called beats. One alternation of a maximum and a
minimum is one beat. On loading the prong of B with a little more wax, you will find that
no. of beats increase. On further loading the prongs of B, no beats may be heard. The
reason is that our ear is unable to hear two sounds as separate produced in an interval less
than one tenths of a second. Let us now explain how beats are produced.

(a) Production of beats : Suppose we have two tuning forks A and B of frequencies N
and N + n respectively; n is smaller than 10. In one second, A completes N vibrations but
B completes N + n vibrations. That is, B completes n more vibrations in one second than
the tuning fork A. In other words, B gains n vibrations over A in 1s and hence it gains 1 vib.
in (1/n) s. and half vibration over A in (1/2n) s. Suppose at t = 0, i.e. initially, both the tuning
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Oscillations and Wavesforks were vibrating in the same phase. Then after (1/2n)s, B will gain half vibration over

A. Thus after 
1

2
s

n
 it will vibrate in oposite phase. If A sends a wave of compression then

B sends a wave of rarefaction to the observer. And, the resultant intensity received by the
ear would be zero. After (1/n)s, B would gain one complete vibration. If now A sends a
wave of compression, B too would send a wave of compression to the observer. The
intensity observed would become maximum. After (3/2n)s, the two forks again vibrate in
the opposite phase and hence the intensity would again become minimum. This process
would continue. The observer would hear 1 beat in (1/n)s, and hence n beats in one
second. Thus, the number of beats heard in one second equals  the difference in the
frequencies of the two tuning forks. If more than 10 beats are produced in one second,
the beats are not heard as separate. The beat frequency is n and beat period is 1/n.

Fig.14.11 : (a) Displacement time graph of frequency 12 Hz. (b) displacement time graph of
frequency 10 Hz. Superposition of the two waves produces 2 beats per second.

(b) Graphic method : Draw a 12 cm long line. Divide it into 12 equal parts of 1 cm. On
this line draw 12 wavelengths each 1 cm long and height 0.5 cm. This represents a wave
of frequency 12 Hz. On the line (b) draw 10 wavelengths each of length 1.2 cm and height
0.5 cm. This represents a wave of frequency 10Hz. (c) represents the resultant wave.
Fig, 14.11 is not actual waves but the displacement time graphs. Thus, the resultant intensity
alternately becomes maximum and minimum. The number of beats produced in one second
is ∆v. Hence, the beat frequency equals the difference between the frequencies of the
waves superposed.

Example 14.3 : A tuning fork of unknown frequency gives 5 beats per second with
another tuning of 500 Hz. Determine frequency of the unknown fork.

Solution : v′ = v ± n = 500 ±  5

⇒ The frequency of unknown tuning fork is either 495 Hz or 505 Hz.

Example 14.4 : In an interference pattern, the ratio of maximum and minimum intensities
is 9. What is the amplitude ratio of the superposing waves?

Solution : 
2 2

max 1 2

min 1 2

I 1
9

I 1 –

+ +⎛ ⎞ ⎛ ⎞= ⇒ = ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

a a r

a a r  , where r = 
2

1

a

a .

Hence, are can write

1

1

+
−

r

r
 = 3

Beats

v2 = 10Hz

v1 = 12Hz(a)

(b)

(c)
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You can easily solve it to get r = 
1

2
, i.e., amplitude of one wave is twice that of the other.

Intext Questions 14.4

1. If the intensity ratio of two waves is 1:16, and they produce interference, calculate
the ratio I

max
/I

min
?

.................................................................................................................................

2. Waves of frequencies v and v + 4 emanating from two sources of sound are
superposed. What will you observe?

.................................................................................................................................

3. Two waves of frequencies v and v + ∆v are supperposed, what would be the
frequency of beats?

.................................................................................................................................

4. Two tuning forks A and B produce 5 beats per second. On loading one prong of A
with a small ring, again 5 beats per second are produced. What was the frequency of
A before loading if that of B is 512 Hz. Give reason for your answer.

.................................................................................................................................

14.5 Superposition of Waves of Same Frequency Travelling
    in the Opposite Directions

So far we have discussed superposition of collinear waves travelling in the same direction.
In such waves, crests, and troughs or rarefactions and compressions in a medium travel
forward with a velocity depending upon the properties of the medium. Superposition of
progressive waves of same wavelength and same amplitude travelling with the same
speed along the same line in a medium in opposite direction gives rise to stationary or
standing waves. In these waves crests and troughs or compressions and rarefactions
remain stationary relative to the observer.

14.5.1 Formation of Stationary (Standing) Waves
To understand the formation of stationary waves, refer to Fig. 14.12 where we have
shown the positions of the incident, reflected and resultant waves, each after T/4s, that is,
after quarter of a period of vibration.

(i) Initially, at t = 0, [Fig. 14.12(i)], the incident wave, shown by dotted curve, and the
reflected wave, shown by dashed curve, are in the opposite phases. Hence the
resultant displacement at each point is zero. All the particles are in their respective
mean positions.

(ii) At t = T/4s [Fig. 14.12(ii)], the incident wave has advanced to the right by λ/4, as
shown by the shift of the point P and the reflected wave has advanced to the left by
λ/4 as shown by the shift of the point P′. The resultant wave form has been shown
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can be seen that the resultant
displacement at each point is
maximum. Hence the particle
velocity at each point is zero and
the strain is maximum

(iii) At t = T/2s [Fig. 14.12(iii)], the
incident wave advances a
distance λ/2 to the right as shown
by the shift of the point P and the
reflected wave advances a
distance λ/2 to the left as shown
by the shift of the point P′. At
each point, the displacements
being in the opposite directions,
have a zero resultant shown by a
thick line.

(iv) At t = 3T/4s [Fig. 14.12(iv)], the
two waves are again in the same
phase. The resultant displacement
at each point is maximum. The
particle velocity is zero but the
strain is maximum possible.

(v) At t = 4T/4s [Fig. 14.12(v)], the
incident and reflected waves at
each point are in the opposite phases. The resultant is a straight line (shown by an
unbroken thick line). The strain ∆y/∆x at each point is zero.

Note that

� at points N
1
, N

2
, N

3
 and N

4
, the amplitude is zero but the strain is maximum. Such

points are called nodes;

� at points A
1
, A

2
 and A

3
, the amplitude is maximum but the strain is minimum. These

points are called antinodes;

� the distance between two successive nodes or between two, successive antinode is
λ/2;

� the distance between a node and next antinode is λ/4;

� the time period of oscillation of a stationary wave equals the time period of the two
travelling waves whose superposition has resulted in the formation of the stationary
wave; and

� the energy alternately surges back and forth about a point but on an average, the
energy flow past a point is zero.

Superposition of two identical collinear waves travelling with the same speed in
opposite directions leads to formation of  stationary waves. They are called stationary
waves, because the wave form does not move forward, but alternately shrinks and

Fig. 14.12 : Showing formation of stationary
waves due to superposition of two
waves of same wave length, same
amplitude travelling in opposite
direction along the same line.
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flow of energy past a point.

14.5.2 Equation of Stationary Wave

The equation of a simple harmonic wave travelling with velocity v = ω/k in a medium is

y
1

= – a sin (ωt – kx)

On reflection from a denser medium, suppose the wave travels along the same line along
X–axis in the opposite direction with phase change of π. The equation of the reflected
wave is therefore,

y
2

= a sin (ωt – kx)

Thus, owing to the superposition of the two waves, the resultant displacement at a given
point and time is

y = y
1
 + y

2

= a sin (ωt – kx) – a sin (ωt – kx)

Using the trigonometric identity. sin A – sin B = 2 Sin (A – B)/2, cos (A + B)/2, above
expression simplifies to

y = –2a sin kx cos ωt (14.20)

Let us put –2a sin kx = A. Then we can write

y = A cos ωt

Eqn. (14.20) represents a resultant wave of angular frequency ω and amplitude 2a sin kx
This is the equation of stationary wave. The amplitude of the resultant wave, oscillates in
space with an angular frequency ω, which is the phase change per metre. At such points
where kx = m π = mλ/2, sin kx= sin mπ = 0. Hence A = 0,

The points where the amplitude is zero are referred to as nodes. At these points ∆y/∆x =
maximum, that is strain is maximum. Obviously the spacing between two nearest points is
λ/2.

At those points where kx = (2m + 1) π/2 or x = (2m + 1) λ/2 × λ/2π = (2m + 1) λ/4

Sin kx = sin (2m + 1) π/2 = ±1.

Hence A is maximum. At these points the strain ∆y/∆x is zero. Obviously the spacing
between two such neighbouring points is λ/2. These points where the amplitude is maximum
but strain is zero are referred to as antinodes.

It may be pointed out here that at nodes, the particle velocity is zero and at antinodes,
particle velocity ∆y/∆t is maximum. Therefore, it follows that the average flow of energy
across any point is zero. The energy merely surges back and forth. That is why, these
waves have been named stationary or standing waves.
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14.5.3 Distinction between Travelling and Standing Waves
Let us summarise the main differences between travelling and standing waves.

