Quadratic Equations

INTRODUCTION

An equation of degree two is called a *quadratic equation*. The general form of a quadratic equation is $ax^2 + bx + c = 0$, where a, b, c are real numbers, $a \ne 0$ and x is a real variable. Some examples of quadratic equations are $x^2 + 4x + 3 = 0$, $3x^2 - 4x + 5 = 0$ and $3x^2 + 2x - 3 = 0$.

Roots of a Quadratic Equation

A *root* of the equation f(x) = 0 is that value of x which makes f(x) = 0. In other words, x = a is said to be a root of f(x) = 0, where f(a) is the value of the polynomial f(x) at x = a and is obtained by replacing x by a in f(x).

For example, -1 is a root of the quadratic equation $x^2 + 6x + 5 = 0$ because $(-1)^2 + 6(-1) + 5 = 0$.

Solution of a Quadratic Equation

If there is a quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, the roots of this equation are

$$\frac{-b+\sqrt{b^2-4ac}}{2a}$$
 and $\frac{-b-\sqrt{b^2-4ac}}{2a}$.

Illustration 1 Solve the following quadratic equations

(i)
$$6x^2 + x - 2 = 0$$

(ii)
$$2x^2 + x - 1 = 0$$

Solution: (i) Using formula:

The roots are
$$x = \frac{-1 \pm \sqrt{(1)^2 - 4(6)(-2)}}{2 \times 6}$$
$$= \frac{-1 \pm \sqrt{49}}{12} = \frac{6}{12}, \frac{-8}{12}$$

i.e.,
$$\frac{1}{2}$$
, $\frac{-2}{3}$

Using factorization:

$$6x^{2} + x - 2 = 0 \iff 6x^{2} + 4x - 3x - 2 = 0$$
$$\iff 2x (3x + 2) - 1 (3x + 2) = 0$$

$$\Leftrightarrow (2x+1)(3x+2) = 0$$

$$\Leftrightarrow x = \frac{1}{2} \text{ or, } x = -\frac{2}{3}$$

(ii) Using formula:

The roots are
$$x = \frac{-1 \pm \sqrt{(1)^2 - 4(2)(-1)}}{2 \times 2}$$

= $\frac{-1 \pm \sqrt{9}}{4} = \frac{-1 \pm 3}{4}$
= $\frac{2}{4}, \frac{-4}{4}$ i.e., $\frac{1}{2}, -1$

Using factorization:

$$2x^{2} + x - 1 = 0 \Leftrightarrow 2x^{2} + 2x - x - 1 = 0$$
$$\Leftrightarrow 2x(x+1) - 1(x+1) = 0$$
$$\Leftrightarrow (2x-1)(x-1) = 0$$
$$\Leftrightarrow x = \frac{1}{2} \text{ or, } x = -1$$

Nature of Roots

A quadratic equation has exactly two roots may be real or imaginary or coincident.

If $ax^2 + bx + c$, $a \ne 0$, then $D = b^2 - 4ac$ is called discriminant.

1. If D > 0, then there are two distinct and real roots given by

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

2. If D = 0, then there is a repeated real root given by $\alpha = -\frac{b}{2a}$ i.e., roots are real and equal.

3. If D < 0, then there are no real roots.

Note:

The roots are rational if D > 0 and D is a perfect square whereas the roots are irrational if D > 0 but D is not a perfect square.

Illustration 2 Find the nature of the roots of the equations

(i)
$$2x^2 + x - 1 = 0$$

(ii)
$$x^2 + x + 1 = 0$$

(iii)
$$x^2 + 5x + 5 = 0$$

(iv)
$$\frac{4}{3}x^2 - 2x + \frac{3}{4} = 0$$

Solution: (i) $D = (1)^2 - 4 \times 2 \times (-1) = 9 > 0$

Also, D is a perfect square.

So, the roots are real, distinct and rational.

(ii)
$$D = (1)^2 - 4 \times 1 \times 1 = -3 < 0$$

So, the roots are imaginary.

(iii)
$$D = (5)^2 - 4 \times 1 \times 5 = 5 > 0$$

Also, D is not a perfect square.

