General Organic Chemistry 1079

General Organic Chemistry

ET Self Evaluation Test -23

1.	The most stable conformation of <i>n</i> -butane is						
		[CBSE PMT 1997]					
	(a) Skew boat	(b) Eclipsed					
_	(c) Gauche	(d) Staggered	_				
2.	Which of the following undergoes nucleophilic						
	substitution by SN ⁺ mechanism [CBSE PMT 2005]						
	(a) Benzyl chloride	(b) Ethyl chloride					
	(c) Chlorobenzene	(d) Isopropyl chloride	1				
3.	Which type of isomerism is shown by propanal						
	and propanone	[CPMT 2004]					
	(a) Functional group	(b) Metamerism					
	(c) Tautomerism	(d) Chain isomerism					
4.	Which of the following exhibits optical isomerism						
	[BHU 1980; NCERT 1983; AIIMS 1992;						
	M	(h) Buten el 2					
	(a) Butanol-1	(b) Butanol-2					
	(c) Butene-1	(d) Butene-2					
5.	In carbonium ion the carbon bearing the positive charge in the [Pb. PMT 1999; MH CET 2002]						
	(a) <i>sp</i> ² -hybridized state state	(b) sp^3d -hybridized					
	(c) <i>sp</i> -hybridized state	(d) sp^3 -hybridized state	1				
6.	Which of the following is not an electrophile						
	[CBSE PMT 2001]						
	(a) Cl^+	(b) Na^+					
	(a) U^+	(d) PE					
		(d) <i>BF</i> ₃					
7.	Heterolytic bond dissociation energy of alkylhalides follows the sequence[AMU 2000]						
	(a) $R-F > R-Cl > R-Br$	r > R - I					
	(b) $R - I > R - Br > R - Cl$	> R - F					
	(c) $R-I > R-F > R-Br > R$	> R - Cl					
	(d) $R - Cl > R - Br > R - I > R - F$						
8.	The shape of carbonium	is [AMU (Engg.) 1999]	1				
	(a) Planar	(b) Pyramidal	T				
	(c) Linear	(d) None of these					
9.	Which of the follov tautomerism	ving compounds shows	1				
		[MP PET 2001]					
	(a) <i>HCHO</i>	(b) CH_3CHO					
	(c) CH_3COCH_3	(d) HCOOH					
10.	In which bond angle is the highest [CBSE PMT 1991]						
	(a) sp^3	(b) sp^2					
	(c) sn	(d) $an^3 d$					
	(c) sp	(u) sp u	1				

11.	How r	many	primary	amines	are	possible	for	the
	formula $C_4 H_{11} N$					[MNR 1995]		
	(a) 1			(b)	2			

- (c) 3 (d) 4
- 12. On monochlorination of 2-methyl butane, the total number of chiral compounds is[IIT-JEE Screening 2004]
 (a) 2
 (b) 4
 - (c) 6 (d) 8
- 13. An isomer of ethanol is
 [DPMT 1982, 88; CPMT 1973, 75, 78, 84; IIT-JEE 1986; BHU 1984, 85; EAMCET 1993; MP PET 1995; RPET 1999; BHU 2000; AFMC 2002]
 - (a) Methanol (b) Dimethyl ether
 - (c) Diethyl ether (d) Ethylene glycol
- Due to the presence of an unpaired electron, free radicals are
 (a) Chemically reactive
 (b) Chemically inactive
 (c) Anions
 (d) Cations
- **15.** Tertiary alkyl halides are practically inert to substitution by S_{N^2} mechanism because of [AIEEE 2005]
 - (a) Insolubility (b) Instability
 - (c) Inductive effect (d) Steric hindrance
- **16.** The decreasing order of nucleophilicity among the nucleophiles

(i)
$$CH_3 C - O^-$$
 (ii) $CH_3 O^-$
 O

 $H_3C -$

$$O$$

 $-S - O^{-}$

0

[AIEEE 2005]

is [AIEEE 2005 (a) (i), (ii), (iv) (b) (iv), (iii), (i), (i) (c) (ii), (iii), (i), (iv) (d) (iii), (ii), (i), (iv)