Travelling Waves Standing Waves

1. Particular conditions of the medium Segments of the medium between two
namely crests and troughs or points called nodes appear to contract
compressions and rarefactions appear and dialate. Each particule or element
to travel with a definite spped depending of the medium vibrates to and fro like
on density and elasticity (or tension) of a pendulum.
the medium.

2. The amplitude of vibration of all the At nodes the amplitude is zero but at
particles is the same. antinodes the amplitude is maximum.

3. All the particles pass through their At nodes the particle velocity is zero
mean positions with maximum velocity and at antinodes it is maximum.
one after the other.

4. Energy is transferred from particle to The energy surges back and forth in a
particle with a definite speed. segment but does not move past a point.

5. In a travelling wave the particles attain In a stationary wave the maximum
their maximum velocity one after the velocity is different at different points.
other. It is zero at nodes but maximum at

antinodes. But all the particles attain
their respective maximum velocity
simultaneously.

6. In a travelling wave each region is In case of standing waves strain is
subjected to equal strains one after maximum at nodes and zero at antinodes.
the other.

7. There is no point where there is no Antinodes are points of no change of
change of density. density but at nodes there is maximum

change of density.

Intext Questions 14.5

1. Does energy flow across a point in case of stationary waves? Justify your answer.

.................................................................................................................................

2. What is the distance between two successive nodes, and between a node and next
antinode?

.................................................................................................................................

3. Pressure nodes are displacement antinodes and pressure antinodes are displacement
nodes. Explain.

.................................................................................................................................

4. Stationary waves of frequency 170Hz are formed in air. If the velocity of the waves
is 340 ms–1, what is the shortest distance between (i) two nearest nodes (ii) two
nearest antinode (iii) nearest node and antinode?

.................................................................................................................................
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14.6 Characteristics of Musical Sound

The characteristics of musical sounds help us to distinguish one musical sound from another.

These are pitch, londness and quality. We will now discuss these briefly.

14.6.1 Pitch

The term pitch is the characteristic of musical notes that enables us to classify a note
as ‘high’ or ‘low’. It is a subjective quantity which cannot be measured by an instrument.
It depends on frequency. However, there does not exist any one-to-one correspondence
between the two. A shrill, sharp or acute sound is said to be of high pitch. But a dull, grave
and flat note is said to be of low pitch. Roaring of lion, though of high intensity, is of low
pitch. On the other hand, the buzzing of mosquito, though of low intensity, is of high pitch.

14.6.2 Loudness

The loudness of sound is a subjective effect of intensity of sound received by listeners ear.
The intensity of waves is the average amount of energy transported by the wave per
unit area per second normally across a surface at a given point. There is a large
range of intensities over which the ear is sensitive. As such, logarithmic scale rather than
arithmetic intensity scale is more convenient.

Threshold of hearing and Intensity of Sound
The intensity level β of a sound wave is defined by the equation.

β = 10 log I/I
0

(14.21)

where I
0
 is arbitrarily chosen reference intensity, taken as 10–12 Wm–2. This value

corresponds to the faintest sound that can be heard. Intensity level is expressed in
decibels, abbreviated db. If the intensity of a sound wave equals I

0
 or 10–12  Wm–2, its

intensity level is then I
0
 = 0 db. Within the range of audibility, sensitivity of human ear

varies with frequency. The threshold audibility at any frequency is the minimum
intensity of sound at that frequency, which can be detected.

The standard of perceived loudness is the sone. A sone is the loudness experienced
by a listener with normal hearing when 1kilo hertz
tone of intensity 40db is presented to both ears.

The range of frequencies and intensities to which
ear is sensitive have been represented in a
diagram in Fig. 14.13, which is in fact  a graph
between frequency in hertz versus intensity level
1 in decibels. This is a graph of auditory area of
good hearing. The following points may be noted.

• The lower part of the curve shows that the
ear is most sensitive for frequencies
between 2000 Hz to 3000 Hz, where the
threshold of hearing is about 5db. Threshold
of hearing in general, is zero decibel.

• At intensities above those corresponding to

Fig. 14.13 : Auditory area between
threshold of hearing
and threshold of feeling
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the upper part of the curve, the sensation changes from one of hearing to
discomfort  and even pain. This curve represents the threshold of feeling.

• Loudness increases with intensity, but there is no definite relation between the
two.

• Pure tones of same intensity but different frequencies do not necessarily produce
equal loudness.

• The height of the upper curve is constant at a level of 120 db for all frequencies.

 The intensity of sound waves depends on the following factors :

• Amplitude of vibration : I α a2 where a is amplitude of the wave.

• Distance between the observer and the Source : I α 1/r2 where r is the
distance of the observer from the source (provided it is a point source).

3. Intensity is directly proportional to the square of frequency of the wave (I
α v2).

4. Intensity is directly proportional to the density of the medium (I α ρ).

14.6.3 Quality

It is the characteristic of sound waves which enables us to distinguish between two
notes of the same pitch and intensity but sounded by two different instruments. No
instrument, except a tuning fork, can emit a pure note; a note of one particular frequency.
In general, when a note of frequency n is sounded, in addition to it, notes of higher
frequencies 2n, 3n, 4n ... may also be produced. These notes, have different amplitudes
and phase relations. The resultant wave form of the emitted waves determines the quality
of the note emitted. Quality, like loudness and pitch is a subjective quantity. It depend on
the resultant wave form.

14.6.4 Organ Pipes
It is the simplest form of a wind instrument. A wooden or metal pipe producing musical
sound is known as organ pipe. Flute is an example of organ pipe. If both the ends of the
pipe are open, we call it an open pipe.  However, if one end is closed, we call it a closed
pipe. When we blow in gently, almost a pure tone is heard. This  pure tone is called a
fundamental note. But, when we blow hard, we also hear notes of frequencies which
are integral multiple of the frequency of the fundamental note. You can differentiate between
the sounds produced by water from a tap into a bucket. These frequencies are called
overtones.

Note that

• At the closed end of a pipe, there can be no motion of the air particles and the closed
end must be node.

• At the open end of the pipe, the change in density must be zero since this end is in
communication with atmosphere. Further, since the strain is zero, hence this end
must be an antinode.

(a) Open pipe : The simplest mode of vibrations of the air column called fundamental
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an antinode and between two antinodes, there is a
node. Since the distance between a node and next
antinode is λ/4, the length l of the pipe is

 l = ( λ/4) + (λ/4) = λ/2 or λ = 2l.

The frequency of the note produced is

n
1
 = v /λ = v /2l

The next mode of vibration of the air column is shown
in Fig.14.14 (b). One more node and one more
antinode has been produced. In this case

λ = (λ/4) + (λ/4) + (λ/4) + (λ/4) = l

The frequency of the note is

n
2
 = v /λ = v /l = 2v /2l

n
2
 = 2v /2l

That is n
2
 = 2n

1

The note produced is called second harmonic or 1st overtone. To get the second harmonic
you have to blow harder. But if you blow still harder one more node and one more antinode
is produced [Fig.14.14{c)]. Thus, in this case

l = 
2

λ
 + 

4

λ
 + 

2

λ
 + 

4

λ

 λ = 
2

3

l

Fig. 14.15 : Harmonics of a closed organ pipe. The curves represented wave form of the
longitudinal standing waves.

Therefore, the frequency of the note emitted is

n
3

= λ
v

 = 
3

2l

v
 = 3n

1

Fig. 14.14 : Harmoniscs of an open
Organ pipe. The curves
represent the wave of the
longitudinal standing
waves
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(b) Closed pipe : The simplest manner in which the air column can vibrate in a closed
pipe is shown in Fig. 14.15(a). There is an antinode at the open end and a node at the
closed end. The wave length of the wave produced is given by

l = λ/4 or λ = 4l

Therefore, the frequency of the note emitted is

n
1

= v /λ = v /41

The note produced is called fundamental note. On blowing harder one more node and
antinode will be produced (Fig. 14.15(b)). The wavelength of the note produced is given by

l = 
2

λ
 + 

4

λ
 = 

4

3λ
  or λ = 

4

3

l

The frequency of the note emitted will be

n
3

= λ
v

 = 
3

4l

v
 = 3n

1

The note produced is called the first overtone or the 3rd harmonic of the fundamental,
blowing still harder one more node and one more antinode will be produced Fig. 14.15(C).
The wavelength of the note produced is then given by

l = 
2

λ
 + 

2

λ
 + 

4

λ
 + 

4

5λ
  or λ = 

4

5

l

The frequency of the note emitted then will be

n
3

= λ
v

 = 
5

4l

v
 = 5n

1

The note produced is called the second overtone or the 5th harmonic of the fundamental.
On comparison with the notes emitted by the open and closed pipe, you will find that the
open pipe is richer in overtones. In closed pipe, the even order harmonics are missing.

Example 14.5 : Two organ pipes – one open and the other closed – are of the same
length. Calculate the ratio of their fundamental frequencies.

Solution : 
Frequency of open pipe / 2

2
Frequency of closed pipe /4

= =l

l

v

v 

∴ Frequency of note produced by open pipe = 2 × frequency of fundamental note produced
by closed pipe.

Intext Questions 14.6
1. How pitch is related to frequency?

..................................................................................................................................
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two notes of the same frequency, and same intensity but sounded by two different
instruments?