So, the roots are real, distinct and irrational.

(iv)
$$D = (-2)^2 - 4 \times \frac{4}{3} \times \frac{3}{4} = 0$$

So, the roots are real and equal.

Illustration 3 For what value of k will the quadratic equation $kx^2 - 2\sqrt{5}x + 4 = 0$ have real and equal roots

Solution:
$$D = (-2\sqrt{5})^2 - 4 \times k \times 4 = 20 - 16k$$

The given equation will have real and equal roots if D = 0

i.e.,
$$20 - 16k = 0$$
 or $k = \frac{20}{16} = \frac{5}{4}$

Note:

1. If $p+\sqrt{q}$ is a root of a quadratic equation, then its other root is $p-\sqrt{q}$.

Illustration 4 If $2 + \sqrt{3}$ is one root of a quadratic equation, find the other root

Solution: The other root is $2 - \sqrt{3}$

2. $ax^2 + bx + c$ can be expressed as a product of two linear factors only when $D \ge 0$

Illustration 5 For what value of k, the quadratic polynomial $kx^2 + 4x + 1$ can be factorized into two real linear factors

Solution:
$$D = (4)^2 - 4 \times k \times 1 = 16 - 4k$$
.

The given quadratic polynomial can be factorized into real linear factors if $D \ge 0$

i.e.,
$$16 - 4k \ge 0$$
 or, $-4k \ge -6$ or $k \le 4$

Relation Between Roots and Coefficients

Let α , β be the roots of the equation,

$$ax^2 + bx + c = 0$$

Then, sum of the roots

$$= \alpha + \beta = -\frac{b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$$

and product of the roots

$$= \alpha \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$$

Illustration 6 Find the sum and the product of the roots of the quadratic equation $2x^2 + 5\sqrt{3}x + 6 = 0$

Solution: Here,
$$a = 2$$
, $b = 5\sqrt{3}$, $c = 6$

$$\therefore$$
 Sum of the roots = $-\frac{b}{a} = -\frac{5\sqrt{3}}{2}$

Product of the roots =
$$\frac{c}{a} = \frac{6}{2} = 3$$

Formation of a Quadratic Equation with Given Roots

If α , β are the roots of a quadratic equation the equation can he written as

$$x^2 - (\alpha + \beta) x + \alpha \beta = 0$$

i.e., x^2 – (sum of roots)x + product of roots = 0

Illustration 7 Find the quadratic equation whose roots are 5 and -6

Solution: Sum of roots = 5 + (-6) = -1,

Product of roots = $5 \times (-6) = -30$

:. The required quadratic equation is

$$x^{2} - (-1)x + (-30) = 0$$
 i.e., $x^{2} + x - 30 = 0$

Practice Exercises

DIFFICULTY LEVEL-1 (Based on Memory)

1. If α and β are the roots of the	quardratic equation $ax^2 + bx$
$+ c = 0$, then the value of $\frac{\alpha^2}{\beta}$	$+\frac{\beta^2}{\alpha}$ is:

$$(a) \ \frac{2bc - a^3}{b^2c}$$

(a)
$$\frac{2bc - a^3}{b^2c}$$
 (b) $\frac{3abc - b^3}{a^2c}$

(c)
$$\frac{3abc - b^2}{a^3c}$$
 (d) $\frac{ab - b^2c}{2b^2c}$

$$(d) \frac{ab-b^2c}{2b^2c}$$

[Based on MAT, 2003]

2. If a, b are the two roots of a quadratic equation such that a +b=24 and a-b=8, then the quadratic equation having a and b as its roots is,

(a)
$$x^2 + 2x + 8 = 0$$

(b)
$$x^2 - 4x + 8 = 0$$

(a)
$$x^2 + 2x + 8 = 0$$

(b) $x^2 - 4x + 8 = 0$
(c) $x^2 - 24x + 128 = 0$
(d) $2x^2 + 8x + 9 = 0$

$$(d) 2x^2 + 8x + 9 = 0$$

[Based on MAT, 2003]

