
PART TWO 

THERMODYNAMICS 
AND MOLECULAR PHYSICS 

2.1. EQUATION OF THE GAS STATE. PROCESSES 

• Ideal gas law: 

pV = M RT, 

where M is the molar mass. 
• Barometric formula: 

Poe 
MghIRT 

where Po  is the pressure at the height h = 0. 
• Van der Weals equation of gas state (for a mole): 

a 
(p -HTI-1 ) (V m—b)-=RT, 

where VM  is the molar volume under given p and T. 

2.1. A vessel of volume V = 30 1 contains ideal gas at the tempera-
ture 0 °C. After a portion of the gas has been let out, the pressure in 
the vessel decreased by Op = 0.78 atm (the temperature remaining 
constant). Find the mass of the released gas. The gas density under 
the normal conditions p = 1.3 WI. 

2.2. Two identical vessels are connected by a tube with a valve 
letting the gas pass from one vessel into the other if the pressure differ-
ence Op 1.10 atm. Initially there was a vacuum in one vessel 
while the other contained ideal gas at a temperature t1  = 27 °C 
and pressure pi  = 1.00 atm. Then both vessels were heated to a tem-
perature t 2  = 107 °C. Up to what value will the pressure in the first 
vessel (which had vacuum initially) increase? 

2.3. A vessel of volume V = 20 1 contains a mixture of hydrogen 
and helium at a temperature t = 20 °C and pressure p = 2.0 atm. 
The mass of the mixture is equal to m ---- 5.0 g. Find the ratio of the 
mass of hydrogen to that of helium in the given mixture. 

2.4. A vessel contains a mixture of nitrogen (m1  = 7.0 g) and 
carbon dioxide (m2  = 11 g) at a temperature T = 290 K and pres-
sure pc, = 1.0 atm. Find the density of this mixture, assuming the 
gases to be ideal. 

2.5. A vessel of volume V = 7.5 1 contains a mixture of ideal gases 
at a temperature T = 300 K: v1  = 0.10 mole of oxygen, v2  = 0.20 
mole of nitrogen, and v3  = 0.30 mole of carbon dioxide. Assuming 
the gases to be ideal, find: 

(a) the pressure of the mixture; 

(2.1a) 

(2.1b) 

(2.1c) 
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Fig. 2.1. 

(b) the mean molar mass M of the given mixture which enters its 
equation of state pV = (mIM) RT, where m is the mass of the mix-
ture. 

2.6. A vertical cylinder closed from both ends is equipped with an 
easily moving piston dividing the volume into two parts, each con-
taining one mole of air. In equilibrium at T o  = 300 K the volume of 
the upper part is it = 4.0 times greater than that of the lower part. 
At what temperature will the ratio of these volumes be equal to 

= 3.0? 
2.7. A vessel of volume V is evacuated by means of a piston air 

pump. One piston stroke captures the volume AV. How many strokes 
are needed to reduce the pressure in the vessel times? The process 
is assumed to be isothermal, and the gas ideal. 

2.8. Find the pressure of air in a vessel being evacuated as a func-
tion of evacuation time t. The vessel volume is V, the initial pressure 
is Po. The process is assumed to be isothermal, and the evacuation 
rate equal to C and independent of pressure. 

Note. The evacuation rate is the gas volume being evacuated per 
unit time, with that volume being measured under the gas pressure 
attained by that moment. 

2.9. A chamber of volume V = 87 1 is evacuated by a pump whose 
evacuation rate (see Note to the foregoing problem) equals C 
= 10 1/s. How soon will the pressure in the cham-
ber decrease by it = 1000 times? 

2.10. A smooth vertical tube having two different 
sections is open from both ends and equipped with 
two pistons of different areas (Fig. 2.1). Each 
piston slides within a respective tube section. One 
mole of ideal gas is enclosed between the pistons 
tied with a non-stretchable thread. The cross-
sectional area of the upper piston is AS = 10 cm2  
greater than that of the lower one. The combined 
mass of the two pistons is equal to m = 5.0 kg. 
The outside air pressure is Po  = 1.0 atm. By how 
many kelvins must the gas between the pistons 
be heated to shift the pistons through 1 = 5.0 cm? 

2.11. Find the maximum attainable temperature of ideal gas in 
each of the following processes: 

(a) p = Po  — aV2; (b) p = Poe-Ov, 
where po,,a and p are positive constants, and V is the volume of one 
mole of gas. 

2.12. Find the minimum attainable pressure of ideal gas in the 
process T = To  + aV2, where To  and a are positive constants, and 
V is the volume of one mole of gas. Draw the approximate p vs V 
plot of this process. 

2.13. A tall cylindrical vessel with gaseous nitrogen is located in 
a uniform gravitational field in which the free-fall acceleration 
is equal to g. The temperature of the nitrogen varies along the height 



h so that its density is the same throughout the volume. Find the 
temperature gradient dT/dh. 

2.14. Suppose the pressure p and the density p of air are related 
as plpn = const regardless of height (n is a constant here). Find the 
corresponding temperature gradient. 

2.15. Let us assume that air is under standard conditions close to 
the Earth's surface. Presuming that the temperature and the molar 
mass of air are independent of height, find the air pressure at the 
height 5.0 km over the surface and in a mine at the depth 5.0 km 
below the surface. 

2.16. Assuming the temperature and the molar mass of air, as 
well as the free-fall acceleration, to be independent of the height, 
find the difference in heights at which the air densities at the tempe-
rature 0 °C differ 

(a) e times; (b) by = 1.0%. 
2.17. An ideal gas of molar mass M is contained in a tall vertical 

cylindrical vessel whose base area is S and height h. The temperature 
of the gas is T, its pressure on the bottom base is Po. Assuming the 
temperature and the free-fall acceleration g to be independent of the 
height, find the mass of gas in the vessel. 

2.18. An ideal gas of molar mass M is contained in a very tall 
vertical cylindrical vessel in the uniform gravitational field in which 
the free-fall acceleration equals g. Assuming the gas temperature to 
be the same and equal to T, find the height at which the centre of 
gravity of the gas is located. 

2.19. An ideal gas of molar mass /If is located in the uniform gravi-
tational field in which the free-fall acceleration is equal to g. Find 
the gas pressure as a function of height h, if p = Po  at h = 0, and 
the temperature varies with height as 

(a) T = To  (1 — ah); (b) T = To  (1 	ah), 
where a is a positive constant. 

2.20. A horizontal cylinder closed from one end is rotated with 
a constant angular velocity (0 about a vertical axis passing through 
the open end of the cylinder. The outside air pressure is equal to 
Po, the temperature to T, and the molar mass of air to M. Find the 
air pressure as a function of the distance r from the rotation axis. The 
molar mass is assumed to be independent of r. 

2.21. Under what pressure will carbon dioxide have the density 
p = 500 g/1 at the temperature T = 300 K? Carry out the calculations 
both for an ideal and for a Van der Waals gas. 

2.22. One mole of nitrogen is contained in a vessel of volume V = 
= 1.00 1. Find: 

(a) the temperature of the nitrogen at which the pressure can be 
calculated from an ideal gas law with an error = 10% (as compared 
with the pressure calculated from the Van der Waals equation of state); 

(b) the gas pressure at this temperature. 
2.23. One mole of a certain gas is contained in a vessel of volume 

V = 0.250 1. At a temperature Ti  = 300 K the gas pressure is pi  
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= 90 atm, and at a temperature T2 = 350 K the pressure is p, = 
= 110 atm. Find the Van der Waals parameters for this gas. 

2.24. Find the isothermal compressibility x of a Van der Waals 
gas as a function of volume V at temperature T. 

I. ay Note. By definition, x = — 

2.25. Making use of the result obtained in the foregoing problem, 
find at what temperature the isothermal compressibility x of a Van 
der Waals gas is greater than that of an ideal gas. Examine the case 
when the molar volume is much greater than the parameter b. 

2.2. THE FIRST LAW OF THERMODYNAMICS. 
HEAT CAPACITY 

• The first law of thermodynamics: 

Q= + A , 

where AU is the increment of the internal energy of the system. 
• Work performed by gas: 

A= p dV . 

• Internal energy of an ideal gas: 

m RT 	pV 
U C vT =— 	 — 

	

M 	M y-1 y- 1 • 

• Molar heat capacity in a polytropic process (p Vn = const): 

(n—  R 

	

C — 
 — 1 	n — 1 	(n — 1) (17 — 1) ' 

• Internal energy of one mole of a Van der Waals gas: 

U=CvT— a  V m  

2.26. Demonstrate that the interval energy U of the air in a room 
is independent of temperature provided the outside pressure p is 
constant. Calculate U, if p is equal to the normal atmospheric pres-
sure and the room's volume is equal to V = 40 m3. 

2.27. A thermally insulated vessel containing a gas whose molar 
mass is equal to M and the ratio of specific heats CpICv  = y moves 
with a velocity v. Find the gas temperature increment resulting from 
the sudden stoppage of the vessel. 