..................................................................................................................................

3. Name the characteristic of sound which helps you identify the voice of your friend.

..................................................................................................................................

4. Out of open and closed organ pipes, which one is richer in overtones?

..................................................................................................................................

5. What is the ratio of the frequencies of the notes emitted (1) by an open pipe and (ii)
by a closed pipe of the same length.

..................................................................................................................................

6. What will be the effect of temperature, if any, on the frequency of the fundamental
note of an open pipe?

..................................................................................................................................

Noise Pollution

When the sensation of sound changes from one of hearing to discomfort, it causes
noise pollution and if it persits for a long time, it has harmful effects on certain organ
of human beings. Noise is also one of the by-products of industrialisation and misuse
of modern amentities provided by science to human beings. We summarise here
under the sources or description of noises and their effects as perceived by the
human beings.

Table 14.1 : Sources of Noise and their Effects

Source Intensity Level Perceived Effect
in decibels by human being

Threshold of hearing 0 (=10–12 Wm–2) Just audible

Rustle of leaves 10 Quiet

Average whisper 20 Quiet

Radio at low volume 40 Quiet

Quiet automobile 50 moderately loud

Ordinary conversation 65 do

Busy street traffic 70 to 80 loud

Motor bike and heavy vehicles 90 very loud

Jet engine 105 Uncomfortable

about 35m away

Lightening 120 (=1 Wm–2) do

Jet plane at take off 150 Painful sound
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(a) Effect of Noise Pollution

1. It causes impairment of hearing. Prolonged exposure of noise at 85 or more than
85db causes severe damage to the inner part of the ear.

2. It increases the rate of heart beat and causes dilation of the pupil of eye.

3. It causes emotional disturbance, anxiety and nervousness.

4. It causes severe headache leading to vomiting.

(b) Methods of Reducing Noise Pollution

1. Shifting of old industries and setting new ones away from the dwellings.

2. Better maintenance of machinery, regular oiling and lubrication of moving parts.

3. Better design of engines and machines.

4. Restriction on use of loudspeakers and amplifiers.

5. Restricting the use of fire crackers, bands and loud speakers during religious, political
and marriage processions.

6. Planting trees on roads for intercepting the path of sound.

7. Intercepting the path of sound by sound absorbing materials.

8. Using muffs and cotton plugs.

Shock Waves

When a source of waves is travelling faster than the sound waves, shock waves are
produced. The familiar example is the explosive sound heared by an observer when
a supersonic plane flies past over the head of the observer. It may be pointed out that
the object which moves with a speed greater than the speed of sound is itself a
source of sound.

14.7 Electromagnetic Waves

You know that light is an  e.m. wave. It has wavelength in the range 4000ºA to 7500ºA. A
brief description of em waves is given below.

14.7.1 Properties of e.m. waves

The following properties of e.m. waves may be carefully noted.

(i) e.m. waves are transverse in nature

(ii) They consist of electric (E) and magnetic fields (B) oscillating at right angles to each
other and perpendicular to the direction of propagation (k). Also E = cB. [see figures
14.16]
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Fig. 14.16 : Electrical and Magnetic fields in em waves

(iii) They propagate through free space (in vacuum) with a uniform velocity = 
0 0

1

µ ε
= 3 × 108 ms–1 = c (velocity of light). For a medium of permeability µ (= µ

0
.µ

r
) and

permittivity ε (= ε
0
 . ε

r
) the velocity becomes

v = 
1

µε  = 
1

r r0 0µ ε µ ε  = 
r r

c

µ ε  < c

(iv) The nature and action of these waves depends on their frequency (or wavelength).
Maxwell’s theory placed no restriction on possible wavelengths for e.m. waves and
hence e.m. waves of wavelengths ranging from 6 × 10–13 m have been successfully
produced. There is no limit to very long wavelengths which correspond to radio
broadcast waves. The whole range of e.m. waves from very long to very short
wavelengths constitutes the electromagnetic spectrum.

James Clark Maxwell
(1831 – 1879)

Scottish Mathematician and physicist Maxwell is famous for his
theories of electromagnetic fields. Through his equations of
electromagnetic principles he showed that they implicitly indicated
the existence of em waves which travelled with the speed of
light, thus relating light and electromagnetism.

With clausius he developed the kinetic theory of gases. He developed a statistical
theory of heat. A man of varied interests, he derived the theorem of equipartition of
energy, showed that viscosity varies directly with temperature and tried to explain
the rings of saturn.

14.7.2 Electromagnetic Spectrum
Maxwell gave the idea of e.m. waves while Hertz, J.C. Bose, Marconi and others
successfully produced such waves of different wavelengths experimentally. However, in
all the methods, the source of e.m. waves is the accelerated charge.
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named accordingly. Overlapping in certain parts of the spectrum by different classes of
e.m waves is also observed. This tells that the e.m. waves of wavelenths in the overlapping
region can be produced by two different methods. It is important to remember that the
physical properties of e.m. waves are determined by the frequencies or wavelengths
and not by the method of their generation. A suitable classification of e.m. waves is
called the electromagnetic spectrum.

There is no sharp dividing point between one class of e.m. waves and the next. The
different parts are as follows :

(i) The low frequency radiations 6 6

60Hz to 50Hz

= 5 10 6 10

v

m to m

=⎧ ⎫
⎨ ⎬

λ × ×⎩ ⎭
 : generated from a.c.

circuits are classified as power frequencies or power waves or electric power utility
e.m. waves. These weaves have the lowest frequency.

(ii) Radio Waves 

6

9

0.3m to10 m

= 10 Hz 300Hzv to

⎧ ⎫λ =⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 : Radio waves are generated when charges

are accelerated through conducting wires. They are generated in such electronic
devices as LC oscillators and are used extensively in radio and television
communications.

(iii) Microwaves 

–3

11 9

10 m to 0.3m

= 10 Hz 10 Hzv to

⎧ ⎫λ =⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 : These are generated by oscillating currents

in special vacuum tubes. Because of their short wavelengths, they are well suited for
the radar system used in aircraft navigation, T.V. communication and for studying the
atomic and molecular properties of matter. Microwave ovens use these radiations as
heat waves. It is suggested that solar energy could be harnessed by beaming
microwaves to Earth from a solar collector in space.

(iv) Infra-red waves 

–7 –3

14 11

7 10 m to 10 m

= 4.3 10 Hz to 3 10 Hzv

⎧ ⎫λ = ×⎪ ⎪
⎨ ⎬

× ×⎪ ⎪⎩ ⎭
 : Infra-red waves, also called  heat

waves, are produced by hot bodies and molecules. These are readily absorbed by
most materials. The temperature of the body, which absorbs these radiations, rises.
Infrared radiations have many practical and scientific applications including physical
therapy infrared photography etc. These are detected by a thermopile.

(v) Visible light 

–7 –7

14 14

4 10 m to 7 10 m

= 7.5 10 Hz to 4.3 10 Hzv

⎧ ⎫λ = × ×⎪ ⎪
⎨ ⎬

× ×⎪ ⎪⎩ ⎭
 : These are the e.m. waves that

human eye can detect or to which the human retina is sensitive. It forms a very small
portion of the whole electromagnetic spectrum. These waves are produced by the
rearrangement of electrons in atoms and molecules. When an electron-jumps from
outer orbit to inner orbit of lower energy, the balance of energy is radiated in the form
of visible radiation. The various wavelengths of visible lights are classified with colours,
ranging from violet (λ = 4 × 10–7m) to red (λ = 7 × 10–7). Human eye is most sensitive
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to yellow-green light (λ = 5 × 10–7m). Light is the basis of our communitation with the
world around us.

(vi) Ultraviolet 

–9 –7

–17 14

3 10 m to 4 10 m

= 10 Hz to 7.5 10 Hzv

⎧ ⎫λ = × ×⎪ ⎪
⎨ ⎬

×⎪ ⎪⎩ ⎭
 : Sun is the important source of ultraviolet

radiations, which is the main cause of suntans. Most of the ultraviolet light from Sun
is absorbed by atoms in the upper atmosphere i.e. stratosphere, which contains ozone
gas. This ozone layer then radiates out the absorbed energy as heat radiations. Thus,
the lethal (harmful to living beings) radiations get converted into useful heat radiations
by the ozone gas, which warms the stratosphere. These ultraviolet rays are used in
killing the bacteria in drinking water, in sterilisation of operation theatres and also in
checking the forgery of documents.

(vii) X-rays 

–13 –8

20 15

4 10 m to 4 10 m

= 7.5 10 Hz to 7.5 10 Hzv

⎧ ⎫λ = × ×⎪ ⎪
⎨ ⎬

× ×⎪ ⎪⎩ ⎭
 : These are produced when high energy

electrons bombard a metal target (with high melting point) such as tungsten. X-rays
find their important applications in medical diagnostics and as a treatment for certain
forms of cancer. Because, they destroy living tissues, care must be taken to avoid
over-exposure of body parts. X-rays are also used in study of crystal-structure.
They are detected by photographic plates.