3. One-fourth of a herd of cows is in the forest. Twice the square root of the heard has gone to mountains and on the remaining 15 are on the banks of a river. The total number of cows is:

[Based on MAT, 2003]

4. If the roots of the equation

$$(c^2 - ab)x^2 - 2(a^2 - bc)x + (b^2 - ac) = 0$$

for $a \ne 0$ are real and equal, then the value of $a^3 + b^3 + c^3$ is:

- (a) abc
- (b) 3abc
- (c) zero
- (d) None of these

[Based on MAT, 2003]

5. If $2x^2 - 7xy + 3y^2 = 0$, then the value of x:y is:

- (a) 3:2
- (b) 2:3
- (c) 3:1 and 1:2
- (d) 5:6

[Based on MAT, 2003]

6. If α and β are the roots of the equation $x^2 + 2x - 1 = 0$ and γ and δ are the roots of the equation $x^2 + 3x - 4 = 0$, then find the value of $(\alpha + \gamma) (\beta + \delta) (\alpha + \delta) (\beta + \gamma)$.

- (a) -46
- (b) -24

(c) 0

(d) -64

7. Find the quadratic equation whose roots are α and β , given that $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$ are the roots of the equation $14x^2 - 45x + 81 = 0.$

- 8. If α , β are the roots of $X^2 8X + P = 0$ and $\alpha^2 + \beta^2 = 40$, then the value of P is:
 - (a) 8

- (b) 10
- (c) 12
- (d) 14

9. A man is 18X years old and his son is $2X^2$ years old. When he was $3X^2$ years old, his son was X + 4 years old. How old is he now?

- (a) 68 years
- (b) 70 years
- (c) 72 years
- (d) 74 years

10. In a family, eleven times the number of children is greater than twice the square of the number of children by 12. How many children are there?

(a) 3

(b) 4

(c) 2

(d) 5

11. For what values of k, the equation

- (a) 8, 2
- $x^{2} + 2(k-4)x + 2k = 0$ has equal roots? (b) 6, 4
- (c) 12, 2
- (d) 10, 4

[Based on HFT, 2003]

12. The number of quadratic equations which are unchanged by squaring their roots is:

- (a) 2
- (b) 4
- (c) 5
- (d) 6

[Based on FMS (Delhi), 2002]

13. If α and β are the two roots of the equation $2x^2 - 7x - 3 =$ 0, then find the value of $(\alpha + 2)(\beta + 2)$.

(a) 9

- (b) -9.5
- (c) 9.5

(d) 6

[Based on SCMHRD, 2002]

14. Given that α , γ are the roots of the equation $Ax^2 - 4x + 1$ = 0 and β , δ are the roots of the equation $Bx^2 - 6x + 1 = 0$, then the values of A and B, respectively, such that α , β , γ and δ are in H.P.

- (a) -5, 9
- (b) 3/2, 5
- (c) 3.8
- (d) None of these

15. A class decided to have a party for their class at a total cost of ₹720. Four students decided to stay out of the party. To meet the expenses the remaining students have to increase their share by ₹9. What is the original cost per student?

- (a) ₹18
- (b) ₹24
- (c) ₹36
- (d) ₹20

[Based on MAT (May), 2010]

16.	are extra in each row,	made to stand in rows. If 4 students there would be 2 rows less. If 4 a row, there would be 4 more rows. In the class is:
	(a) 90	(b) 94
	(c) 92	(d) 96
		[Based on MAT (Feb), 2006]
17.	The solutions of the $\sqrt{2}$	$\frac{1}{25 - x^2} = x - 1$ equation are:
	(a) $x = 3$ and $x = 4$	(b) $x = 5$ and $x = 1$
	(\underline{c}) $x = -3$ and $x = 4$	(d) $x = 4$ and $x = -3$
		[Resed on MAT 1990]

18. The value of x satisfying the equation

$$\sqrt{2x+3} + \sqrt{2x-1} = 2$$
 is:

(a) 3

(b) 2

(c) 1

[Based on MAT, 1999]