2.28. Two thermally insulated vessels 1 and 2 are filled with air 
and connected by a short tube equipped with a valve. The volumes 
of the vessels, the pressures and temperatures of air in them are 
known (V1, pi, T1  and V 2, p2, 7'2). Find the air temperature and 
pressure established after the opening of the valve. 

2.29. Gaseous hydrogen contained initially under standard con-
ditions in a sealed vessel of volume V = 5.0 1 was cooled by AT = 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 



= 55 K . Find how much the internal energy of the gas will change and 
what amount of heat will be lost by the gas. 

2.30. What amount of heat is to be transferred to nitrogen in the 
isobaric heating process for that gas to perform the work A = 2.0 J? 

2.31. As a result of the isobaric heating by AT = 72 K one mole 
of a certain ideal gas obtains an amount of heat Q = 1..60 kJ. Find 
the work performed by the gas, the increment of its internal energy, 
and the value of y = Cp/Cv. 

2.32. Two moles of a certain ideal gas at a temperature To  = 300 K 
were cooled isochorically so that the gas pressure reduced n = 2.0 
times. Then, as a result of the isobaric process, the gas expanded till 
its temperature got back to the initial value. Find the total amount 
of heat absorbed by the gas in this process. 

2.33. Calculate the value of y = Cp/Cv  for a gaseous mixture con-
sisting of vi  = 2.0 moles of oxygen and v2  = 3.0 moles of carbon 
dioxide. The gases are assumed to be ideal. 

2.34. Find the specific heat capacities cv  and cp  for a gaseous mix-
ture consisting of 7.0 g of nitrogen and 20 g of argon. The gases are 
assumed to be ideal. 

2.35. One mole of a certain ideal gas is contained under a weight-
less piston of a vertical cylinder at a temperature T. The space over 
the piston opens into the atmosphere. What work has to be performed 
in order to increase isothermally the gas volume under the piston it 
times by slowly raising the piston? The friction of the piston against 
the cylinder walls is negligibly small. 

2.36. A piston can freely move inside a horizontal cylinder closed 
from both ends. Initially, the piston separates the inside space of 
the cylinder into two equal parts each of volume Vo, in which an 
ideal gas is contained under the same pressure Po  and at the same tem-
perature. What work has to be performed in order to increase isother-
mally the volume of one part of gas i1  times compared to that of the 
other by slowly moving the piston? 

2.37. Three moles of an ideal gas being initially at a temperature 
T o  = 273 K were isothermally expanded n = 5.0 times its initial 
volume and then isochorically heated so that the pressure in the final 
state became equal to that in the initial state. The total amount of 
heat transferred to the gas during the process equals Q = 80 kJ. 
Find the ratio y = Cp/Cv  for this gas. 

2.38. Draw the approximate plots of isochoric, isobaric, isother-
mal, and adiabatic processes for the case of an ideal gas, using the 
following variables: 

(a) p, T; (b) V, T. 
2.39. One mole of oxygen being initially at a temperature To  = 

= 290 K is adiabatically compressed to increase its pressure 
= 10.0 times. Find: 

(a) the gas temperature after the compression; 
(b) the work that has been performed on the gas. 
2.40. A certain mass of nitrogen was compressed ii = 5.0 times 
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(in terms of volume), first adiabatically, and then isothermally. In 
both cases the initial state of the gas was the same. Find the ratio of 
the respective works expended in each compression. 

2.41. A heat-conducting piston can freely move inside a closed 
thermally insulated cylinder with an ideal gas. In equilibrium the 
piston divides the cylinder into two equal parts, the gas temperature 
being equal to To. The piston is slowly displaced. Find the gas tem-
perature as a function of the ratio of the volumes of the greater and 
smaller sections. The adiabatic exponent of the gas is equal to y. 

2.42. Find the rate v with which helium flows out of a thermally 
insulated vessel into vacuum through a small hole. The flow rate of 
the gas inside the vessel is assumed to be negligible under these con-
ditions. The temperature of helium in the vessel is T = 1,000 K. 

2.43. The volume of one mole of an ideal gas with the adiabatic 
exponent y is varied according to the law V = alT, where a is a con-
stant. Find the amount of heat obtained by the gas in this process 
if the gas temperature increased by AT. 

2.44. Demonstrate that the process in which the work performed 
by an ideal gas is proportional to the corresponding increment of its 
internal energy is described by the equation pVn = const, where n 
is a constant. 

2.45. Find the molar heat capacity of an ideal gas in a polytropic 
process pVn = const if the adiabatic exponent of the gas is equal to 
'. At what values of the polytropic constant n will the heat capacity 
of the gas be negative? 

2.46. In a certain polytropic process the volume of argon was in-
creased a = 4.0 times. Simultaneously, the pressure decreased 

= 8.0 times. Find the molar heat capacity of argon in this process, 
assuming the gas to be ideal. 

2.47. One mole of argon is expanded polytropically, the polytrop-
ic constant being n = 1.50. In the process, the gas temperature 
changes by AT = — 26 K. Find: 

(a) the amount of heat obtained by the gas; 
(b) the work performed by the gas. 
2.48. An ideal gas whose adiabatic exponent equals y is expanded 

according to the law p = aV , where a is a constant. The initial vol-
ume of the gas is equal to V0. As a result of expansion the volume in-
creases i  times. Find: 

(a) the increment of the internal energy of the gas; 
(b) the work performed by the gas; 
(c) the molar heat capacity of the gas in the process. 
2.49. An ideal gas whose adiabatic exponent equals y is expanded 

so that the amount of heat transferred to the gas is equal to the de-
crease of its internal energy. Find: 

(a) the molar heat capacity of the gas in this process; 
(b) the equation of the process in the variables T, V; 
(c) the work performed by one mole of the gas when its volume 

increases 11 times if the initial temperature of the gas is To. 



2.50. One mole of an ideal gas whose adiabatic exponent equals 
y undergoes a process in which the gas pressure relates to the tempera-
ture as p = aTa, where a and a are constants. Find: 

(a) the work performed by the gas if its temperature gets an in-
crement AT; 

(b) the molar heat capacity of the gas in this process; at what value 
of a will the heat capacity be negative? 

2.51. An ideal gas with the adiabatic exponent y undergoes a 
process in which its internal energy relates to the volume as U = aVa, 
where a and a are constants. Find: 

(a) the work performed by the gas and the amount of heat to be 
transferred to this gas to increase its internal energy by AU; 

(b) the molar heat capacity of the gas in this process. 
2.52. An ideal gas has a molar heat capacity Cv  at constant 

volume. Find the molar heat capacity of this gas as a function of its 
volume V, if the gas undergoes the following process: 

(a) T = T oeav ; (b) p = poeary, 
where To, po, and a are constants. 

2.53. One mole of an ideal gas whose adiabatic exponent equals y 
undergoes a process p = po  alV, where Po  and a are positive con-
stants. Find: 

(a) heat capacity of the gas as a function of its volume; 
(b) the internal energy increment of the gas, the work performed 

by it, and the amount of heat transferred to the gas, if its volume 
increased from V1  to V2. 

2.54. One mole of an ideal gas with heat capacity at constant 
pressure Cp  undergoes the process T = T o  + aV, where T o  and a 
are constants. Find: 

(a) heat capacity of the gas as a function of its volume; 
(b) the amount of heat transferred to the gas, if its volume in-

creased from V1  to V 2. 
2.55. For the case of an ideal gas find the equation of the process 

(in the variables T, V) in which the molar heat capacity varies as: 
(a) C Cv  aT; (b) C = Cv  1W; (c) C = Cv  ap, 

where a, 3, and a are constants. 
2.56. An ideal gas has an adiabatic exponent y. In some process 

its molar heat capacity varies as C = alT, where a is a constant. 
Find: 

(a) the work performed by one mole of the gas during its heating 
from the temperature To  to the temperature n times higher; 

(b) the equation of the process in the variables p, V. 
2.57. Find the work performed by one mole of a Van der Waals 

gas during its isothermal expansion from the volume V1  to V2 at 
a temperature T. 

2.58. One mole of oxygen is expanded from a volume V1  = 
= 1.00 1 to V2 = 5.0 1 at a constant temperature T = 280 K. Cal-
culate: 

(a) the increment of the internal energy of the gas: 
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(b) the amount of the absorbed heat. 
The gas is assumed to be a Van der Waals gas. 

2.59. For a Van der Waals gas find: 
(a) the equation of the adiabatic curve in the variables T, V; 
(b) the difference of the molar heat capacities CI, — Cv  as a func-

tion of T and V. 
2.60. Two thermally insulated vessels are interconnected by a 

tube equipped with a valve. One vessel of volume V1  = 10 1 contains 
v = 2.5 moles of carbon dioxide. The other vessel of volume V 2  = 
100 1 is evacuated. The valve having been opened, the gas adiabatic-
ally expanded. Assuming the gas to obey the Van der Waals equation, 
find its temperature change accompanying the expansion. 

2.61. What amount of heat has to be transferred to v = 3.0 moles 
of carbon dioxide to keep its temperature constant while it ex-
pands into vacuum from the volume V1  = 5.0 1 to V 2  = 10 1? The 
gas is assumed to be a Van der Waals gas. 