(viii) Gamma rays 

–17 –10

24 18

6 10 m to10 m

= 5 10 Hz to 3 10 Hzv

⎧ ⎫λ = ×⎪ ⎪
⎨ ⎬

× ×⎪ ⎪⎩ ⎭
 : These are emitted by radioactive

nuclei such as cobalt (60) and ceasium (137) and also during certain nuclear reactions
in nuclear reactors. These are highly penetrating and cause serious damage when
absorbed by living tissues. Thick sheets of lead are used to shield the objects from
the lethal effects of gamma rays.

The energy (E) of e.m. waves is directly proportional to their frequency v

E
hc

hv
λ

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 and inversely proportional to their wave-length (λ). Thus gamma

rays are the most energetic and penetrating e.m. waves, while the power frequencies,
and the A.M. radio waves are the weakest radiations. Gamma rays are used to
detect metal flaws in metal castings. They are detected by Geiger tube or scintillation
counter.

Depending on the medium, various types of radiations in the spectrum will show different
characteristic behaviours. For example, while whole of the human body is opaque to visible
light, human tissues are transparent to X-rays but the bones are relatively opaque. Similarly
Earth’s atmosphere behaves differently for different types of radiations.
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Fig. 14.17 : Electromagnetic spectrum

Intext Questions 14.7

1. Fill in the blanks:

(i)...............................are generated by oscillating currents in special vacuum tubes.

(ii) Human eye is most sensitive to......................................color light.

(iii)..............................is the important source of ultraviolet radiation.

(iv).............................are used as the diagnostic tool in medical,

(v) Infrared radiations can be detected by a.....................................

..................................................................................................................................

2. Which of the e.m. waves are more energetic?

(i) Ultraviolet or infrared.

(ii) x-rays or γ-rays

..................................................................................................................................

3. Which of the e.m. waves are used in aircraft navigation by radar?

..................................................................................................................................

4. Which gas in the atmosphere absorbs ultraviolet radiations from the Sun before
reaching the earth’s surface?

..................................................................................................................................

5. How are the electric field and magnetic field oriented with respect to each other in an
e.m. wave?

..................................................................................................................................

14.8 Doppler Effect
While waiting on a railway platform for the arrival of a train, you might have observed that
the pitch of the whistle when the engine approaches you and when the engine moves away
from you are different. You will note that the pitch is higher when the engine approaches
but is lower when the engine moves away from you. Similarly, the pitch of the horn of a bus
going up a hill changes constantly.
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S

v
s

v

A

A

(v – v
s
)

(a)

(b)

S

Apparent change of frequency observed due to the relative motion of the observer
and the source is known as Doppler effect.

Let v be velocity of the sound waves relative to the medium, (air), v
s
 velocity of the

source; and v
o
 velocity of the observer.

Christian Doppler

(1803 – 1853)
C.J. Doppler, an Austrian physicist and mathematician, was
born on Nov., 29, 1803 in a family of stone mesons. A pale and
frail person, he was not considered good enough for his family
business. So on recommendation of the professor of
mathematics at Salzburg Lycousin, he was sent to Vienna
Polytechnic from where he graduated in 1825.

A struggler through out his life, Doppler had to work for 18 months as a book-keeper
at a cotton spinning factory. He could think of marrying in 1836 only when he got a
permanent post at the technical secondary school at prague. He was once reprimanded
for setting  too harsh papers in maths for polytechnique students. But he pushed his
way through all odds and finally got succes in getting the position of the first director
of the new Institute of Physics at Vienna University.

The Doppler effect discovered by him made him famous overnight, because the
effect had far reaching impact on acoustics and optics. The RADAR, the SONAR,
the idea of expanding universe there are so many developments in science and technology
which owe a lot to Doppler effect. He died on March 17, 1853 in Venice, Italy.

It is important to note that the wave originated at a moving source does not affect the
speed of the sound.  The speed v is the property of the medium. The wave forgets the
source as it leaves the source. Let us suppose that the source, the observer and the sound
waves travel from left to right. Let us first consider the effect of motion of the source. A
particular note which leaves the sources at a given time after one second arrives at the
point A such that SA = v. In this time, the source moves a distance v

s
. Hence all the n

waves that the source had emitted in one second are contained in the space x = v – v
s
.

Thus length of each wave decreased to

λ′ = 
– s

n

v v
...(14.22)

Fig. 14.18 : Crowding of waves when source is moving
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O

O′

v
0

S

v

B

B

(v – v
0
)

Now let us consider the effect of motion of the observer. A particular wave which arrives
at O at  a particular time after one second will be at B such that OB = v. But in the mean
time, the observer moves from O to O′. Hence only the waves contained in the space O′B
have passed across the observer in one second. The number of the waves passing across
the observer in one second is therefore,

n′ = (v – v
0
)/λ′ (14.23)

Fig. 14.19 : Waves received by a moving listner

Substituting for λ′ from Eqn. (14.22) we get

n′ = 0–

– s

v v
v v

n (14.24)

where n′ is the observed frequency when both observer and source are moving in the
direction from the source to the observer.

In using Eqn.(14.24) the velocity of sound is taken positive in the direction from the
source to the observer. Similarly , v

0
 and v

s
 are taken positive if these are in the direction

of v and vice versa.

The utility of Doppler’s effect arises from the fact that it is applicable to light waves as
much as to sound waves. In particular, it led us to the concept of expansion of the universe.

The following examples will help you to understand this application of Doppler’s effect.

Example 14.6 : The light from a star, on spectroscopic analysis, shows a shift towards
the red end  of the spectrum of a spectral line. If this shift, called the red shift, is 0.032%,

calculate the velocity of recession of the star.

Solution : In this case, the source of waves is the star. The observer is at rest on the
Earth. We have shown that in such a case

λ′ = 
– s

n

v v

But n = v /λ Therefore, λ′ = 
–

/
s

λ
v v
v

= λ 
( – )sv v

v

= λ 1–
⎛ ⎞
⎜ ⎟⎝ ⎠

sv
v

On rearranging terms, we can write
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–′λ λ
λ = – 

sv
v

or
∆λ
λ = 

sv
v

we are told that 
∆λ
λ  = 0.032/100. And since v = c = 3 × 108 ms–1, we get

v
s
 = v

∆λ
λ  = – (3 × 108 ms–1 × 0.032/100) = – 9.6 × 104 ms–1.

The negative sign shows that the star is receding away. This made the astrophysists to
conclude that the world is in a state of expansion

Intext Questions 14.8

1. A SONAR system fixed in a submarine operates at frequency 40.0kHz. An enemy
submarine moves towards it with a speed of 100ms–1. Calculate the

frequency of the sound reflected by the sonar. Take the speed of sound in water to

be 1450 ms–1.

..................................................................................................................................

2. An engine, blowing a whistle of frequency 200Hz moves with a velocity 16ms–1

towards a hill from which a well defined echo is heard. Calculate the frequency of
the echo as heard by the driver. Velocity of sound in air is 340ms–1.

..................................................................................................................................

Constancy of Speed of Light
Aristotle, believed that light travels with infinite velocity. It was for the first time in
September, 1876 that the Danish astronomer, Roemer, indicated in a meeting of Paris
Academy of Sciences that the anomalous behaviour of the eclipse, times of Jupiter’s
inner satellite, Io, may be due to the finite speed of light. Feazeu, Focult, Michelson
and many other scientists carried out experiments to determine the speed of light in
air with more and more precision.

Albert Einstein, in his 1905 paper, on special theory of relativity, based his arguments
on two postulates. One of the postulates was the constancy of speed of light in
vacuum, irrespective of the wavelength of light, the velocity of the source or the
observer. In 1983, the velocity of light in vacuum, was declared a universal constant
with a value 299792458 ms–1.

However, the Autralian researcher Barry Setterfield and Trevn Norwah have studied,
the data of 16 different experiments on the speed of light in vacuum, carried out over
the last 300 years, by different scientists at different places. According to them, the
speed of light in vacuum is decreasing with time. If this hypothesis is sustained and
coroborated by experiements, it will bring in thorough change in our world view.
Major areas in which this change will be enormous are : Maxwell’s laws, atomic
structure, radioactive decay, gravitation, concepts of space, time and mass etc.
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What You Have Learnt
� The distance between two nearest points in a wave motion which are in the same

phase is called wavelength.

� The equation of a simple harmonic wave propagating along x–axis is y = a sin
(vt – kx).

� The energy transmitted per second across a unit area normal to it is called intensity..

� If the vibrations of medium particle are perpendicular to the direction of propagation,
the wave is said to be transverse but when the vibrations are along the direction of
propagation the wave is said to be longitudinal. Velocities of transverse wave and

longitudinal waves is given by v = /T m  and v = E / ρ  respectively.

� On reflection from a denser medium, phase is reversed by π. But there is no phase
reversal on reflection from a rarer medium.

� When two waves are superposed, the resultant displacement at any point is vector
sum of individual displacements at that point. Superposition of two colliner waves of
same frequency but differing phases, when moving in the same direction results in
redistribution of energy giving rise to interference pattern.

� Superposition of two collinear waves of the same frequency and same amplitude
travelling in the opposite directions with the same speed results in the formation of
stationary waves. In such waves, waveform does not move.