19. One-fourth of a herd of cows is in the forest. Twice the square root of the heard has gone to mountains and on the remaining 15 are on the banks of a river. The total number of cows is:

(a) 6

(b) 100

(c) 63

(d) 36

20. A positive number when decreased by 4, is equal to 21 times the reciprocal of the number. The number is:

(a) 3

(b) 5

(c) 7

(d) 9

[Based on MAT, 2000]

21. For which value of k does the following pair of equations yield a unique solution for x such that the solution is positive?

$$x^{2} - y^{2} = 0$$
$$(x - k)^{2} + y^{2} = 1$$

(a) 2

(b) 0

(c) $\sqrt{2}$

 $(d) -\sqrt{2}$

22. The sum of all the roots of $4x^3 - 8x^2 - 63x - 9 = 0$ is:

(a) 8

(b) 2

(c) -8

(d) -2

Based on FMS, 2011

23. The solution of $\sqrt{5x-1} + \sqrt{x-1} = 2$ is:

(a) x = 1

(b) x = 2

(c) $x = \frac{2}{3}$

(d) x = 2, x = 1

[Based on FMS, 2011]

24. Let $y = \frac{1}{2 + \frac{1}{3 + \frac{1}{2 + \frac{1}{2 + \dots}}}}$. What is the value of y?

(a)
$$\frac{\sqrt{13}+3}{2}$$

(b) $\frac{\sqrt{13}-3}{2}$

(c) $\frac{\sqrt{15}+3}{2}$

(d) $\frac{\sqrt{15}-3}{2}$

25. For what values of k, the equation $x^2 + 2(k-4)x + 2k = 0$ has equal roots?

(a) 8, 2

(b) 6, 4

(c) 12, 2

(d) 10, 4

26. If the sum of the roots of the quadratic equation $px^2 + qx + qx$ r = 0 is equal to the sum of the square of their reciprocals, mark all the correct statements.

(a) r/p, p/q and q/r are in AP

(b) p/r, q/p and r/q are in GP

(c) p/r, q/p and r/q are in HP

(d) p/r, q/p and r/q are in AP

[Based on ITFT, 2006]

27. If one root of the equation $ax^2 + bx + c = 0$ is double of the other, then $2b^2$ is equal to:

(a) 9 ca

(b) $c\sqrt{2} a$

(c) $2\sqrt{3}$ ac

(d) None of these

[Based on ITFT, 2008]

28. One of the roots of the equation $x^2 - x + 3m = 0$ is double of one of the roots of the equation $x^2 - x + m = 0$. If $m \ne 0$, then find its value.

(a) 1

(b) -1

(c) 2

(d) -2

29. If 4 is a solution of the equation $x^2 + 3x + k = 10$, where k is a constant, what is the other solution?

(a) -18

(c) -28

(d) None of these

[Based on ATMA, 2006]

30. The coefficient of x in the equation $x^2 + px + p = 0$ was wrongly written as 17 in place of 13 and the roots thus found were -2 and -15. The roots of the correct equation would be:

(a) -4, -9

(b) -3, -10

(c) -3, -9

(d) -4, -10

[Based on ATMA, 2006]

31. If the roots, x_1 and x_2 , of the quadratic equation $x^2 - 2x +$ c = 0 also satisfy the equation $7x_2 - 4x_1 = 47$, then which of the following is true?

(a) c = -15 (b) $x_1 = 5, x_2 = 3$ (c) $x_1 = 4.5, x_2 = -2.5$ (d) None of these

32. If $-2\sqrt{3}$ is a root of the equation $x^2 + px - 6 = 0$ and the equation $x^2 + px + q$ has equal roots, then the value of q is:

$4v \pm 79$			$\operatorname{quation}(a^2+b^2)x^2+2$			
	(a) $x \ge 3$	(b) $x = 2$		c^2) = 0 are real, wh	nich of the following	must hold true?
	$(c) x \le 3$	(d) x = 0		(a) $c^2 \ge a^2$	(b) $c^4 \ge a^2(b^2)$	$(c^2 + c^2)$
	(-)	[Based on ATMA, 2008]		(c) $b^2 \ge a^2$	$(d) \ a^4 \le b^2 (a$	$^{2}+c^{2}$)
34.	Which of the following a	equations has a root in common			[Ba	sed on CAT, 2012]
	with $x^2 - 6x + 5 = 0$?	equations has a root in common	40.	If p is a prime nur	nber and m is a posi	tive integer, how
		(b) $x^2 - 10x - 5 = 0$			st for the equation p^6	
	5-075	(d) $2x^2 - 2 = 0$		6)(p-1)?		
		[Based on ATMA, 2008]		(a) 0	(b) 1	
35.	If $(x-3)(2x+1)=0$, the	en possible value of $2x + 1$ are:		(c) 2	(d) Infinite	
	(a) 0 only	(b) 0 and 3	41	Thus assessition	175000 and 1750000	sed on CAT, 2012]
	(c) $-\frac{1}{2}$ and 3	(d) 0 and 7	41.	second and third po sum so obtained is a the total of the three	positive integers are r owers, respectively and perfect square whose original integers. Whice	d then added. The square root equals th of the following
36.		atic equation $y^2 + My + N$ are N			inimum, say m , of the	
	1000 m St 000 000	ible number of pairs of (M, N).		(a) $1 \le m \le 3$	$(b) \ 4 \le m \le 6$	
	(a) 0	(b) 1		(c) $7 \le m \le 9$	(d) $10 \le m \le$	12
	(c) 2	(d) 3		(e) $13 \le m \le 15$		[Based on, 2008]
		[Based on CAT, 2009]	42.	Two teams particip	ating in a competition	
37.	says that there are 100 en	work in the decimal system. She aployees in the office of which 2 en. Which number system does (b) 6 (d) 16		questions, and tea questions. Team A schedule while te schedule. If team B	eam B chose the eas ams A difficult test A completed the test am B completed it answered 7 questions y questions did team A	with 10% less 3 hours before 6 hours before more than team A
		[Based on CAT, 2009]		(a) 15	(b) 18	
38.	The equation $2x^2 + 2(p - 1)$	(x+1)x + p = 0, where p is real,		(c) 21	(d) 24	
	always has roots that are:		43.	7.77	$+bx^2 + cx + d$ inters	sects x-axis at 1
	(a) Equal				at 2. The value of b is	
	(b) Equal in magnitude b	ut opposite in sign		(a) -2	(b) 0	
	(c) Irrational			(c) 1	(d) 2	
	(d) Real			(e) Cannot be dete	rmined	
		[Based on CAT, 2010]				sed on XAT, 2014]
		DIFFICULTY	LEVE	L-2		
		(Based on	Мем	ORY)		
1.	Let n and a be the roots	of the quadratic equation $x^2 - $		(a) 10	(b) 7	
		at is the minimum possible value		(c) 6	(d) 12	
	of $p^2 + q^2$?			(0) 0	10000	sed on CAT, 2004]
	(a) 0	(b) 3	22	8400 Z0140		
	(c) 4	(d) 5	3.	The angry Arjun ca	arried some arrows to	o fight Bheeshma

[Based on CAT, 2003]

2. If both a and b belong to the set $\{1, 2, 3, 4\}$ then the number of equations of the form $ax^2 + bx + 1 = 0$ having

real roots is:

Pitamaha. Hiding behind Shikhandi with half the arrows,

he perished the arrows thrown by Pitamaha on him and

with six other arrows he killed the chariot driver (sarathi) of Pitamaha. Then with one arrow each, he knocked down the chariot, the flag on the chariot and the bow of Pitamaha

and finally with one more than four times the square root of the arrows, he laid down the Pitamaha unconscious on the arrow bed. Assuming he used all the arrows with him. the total number of arrows with Arjun was:

- (a) 4
- (b) 49
- (c) 100
- (d) 144
- **4.** If f(x, y, z) = sum of z terms of the sequence x, x + y, x + y2y ..., what is the value of z if f(1, 1, z) = 21?
 - (a) 3