2.3. KINETIC THEORY OF GASES. 
BOLTZMANN' S LAW AND MAXWELL'S DISTRIBUTION 

• Number of collisions exercised by gas molecules on a unit area of the 
wall surface per unit time: 

1 
v= 

4 
— n (v), 

where n is the concentration of molecules, and (v) is their mean velocity. 
• Equation of an ideal gas state: 

p = nkT. 

• Mean energy of molecules: 

(e) = 
2 
— kT, 	 (2.3c) 

where i is the sum of translational, rotational, and the double number of vibra-
tional degrees of freedom. 

• Maxwellian distribution: 
m  11/2 -mv2/21a 

dvx, 	 (2.3d) dN (vx)=-- N ( 
2nkT ) e s  

dN (v)= N 	 e-mv2/2kT 4:tv2 dv. 	 (2.3e) ( 

m   \ 3/2 

 2nkT ) 

• Maxwellian distribution in a reduced form: 

dN (u)= N 
4

e-u2  U2  du, 	 (2.3f) 

where u = v/vp, vp  is the most probable velocity. 
• The most probable, the mean, and the root mean square velocities of 

molecules: 

(2.3a) 

(2.3b) 

n  kT 	kT 	 kT 
Vp 	(V) = 	 Vsq  = 	- . 	(2.3g) 



• Boltzmann's formula: 
n=  noe—(u—uo/hT, 	 (2.3h) 

where U is the potential energy of a molecule. 

2.62. Modern vacuum pumps permit the pressures down to p = 
= 4.10-13  atm to be reached at room temperatures. Assuming that 
the gas exhausted is nitrogen, find the number of its molecules per 
1 cm3  and the mean distance between them at this pressure. 

2.63. A vessel of volume V .= 5.0 1 contains m = 1.4 g of nitrogen 
at a temperature T = 1800 K. Find the gas pressure, taking into 
account that 11 = 30% of molecules are disassociated into atoms at 
this temperature. 

2.64. Under standard conditions the density of the helium and 
nitrogen mixture equals p = 0.60 g/l. Find the concentration of 
helium atoms in the given mixture. 

2.65. A parallel beam of nitrogen molecules moving with velocity 
v = 400 m/s impinges on a wall at an angle 0 = 30° to its normal. 
The concentration of molecules in the beam n = 0.9.1019  cm-3. 
Find the pressure exerted by the beam on the wall assuming the mo-
lecules to scatter in accordance with the perfectly elastic collision 
law. 

2.66. How many degrees of freedom have the gas molecules, if 
under standard conditions the gas density is p = 1.3 mg/cm3  and the 
velocity of sound propagation in it is v = 330 m/s. 

2.67. Determine the ratio of the sonic velocity v in a gas to the 
root mean square velocity of molecules of this gas, if the molecules 
are 

(a) monatomic; (b) rigid diatomic. 
2.68. A gas consisting of N-atomic molecules has the temperature 

T at which all degrees of freedom (translational, rotational, and vi-
brational) are excited. Find the mean energy of molecules in such 
a gas. What fraction of this energy corresponds to that of transla-
tional motion? 

2.69. Suppose a gas is heated up to a temperature at which all 
degrees of freedom (translational, rotational, and vibrational) of 
its molecules are excited. Find the molar heat capacity of such a gas 
in the isochoric process, as well as the adiabatic exponent y, if the 
gas consists of 

(a) diatomic; 
(b) linear N-atomic; 
(c) network N-atomic 

molecules. 
2.70. An ideal gas consisting of N-atomic molecules is expanded 

isobarically. Assuming that all degrees of freedom (translational, 
rotational, and vibrational) of the molecules are excited, find what 
fraction of heat transferred to the gas in this process is spent to 
perform the work of expansion. How high is this fraction in the case 
of a monatomic gas? 
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2.71. Find the molar mass and the number of degrees of freedom 
of molecules in a gas if its heat capacities are known: cv  
= 0.65 J/(g•K) and cp  = 0.91 J/(g•K). 

2.72. Find the number of degrees of freedom of molecules in a gas 
whose molar heat capacity 

(a) at constant pressure is equal to Cp  = 29 J/(mol.K); 
(b) is equal to C = 29 J/(mol•K) in the process pT = const. 
2.73. Find the adiabatic exponent y for a mixture consisting of 

v1  moles of a monatomic gas and v2  moles of gas of rigid diatomic 
molecules. 

2.74. A thermally insulated vessel with gaseous nitrogen at a 
temperature t = 27 °C moves with velocity v = 100 m/s. How much 
(in per cent) and in what way will the gas pressure change on a sudden 
stoppage of the vessel? 

2.75. Calculate at the temperature t = 17 °C: 
(a) the root mean square velocity and the mean kinetic energy of 

an oxygen molecule in the process of translational motion; 
(b) the root mean square velocity of a water droplet of diameter 

d = 0.10 tim suspended in the air. 
2.76. A gas consisting of rigid diatomic molecules is expanded 

adiabatically. How many times has the gas to be expanded to reduce 
the root mean square velocity of the molecules = 1.50 times? 

2.77. The mass m = 15 g of nitrogen is enclosed in a vessel at 
a temperature T = 300 K. What amount of heat has to be transferred 
to the gas to increase the root mean square velocity of its molecules 

= 2.0 times? 
2.78. The temperature of a gas consisting of rigid diatomic mole-

cules is T = 300 K. Calculate the angular root mean square velocity 
of a rotating molecule if its moment of inertia is equal to I = 
= 2.1.10-39  g• cm2. 

2.79. A gas consisting of rigid diatomic molecules was initially 
under standard conditions. Then the gas was compressed adiaba-
tically rl = 5.0 times. Find the mean kinetic energy of a rotating 
molecule in the final state. 

2.80. How will the rate of collisions of rigid diatomic molecules 
against the vessel's wall change, if the gas is expanded adiabatically 
rl times? 

2.81. The volume of gas consisting of rigid diatomic molecules 
was increased ri = 2.0 times in a polytropic process with the molar 
heat capacity C = R. How many times will the rate of collisions of 
molecules against a vessel's wall be reduced as a result of this pro-
cess? 

2.82. A gas consisting of rigid diatomic molecules was expanded 
in a polytropic process so that the rate of collisions of the molecules 
against the vessel's wall did not change. Find the molar heat capacity 
of the gas in this process. 

2.83. Calculate the most probable, the mean, and the root mean 
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square velocities of a molecule of a gas whose density under stan-
dard atmospheric pressure is equal to p = 1.00 g/1. 

2.84. Find the fraction of gas molecules whose velocities differ 
by less than 6r) = 1.00% from the value of 

(a) the most probable velocity; 
(b) the root mean square velocity. 
2.85. Determine the gas temperature at which 
(a) the root mean square velocity of hydrogen molecules exceeds 

their most probable velocity by Av = 400 m/s; 
(b) the velocity distribution function F (v) for the oxygen mole-

cules will have the maximum value at the velocity v = 420 m/s. 
2.86. In the case of gaseous nitrogen find: 
(a) the temperature at which the velocities of the molecules v1  = 

= 300 m/s and v2  = 600 m/s are associated with equal values of 
the Maxwell distribution function F (v); 

(b) the velocity of the molecules v at which the value of the Max-
well distribution function F (v) for the temperature To  will be the 
same as that for the temperature rl times higher. 

2.87. At what temperature of a nitrogen and oxygen mixture do 
the most probable velocities of nitrogen and oxygen molecules differ 
by Av = 30 m/s? 

2.88. The temperature of a hydrogen and helium mixture is T 
300 K. At what value of the molecular velocity v will the Maxwell 

distribution function F (v) yield the same magnitude for both gases? 
2.89. At what temperature of a gas will the number of molecules, 

whose velocities fall within the given interval from v to v dv, 
be the greatest? The mass of each molecule is equal to m. 

2.90. Find the fraction of molecules whose velocity projections on 
the x axis fall within the interval from vx  to vx  dv x, while the 
moduli of perpendicular velocity components fall within the inter-
val from v1  to v1  + dv1. The mass of each molecule is m, and the 
temperature is T. 

2.91. Using the Maxwell distribution function, calculate the 
mean velocity projection (vx ) and the mean value of the modulus of 
this projection (I vx  I) if the mass of each molecule is equal to m 
and the gas temperature is T. .  

2.92. From the Maxwell distribution function find (vi), the mean 
value of the squared vx  projection of the molecular velocity in a gas 
at a temperature T. The mass of each molecule is equal to m. 

2.93. Making use of the Maxwell distribution function, calculate 
the number v of gas molecules reaching a unit area of a wall per unit 
time, if the concentration of molecules is equal to n, the temperature 
to T, and the mass of each molecule is m. 

2.94. Using the Maxwell distribution function, determine the 
pressure exerted by gas on a wall, if the gas temperature is T and 
the concentration of molecules is n. 

2.95. Making use of the Maxwell distribution function, find 
(1/v), the mean value of the reciprocal of the velocity of molecules 
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in an ideal gas at a temperature T, if the mass of each molecule is 
equal to m. Compare the value obtained with the reciprocal of the 
mean velocity. 