� In a stationary wave, the distance between two successive nodes or successive
antinodes is λ/2. It is, therefore, obvious that between two nodes, there is an antinode
and between two antinodes there is a node.

� The displacement is maximum at antinodes and minimum at nodes.

� Intensity level is defined by the equation β = 10log (I/I
0
), where I

0
 is an arbitrarily

chosen reference intensity of 10–12 W m–2. Intensity level is expressed in decibels
(Symbol. db)

� Quality of a note is the characteristic of musical sounds which enable us to distinguish
two notes of the same pitch and same loudness but sounded by two different
instruments.

� Electromagnetic waves are transverse in nature, and do not require any medium for
their propagation.

� Light is an e.m. wave with wavelength in the range 4000 Å – 7500 Å.

� The frequency of e.m. waves does not change with the change in the medium.

� e.m. waves are used for wireless radio communication, TV transmission, satellite
communication etc.

Terminal Exercises
1. How will you define a wave in the most general form?

2. Explain using a suitable mechanical model, the propagation of (i) transverse waves
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(ii) longitudinal wave. Define the term wavelength and frequency.

3. Define angular frequency ω and propagation constant k and hence show that the
velocity of the wave propagation is v = ω/k = nλ.

4. Derive the equation of a simple harmonic wave of angular frequency of (i) transverse
(ii) longitudinal waves.

5. What are the essential properties of the medium for propagation of (i) transverse
waves (ii) longitudinal waves.

6. Derive an expression for the intensity of the wave in terms of density of the medium,
velocity of the wave, the amplitude of the wave and the frequency of the wave.

7. Write Newton’s formula for the velocity of sound in a gas and explain Laplace’s
correction.

8. When do two waves interfere (i) constructively (ii) destructively?

9. Show using trigonometry that when two simple harmonic waves of the same angular
frequency ω and same wavelenght λ but of amplitudes a

1
 and a

2
 are superposed, the

resultant amplitude is A = cos θ2 2
2 2 1 2 a +a + 2a a    , where θ is the phase difference

between them. What would be the value of A, for θ = 0, (ii) for θ = 2π, and (iii) for
θ = (2m + 1)π?

10. What are beats? How are they formed? Explain graphically.

11. Discuss graphically the formation of stationary waves. Why are these wave  called
stationary waves? Define nodes and antinodes.

12. State three differences between stationary and travelling waves.

13. Derive the equation of a stationary wave and show that displacement nodes are
pressure antinodes and displacement antinodes are pressure nodes?

14. What are the characteristics of musical sounds. Explain.

15. What is a decibel (symbol) db)? What is meant by ‘threshold of hearing’ and ‘threshold
of feeling’?

16. What is meant by quality of sound? Explain with examples?

17. Discuss the harmonics of organ pipes. Show that an open pipe is richer in harmonics.

18. Show that (i) the frequency of open organ pipes. is two times the frequency of the
fundamental note of a closed pipe of same length (ii) to produce a fundamental note
of same frequency, the length of the open pipe must be two times the length of the
closed pipe.

19. Describe an experiment to demonstrate existence of nodes and antinodes in an organ
pipes?

20. State the causes of noise pollution, its harmful effects and methods of minimising it.

21. Explain Doppler’s effect and derive an expression for apparant frequency. How
does this equation get modified if the medium in which the sound travels is also
moving.

22. Discuss the applications of Doppler’s effect in (i) measuring the velocity of recession
of stars, (ii) velocity of enemy plane by RADAR and (iii) velocity of enemy boat by
SONAR?
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and 1.01m produce 10 beats in 3 seconds.

24. What will be the length of a closed pipe if the lowest note has a frequency 256Hz at
20C. Velocity of sound at 0C = 332 ms–1.

25. The frequency of the sound waves emitted by a source is 1 kHz. Calculate the
frequency of the waves as perceived by the observer when (a) the source and the
observer are stationary, (b) the source is moving with a velocity of 50ms–1 towards
the observer, and (c) the source is moving with a velocity of 50ms–1 away from the
observer. Velocity of sound in air is 350ms–1.

26. Write the characteristic properties of e.m. waves which make them different from
sound waves.

27. How does the velocity of e.m. waves depend upon the permeability µ and permittivity
ε of the medium through which they pass?

28. Give the range of wavelengths of the following e.m. waves:

(i) Radio Waves (ii) Microwaves : (iii) Ultraviolet; (iv) x-rays.

29. How are x-rays produced?

30. Can e.m. waves of all frequencies propagate through vacuum?

31. Fill in the blanks.

(i) A changing electric field produces a______________ in the adjacent region.

(ii) ___________ are more harmful to our eyes than x-rays.

(iii) __________ are emitted from radio active nuclei of cobalt.

(iv) Infra red rays are less energies than_______________

(v) In an e.m. wave propagating along z-direction, if the E field oscillates in the X,Z
plane then the B field will oscillate in the _______________ plane.

(vi) The ratio 
E
H

 in free space of e.m. wave is called ______________.

(vii) The frequency range of F.M. band is ________________.

(viii)___________signal is frequency modulated in T.V. broadcasting.

Answers to Intext Questions

14.1
1. See section 14.1.4.

2. If p be the path difference, then the phase difference is θ = 
2π
λ p.

3. φ
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1. Newton assumed that compression and rarefaction caused by sound waves takes

place under isothermal condition.

3. Newton assumed that isothermal conditions instead of adiabatic conditions for sound
propagation.

4. 3570C.

5. v = 
T

m

6. Therefore, n = 
1

λ  
T

m

Further, for the simplest mode of vibration, at the two ends of the string, there are nodes
and in between the two nodes is an antinode. Therefore, l = l/2 or λ = 2l, hence n = λ/2l

T

m
. If the string vibrates in p segments, the λ = p l/2 or λ = 2l/p. Then n = (p/2l) 

T

m
.

14.3
For answers to all questions see text.

14.4
1. 25/9.

2. Beats with frequency 4Hz are produced.

3. Frequency of beat is ∆v.

4. 517, on loading the frequency of A decreases from 517 to 507.

14.5
1. No energy swings back and forth in a segment.

2. Distance between two successive nodes is λ/2, and between a node and antinode is
λ/4.

4. (i) 1m,    (ii) 1m,     (iii) 1/4m.

14.6
1. Pitch increases with increase in frequency.

2. Timbre

3. Timbre

4. Open pipe

5. For a closed pipe in case of fundamental note l = λ/4 or λ = 4l, therefore n = v/λ =
v/4l.
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For an open pipe l  = λ/2. Therefore n′ = v /2l.

Comparing (i) and (ii) we find that n′ = 2n

6. n = 
2l

v
. As v increases with increase in temperature n also increases.

14.7
(i) microwaves.

(ii) yellow–green (λ = 5 × 10–7 m)

(iii) Sun.

(iv) X – rays.

(v) thermopile.

2. (i) ultra voilet

(ii) r – rays.

3. Microwaves

4. Ozone.

5. Perpendicular to each other.

14.8

1. n′ = n 0–c

c

v

= 40 × 103 × 
1450 – 100

1450

= 40 × 
135

145
× 10 = 37.2 KHz.

2. n′ = 200 × 
340 + 16

340 – 16

= 200 × 
356

224
 = 220 Hz.

Answer to Terminal Problems
23. 337 ms–1

24. �  30 cm.

25. (a) 1 kHz

(b) 857 Hz

(c) 1143 Hz.
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SENIOR SECONDARY COURSE

PHYSICS

STUDENT’S ASSIGNMENT – 4
Maximum Marks: 50 Time : 1½ Hours

INSTRUCTIONS

� Answer All the questions on a seperate sheet of paper

� Give the following information on your answer sheet:

� Name

� Enrolment Number

� Subject

� Assignment Number

� Address

� Get your assignment checked by the subject teacher at your study centre so that you get positive feedback
about your performance.

Do not send your assignment to NIOS

1. Which of the following represent simple harmonic motion (1)

(a) y = 1 + ωt.

(b) y = sin.ωt + cos.ωt.

(c) y = sin.ωt + cos ωt.

2. Four simple pendulum A, B, C and D are suspended from the same support.
If any out of the pendulums is set into vibration all the four start oscillating.
Which two of these pendulums will oscillate with the same frequency.
Why? (1)

3. A mass m when made to oscillate on a spring of force constant k oscillates
with a frequency v. The spring is then cut into two identical parts and the same mass is made to oscillate
on half of the spring. What is the new frequency of oscillation of mass m. (1)

4. Give an example of a motion which is periodic but not oscillatory. (1)

5. Draw a graph showing the variation of velocity of sound in air with pressure. (1)

6. Is there a deviation in the direction of propagation of a sound wave in passing from air to water?
Explain. (1)

7. What happens when a transverse wave pulse travelling on a string meets the fixed end of the string?(1)

8. What happens to the speed of em waves as they enter from vacuum to a material medium. (1)

9. Draw reference circle for the SHM represented by –

x = 3 sin 2
4

r
π⎛ ⎞π +⎜ ⎟

⎝ ⎠

A

B

C

D
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Indicate the initial position of the particle, the radius of the circle and the angular speed of the rotating
particle. For simplicity, the sense of rotation may be taken to be anticlockwise. In the given expression x
is in cm and t is in seconds. (2)

10. Two waves having intensities in the ratio 1 : 9, superpose to produce interference pattern on a screen. Find
the ratio of maximum and minimum intensities in the interference pattern. (2)

11. Two tuning forks A and B are marked 480 hz each. When they are sounded together they give 5 beats
s–1. What can you say about the frequency marked on the tuning  forks. How can you find the ratio

v
A / v

B
? (2)

12. (a) Name the em waves used in aircraft navigation by radar?

