Chapter - Hydrogen ### Topic-1: Preparation and Properties of Hydrogen and Hydrides #### Assertion and Reason Statement Type Questions Each question contains STATEMENT-1 (Assertion) and STATEMENT-2 (Reason). Each question has 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct. Mark your answer - (a) If both Statement -1 and Statement -2 are correct, and Statement -2 is the correct explanation of the Statement -2. - If both Statement -1 and Statement -2 are correct, but Statement -2 is not the correct explanation of the Statement -1. - (c) If Statement -1 is correct but Statement -2 is incorrect. - If Statement -1 is incorrect but Statement -2 is correct. - Read the following statement and explanation and answer as per the options given statement below: Statement - 1: The alkali metals can form ionic hydrides which contain the hydride ion H-. Statement - 2: The alkali metals have low electronegativity; their hydrides conduct electricity when fused and liberate hydrogen at the anode. [1994 - 2 Marks] ## **Topic-2:** Preparation and Properties of H_2O and D_2O #### MCQs with One Correct Answer - Polyphosphates are used as water softening agents because they - (a) form soluble complexes with anionic species - (b) precipitate anionic species - (c) form soluble complexes with cationic species - (d) precipitate cationic species - Heavy water is [1983 - 1 Mark] - (a) $H_2^{18}O$ - (b) water obtained by repeated distillation - (c) D₂O - (d) water at 4°C - The temporary hardness of water due to calcium bicarbonate can be removed by adding – - (a) CaCO₃ (b) Ca(OH)₂ (c) CaCl₂ ### MCQs with One or More than One Correct Answer - The reagent(s) used for softening the temporary hardness of water is (are) [2010] - (a) $Ca_3(PO_4)_2$ - (b) Ca(OH)₂ - (c) Na₂CO₃ - (d) NaOCl - The species present in solution when CO₂ is dissolved in [2006 - 5M, -1] - CO_2 , H_2CO_3 , HCO_3 , CO_3 - (b) H_2CO_3, CO_3^2 - (c) CO_3^{2-} , HCO_3^{-} - (d) CO_2 , H_2CO_2 - When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water the sodium ions are exchanged with [1990 - 1 Mark] - (a) H⁺ ions - (b) Ca⁺⁺ ions - (c) SO_4^{--} ions - (d) Mg⁺⁺ ions - (e) OH-ions ## **Topic-3:** Preparation and Properties of H_2O_2 ### MCQs with One Correct Answer - Hydrogen peroxide in its reaction with KIO₄ and NH₂OH respectively, is acting as a [Adv. 2014] - (a) Reducing agent, oxidising agent - (b) Reducing agent, reducing agent - (c) Oxidising agent, oxidising agent - (d) Oxidising agent, reducing agent - The volume strength of 1.5 N H₂O₂ solution is [1991 - 1 Mark] (a) 4.8 (b) 8.4 (c) 3.0 (d) 8.0 ### Numeric / New Stem Based Questions To a 25mL H₂O₂ solution, excess of acidified solution of potassium iodide was added. The iodine liberated required 20 mL of 0.3 N sodium thiosulphate solution. Calculate the volume strength of H₂O₂ solution. [1997 - 5 Marks] A 5.0 cm³ solution of H_2O_2 liberates 0.508 g of iodine from an acidified KI solution. Calculate the strength of H2O2 solution in terms of volume strength at STP. [1995 - 2 Marks] ### 10 Subjective Problems - Hydrogen peroxide acts both as an oxidising and as a reducing agent in