 CN^{-}

(iv)

- Which of the following is optically active [BHU 2005]
 (a) Butane
 (b) 4-methylheptane
 (c) 3-methylheptane
 (d) 2-methylheptane
- **8.** Correct configuration of the following is

$$\begin{array}{c} CH_{3} \\ H \longrightarrow OH \\ CH_{3} \longrightarrow OH \\ H \end{array}$$
[AIIMS 2005]

19. Which types of isomerism is shown by 2, 3-dichlorobutane

1080 General Organic Chemistry

- [AIEEE 2005] (a) Distereo (b) Optical
- (c) Geometric (d) Structural

Who synthesised the first organic compound urea 20. in the laboratory [RPMT 2000]

Anti or completely staggard

Staggard form is most stable because of minimum repulsion between bulky methyl groups.

- (a) Due to more stable carbocation. 2.
- (a) When two compounds have similar molecular 3. formula but differ in the functional group then the isomerism is called functional group

isomerism *i.e.* CH_3CH_2CHO and CH_3 .

4. (b)
$$CH_3 - C^* - CH_2 - CH_3$$

Because it has chiral carbon atom.

- (a) The central carbon atom in carbonium ion is 5٠ sp^2 hybridised and it has three sp^2 hybrid single bonding orbitals for to three substituents.
- (b) Na^+ is not an electrophile. 6.
- (b) R I > R Br > R Cl > R F7.
- 8. (a) Carbonium ion is planar species
- (c) Ketones show tautomerism. They form keto 9. and enol form

$$CH_{3} - \overset{||}{C} - CH_{3} \xleftarrow{\text{Tautomerism}} CH_{3} - \overset{OH}{C} = CH_{2}$$

10. (c) Type

- Bond angle sp^3 109.5° sp^2 120° sp^3d $90\,^o$ and $120\,^o$ sp 180°
- (d) $CH_3 CH_2 CH_2 CH_2 NH_2$ 11. (1-aminobutan e)

$$CH_{3} - CH_{2} - CH_{3}$$

$$NH_{2}$$
(2-aminobutan e)
$$CH_{3}$$

$$CH_{3} - C - CH_{3}$$

$$NH_{2}$$
(2-Methy-1-2-aminopropa ne)
$$CH_{3} - CH_{3} - CH_{2} - NH_{2}$$

$$CH_{3}$$
(2-Methy-1-aminopropa ne)
$$CH_{3}$$
(2-Methy-1-aminopropa ne)

(SET -23)

(b) The possible monochlorinated products of 2-12. methyl butane are

Therefore, a total of four chiral compounds are obtained.

- (b) Dimethyl ether is an isomer of ethanol. 13.
- (a) Free radicals are very reactive due to the 14. presence of free e⁻.
- (d) Due to steric hinderance 15.
- 16. (c) (ii) > (iii) > (i) > (iv)

18.

$$CH_3$$

(c) $CH_3CH_2^*CHCH_2CH_2CH_3$ has a chiral carbon 17. atom and hence is optically active.

(a)
$$CH_3$$

 H O
 CH_3 O
 H

(b) Wohler (d) Berzilius

(a) Kolbe (c) Fraizer Following the procedure outlined under 'Golden Rule' the absolute configuration is 1*s*, 2*s*.

19. (b)
$$H \xrightarrow[CH_3]{CH_3} Cl, H \xrightarrow[CH_3]{CH_3} Cl, H$$

 $H \xrightarrow[CH_3]{CH_3} Cl, Cl \xrightarrow[CH_3]{CH_3} Cl, H$

$$\begin{array}{c} Cl & \xrightarrow{CH_3} H \\ H & \xrightarrow{CH_2} Cl \end{array}$$

20. (b) Wohler synthesised the first organic compound urea in the laboratory.