2.96. A gas consists of molecules of mass m and is at a temperature 
T. Making use of the Maxwell velocity distribution function, find 
the corresponding distribution of the molecules over the kinetic 
energies c. Determine the most probable value of the kinetic energy 
cp. Does ep correspond to the most probable velocity? 

2.97. What fraction of monatomic molecules of a gas in a thermal 
equilibrium possesses kinetic energies differing from the mean value 
by 61 = 1.0 % and less? 

2.98. What fraction of molecules in a gas at a temperature T 
has the kinetic energy of translational motion exceeding co  if co  
>> kT? 

2.99. The velocity distribution of molecules in a beam coming 
out of a hole in a vessel is described by the function F (v)= A V3e-mv2/2117', 

where T is the temperature of the gas in the vessel. Find the most 
probable values of 

(a) the velocity of the molecules in the beam; compare the result 
obtained with the most probable velocity of the molecules in the 
vessel; 

(b) the kinetic energy of the molecules in the beam. 
2.100. An ideal gas consisting of molecules of mass m with concen-

tration n has a temperature T. Using the Maxwell distribution func-
tion, find the number of molecules reaching a unit area of a wall 
at the angles between 0 and 0 dO to its normal per unit time. 

2.101. From the conditions of the foregoing problem find the num-
ber of molecules reaching a unit area of a wall with the velocities 
in the interval from v to v dv per unit time. 

2.102. Find the force exerted on a particle by a uniform field if 
the concentrations of these particles at two levels separated by the 
distance Ala = 3.0 cm (along the field) differ by 1 = 2.0 times. 
The temperature of the system is equal to T = 280 K. 

2.103. When examining the suspended gamboge droplets under 
a microscope, their average numbers in the layers separated by the 
distance h = 40 urrn were found to differ by ri = 2.0 times. The envi-
ronmental temperature is equal to T = 290 K. The diameter of 
the droplets is d = 0.40 um, and their density exceeds that of the 
surrounding fluid by Ap = 0.20 g/cm3. Find Avogadro's number 
from these data. 

2.104. Suppose that Tio  is the ratio of the molecular concentration 
of hydrogen to that of nitrogen at the Earth's surface, while 11  is 
the corresponding ratio at the height h = 3000 m. Find the ratio 
TA°  at the temperature T = 280 K, assuming that the temperature 
and the free fall acceleration are independent of the height. 

2.105. A tall vertical vessel contains a gas composed of two kinds 
of molecules of masses m1  and m2, with m2  > m1. The concentrations 
of these molecules at the bottom of the vessel are equal to n1  and n2 



respectively, with n2  > n1. Assuming the temperature T and the 
free-fall acceleration g to be independent of the height, find the height 
at which the concentrations of these kinds of molecules are equal. 

2.106. A very tall vertical cylinder contains carbon dioxide at 
a certain temperature T. Assuming the gravitational field to be uni-
form, find how the gas pressure on the bottom of the vessel will 
change when the gas temperature increases times. 

2.107. A very tall vertical cylinder contains a gas at a tempera-
ture 7'. Assuming the gravitational field to be uniform, find the mean 
value of the potential energy of the gas molecules. Does this value 
depend on whether the gas consists of one kind of molecules or of 
several kinds? 

2.108. A horizontal tube of length 1 = 100 cm closed from both 
ends is displaced lengthwise with a constant acceleration w. The tube 
contains argon at a temperature T = 330 K. At what value of w will 
the argon concentrations at the tube's ends differ by i = 1.0%? 

2.109. Find the mass of a mole of colloid particles if during their 
centrifuging with an angular velocity co about a vertical axis the con-
centration of the particles at the distance r2  from the rotation axis is 
11 times greater than that at the distance r1  (in the same horizontal 
plane). The densities of the particles and the solvent are equal to 
p and to Po  respectively. 

2.110. A horizontal tube with closed ends is rotated with a cons-
tant angular velocity co about a vertical axis passing through one of 
its ends. The tube contains carbon dioxide at a temperature T 

300 K. The length of the tube is 1 = 100 cm. Find the value co 
at which the ratio of molecular concentrations at the opposite ends 
of the tube is equal to 1-1 = 2.0. 

2.111. The potential energy of gas molecules in a certain central 
field depends on the distance r from the field's centre as U (r) = ar2, 
where a is a positive constant. The gas temperature is 7', the concen-
tration of molecules at the centre of the field is no. Find: 

(a) the number of molecules located at the distances between 
r and r + dr from the centre of the field; 

(b) the most probable distance separating the molecules from the 
centre of the field; 

(c) the fraction of molecules located in the spherical layer between 
r and r ± dr; 

(d) how many times the concentration of molecules in the centre 
of the field will change if the temperature decreases i  times. 

2.112. From the conditions of the foregoing problem find: 
(a) the number of molecules whose potential energy lies within 

the interval from U to U dU; 
(b) the most probable value of the potential energy of a molecule; 

compare this value with the potential energy of a molecule located 
at its most probable distance from the centre of the field. 
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2.4. THE SECOND LAW OF THERMODYNAMICS. 
ENTROPY 

• Heat engine efficiency: 

(2.4a) 

where Q1  is the heat obtained by the working substance, if); is the heat released 
by the working substance. 

• Efficiency of a Carnot cycle: 

	

_  -r2 	
(2.4b) 

' 

where T1  and T2 are the temperatures of the hot and cold bodies respectively. 
• Clausius inequality: 

(2  (2.4c) 

where 6Q is the elementary amount of heat transferred to the system (6Q is an 
algebraic quantity). 

• Entropy increment of a system: 

	

AS . 	 (2.4d) 

• Fundamental relation of thermodynamics: 

T dS 	dU 	p dV. 	 (2.4e) 

• Relation between the entropy and the statistical weight SZ (the thermo-
dynamic probability): 

	

S = k In 52, 	 (2.4f) 

where k is the Boltzmann constant. 
2.113. In which case will the efficiency of a Carnot cycle be higher: 

when the hot body temperature is increased by AT, or when the cold 
body temperature is decreased by the same magnitude? 

2.114. Hydrogen is used iu a Carnot cycle as a working substance. 
Find the efficiency of the cycle, if as a result of an adiabatic expansion 

(a) the gas volume increases n = 2.0 times; 
(b) the pressure decreases n = 2.0 times. 
2.115. A heat engine employing a Carnot cycle with an efficiency 

of i = 10% is used as a refrigerating machine, the thermal reservoirs 
being the same. Find its refrigerating efficiency E. 

2.116. An ideal gas goes through a cycle consisting of alternate 
isothermal and adiabatic curves (Fig. 2.2). The isothermal processes 
proceed at the temperatures T1, T2, and T3. Find the efficiency of 
such a cycle, if in each isothermal expansion the gas volume increases 
in the same proportion. 

2.117. Find the efficiency of a cycle consisting of two isochoric 
and two adiabatic lines, if the volume of the ideal gas changes 
n = 10 times within the cycle. The working substance is nitrogen. 
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2.118. Find the efficiency of a cycle consisting of two isobaric and 
two adiabatic lines, if the pressure changes n times within the cycle. 
The working substance is an ideal gas whose adiabatic exponent is 
equal to y. 

2.119. An ideal gas whose adiabatic exponent equals y goes through 
a cycle consisting of two isochoric and two isobaric lines. Find the 
efficiency of such a cycle, if the absolute temperature of the gas rises 
n times both in the isochoric heating and in 
the isobaric expansion. 	 7; 

2.120. An ideal gas goes through a cycle 
consisting of 

(a) isochoric, adiabatic, and isothermal 
lines; 

(b) isobaric, adiabatic, and isothermal 
lines, 
with the isothermal process proceeding at 	 V 
the minimum temperature of the whole cycle. 
Find the efficiency of each cycle if the abso- 
lute temperature varies n-fold within the cycle. 

2.121. The conditions are the same as in the foregoing problem 
with the exception that the isothermal process proceeds at the max-
imum temperature of the whole cycle. 

2.122. An ideal gas goes through a cycle consisting of isothermal, 
polytropic, and adiabatic lines, with the isothermal process proceed-
ing at the maximum temperature of the whole cycle. Find the effic-
iency of such a cycle if the absolute temperature varies n-fold within 
the cycle. 

2.123. An ideal gas with the adiabatic exponent y goes through 
a direct (clockwise) cycle consisting of adiabatic, isobaric, and isocho-
ric lines. Find the efficiency of the cycle if in the adiabatic process 
the volume of the ideal gas 

(a) increases n-fold; (b) decreases n-fold. 
2.124. Calculate the efficiency of a cycle consisting of isothermal, 

isobaric, and isochoric lines, if in the isothermal process the volume 
of the ideal gas with the adiabatic exponent y 

(a) increases n-fold; (b) decreases n-fold. 
2.125. Find the efficiency of a cycle consisting of two isochoric and 

two isothermal lines if the volume varies v-fold and the absolute 
temperature r-fold within the cycle. The working substance is an 
ideal gas with the adiabatic exponent y. 