(b) 4

(c) 6

- (d) 7
- 5. If l, m, n are real and l = m, then the roots of the equations $(l-m)x^2 - 5(l+m)x - 2(l-m) = 0$ are:
 - (a) Real and equal
- (b) Complex
- (c) Real and unequal
- (d) None of these
- 6. Which of the following expressions cannot be equal to zero, when $X^2 - 2X = 3$?
 - (a) $X^2 7X + 6$
- (b) $X^2 9$
- (c) $X^2 4X + 3$ (d) $X^2 6X + 9$

[Based on SCMHRD Ent. Exam., 2003]

Directions (Q. 7 to 12): In each of these questions, two equations I and II are given. You have to solve both the equations and give answer (a), if p < q (b), if $p \le q$; (c), if p = q, (d), if $p \ge q$ and (e), if p > q.

- 7. I. $p^2 18p + 77 = 0$
 - II. $3q^2 25q + 28 = 0$

[Based on IRMA, 2002]

- **8.** I. $6q^2 + q 1 0$
 - II. $6p^2 7p + 2 = 0$

[Based on IRMA, 2002]

- 9. I. $7p^2 + 6p 1 = 0$
 - II. $32q^2 20q + 3 = 0$

[Based on IRMA, 2002]

- **10.** I. $4p^2 = 9$
 - II. $2q^2 9q + 10 = 0$

[Based on IRMA, 2002]

- **11.** I. $2p^2 12p + 16 = 0$
 - II. $q^2 9q + 20 = 0$

[Based on IRMA, 2002]

- 12. If is a root of the equation $x^2 + px + q = 0$, where p and q are real, then (p, q) is:
 - (a)(2,3)
- (b) (-2,3)
- (c) (4,7)
- (d)(-4,7)

[Based on FMS (Delhi), 2002]

- 13. A quadratic function f(x) attains a maximum of 3 at x = 1. The value of the function at x = 0 is 1. What is the value of f(x) at x = 10?
 - (a) -110
- (b) -180
- (c) -105
- (d) -159

[Based on CAT, 2007]

- **14.** If a is an integer, then for how many integer values of n can the quadratic equation $x^2 - (2a + 3)x + 4^n = 0$ have real and equal roots for x?
 - (a) 0
 - (d) 3(c) 2
- 15. If p, r are positive and are in AP, the roots of quadratic equation $px^2 + qx + r = 0$ are real for:

 - (a) $\left| \frac{r}{p} 7 \right| \ge 4\sqrt{3}$ (b) $\left| \frac{p}{r} 7 \right| \ge 4\sqrt{3}$
 - (c) all p and r
- (d) no p and r
- 16. The sum of all the real roots of the equation $|x-2|^2 + |x-2| - 2 = 0$ is:
 - (a) 2
- (b) 3
- (c) 4
- (d) None of these
- 17. Let a, b, c be real, if $ax^2 + bx + c = 0$ has two real roots α ,
 - β , where $\alpha < -1$ and $\beta > 1$, then the value of $1 + \frac{c}{a} + \frac{b}{a}$
 - (a) less than zero
- (b) greater than zero
- (c) equal to zero
- (d) equal to $b^2 4ac$
- 18. The values of a for which the quadratic equations (1-2a) $x^2 - 6ax - 1 = 0$ and $ax^2 - x + 1 = 0$ have at least one root
 - (a) $\frac{1}{2}, \frac{2}{9}$
- (b) $0, \frac{1}{2}$
- (c) $\frac{2}{9}$
- (d) $0, \frac{1}{2}, \frac{2}{9}$
- 19. If the roots of $ax^2 + bx + c = 0$, a > 0, be each greater than unity, then:
 - (a) a + b + c = 0
- (b) a+b+c>0
 - (c) a+b+c<0
- (d) None of these
- **20.** If *n* is such that $36 \le n \le 72$, then

$$x = \frac{n^2 + 2\sqrt{n}(n+4) + 16}{n + 4\sqrt{n} + 4}$$
 satisfies

- (a) 20 < x < 54
- (b) 23 < x < 58
- (c) 25 < x < 64
- (d) 28 < x < 60
- 21. A telecom service provider engages male and female operators for answering 1000 calls per day. A male operator can handle 40 calls per day whereas a female operator can handle 50 calls per day. The male and the female operators get a fixed wage of ₹250 and ₹300 per day respectively. In addition, a male operator gets ₹15 per call he answers and a female operator gets ₹10 per call she answers. To minimize the total cost, how many male operators should the service provider employ assuming he has to employ more than 7 of the 12 female operators available for the job?
 - (a) 15
- (b) 14
- (c) 12
- (d) 10

