# Introduction to Trigonometry

## **NOTES**

As we know, the trigonometry is the branch of Mathematics in which we study about the relationship between angles and its sides. In this chapter, we will discuss about trigonometric ratios which are defined in a right-angled triangle.

#### **Trigonometrical Ratios**

In the given triangle ABC,  $\angle B = 90^{\circ}$  and let angle C is  $\theta$ .



Then the trigonometrical ratios are defined as follows:

$$\sin \theta = \frac{Perpendicular}{Hypotenuse} = \frac{AB}{AC}$$

$$\cos \theta = \frac{Base}{Hypotenuse} = \frac{BC}{AC}$$

$$\tan \theta = \frac{Perpendicular}{Hypotenuse} = \frac{AB}{BC}$$

$$\cot \theta = \frac{Base}{Perpendicular} = \frac{BC}{AB}$$

$$\sec \theta = \frac{Hypotenuse}{Base} = \frac{AC}{BC}$$

$$\csc \theta = \frac{Hypotenuse}{Perpendicular} = \frac{AC}{BC}$$

#### **Relationship between T-ratios**

$$\sin \theta = \frac{1}{\cos ec \ \theta}, \ \cos \ \theta = \frac{1}{\sec \ \theta} \ \text{and} \ \cot \ \theta = \frac{1}{\tan \ \theta}$$

From the above, we conclude that sine of an angle is reciprocal to the cosec of that angle and so on.

#### **Trigonometric Ratios of Complementary Angles**

- $\succ$  sin  $(90^\circ \theta) = \cos \theta$
- $\succ \cos (90^\circ \theta) = \sin \theta$
- $\succ$  tan  $(90^\circ \theta) = \cot \theta$
- $\succ$  cot  $(90^{\circ} \theta) = \tan \theta$

- $\succ$  sec $(90^{\circ} \theta)$  = cosec  $\theta$
- $\succ$  cosec  $(90^\circ \theta) = \sec \theta$

#### **Trigonometric Identities**

The trigonometric ratios of an angle  $\theta$  is said to be a trigonometric identity if it is satisfied for all values of  $\theta$ . In this chapter we will learn about following identities.

- $\Rightarrow \sin^2\theta + \cos^2\theta = 1$
- $\succ$  sec<sup>2</sup> $\theta = 1 + tan^2 \theta$
- $\succ$  cosec<sup>2</sup> $\theta = 1 + \cot^2 \theta$

| Angle→<br>Ratios ¬ | <b>0</b> °     | <b>30</b> °          | <b>45</b> °          | <b>60</b> °          | <b>90</b> °    |
|--------------------|----------------|----------------------|----------------------|----------------------|----------------|
| $\sin 	heta$       | 0              | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1              |
| $\cos \theta$      | 1              | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0              |
| tan $\theta$       | 0              | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | Not<br>defined |
| $\cot \theta$      | Not<br>defined | $\sqrt{3}$           | 1                    | $\frac{1}{\sqrt{3}}$ | 0              |
| sec $\theta$       | 1              | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$           | 2                    | Not<br>defined |
| $\cos \theta$      | Not<br>defined | 2                    | $\sqrt{2}$           | $\frac{2}{\sqrt{3}}$ | 1              |

#### **T-ratios of Some standard Angles**

#### > Example:

If  $\csc\theta - \cot\theta = \mathbf{a}$ , then the value of  $\cot \theta$  is:

(a) 
$$\frac{a-1}{2a}$$
 (b)  $\frac{1-a^2}{2a}$   
(c)  $a^2 - 1$  (d)  $\frac{a^2 - 1}{a^2 + 1}$ 

(e) None of these

**Ans.** (b)

**Explanation:** Here it is given that  $cosec\theta - cot\theta = a$ 

We know that,  $\csc^2\theta - \cot^2\theta = 1$ 

$$\Rightarrow \csc \theta + \cot \theta = \frac{1}{\csc \theta - \cot \theta}$$
$$\Rightarrow (\csc \theta + \cot \theta) = \frac{1}{a}$$
$$\Rightarrow \cot \theta = \frac{1 - a^2}{2a}$$

> Example:

The value of  $\frac{\sin^2 60^\circ + \cos^2 30^\circ}{\sin^2 45^\circ}$ (a)  $\frac{1}{2}$ (b)  $\frac{1}{4}$ (c) 3
(c) 3
(d) 1

(e) None of these

**Ans.** (c)

Explanation: 
$$\frac{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}{\left(\frac{1}{\sqrt{2}}\right)^2} = \frac{\frac{6}{4}}{\frac{1}{2}} = \frac{12}{4} = 3$$

### > Example:

The value of  $2(\cot^2 45^\circ + \sec^2 30^\circ) - 6(\tan^2 45^\circ - \csc^2 60^\circ)$  is:

(a) 
$$\frac{4}{7}$$
 (b)  $\frac{20}{3}$   
(c)  $\frac{3}{20}$  (d)  $\frac{1}{3}$ 

(e) None of these.

**Ans.** (b)

**Explanation:** Given trigonometric expression is:  $2(\cot^2 45^\circ + \sec^2 30^\circ) - 6(\tan^2 45^\circ - \cos ec^2 60^\circ)$ 

$$= 2\left[1 + \left(\frac{2}{\sqrt{3}}\right)^{2}\right] - 6\left[1 - \left(\frac{2}{\sqrt{3}}\right)^{2}\right] = 2\left[1 + \frac{4}{3}\right] - 6\left[1 - \frac{4}{3}\right] = \frac{20}{3}$$