2.126. Find the efficiency of a cycle consisting of two isobaric and 
two isothermal lines if the pressure varies n-fold and the absolute 
temperature ti-fold within the cycle. The working substance is an 
ideal gas with the adiabatic exponent y. 

2.127. An ideal gas with the adiabatic exponent y goes through 
a cycle (Fig. 2.3) within which the absolute temperature varies 
t-fold. Find the efficiency of this cycle. 

2.128. Making use of the Clausius inequality, demonstrate that 

Fig. 2.2. 
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all cycles having the same maximum temperature Tmax  and the 
same minimum temperature Tmin  are less efficient compared to the 
Carnot cycle with the same Tmax  and Tniin • 

2.129. Making use of the Carnot theorem, show that in the case 
of a physically uniform substance whose state is defined by the para-
meters T and V 

(aU/aV)T  = T (01310T)v — 

where U (T, V) is the internal energy of the substance. 
Instruction. Consider the infinitesimal Carnot cycle in the variables 

p, V. 
2.130. Find the entropy increment of one mole of carbon dioxide 

when its absolute temperature increases n = 2.0 times if the process 
of heating is 

(a) isochoric; (b) isobaric. 
The gas is to be regarded as ideal. 
2.131. The entropy of v = 4.0 moles of an ideal gas increases by 

AS = 23 J/K due to the isothermal expansion. How many times 
should the volume v = 4.0 moles of the gas 
be increased? 

2.132. Two moles of an ideal gas are cooled 
isochorically and then expanded isobarically to 
lower the gas temperature back to the initial val-
ue. Find the entropy increment of the gas if in 
this process the gas pressure changed n = 3.3 
times. 

2.133. Helium of mass m =1.7 g is expanded 
adiabatically n = 3.0 times and then compressed 
isobarically down to the initial volume. 	0 
Find the entropy increment of the gas in this 	Fig. 2.3. 
process. 

2.134. Find the entropy increment of v = 2.0 
moles of an ideal gas whose adiabatic exponent y = 1.30 if, as 
a result of a certain process, the gas volume increased a = 2.0 
times while the pressure dropped 13 = 3.0 times. 

2.135. Vessels l and 2 contain v = 1.2 moles of gaseous helium. 
The ratio of the vessels' volumes V21V1  = a = 2.0, and the ratio of 
the absolute temperatures of helium in them T1/T2  = 6 = 1.5. 
Assuming the gas to be ideal, find the difference of gas entropies in 
these vessels, S2 - S1. 

2.136. One mole of an ideal gas with the adiabatic exponent y goes 
through a polytropic process as a result of which the absolute tem-
perature of the gas increases T--fold. The polytropic constant equals n. 
Find the entropy increment of the gas in this process. 

2.137. The expansion process of v = 2.0 moles of argon proceeds 
so that the gas pressure increases in direct proportion to its volume. 



Find the entropy increment of the gas in this process provided its 
volume increases a = 2.0 times. 

2.138. An ideal gas with the adiabatic exponent y goes through 
a process p = po  — aV, where pc, and a are positive constants, 
and V is the volume. At what volume will the gas entropy have the 
maximum value? 

2.139. One mole of an ideal gas goes through a process in which 
the entropy of the gas changes with temperature T as S = aT 

Cv  In T, where a is a positive constant, Cv  is the molar heat 
capacity of this gas at constant volume. Find the volume dependence 
of the gas temperature in this process if T = T o  at V = Vo. 

2.140. Find the entropy increment of one mole of a Van der Waals 
gas due to the isothermal variation of volume from V1  to V 2. The 
Van der Waals corrections are assumed to be known. 

2.141. One mole of a Van der Waals gas which had initially the 
volume V1  and the temperature T1  was transferred to the state with 
the volume V2 and the temperature T2. Find the corresponding 
entropy increment of the gas, assuming its molar heat capacity 
Cy to be known. 

2.142. At very low temperatures the heat capacity of crystals is 
equal to C = a T3, where a is a constant. Find the entropy of a crystal 
as a function of temperature in this temperature interval. 

2.143. Find the entropy increment of an aluminum bar of mass 
m = 3.0 kg on its heating from the temperature T1  = 300 K up 
to T2 = 600 K if in this temperature interval the specific heat capac-
ity of aluminum varies as c = a + bT, where a = 0.77 J/(g• K), 
b = 0.46 mJ/(g• K2). 

2.144. In some process the temperature of a substance depends on 
its entropy S as T = aSn, where a and n are constants. Find the 
corresponding heat capacity C of the substance as a function of S. 
At what condition is C < 0? 

2.145. Find the temperature T as a function of the entropy S 
of a substance for a polytropic process in which the heat capacity of 
the substance equals C. The entropy of the substance is known to be 
equal to So  at the temperature To. Draw the approximate plots 
T (S) for C > 0 and C < 0. 

2.146. One mole of an ideal gas with heat capacity Cv  goes through 
a process in which its entropy S depends on T as S = a/T, where a 
is a constant. The gas temperature varies from T1  to T2. Find: 

(a) the molar heat capacity of the gas as a function of its tempe-
rature; 

(b) the amount of heat transferred to the gas; 
(c) the work performed by the gas. 
2.147. A working substance goes through a cycle within which 

the absolute temperature varies n-fold, and the shape of the cycle 
is shown in (a) Fig. 2.4a; (b) Fig. 2.4b, where T is the absolute 
temperature, and S the entropy. Find the efficiency of each cycle. 



2.148. One of the two thermally insulated vessels interconnected 
by a tube with a valve contains v = 2.2 moles of an ideal gas. The 
other vessel is evacuated. The valve having been opened, the gas 
increased its volume n = 3.0 times. Find the entropy increment of 
the gas. 

2.149. A weightless piston divides a thermally insulated cylinder 
into two equal parts. One part contains one mole of an ideal gas 
with adiabatic exponent y, the other is evacuated. The initial gas 
temperature is To. The piston is released and the gas fills the whole 

T 

   

 

    

S 	 S 
(a) 

Fig. 2.4. 

volume of the cylinder. Then the piston is slowly displaced back to 
the initial position. Find the increment of the internal energy and 
the entropy of the gas resulting from these two processes. 

2.150. An ideal gas was expanded from the initial state to the 
volume V without any heat exchange with the surrounding bodies. 
Will the final gas pressure be the same in the case of (a) a fast and 
in the case of (b) a very slow expansion process? 

2.151. A thermally insulated vessel is partitioned into two parts 
so that the volume of one part is n = 2.0 times greater than that of 
the other. The smaller part contains v1  = 0.30 mole of nitrogen, and 
the greater one v2  = 0.70 mole of oxygen. The temperature of the 
gases is the same. A hole is punctured in the partition and the gases 
are mixed. Find the corresponding increment of the system's entropy, 
assuming the gases to be ideal. 

2.152. A piece of copper of mass m1  = 300 g with initial tem-
perature t1  = 97 °C is placed into a calorimeter in which the water 
of mass m2  = 100 g is at a temperature t2  = 7 °C. Find the entropy 
increment of the system by the moment the temperatures equalize. 
The heat capacity of the calorimeter itself is negligibly small. 

2.153. Two identical thermally insulated vessels interconnected 
by a tube with a valve contain one mole of the same ideal gas each. 
The gas temperature in one vessel is equal to T1  and in the other, T2. 
The molar heat capacity of the gas of constant volume equals Cv. 
The valve having been opened, the gas comes to a new equilibrium 
state. Find the entropy increment AS of the gas. Demonstrate that 
AS > 0. 

2.154. N atoms of gaseous helium are enclosed in a cubic vessel 
of volume 1.0 cm3  at room temperature. Find: 

92 



(a) the probability of atoms gathering in one half of the vessel; 
(b) the approximate numerical value of N ensuring the occurrence 

	

of this event within the time interval t 	101° years (the age of the 
Universe). 

2.155. Find the statistical weight of the most probable distribution 
of N = 10 identical molecules over two halves of the cylinder's 
volume. Find also the probability of such a distribution. 

2.156. A vessel contains N molecules of an ideal gas. Dividing 
mentally the vessel into two halves A and B, find the probability 
that the half A contains n molecules. Consider the cases when N = 5 
and n = 0, 1, 2, 3, 4, 5. 

2.157. A vessel of volume V, contains N molecules of an ideal 
gas. Find the probability of n molecules getting into a certain separat-
ed part of the vessel of volume V. Examine, in particular, the case 
V = V0/2. 

2.158. An ideal gas is under standard conditions. Find the diame-
ter of the sphere within whose volume the relative fluctuation of the 
number of molecules is equal to i = 1.0.10-3. What is the average 
number of molecules inside such a sphere? 

2.159. One mole of an ideal gas consisting of monatomic molecules 
is enclosed in a vessel at a temperature T, = 300 K. How many 
times and in what way will the statistical weight of this system 
(gas) vary if it is heated isochorically by AT = 1.0 K? 

