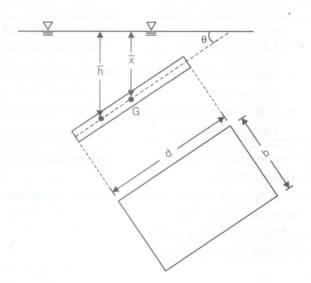
HYDROSTATIC FORCES ON SUBMERGED SURFACE

Case	Force	Center of pressure (h)
Horizontal Position	wAx	$h = \overline{x}$
Vertical Position	wAx	$h = \overline{x} + \frac{I_G}{A\overline{x}}$
Inclined Position	wAx	$h = \overline{x} + \frac{I_G}{A\overline{x}} \sin^2 \theta$



$$I_{G} = \frac{bd^{3}}{12}$$

(For rectangular plate)

$$I_G = \frac{\pi}{64} \text{ (diameter)}^4$$

(For circular plate)

Here,

A = Area of surface touching fluid

I_G = Area moment of inertia about centroidal axis and parallel to free axis.

 $\overline{\chi}$ = Vertical distance of C.O.G. of body from free surface.

 ω = Specific weight

 θ = Angle at which the surface is inclined with horizontal

HYDROSTATIC FORCES ON CURVED SURFACE

Horizontal Force (F_H)

Horizontal component of the resultant hydrostatic force 'F_x' of curved surface may be computed by projecting the surface upon a vertical plane and multiplying the projected area by the pressure at its own centre of area.

Vertical Force (F_V)

Vertical component of force 'F_y' is equal to the weight of the liquid block lying above the curved surface upto free surface.

• Resultant Force (F)

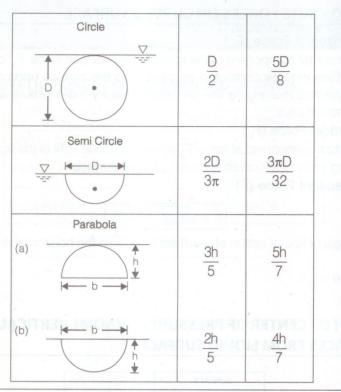
$$F = \sqrt{(F_H)^2 + (F_V)^2}$$

Angle of line of action of resultant force with the horizontal is given by

$$tan\theta = \frac{F_y}{F_x}$$

DEPTH OF CENTER OF PRESSURE FOR SOME VERTICAL PLANE SURFACES FROM LIQUID SURFACE

SURFACE	C.G. (\overline{x})	C.P. (h)
Rectangle O G-h D G G G G G G G G G G G G	<u>h</u> 2	2h 3
Trapezium -a- V	<u>a+2b</u> <u>h</u> a+b 3	<u>a+3b</u> <u>h</u> a+2b 2
Triangle A C G C C C C C C C C C C C	2h 3	3h 4
(b) b G	<u>h</u> 3	<u>h</u> 2



In case of vertical surface, when depth of immersion (\overline{x}) is very large then centre of pressure = centre of gravity