alkaline solution towards certain first row transition metal ions. Illustrate both these properties of H₂O₂ using chemical equations. [1998 - 4 Marks] - 6. Give reactions for the oxidation of hydrogen peroxide with potassium permanganate in acidic medium. [1997 - 1 Mark] - 7. Give reasons for the following: - Hydrogen peroxide acts as an oxidising as well as a reducing agent. [1992 - 1 Mark] - (ii) Hydrogen peroxide is a better oxidising agent that [1986 - 1 Mark] - 8. The mixture of hydrazine and hydrogen peroxide with a copper(II) catalyst is used as a rocket propellant. [1987 - 1 Mark] 9. Write down the balanced equations for the reactions when: An alkaline solution of potassium ferricyanide is reacted with hydrogen peroxide. [1982 - 1 Mark] Answer Key 2. (c) (a) Topic-1: Preparation and Properties of Hydrogen and Hydrides Topic-2: Preparation and Properties of H₂O and D₂O 4. (b, c, d) Topic-3: Preparation and Properties of H₂O₂ 6. (b, d) (a) 2. (b) **3.** (1.344) 4. (4.48) 3. (b) # **Hints & Solutions** #### Topic-1: Preparation and Properties of Hydrogen and Hydrides (a) The alkali metals are highly electropositive elements, hence, the hydrides, hydrogen exist as hydride ion H⁻. This is the reason why hydrogen liberate at anode. # **Topic-2:** Preparation and Properties of H_2O and D_2O 1. (c) $2Ca^{2+} + Na_2[Na_4(PO_3)_6]$ $$\longrightarrow$$ 4Na⁺ + Na₂[Ca₂(PO₃)₆] water soluble - 2. (c) Heavy water is D₂O, deuterium oxide. - 3. (b) Temporary hardness of water is due to presence of bicarbonates of Ca and Mg and it is removed by adding Ca(OH)₂ to hard water and precipitating these soluble bicarbonates in the form of insoluble salts. $$\begin{aligned} &\operatorname{Ca(HCO_3)_2} + \operatorname{Ca(OH)_2} \longrightarrow &\operatorname{CaCO_3} \downarrow + 2\operatorname{H_2O} \\ &\operatorname{Mg(HCO_3)_2} + 2\operatorname{Ca(OH)_2} \longrightarrow & \end{aligned}$$ $$2\text{CaCO}_3\downarrow + \text{Mg(OH)}_2\downarrow + 2\text{H}_2\text{O}$$ 4. (b, c, d) Temporary hardness is due to bicarbonates of calcium and magnesium. Temporary hardness can be removed by Clark's process, which involves the addition of slaked lime, Ca(OH)₂. Washing soda (Na₂CO₃) removes both the temporary and permanent hardness by converting soluble calcium and magnesium compounds into insoluble carbonates. $$Ca(HCO_3) + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$$ $Ca(HCO_3) + Na_2CO_3 \longrightarrow CaCO_3 \downarrow + 2NaHCO_3$ NaOCl can remove the hardness as: $$Ca (HCO_3)_2 + 2OH^- \longrightarrow CaCO_3 \downarrow + CO_3^{2-} + 2H_2O$$ 5. (a) $$CO_2 + H_2O \rightleftharpoons H_2CO_3$$ $$\longrightarrow$$ H⁺ +HCO₃⁻ \longrightarrow H⁺ +CO₃²⁻ 6. **(b, d)** Na₂Al₂Si₂O₈· $$x$$ H₂O + Ca²⁺ \rightarrow CaAl₂Si₂O₈· x H₂O + 2Na⁺ Na₂Al₂Si₂O₈· x H₂O + Mg²⁺ \rightarrow MgAl₂Si₂O₈· x H₂O + 2Na⁺ ### Topic-3: Preparation and Properties of H₂O₂ - 1. (a) $KIO_4 + H_2O_2 \rightarrow KIO_3 + H_2O + O_2$ Thus, H_2O_2 is acting as a reducing agent $2NH_2OH + H_2O_2 \rightarrow N_2 + 4H_2O$ Here H_2O_2 is acting as an oxidising agent - 2. (b) Volume strength = Normality $\times 5.6 = 1.5 \times 5.6 = 8.4 \text{ L}$ - 3. (1.344) By law of equivalence: Meq. of $H_2O_2 = Meq.