2.5. LIQUIDS. CAPILLARY EFFECTS 

• Additional (capillary) pressure in a liquid under an arbitrary surface 
(Laplace's formula): 

1 	1 \ 
" a  

where a is the surface tension of a given liquid. 
• Free energy increment of the surface layer of a liquid: 

	

dF = a dS, 	 (2.5b) 

where dS is the area increment of the surface layer. 
• Amount of heat required to form a unit area of the liquid surface layer 

during the isothermal increase of its surface: 

„, du 
(2.5c) 

dT 

2.160. Find the capillary pressure 
(a) in mercury droplets of diameter d = 1.5 pm; 
(b) inside a soap bubble of diameter d = 3.0 mm if the surface 

tension of the soap water solution is a = 45 mN/m. 
2.161. In the bottom of a vessel with mercury there is a round 

hole of diameter d = 70 pm. At what maximum thickness of the 
mercury layer will the liquid still not flow out through this hole? 

(2.5a) 
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2.162. A vessel filled with air under pressure Po  contains a soap 
bubble of diameter d. The air pressure having been reduced isother-
mally n-fold, the bubble diameter increased mfold. Find the surface 
tension of the soap water solution. 

2.163. Find the pressure in an air bubble of diameter d = 4.0 pm, 
located in water at a depth h = 5.0 m. The atmospheric pressure 
has the standard value P o. 

2.164. The diameter of a gas bubble formed at the bottom of a pond 
is d = 4.0 1.tm. When the bubble rises to the surface its diameter 
increases n = 1.1 times. Find how deep is the pond at that spot. 
The atmospheric pressure is standard, the gas expansion is assumed 
to be isothermal. 

2.165. Find the difference in height of mercury columns in two 
communicating vertical capillaries whose diameters are 
= 0.50 mm and d 2  = 1.00 mm, if the contact angle 0 = 138°. 

2.166. A vertical capillary with inside diameter 0.50 mm is 
submerged into water so that the length of its part protruding over 
the water surface is equal to h = 25 mm. Find the curvature radius 
of the meniscus. 

2.167. A glass capillary of length 1 = 110 mm and inside dia-
meter d = 20 pAn is submerged vertically into water. The upper end 
of the capillary is sealed. The outside pressure is standard. To what 
length x has the capillary to be submorged to make the water levels 
inside and outside the capillary coincide? 

2.168. When a vertical capillary of length 1 with the sealed upper 
end was brought in contact with the surface of a liquid, the level 
of this liquid rose to the height h. The liquid density is p, the inside 
diameter of the capillary is d, the contact angle is 0, the atmospheric 
pressure is Po. Find the surface tension of the liquid. 

2.169. A glass rod of diameter d1  = 1.5 mm is inserted sym-
metrically into a glass capillary with inside diameter d 2  = 2.0 mm. 
Then the whole arrangement is vertically oriented and brought in 
contact with the surface of water. To what height will the water rise 
in the capillary? 

2.170. Two vertical plates submerged partially in a wetting liquid 
form a wedge with a very small angle 6cp. The edge of this wedge is 
vertical. The density of the liquid is p, its surface tension is a, the 
contact angle is 0. Find the height h, to which the liquid rises, as a 
function of the distance x from the edge. 

2.171. A vertical water jet flows out of a round hole. One of the 
horizontal sections of the jet has the diameter d = 2 0 mm while 
the other section located / = 20 mm lower has the diameter which 
is n = 1.5 times less. Find the volume of the water flowing from 
the hole each second. 

2.172. A water drop falls in air with a uniform velocity. Find 
the difference between the curvature radii of the drop's surface at 
the upper and lower points of the drop separated by the distance 
h = 2.3 mm. 
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2.173. A mercury drop shaped as a round tablet of radius R 
and thickness h is located between two horizontal glass plates. Assum-
ing that h <<R , find the mass m of a weight which has to be placed 
on the upper plate to diminish the distance between the plates n-times. 
The contact angle equals 0. Calculate m if R = 2.0 cm, h = 0.38 mm, 
n = 2.0, and 0 = 135°. 

2.174. Find the attraction force between two parallel glass plates, 
separated by a distance h = 0.10 mm, after a water drop of mass 
m = 70 mg was introduced between them. The wetting is assumed 
to be complete. 

2.175. Two glass discs of radius R = 5.0 cm were wetted with 
water and put together so that the thickness of the water layer be-
tween them was h = 1.9 p.m. Assuming the wetting to he complete, 
find the force that has to be applied at right angles to the plates in 
order to pull them apart. 

2.176. Two vertical parallel glass plates are partially submerged 
in water. The distance between the plates is d = 0.10 mm, and 
their width is 1 = 12 cm. Assuming that the water between the 
plates does not reach the upper edges of the plates and that the wetting 
is complete, find the force of their mutual attraction. 

2.177. Find the lifetime of a soap bubble of radius R connected 
with the atmosphere through a capillary of length 1 and inside 
radius r. The surface tension is a, the viscosity coefficient of the 
gas is 11. 

2.178. A vertical capillary is brought in contact with the water 
surface. What amount of heat is liberated while the water rises 
along the capillary? The wetting is assumed to be complete, the sur-
face tension equals a. 

2.179. Find the free energy of the surface layer of 
(a) a mercury droplet of diameter d = 1.4 mm; 
(b) a soap bubble of diameter d = 6.0 mm if the surface tension 

of the soap water solution is equal to a = 45 mN/m. 
2.180. Find the increment of the free energy of the surface layer 

when two identical mercury droplets, each of diameter d = 1.5 mm, 
merge isothermally. 

2.181. Find the work to be performed in order to blow a soap 
bubble of radius R if the outside air pressure is equal to p, and 
the surface tension of the soap water solution is equal to a. 

2.182. A soap bubble of radius r is inflated with an ideal gas. 
The atmospheric pressure is po, the surface tension of the soap water 
solution is a. Find the difference between the molar heat capacity 
of the gas during its heating inside the bubble and the molar heat 
capacity of the gas under constant pressure, C — Cp. 

2.183. Considering the Carnot cycle as applied to a liquid film, 
show that in an isothermal process the amount of heat required for 
the formation of a unit area of the surface layer is equal to q = 
= —T•daldT, where daldT is the temperature derivative of the 
surface tension. 
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2.184. The surface of a soap film was increased isothermally by 
CI at a temperature T. Knowing the surface tension of the soap 

water solution a and the temperature coefficient daldT, find the 
increment 

(a) of the entropy of the film's surface layer; 
(b) of the internal energy of the surface layer. 

2.6. PHASE TRANSFORMATIONS 

• Relations between Van der Waals constants and the parameters of the 
critical state of a substance: 

a 	 8a 
Vm cr= 3b, Pcr= 	27ba ' Tcr= 27Rb • 

• Relation between the critical parameters for a mole of substance: 

PcrV m cr= (3/8) RTcr• 

• Clausius-Clapeyron equation: 

dP 	q12 

dT T (17 —Vi) ' 

where q12  is the specific heat absorbed in the transformation 1 	2, Vi and V; 
are the specific volumes of phases 1 and 2. 

2.185. A saturated water vapour is contained in a cylindrical 
vessel under a weightless piston at a temperature t = 100 °C. As 
a result of a slow introduction of the piston a small fraction of the 
vapour Am = 0.70 g gets condensed. What amount of work was 
performed over the gas? The vapour is assumed to be ideal, the 
volume of the liquid is to be neglected. 

2.186. A vessel of volume V = 6.0 1 contains water together with 
its saturated vapour under a pressure of 40 atm and at a temperature 
of 250 °C. The specific volume of the vapour is equal to V; = 50 1/kg 
under these conditions. The total mass of the system water-vapour 
equals m = 5.0 kg. Find the mass and the volume of the vapour. 

2.187. The saturated water vapour is enclosed in a cylinder under 
a piston and occupies a volume Vo  = 5.0 1 at the temperature t 
= 100 °C. Find the mass of the liquid phase formed after the volume 
under the piston decreased isothermally to V = 1.6 1. The saturated 
vapour is assumed to be ideal. 

2.188. A volume occupied by a saturated vapour is reduced iso-
thermally n-fold. Find what fraction ri of the final volume is occupied 
by the liquid phase if the specific volumes of the saturated vapour 
and the liquid phase differ by N times (N > n). Solve the same 
problem under the condition that the final volume of the substance 
corresponds to the midpoint of a horizontal portion of the isothermal 
line in the diagram p, V. 

2.189. An amount of water of mass m = 1.00 kg, boiling at stan-
dard atmospheric pressure, turns completely into saturated vapour. 

(2.6a) 

(2.6b) 

(2.6c) 
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Assuming the saturated vapour to be an ideal gas find the increment 
of entropy and internal energy of the system. 

2.190. Water of mass m = 20 g is enclosed in a thermally insulat-
ed cylinder at the temperature of 0 °C under a weightless piston 
whose area is S = 410 cm2. The outside pressure is equal to 
standard atmospheric pressure. To what height will the piston 
rise when the water absorbs Q = 20.0 kJ of heat? 

2.191. One gram of saturated water vapour is enclosed in a therm-
ally insulated cylinder under a weightless piston. The outside pres-
sure being standard, m = 1.0 g of water is introduced into the cyl-
inder at a temperature to  = 22 °C. Neglecting the heat capacity of 
the cylinder and the friction of the piston against the cylinder's 
walls, find the work performed by the force of the atmospheric pres-
sure during the lowering of the piston. 