(b) Which gas in atmosphere absorbs u-v radiation? (2)

13. Write Laplace’s formula for the speed of sound in air. Using the formula explain why the speed of sound
in air (a) increases with temperature (b) increases with humidity. (4)

14. A transverse harmonic wave on a string is described by

y(x
1
t) = 3.0 sin(36t + 0.018x)

find (i) amplitude of particle velocity. (ii) wave velocity. (4)

15. A bat emits urasonic waves of frequency 103 KHz in air. If the waves strike a water surface, find the
difference in the wave lengths of transmilted sound and reflected sound. (speed of sound in air is
350 ms-1 and is water 1500 ms-1). (4)

16. A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 50 Hz.
The mass of the wire is 3.5 × 10-2 kg and its linear density is 4.0 × 10-2 kg m-1. What is  (a) the speed of
a transverse wave on the string and (b) the tension in the string? (4)

17. A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonantly excited by a 430
Hz source? Will the same source be in resonance with the pipe if both ends are open. (4)

18. Explain why :

(i) solids can support both transverse as well as longitudinal waves, however, only lougitudinal can propagate
in gases.

(ii) the shape of a pulse get distorted during propagation in a dispersive medium.

(iii) in a sound wave displacement node is pressure antinode and vice-versa.

(iv) a note played on voilin and sitar has the same frequency but the two may still be distinguished from
each other. (4)

19. Discuss the applications of doppler effect in measuring

(i) the velocity of recession of stars (ii) velocity of enemy boat by SONAR. (5)

20. The transverse displacement of a string of length 1.5 m and mass .03 kg which is clamped at both ends, is
given by (5)

( )2
0.068 cos 120

3
x

y m t
π⎛ ⎞= π⎜ ⎟

⎝ ⎠

when x and y are in m and t in s.

(i) Does it represent travelling wave or stationary wave?

(ii) Interpret the wave as a result of superposition of two waves.

(iii) Determine the frequency, wavelength and speed of each super posing wave.
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Curriculum
Rationle
Physics is a fundamental science because it deals with the basic features of the world, such as, time, space,
motion, charge, matter and radiation. Every event that occurs in the natural world has some features that can
be viewed in these terms. Study of physics need not necessarily be taken as a means of becoming a physicist;
it is a means of rationally understanding nature. Physics lies behind all technological advancements, such as,
computer, internet, launching of rockets and satellites, radio and T.V communications, lasers, etc. It also finds
applications in such simple activities of men as lifting a heavy weight or making a long jump. Physics is thus an
all pervading science and its study helps us in finding answers to whys and hows of our day to day happenings.

Keeping in view the issues highlighted in the National Curriculum Framework (NCF) for School Education,
present Physics curriculum has been so designed that it not only focusses on the basic concepts of Physics but
relates them to the daily life activities. The application of the laws of Physics and their effects on daily life have
been reflected in the curriculum. The basic themes of Physics which would be of interest to all, particularly to
those who are interested in pursuing Physics as a career in life have been selected to form core content of the
curriculum. Besides, the curriculum also includes such emerging areas as electronics, communication, nuclear
physics, photography and Audio - videography, which find immense applications in daily life.

Though mathematics is basic to the understanding of most of the problems of physics, in the present course,
stress has been given to avoid rigour of mathematics like intergration and differentiation. The focus has been
to teach concepts of physics rather than mathematical calculations.

Course Objectives
The basic objectives of the sr. secondary level Physics course are to enable the learner to :

• acquire knowledge and develop understanding of concepts, fundamental laws, principles and processes
in the area of physics so that relationship between causes and effects of physical phenomnon can be
understood;

• appreaciate the contributions of physics towards improving quality of life;

• promote interest in physics and foster a spirit of enquiry; and

• improve competencies of individuals in work skills required in their profession.

As a part of this process, the course also aims at developing the following abilities in the learner:

• experimental skills like taking observations, manipulation of equipment, and communicative skills such as
reporting of observations and experimental results;

• problem solving ability e.g analyzing a situation or data, establishing relationship between cause and
effect;

• scientific temper of mind by making judgment on verified facts and not opinions, by showing willingness
to accept new ideas and discoveries; and

• awareness of the dangers inherent in the possible misuse of scientific knowledge.

Course Structure
The physics curriculum at sr. secondary level consists of both theory and practical components.

(i) The theoretical part of the Physics curriculum includes two parts – core modules and optional modules.

1. Core modules : The core modules comprise of the essential concepts and phenomena of physics which
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a student at this level should know. There are eight core modules which contain predominantly the subject
matter of mechanics, electricity, light and other areas of physics representing the minimum knowledge
required to progress into the more advanced areas and to develop appreciation for the fact that physics
plays a significant role in most situations.

Core Modules Marks Minimum Study

Time (hours).

1. Motion, Force and Energy 14 45

2. Mechanics of Solids and Fluids 06 20

3. Thermal Physics 08 25

4. Oscillations and Waves 05 20

5. Electricity and Magnetism 14 45

6. Optics and Optical Inctruments 07 25

7. Atoms and Nuclei 07 25

8. Semiconductors and their Applications 07 205

Total 68 230 hours

2. Optional Modules : The optional modules are in the application oriented specific fields like Electronics
and Communication and Photography and Audi– Videography. In the optional modules there is a choice
to opt any one of the given modules. Each modules carries a weightage of 12 makrs which makes 15%
of total theory marks.

Modules Marks Minimum Study

Time (in hours)

1. Electronics and Communication 12 30

2. Photography and Audio – Videography 12 30

(ii) Paractical in physics

There is a compulsory component of practicals in Physics. It carries a weightage of 20% marks in the
term end examination. A list of experiments and suggested activities to be performed by the students is
given at the end of theory syllabus.

Module 1 : Motion, Force and Energy
Approach : Besides highlighting the importance of universal standard units of measurement, applications of
dimensions and vectors in the study of physics to be described in this module. The concept of motion and rest,
cause of motion and different types of motion have been described with the help of daily life examples.
Significance of gravitation, concept of work and energy are to be highlighted. The basics of the motion of a
rigid body and the significance of rotational motion in day to day life has been explained.

Unit 1.1.: Units, Dimensions and Vectors

• Units of measurement – fundamental and derived units Supprotive Video programme

• Dimensions of physical quantities 1. Application of Vector in

• Applications of dimensions  our daily life

• Vectors and scalars
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• Vectors and their graphical representation

• Addition and subtraction of vectors

• Resolution of vectors into rectangular components

(two dimensions)

• Unit vector

• Scalar and Vector products

2. Unit 1.2 motion in a Straight line

• Distance and displacement Supportive Video Programme

• Speed, velocity and acceleration 1. Motion and Rest

• Average & instantaneous velocities.

• Uniformly accelerated motion

• Position – time and velocity – time graphs

• Equations of motion with constant acceleration including

motion under gravity

• Relative motion

3. Unit 1.3: Newton’s laws of motion Supprotive Video Programme

• Concept of force and inertia 1. Laws of Motion

• First law of motion 2. Frictional force

• Concepts of momentum

• Second law of motion

• Third law of motion

• Impulse

• Conservation of linear momentum

• Friction – static and kinetc, factors affecting friction

• Importance of friction and methods of reducing fiction

• Free body diagram technique

• Elementary idea of inertial and non – inertial frames of references.

Unit 1.4: Motion in a Plane Supportive Video Programme

• Projectile motion (time of fligtht, range and

maximum height) 1. Planetary Motion

• Trajectory of a projectile 2. Circular Motion

• Uniform circular motion

• Centripetal acceleration

• Circular motion in daily life
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Unit 1.5: Gravitation Supprotive Video Programme

• Universal law of gravitation 1. Planetary Motion

• Acceleration dute to gravity and its variation with 2. Satellites and Their Applications

height, depth and latitude (only formula), value of

g at moon

• Kepler’s laws of planetary motion (no derivation)

• Motion of planets, orbital and escape velocity

• Satellites – geostationary and polar

• Achievements of India in the field of space exploration

• Applications of satellites

6. Unit 1.6 : Work, Energy and Power Supportive Video Programme

• Work done by a constant force 1. Work and Power

• Work done by a varying force (graphical method) 2. Mechanical Energy

With example of spring

• Work – energy theorem

• Conservative and non – conservative forces

• Mechanical Energy (kinetic and potential energies)

With examples.

• Conservation of energy (spring pendulum, etc)

• Elastic and inelastic collisions

• Power and its units.