$ of $Na_2S_2O_3 = Meq.$ of $I_2 = Meq.$ of KI $$\frac{w}{17} \times 1000 = 20 \times 0.3$$ \therefore w=0.102 g (equating Meq. in 25 mL solution) $$H_2O_2 \to H_2O + \frac{1}{2}O_2$$:. Volume of $$O_2 = \frac{11200 \times 0.102}{34} = 33.6 \text{ mL}$$ $$\therefore \text{ Volume strength} = \frac{33.6}{25} = 1.344$$ 4. (4.48) $$\begin{array}{ccc} \text{H}_2\text{O}_2 & + \text{H}_2\text{SO}_4 + \underbrace{2\text{KI}}_{\begin{subarray}{c} \text{Acidified} \\ \text{S cm}^3 \mbox{ or mL} \end{subarray}} & + \underbrace{2\text{KI}}_{\begin{subarray}{c} \text{Acidified} \\ \text{KI sol} \end{subarray}} & + \underbrace{1_2}_{\begin{subarray}{c} \text{254 g} \\ 0.508 \mbox{ g} \end{subarray}} + 2\text{H}_2\text{O} \\ \end{array}$$ *i.e.* 254 g of I_2 is released by 34 g H_2O_2 \therefore 0.508 g of I_2 will be released by $$=\frac{34}{254}\times0.508=0.068$$ g 5 mL of H₂O₂ sol. contains 0.068 g of H₂O₂. ∴ 1 mL of $$H_2O_2$$ sol contains $\frac{0.068}{5}$ g H_2O_2 The strength of H_2O_2 is generally calculated in terms of **volume strength**. According to which, 10 volume of H_2O_2 means that 1 mL of H_2O_2 sol gives 10 mL of O_2 at STP. $$2H_2O_2 \longrightarrow 2H_2O + O_2$$ 32 gor $2 \times 34 \text{ g}$ $22 \times 400 \text{ pol of ST}$ *i.e.*, 68 g of H_2O_2 gives 22,400 mL of O_2 at STP or 1 mL of H_2O_2 sol or $$\frac{0.068}{5}$$ g of H₂O₂ gives $\frac{22,400}{68} \times \frac{0.068}{5} = 4.48$ mL or $1 \text{ mL of H}_2\text{O}_2$ sol gives 4.48 mL of O_2 *i.e.* strength of H_2O_2 sol is **4.48 volumes.** - 5. Example of oxidising character of H_2O_2 in alkaline medium $2Cr(OH)_3 + 4NaOH + 3H_2O_2 \rightarrow 2Na_2CrO_4 + 8H_2O$ Here, Cr^{3+} (Cr is a first row transition metal) is oxidised to Cr^{6+} . Example of reducing character of H_2O_2 in alkaline medium: - $2K_3[Fe(CN)_6]+2KOH+H_2O_2 \rightarrow 2K_4[Fe(CN)_6]+2H_2O+O_2$ Here, Fe^{3+} (Fe is a first row transition metal) is reduced to Fe^{2+} . - 6. $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$ $$\frac{[H_2O_2 + [O] \to H_2O + O_2] \times 5}{2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \to K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2}$$ 7. (i) The oxidation state of oxygen in H_2O_2 (i.e. -1) can be changed to 0 or -2 i.e. oxygen in H_2O_2 exists in an intermediate oxidation state with respect to O_2 and O^{2-} . Hence, it acts both as an oxidising and reducing agent. - (ii) H_2O_2 is a better oxidising agent than H_2O because oxidation number of oxygen in H_2O_2 is -1 and that in water it is -2. So, H_2O_2 easily reduces to -2 oxidation number. - 8. The mixture of N_2H_4 and H_2O_2 (in presence of Cu (II) catalyst) is used as a rocket propellant because the reaction is highly exothermic and large volume of gases are evolved, which can propel a rocket. $$N_2H_4 + 2H_2O_2 \xrightarrow{Cu(II)} N_2(g) \uparrow + 4H_2O(g) \uparrow$$ Hydrazine Hydrogen **9.** Ferricyanide is oxidised to ferrocyanide on treatment with alkali: $$2K_{3}[Fe(CN)_{6}] + H_{2}O_{2} + 2KOH$$ $$\rightarrow 2K_{4}[Fe(CN)_{6}] + 2H_{2}O + O_{2}$$ of solvated electrons.