2.192. If an additional pressure Ap of a saturated vapour over 
a convex spherical surface of a liquid is considerably less than the 
vapour pressure over a plane surface, then Ap (pc Ipi )2oar, where 
p c  and Pt are the densities of the vapour and the liquid, a is the sur-
face tension, and r is the radius of curvature of the surface. Using 
this formula, find the diameter of water droplets at which the satu-
rated vapour pressure exceeds the vapour pressure over the plane 
surface by = 1.0% at a temperature t = 27 °C. The vapour is 
assumed to be an ideal gas. 

2.193. Find the mass of all molecules leaving one square centi-
metre of water surface per second into a saturated water vapour above 
it at a temperature t = 100 °C. It is assumed that i1 = 3.6% of 
all water vapour molecules falling on the water surface are retained 
in the liquid phase. 

2.194. Find the pressure of saturated tungsten vapour at a tem-
perature T = 2000 K if a tungsten filament is known to lose a mass 

= 1.2-10-13  g/(s•cm2) from a unit area per unit time when 
evaporating into high vacuum at this temperature. 

2.195. By what magnitude would the pressure exerted by water 
on the walls of the vessel have increased if the intermolecular attrac-
tion forces had vanished? 

2.196. Find the internal pressure pi  of a liquid if its density 
p and specific latent heat of vaporization q are known. The heat 
q is assumed to be equal to the work performed against the forces 
of the internal pressure, and the liquid obeys the Van der Waals 
equation. Calculate pi  in water. 

2.197. Demonstrate that Eqs. (2.6a) and (2.6b) are valid for a 
substance, obeying the Van der Waals equation, in critical 
state. 

Instruction. Make use of the fact that the critical state corresponds 
to the point of inflection in the isothermal curve p (V). 

2.198. Calculate the Van der Waals constants for carbon dioxide 
if its critical temperature T„ = 304 K and critical pressure pc ,. = 
= 73 atm. 
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Fig. 2.5. 

2.199. Find the specific volume of benzene (C6H6) in critical state 
if its critical temperature T „ = 562 K and critical pressure p„ 
= 47 atm. 

2.200. Write the Van der Waals equation via the reduced para-
meters n, v, and r, having taken the corresponding critical values 
for the units of pressure, volume, and temperature. Using the equa-
tion obtained, find how many times the gas temperature exceeds its 
critical temperature if the gas pressure is 12 times as high as critical 
pressure, and the volume of gas is equal to half the critical volume. 

2.201. Knowing the Van der Waals constants, find: 
(a) the maximum volume which water of mass m = 1.00 kg can 

occupy in liquid state; 
(b) the maximum pressure of the saturated water vapour. 
2.202. Calculate the temperature and density of carbon dioxide 

in critical state, assuming the gas to be a Van der Waals one. 
2.203. What fraction of the volume of a vessel must liquid ether 

occupy at room temperature in order to pass into critical state when 
critical temperature is reached? Ether 
has T , = 467 K, per  = 35.5 atm, p 
M = 74 g/mol. 

2.204. Demonstrate that the straight 
line 1-5 corresponding to the isother-
mal-isobaric phase transition cuts the 
Van der Waals isotherm so that 
areas I and II are equal (Fig. 2.5). 

2.205. What fraction of water su-
percooled down to the temperature 
t = —20 °C under standard pressure 
turns into ice when the system passes 
into the equilibrium state? At what 
temperature of the supercooled water 
does it turn into ice completely? 

2.206. Find the increment of the ice melting temperature in the 
vicinity of 0 °C when the pressure is increased by Ap = 1.00 atm. 
The specific volume of ice exceeds that of water byiAV' = 0.091 cm3/g. 

2.207. Find the specific volume of saturated water vapour under 
standard pressure if a decrease of pressure by Ap = 3.2 kPa is known 
to decrease the water boiling temperature by AT = 0.9 K. 

2.208. Assuming the saturated water vapour to be ideal, find 
its pressure at the temperature 101.1 °C. 

2.209. A small amount of water and its saturated vapour are en-
closed in a vessel at a temperature t = 100 °C. How much (in per cent) 
will the mass of the saturated vapour increase if the temperature of 
the system goes up by AT = 1.5 K? Assume that the vapour is an 
ideal gas and the specific volume of water is negligible as compared 
to that of vapour. 

2.210. Find the pressure of saturated vapour as a function of 
temperature p (T) if at a temperature To  its pressure equals po. 
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Assume that: the specific latent heat of vaporization q is independent 
of T, the specific volume of liquid is negligible as compared to that 
of vapour, saturated vapour obeys the equation of state for an ideal 
gas. Investigate under what conditions these assumptions are permis-
sible. 

2.211. An ice which was initially under standard conditions was 
compressed up to the pressure p = 640 atm. Assuming the lowering 
of the ice melting temperature to be a linear function of pressure 
under the given conditions, find what fraction of the ice melted. The 
specific volume of water is less than that of ice by AV' = 0.09 cm3/g. 

2.212. In the vicinity of the triple point the saturated vapour 
pressure p of carbon dioxide depends on temperature T as log p 
= a — bIT, where a and b are constants. If p is expressed in atmo-
spheres, then for the sublimation process a = 9.05 and b = 1.80 kK, 
and for the vaporization process a = 6.78 and b = 1.31 kK. Find: 

(a) temperature and pressure at the triple point; 
(b) the values of the specific latent heats of sublimation, vapori-

zation, and melting in the vicinity of the triple point. 
2.213. Water of mass m = 1.00 kg is heated from the temperature 

t1  = 10 °C up to t 2  = 100 °C at which it evaporates completely. 
Find the entropy increment of the system. 

2.214. The ice with the initial temperature t1  = 0 °C was first 
melted, then heated to the temperature t 2  = 100 °C and evaporated. 
Find the increment of the system's specific entropy. 

2.215. A piece of copper of mass m = 90 g at a temperature t1  
= 90 °C was placed in a calorimeter in which ice of mass 50 g was 
at a temperature —3 °C. Find the entropy increment of the piece 
of copper by the moment the thermal equilibrium is reached. 

2.216. A chunk of ice of mass m1  = 100 g at a temperature t1  = 
= 0 °C was placed in a calorimeter in which water of mass m2  = 
= 100 g was at a temperature t 2. Assuming the heat capacity of 
the calorimeter to be negligible, find the entropy increment of the 
system by the moment the thermal equilibrium is reached. Consider 
two cases: (a) t 2  = 60 °C; (b) t2  = 94 °C. 

2.217. Molten lead of mass m = 5.0 g at a temperature t2  = 327 °C 
(the melting temperature of lead) was poured into a calorimeter packed 
with a large amount of ice at a temperature t1  = 0 °C. Find the ent-
ropy increment of the system lead-ice by the moment the thermal 
equilibrium is reached. The specific latent heat of melting of lead is 
equal to q = 22.5 7/g and its specific heat capacity is equal to c 
= 0.125 J/(g • K). 

2.218. A water vapour filling the space under the piston of a cylin-
der, is compressed (or expanded) so that it remains saturated all 
the time, being just on the verge of condensation. Find the molar 
heat capacity C of the vapour in this process as a function of tem-
perature T, assuming the vapour to be an ideal gas and neglecting 
the specific volume of water in comparison with that of vapour. 
Calculate C at a temperature t = 100 °C. 
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2.219. One mole of water being in equilibrium with a negligible 
amount of its saturated vapour at a temperature T1  was completely 
converted into saturated vapour at a temperature T2. Find the ent-
ropy increment of the system. The vapour is assumed to be an ideal 
gas, the specific volume of the liquid is negligible in comparison with 
that of the vapour. 

2.7. TRANSPORT PHENOMENA 

• Relative number of gas molecules traversing the distance s without col.. 
lisions: 

NIN0=e –sik 	 (2.7a) 

where X is the mean free path. 
• Mean free path of a gas molecule: 

X=  _ 1 	 (2.7b) 
Y2 ad2n 

where d is the effective diameter of a molecule, and n is the number of mole-
cules per unit volume. 

• Coefficients of diffusion D, viscosity 	and heat conductivity x of gases: 

1 	 1 
D = 

3 
(v) 2, 	

3 
= — (v4, x = — 3 (v)kpcv., 	(2.7c) 

where p is the gas density, and cir  is its specific heat capacity at constant volume. 
• Friction force acting on a unit area of plates during their motion parallel 

to each other in a highly rarefied gas: 
1 F= 
6 
— 	 p I ui  — u2 	 (2.7d) 

where u1  and u2  are the velocities of the plates. 
• Density of a thermal flux transferred between two walls by highly 

rarefied gas: 
1 

q = 	pcv  Ti  — T2 I, 	 (2.7e) 

where T1  and T 2  are the temperatures of the walls. 

2.220. Calculate what fraction of gas molecules 
(a) traverses without collisions the distances exceeding the mean 

free path X; 
(b) has the free path values lying within the interval from X 

to a. 
2.221. A, narrow molecular beam makes its way into a vessel 

filled with gas under low pressure. Find the mean free path of mole-
cules if the beam intensity decreases ri-fold over the distance Al. 