		200 m	$x^2 - bx m-1$	
	(a) $p \le 6, p = -1$	(b) $p = 6, p = -2$	30. If $\frac{1}{ax-c} = \frac{1}{m+1}$ has re	oots which are numerically equal
	$(c)\ p\leq 6, p\leq 1$	(d) $p \ge 6, p = 1$	but of opposite signs, the	
		[Based on SNAP, 2008]	a-b	a+b
23.	Each boy contributed ruj	pees equal to the number of girls	(a) $\frac{a-b}{a+b}$	(b) $\frac{a+b}{a-b}$
	and each girl contributed	d rupees equal to the number of	0.000 (50.0000)	100 TO 10
		ents. If the total contribution thus	(c) c	(d) 1/c [Based on FMS, 2011]
	collected is ₹1600, how	many boys are there in the class?	21 In aching a mahlam that	
	(a) 30	(b) 25	그리고 있어 아프라이트 아이지 않는 아무리를 하고 있다면 하는데 하는데 하는데 되었다.	t reduces to a quadratic equation ke only in the constant term of the
	(c) 50	(d) Data inadequate		d 2 for the roots. Another student
		[Based on FMS (MS), 2006]	and the second s	coefficient of the first degree term
24.	If the ratio between the r	oots of the equation $lx^2 + mx + n$	and finds -9 and -1 for th	e roots. The correct equation is:
		276	(a) $x^2 - 10x + 9 = 0$	
	= 0 is $p : q$, then the valu	e of $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}}$ is:	(c) $x^2 - 10x + 16 = 0$	(d) $x^2 - 8x - 9 = 0$
		$\bigvee q \bigvee p \bigvee l$		[Based on FMS, 2011]
	(a) 4	(b) 3	32. The values of y which wi	ll satisfy the equations,
	(c) 0	(d) -1	$2x^2 + 6$	x + 5y + 1 = 0
		[Based on FMS, 2005]	2x	+y+3=0
25	Vaidva and Vandana solve	ed a quadratic equation. In solving	may be found by solving:	
23.		in the constant term and obtained	(a) $x^2 + 14y - 7 = 0$	(b) $y^2 + 8y + 1 = 0$
	The second of the second secon	e Vandana made a mistake in the	(c) $y^2 + 10y - 7 = 0$	(d) $y^2 + y - 12 = 0$
		obtained the roots as -7 and -1.		[Based on FMS, 2011]
	The correct roots of the e		33. If the roots of the equation	on $\frac{x+a}{x+a+c} + \frac{x+b}{x+b+c} = 1$ are
	(a) 6, 1	(b) 7, 2		
	(c) 6, 2	(d) 7, 1	equal in magnitude but of	pposite in sign, then:
	(7) 5, -	[Based on FMS, 2006]	(a) $c \ge a$	(b) $a \ge c$
•			(c) $a + b = 0$	$(d) \ a = b$
20.	= 3, then x^2 is between:	g the equation $\sqrt[3]{x+9} - \sqrt[3]{x-9}$		the other root in the equation $x^2 +$
				ect relationship in the following
	(a) 55 and 65	(b) 65 and 75	options.	
	(c) 75 and 85	(d) 85 and 95	(a) $p^3 - q(3p+i) + q^2 = 0$ (b) $p^3 - q(3p-1) + q^2 = 0$	0
		[Based on FMS, 2010]	(b) $p^2 - q(3p - 1) + q^2 = 0$ (c) $p^3 + q(3p - 1) + q^2 = 0$	
27.		ues of x satisfying the equation	(d) $p^3 - q(3p-1) + q^2 = 0$	
	$2^{2x^2 - 7x + 5} = 1$		(a) p q(3p 1) q	[Based on ITFT, 2006]
	(a) 1	(b) 2	35. Find the root of the quadr	ratic equation $bx^2 - 2ax + a = 0$
	(c) 4	(d) More than 4	\sqrt{b}	\sqrt{a}
		[Based on FMS, 2010]	(a) $\frac{\sqrt{b}}{\sqrt{b} \pm \sqrt{a-b}}$	(b) $\sqrt{b} \pm \sqrt{a-b}$