7. Unit 1.7 : Motion of a Rigid Body Supportive Video Programme

• Rigid  body motion, center of mass, couple and torque 1. Rotational Motion

• Moment of inertia, radius of gyration and its

significance

• Theorems of parallel and perpendicular axes

concerning moment of inertia and their uses in simple

cases (no derivation)

• Equations of motion for a uniformly rotating rigid

body (no derivation)

• Angular momentum and law of conseration of angular

momentum with simple applications

• Rotational and transnational motions with examples

(motion of ball, cylinder, flywheel on an incline plane)

• Rotational energy
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Module 2 : Mechanics of Solids and Fluids
Approach : The classification of the substances into solids, liquids and gases is done on the basis of intermolecular
forces. This module explains the elastic behaviour of the solids and highlights source of elastic behaviour of solids.
The mechanical properties of the fluids like buoyancy, surface tention, capillary action etc. have been explained
with the help of daily like examples and their applications have been highlighted.

8. Unit 2.1 : Elastic Properties of Solids Supportive Video Porgramme

• Elastic behaviour and Hooke’s law, stress – strain curve 1. Elastic Behaviour of solids

• Inter –molecular forces

• Young’s modulous, bulk modulous, modulous of rigidity

and compressibility

• Some applications of elastic behaviour of solids like

cantilever, girder etc.

9. Unit 2.2: Properties of Fluids Supportive Video Porgramme

• Hydrostatic pressure and buoyancy 1. Hydrostatic Pressure

• Pascal’s law and its applications. 2. Surface Tension

• Forces of cohesion and adhesion 3. Viscosity and Berinoulli’s

• Surface tension and surface energy Theorem

• Angle of contact and capillary action

• Application of surface tension, drops, bubbles and

detergents

• Types of liquid flow – laminar and turbulent,

Reynold’s number,

• Viscosity and Stoke’s law

• Terminal velocity

• Bernoulli’s theorem (no derivation) and its applications

Module 3 : Thermal Physics
Approach : Behaviour of gases and the gas laws have been described with the help of kinetic theory of gases.
The concept of temperature is to be explained by thermal equilibrium. Laws of thermodynamics and their applications
in our day to day life are to be explained in this module. Working of heat engines and refrigerators will be explained.
Different modes of transfer of heat and their applications in different situations are  to be emphasized. The
concept of thermal pollution and the issue of green house effect will also be dealt with in this module.

10. Unit 1.1 kinetic Theory of Gases Supportive Video Programme

• Kinetic Theory of gases

• Deduction of the relation 
2

21

3
PV mn c=

• Ideal gas equation of state
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• K.E. and temperature relationship

• Degree of freedom and law of equipartition of energy

• Specific heats of gases & ralationship between C
p 
& C

v

11. Unit 3.2 Laws of Thermodynamics Supportive Video Programme

• Thermal equilibrium – Zeroth law of thermo dynamics 1. Thermodynamic Processes

and concept of temperature

• Thermodynamic variables and thermodynamic

equilibrium 2. Heat Engine and Refrigerator

• Thermodynamic processes - isothermal, adiabatic,

reversible, irreversible and cyclic process.

• First law of thermodynamics – internal energy

• Phase change, Phase diagram, latent heat and triple

Point carnot’s cycle and its efficiency – second

law of thermodynamics, heat engine and refrigerator

• Limitations of Carnot’s engine

12. Unit 3.3 : Heat Transfer and Solar Energy Supportive Video Programme

• Modes of transfer of heat – conduction, convection 1. Transfer of Heat

and radiation

• Newton’s law of cooling.

• Green house effect

• Solar energy

Module 4 : Oscilations and Waves
Approach : Besides explaining the terms associated with periodic motion, the harmonic motion will be described
with the help of common examples. A qualitative idea of forced oscillations,resonance and damped oscillations
will also be given in the module.

13. Unit 4.1: Simple Harmonic Motion Supportive Video Programme

• Periodic motion – amplitude, period, frequency and 1. Simple Harmonic Motion

phase

• Reference circle and equation of simple harmonic

motion

• Examples of spring mass system and simple pendulum

• Forced oscillations and resonance (no derivation)

• Damped oscillations (no derivation)

14. Unit 4.2: Wave Phenomena Supportive Video Programme

• Formation and propagation of waves 1. Formation and Propagation of Waves
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• Wavelenth, frequency, speed and their relationship,

amplitude of wave and wave equation. 2. Sound Waves

• Longitudinal and transverse waves

• Wave motion in a medium and formula for its speed

• Reflection of waves from rigid boundary

• Superposition of waves – interference of waves

• Standing waves and beats (only qualitative treatment

with equations)

• Characteristics of musical sound (overtones and

harmonics)

• Threshold of hearing, intensity of sound and noise pollution

• Doppler effect and its application. (qualitative only)

• Electromagnetic waves and their properties

• Em – waves spectra

• Constancy of speed of light (non – evaluative in a box)

Module 5 Electricity and Magnetism
Approach : The basic concept of electrostatics and frictional electricity will be described in the module. The
electric field and electric potential due to a point charge will be explained. Different types of capacitors, their
compbinations and applications will be explained. The electric current and thermal and magnetic effects of current
are explained in the module. Significance of maganetic effedct of current and electromagnetic induction has been
emphasized. The generation and transmission of current power and the problems of low voltage and load shedding
have been explained.

15. Unit 5.1 : Electric Charge and Electric Field Supportive Video Programme

• Frictional electricity – electric charges and their 1. Coublomb’s Law or Frictional
conservation Electricity

• Coulomb’s law

• Superposition principle

• Electric field and field intensity due to a point

charge (through diagram)

• Force on a charged particle in an electric field

• Electric field of a dipole in uniform electric field

• Electric flux and Gauss theorem in electrostatics

(no derivation)

• Uses of Gauss’s theorem to determine electric field

of a point charge, long wire, plane sheet.

16. Unit 5.2 : Electric Potential and Capacitors Supportive Video Programme

• Electric potential due to a point charge
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• Electric potential at a point due to a dipole

(axial and equatorial).

• Electric Potential energy of a system of point charges

• Relation between electric field and potential – equipotent

surface,

• Conductors and electric field inside a conductor

• Electrostatic shielding

• Capacitors and capacitance of a parallel plate capacitor.

• Different type of capacitors and their applications

• Capacitors in series and parallel combinations

• Energy stored in a capacitor

• Dielectrics and their polarization

• Effects of dialectics on capacitance

17. Unit 5.3 : Electric Current Supportive Video Programme

• Electric current in a conductor 1. Ohm’s Law

• Concept of drift velocity of electrons 2. Heating Effect of Electric Current

• Ohm’s law, ohmic and non – ohmic resistances –

• Colour coding of resistors.

• Free and bound electrons

• Combination of resistances (series and parlalle)

• Kirchoff’s laws and their application to electrical

circuits

• Wheatstone bridge principle and its application

• Electromotive force and potential difference

• Potentiometer and its applications.

• Heating effect of electric current – Joule’s law of

heating

18. Unit 5.4 Magnectism and Magnetic Effect of Electric Current

• Bar Magnet and its magnetc field Supportive Video Programme

• Magnetic effect of electric current 1. Magnetism

• Bio – Savart’s law and its application to find magnetic

field at the center of a coil carrying current (qualitative

treatment)

• Ampere’s  circuital law and its application in finding
magnetic field of a wire, circular loop (at the center), and
solenoid.
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• Force on a charged particle in a magnetic field;

Lorentz force

• Force on a current carrying wire in a uniform

magnetic fiedd

• Current loop as a Magnectic dipole and its magnetic

moments

• Torque on a current loop in magnetc field

• Moving coil galvanometer and its conversion into

ammeter and voltmeter

• Earth’s magnetic field

• Ferro magnetic materials – domain theory (qualitative)

19. Unit 5.5 : Electromagnetic Induction and Alternating Current

• Feraday’s law of electro – magnetic induction Supportive Audio/Video

• Lenz’s law Promgramme

• Self and mutual inducton – choke coil 1. Generation and Transmission of

• Alternating current and voltage illustrating with of Electric Current

Phase diagram – peak and rms values

• Circuits containing only R, L or C separately –

phase relationship between I & V

• LCR series combination (using phaser diagram only)

and resonance

• Generators – AC and DC

• Transformers and their applications

• Transmission of electric power

• Problem of low voltage and load shedding

(concepts of stabilizer and inverters )

Module 6 : Optics and Optical Instruments
Approach : After giving a brief introduction of reflection of light, the basic concepts like refraction, total internal
reflection, dispersion, scattering, of light will be described in the module. The wave properties of light like interference,
diffraction and polarization are also to be described in a qualitative manner. Further  applications of the properties
of light have been described to construct various types of optical instruments.

20. Unit 6.1 Reflection and Refraction of Light

• Reflection of light from spherical mirrors, sign Supportive Video Programme
convention and mirror formulae 1. Reflection of light

• Refraction of light, Snell’s law of refraction 2. Refraction of light

• Total Internal Reflection and its applications
in fibre optics
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• Refraction through single curved surface and
lenses

• Lens maker’s formula and magnification

• Power of a lens

• Combination of lenses

• Defects of vision and their correction
(myopia and hypermetropia)

21. Unit 6.2 : Dispersion and Seattering of light

• Dispersion of light, angle of deviation Supportive Video Programme

• Rainbow and its formation 1. Rainbow

• Defects of image formation–spherical and chromatic
aberration (qualitative only)

• Scattering of light in atmosphere.