2.222. Let adt be the probability of a gas molecule experiencing 
a collision during the time interval dt; a is a constant. Find: 

(a) the probability of a molecule experiencing no collisions during 
the time interval t; 

(b) the mean time interval between successive collisions. 
2.223. Find the mean free path and the mean time interval be- 

tween successive collisions of gaseous nitrogen molecules 
(a) under standard conditions; 
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(b) at temperature t = 0 °C and pressure p = 1.0 nPa (such a pres-
sure can be reached by means of contemporary vacuum pumps). 

2.224. How many times does the mean free path of nitrogen mole-
cules exceed the mean distance between the molecules under stan-
dard conditions? 

2.225. Find the mean free path of gas molecules under standard 
conditions if the Van der Waals constant of this gas is equal to b = 
= 40 ml/mol. 

2.226. An acoustic wave propagates through nitrogen under stan-
dard conditions. At what frequency will the wavelength be equal 
to the mean free path of the gas molecules? 

2.227. Oxygen is enclosed at the temperature 0 °C in a vessel 
with the characteristic dimension 1 = 10 mm (this is the linear 
dimension determining the character of a physical process in ques-
tion). Find: 

(a) the gas pressure below which the mean free path of the mole-
cules k > 1; 

(b) the corresponding molecular concentration and the mean 
distance between the molecules. 

2.228. For the case of nitrogen under standard conditions find: 
(a) the mean number of collisions experienced by each molecule 

per second; 
(b) the total number of collisions occurring between the molecules 

within 1 cm3  of nitrogen per second. 
2.229. How does the mean free path and the number of collisions 

of each molecule per unit time v depend on the absolute temperature 
of an ideal gas undergoing 

(a) an isochoric process; 
(b) an isobaric process? 
2.230. As a result of some process the pressure of an ideal gas 

increases n-fold. How many times have the mean free path A. and 
the number of collisions 'of each molecule per unit time v changed 
and how, if the process is 

(a) isochoric; (b) isothermal? 
2.231. An ideal gas consisting of rigid diatomic molecules goes 

through an adiabatic process. How do the mean free path A, and the 
number of collisions of each molecule per second v depend in this 
process on 

(a) the volume V; (b) the pressure p; (c) the temperature T? 
2.232. An ideal gas goes through a polytropic process with ex-

ponent n. Find the mean free path and the number of collisions of 
each molecule per second v as a function of 

(a) the volume V; (b) the pressure p; (c) the temperature T. 
2.233. Determine the molar heat capacity of a polytropic process 

through which an ideal gas consisting of rigid diatomic molecules 
goes and in which the number of collisions between the molecules 
remains constant 

(a) in a unit volume; (b) in the total volume of the gas. 



2.234. An ideal gas of molar mass M is enclosed in a vessel of 
volume V whose thin walls are kept at a constant temperature T. 
At a moment t = 0 a small hole of area S is opened, and the gas 
starts escaping into vacuum. Find the gas concentration n as a func-
tion of time t if at the initial moment n (0) = no. 

2.235. A vessel filled with gas is divided into two equal parts 
1 and 2 by a thin heat-insulating partition with two holes. One 
hole has a small diameter, and the other has a very large diameter 
(in comparison with the mean free path of molecules). In part 2 
the gas is kept at a temperature ii  times higher than that of part 1. 
How will the concentration of molecules in part 2 change and how 
many times after the large hole is closed? 

2.236. As a result of a certain process the viscosity coefficient of 
an ideal gas increases a = 2.0 times and its diffusion coefficient 
6 = 4.0 times. How does the gas pressure change and how many 
times? 

2.237. How will a diffusion coefficient D and the viscosity coeffi-
cient of an ideal gas change if its volume increases n times: 

(a) isothermally; (b) isobarically? 
2.238. An ideal gas consists of rigid diatomic molecules. How will 

a diffusion coefficient D and viscosity coefficient rl  change and how 
many times if the gas volume is decreased adiabatically n =10 times? 

2.239. An ideal gas goes through a polytropic process. Find the 
polytropic exponent n if in this process the coefficient 

(a) of diffusion; (b) of viscosity; (c) of heat conductivity remains 
constant. 

2.240. Knowing the viscosity coefficient of helium under standard 
conditions, calculate the effective diameter of the helium atom. 

2.241. The heat conductivity of helium is 8.7 times that of argon 
(under standard conditions). Find the ratio of effective diameters 
of argon and helium atoms. 

2.242. Under standard conditions helium fills up the space between 
two long coaxial cylinders. The mean radius of the cylinders is equal 
to R, the gap between them is equal to AR, with AR < R. The 
outer cylinder rotates with a fairly low angular velocity o about 
the stationary inner cylinder. Find the moment of friction forces 
acting on a unit length of the inner cylinder. Down to what magnitude 
should the helium pressure be lowered (keeping the temperature cons-
tant) to decrease the sought moment of friction forces n = 10 times 
if OR = 6 mm? 

2.243. A gas fills up the space between two long coaxial cylinders 
of radii R1  and R2, with R1  < R2. The outer cylinder rotates with 
a fairly low angular velocity co about the stationary inner cylinder. 
The moment of friction forces acting on a unit length of the inner 
cylinder is equal to N1. Find the viscosity coefficient ri of the gas 
taking into account that the friction force acting on a unit area of the 
cylindrical surface of radius r is determined by the formula a = 
= iir (tho/ar). 
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2.244. Two identical parallel discs have a common axis and are 
located at a distance h from each other. The radius of each disc is 
equal to a, with a > h. One disc is rotated with a low angular veloc-
ity co relative to the other, stationary, disc. Find the moment of 
friction forces acting on the stationary disc if the viscosity coeffi-
cient of the gas between the discs is equal to 

2.245. Solve the foregoing problem, assuming that the discs 
are located in an ultra-rarefied gas of molar mass M, at temperature T 
and under pressure p. 

2.246. Making use of Poiseuille's equation (1.7d), find the mass 
of gas flowing per unit time through the pipe of length 1 and radius a 

if constant pressures pi  and p, are maintained at its ends. 
2.247. One end of a rod, enclosed in a thermally insulating sheath, 

is kept at a temperature Ti  while the other, at T2. The rod is com-
posed of two sections whose lengths are 11  and 12 and heat conductiv-
ity coefficients xi  and x2. Find the temperature of the interface. 

2.248. Two rods whose lengths are li  and 12 and heat conductivity 
coefficients xi  and x2  are placed end to end. Find the heat conductivity 
coefficient of a uniform rod of length 11 + /2  whose conductivity 
is the same as that of the system of these two rods. The lateral surfaces 
of the rods are assumed to be thermally insulated. 

2.249. A rod of length 1 with thermally insulated lateral surface 
consists of material whose heat conductivity coefficient varies with 
temperature as x = air, where a is a constant. The ends of the rod 
are kept at temperatures T1  and T2. Find the function T (x), where 
x is the distance from the end whose temperature is T1, and 
the heat flow density. 

2.250. Two chunks of metal with heat capacities C1  and C2 are 
interconnected by a rod of length 1 and cross-sectional area S and 
fairly low heat conductivity x. The whole system is thermally insu-
lated from the environment. At a moment t = 0 the temperature 
difference between the two chunks of metal equals (AT)0. Assuming 
the heat capacity of the rod to be negligible, find the temperature 
difference between the chunks as a function of time. 

2.251. Find the temperature distribution in a substance placed 
between two parallel plates kept at temperatures Ti  and T2. The 
plate separation is equal to 1, the heat conductivity coefficient of 
the substance x o-Z-1/ T. 

2.252. The space between two large horizontal plates is filled 
with helium. The plate separation equals 1 = 50 mm. The lower 
plate is kept at a temperature Ti  = 290 K, the upper, at T2 = 
= 330 K. Find the heat flow density if the gas pressure is close 
to standard. 

2.253. The space between two large parallel plates separated by 
a distance 1 = 5.0 mm is filled with helium under a pressure p = 
= 1.0 Pa. One plate is kept at a temperature ti  = 17 °C and the 
other, at a temperature t 2  = 37 °C. Find the mean free path of helium 
atoms and the heat flow density. 



2.254. Find the temperature distribution in the space between 
two coaxial cylinders of radii R1  and R 2  filled with a uniform heat 
conducting substance if the temperatures of the cylinders are constant 
and are equal to T1  and T2 respectively. 

2.255. Solve the foregoing problem for the case of two concentric 
spheres of radii. R1  and R2 and temperatures T1  and T2. 

2.256. A constant electric current flows along a uniform wire 
with cross-sectional radius R and heat conductivity coefficient x. 
A unit volume of the wire generates a thermal power w. Find the 
temperature distribution across the wire provided the steady-state 
temperature at the wire surface is equal to To. 

2.257. The thermal power of density w is generated uniformly 
inside a uniform sphere of radius R and heat conductivity coefficient 
x. Find the temperature distribution in the sphere provided the 
steady-state temperature at its surface is equal to To. 
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