22. Unit 6.3 : Wave Phenomena and Light

• Huygen’s wave theory and wave propagation. Supportive Video Programme

• Interference–Young’s double slit experiment

• Diffraction of light at a single slit (qualitative)

• Polarization-Brewster’s law and its application in daily life

23. Unit 6.4 : Optical Instruments

• Simple and Compound microscopes and their Supportive Video Programme
magnifying power 1. Optical Instruments

• Telescopes–reflecting and refracting

• Resolving power and Rayleigh’s criterion

• Applications in astronomy

Module 7 : Atoms and Nuclei
APPROACH : Different atomic models describing the structure of atom have been described and the limitations
of these and their modifications have been systematically presented in the module. Nuclei and radio activity
have been explained along with their applications. The peaceful uses of nuclear energy have been described
highlighting the latest trends.

24. Unit 7.1 : Structure of Atom

• Alpha-Particle scattering and Rutherford’s atomic model Supportive Video Programme

• Bohr’s model of hydrogen atom and energy levels 1. Atomic Structure

• Hydrogen spectrum

• Emission and absorption spectra

25. Unit 7.2 : Dual nature of Radiation and Matter

• Work function and emission of electrons Supportive Video Programme

• Photoelectric effect and its explanation 1. Photo electric Effect and its Applications
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• Photo electric tube and its applications

• Matter waves-Davisson and Germer experiment

• Electron microscope (non evaluative box)

26. Unit 7.3 : Nuclei and Radioactivity

• Atomic mass unit, mass number, size of nucleus Supportive Video Programme

• Isotopes and isobars 1. Radioactivity and its Applications

• Nuclear forces, mass-energy equivalence

• Mass defect and binding-energy curve

• Radioactivity-alpha, beta decay and gamma emission

• Half life and decay constant of nuclei

• Applications of radioactivity

27. Unit 7.4 : Nuclear Fission and Fusion

• Nuclear reactions Supportive Video Programme

• Nuclear fission and chain reaction 1. Nuclear Energy

• Nuclear-fusion-energy in stars

• Misuses of nuclear energy-atom bomb and
hydrogen bomb (non-evaluative in a box

• Peaceful uses of Nuclear Energy (including latest trends)

• Hazards of nuclear radiation and safety measures

Module 8 : Semiconductors and their Applications
APPROACH : Semiconductors find a very significant place in almost all the electronic devices. Besides highlighting
the basis of semiconductors, different types of semiconductor devices and their applications have been explained
in the module.

28. Unit 8.1 : Semiconductors and Semiconductor Devices

• Intrinsic and extrinsic semiconductors Supportive Video Programme

• Pn-junction-its formation and properties

• Biasing of pn-junction diode

• Characterstics of pn-junction diode

• Types of diodes-zanier diode, LED, Photo diode and

solar cell

• Transistors-pnp and npn

• Characteristic curves of a transistor

29. Unit 8.9 : Applications of Semiconductor Devices

• pn-junction diode as a rectifier Supportive Video Programme

• Zener diode as a voltage regulator Semiconductor Devices and their

• Transistor as an amplifier (common emitter) application
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• Transistor as an oscillator

• Transistor as a switching device

• Logic gates and their realization (OR, AND, NOT,

NAND, NOR)

OPTIONAL MODULES
Optional Module–1 : Electronics and Communication
APPROACH : In the present age of information and communication technology, it is essential for all to
know the basic of electronics and communication technology. Working principles of different electronic
devices used in daily life have been explained. Besides explaining communication systems, the communication
techniques and media have been explained in the module.

30. Unit 1 : Electronics in Daily Life

• Power supply – SMPS, inverters, UPS Supportive Video Programme

• Circuit Breaker – MCB 1. Electronics in Daily Life

• Timer – digital clock

• Processor – calculator

• LCD

• transducers and control system – Burglar alarm/fire alarm

31. Unit 2 : Communication Systems

• Communication system model – Supportive Video Programme

• Components of communication systems like transmitter, 1. Communication systems

receiver media of communication and antenna

• Types of signals – analogue & digital

• Electromagnetic waves in communication

32. Unit 3 : Communication Techniques and Devices

• Sampling Supportive Video Programme

• Modulation – Analogue AM and FM, digital (p) 1. Modulation and Demodulation

• Demodulation

• Role of tuner

• Common communication devices–radio/TV/Fax/Modern etc.

33. Unit 4 : Communication Media

• Guided Media – transmission lines and optical fibre Supportive Video Programme

• Unguided Media and antenae–ground wave Communication, Communication media
sky wave communication, space wave communication and
satellite communication.

• Communication application to modern day communication

• EDUSAT
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Optional Module – 2 : Photography and Audio–Video–Graphy
APPROACH : The basic principles of physics used in the field of photography and audio–videography have
been described in different units of the module. Working principle of camera, types of camera, film exposing and
processing have been explained the basic principles of audio and video recording both on tape and on compact disc
have be described.

30. Unit 1 : Photography – Camera

• Camera – an introduction, parts of a camera, camera eye Supportive Video Programme
(lens), shutters, special lenses. 1. Camera & its Working

• Types of camera – their basic principle, constructions and
working

• Principle of video camera.

• Choosing a camera, picture size.

• Choice of lens – angle of view and resolving power,
aperture and focusing system.

31. Unit 2 : Film Exposing and Processing

• Constituents of photographic films and types of films. Supportive Video Programme

• Characteristics of film 1. Film Exposing and Processing

• Film exposure, aperture and speed

• Processing the film – developing, fixing and washing

• Printing of the photo

32. Unit 3 : Audio–Video Recording

• Basic principle of recording Supportive Video Programme

• Conversion of audio signal into electrical signals, 1. Audio–Video Recording

• Conversion of video signal into electrical signals.

• Storage of audio–video signals on tapes.

• Quality of recording, sound recording on cine films.

• Tape characteristics, structure and composition, tape
format, tape speeds, important tape parameters,

• Presentation of tapes, storage techniques, precautions
during handling and transportation.

33. Unit 4 : Compact Disc for Audio–Video Recording

• Limitations of traditional audio–video recording systems, Supportive Video Programme

• Compact Disc 1. Compact Disc for Audio–Video
• Need for compact disc, advantages of compact disc. Recording

• CD for audio recording,

• Basic principle of audio recordings,

• Methods of CD – audio-recording,
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• CD for video-recording,

• Basic principle for video recording

• Methods of CD – video recording

• General operating and installation precautions,

• CD – players, operating principle,

• Quality of reproduction.

List of Practicals
Section-A

1. Measurement of physical quantities using single scales like metre scale, graduated cylinder,
thermometer, spring balance, stopwatch, ammeter, voltmeter,

2. Measurement of physical quantities using about scales like vernier callipers, screw gauge, barometer,
travelling microscope etc.

3. Plotting and interpreting graphs of physical quantities like (i) L-T, L-T2 for a simple pendulum, (ii)
load-extension for spring balance, (iii) θ-t for a cooling body, (iv) I-V Characteristics for a resistor,
(v) i-δ relation for a glass prism.

Section-B

1. Study the variation of time period (T) of a simple pendulum with lengths (L). Plot the L-T2 graph and
use it to determine (a) the length of a second’s pendulum, (b) the value of acceleration due to gravity.

2. Determine the weight of a given body using parallelogram law of forces. Also, calculate, the mass of
the body.

3. Draw the cooling curve of a body and calculate the rate of cooling at three different points of the
curve.

4. Determine the specific heat capacity of a liquid using the method of mixtures.

5. Study the extension of a spring under different loads and calculate its spring constant (static method).

6. Determine the spring constant of a spring by dynamic method.

7. Study the rate of flow of a liquid as a function of pressure head using a burette.

8. Study the fall of a spherical body in various liquids of different viscosities. Determine the terminal
velocity of the body in a viscous liquid and determine the coefficient of viscosity of that liquid.

Section-C

1. Study the formation of stationary waves in (a) stretched strings and (b) air columns. Determine the
frequency of the tuning fork and comment on the result.

2. Investigate formation of images with mirrors and lenses. Determine the focal length of (a) convex
lens, and (b) concave mirror.

3. Determine the internal resistance of a cell using a potentiometer.

4. Determine the resistance of a moving coil galvanometer by half deflection method. Convert the
galvanometer into a voltmeter of suitable range and verify it.

5. Determine the resistivity of the material of a given wire using a metre bridge.
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6. Study the I-V characteristics of (a) a resistor, and (b) a P-n juncton.

7. Study the characteristics of an npn transistor in common emitter configuration. Determine current and
voltage gains.

Home Activities (Suggestive)

1. Determine the refractive index of a transparent liquid using cancave mirror and single pin.

2. Draw a graph between the angle of incidence and the angle of deviation for a glass prism. Determine the
refractive index of the glass using the graph.

3. Study the relationship between the angle of rotation of a plane mirror and the change in angle of reflection.

4. Draw magnetic filed line due to a bar magnet keeping (i) North pole pointing north, and (ii) North pole
pointing south. Locate the neutral points.
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