22. The inequality of $p^2 + 5 < 5p + 14$ can be satisfied, if:

28. Which of the following sets of x-values satisfy the

29. For what value (s) of k does the pair of equations $y = x^2$

(d) $\frac{3}{2} < x < 2$

(b) $\frac{9}{4}$ (d) $\frac{9}{4}$ or $-\frac{9}{4}$

(a) $-2 < x < \frac{3}{2}$ (b) $x > \frac{3}{2}$ or x < -2

and y = 3x + k have two identical solutions:

inequality $2x^2 + x < 6$

(c) $x < \frac{3}{2}$

(c)
$$\frac{\sqrt{a}}{\sqrt{a} \pm \sqrt{a-b}}$$
 (d) $\frac{\sqrt{a}}{\sqrt{a} \pm \sqrt{a+b}}$

[Based on HFT, 2010]

36. If the common factor of $px^2 + qx + r$ and $qx^2 + px + r$ is (x+2), then:

(a)
$$p = q$$
 or $p + q + r = 0$ (b) $p = r$ or $p + q + r = 0$

(c)
$$q = r$$
 or $p + q + r = 0$ (d) $p = q = r$

[Based on XAT, 2006]

37. For which value of non-negative 'a' will the system $x^2 - y^2 = 0$, $(x - a)^2 + y^2 = 1$ have exactly three real solutions?

(a)
$$-\sqrt{2}$$
 (b) 1

(c) $\sqrt{2}$ (d) 2

[Based on FMS, 2010]

[Based on FMS, 2010]

[Based on XAT, 2007]

- **38.** If $0 , then roots of the equation <math>(1-p)x^2 + 4x + p =$ 0 are ...?
 - (a) both 0
- (b) imaginary
- (c) real and both positive (d) real and both negative

[Based on XAT, 2008]

- **39.** The number of possible real solutions of v in equation $y^2 - 2y \cos x + 1 = 0$ is ...?
 - (a) 0

- (b) 2
- (c) 1
- (d) 3

[Based on XAT, 2008]

- **40.** Let a and b be the roots of the quadratic equation $x^2 + 3x 4$ 1 = 0. If $P_n = a^n + b^n$ for $n \ge 0$, then, for $n \ge 2$, P_n is equal

- $\begin{array}{ll} (a) \ -3P_{n-1} + P_{n-2} & (b) \ 3P_{n-1} + P_{n-2} \\ (c) \ -P_{n-1} + 3P_{n-2} & (d) \ P_{n-1} + 3P_{n+1} \end{array}$

[Based on XAT, 2009]

41. If one of the roots of a quadratic equation is $\frac{115}{11+\sqrt{6}}$, then the quadratic equation must be:

- (I) $x^2 + 22x + 115 = 0$
- (II) $2x^2 + 44x + 115 = 0$
- (III) $x^2 22x 115 = 0$
- (IV) $x^2 22x + 115 = 0$
- (a) I only
- (b) II only
- (c) III only
- (d) IV only

[Based on ATMA, 2008]

- 42. If a, b and c are roots of $x^3 6x^2 + 11x 6 = 0$ and the roots of the equation $x^3 - px^2 + qx - r = 0$ are a + b, b + c and c+ a, then r equals:
 - (a) 40
- (b) 50
- (c) 60
- (d) 70

[Based on JMET, 2009]

- 43. A man covers a certain distance on a toy train. If the train moved 4 Km/h faster, it would take 30 minutes less. If it moved 2 Km/h slower, it would have taken 20 minutes more. What is the distance covered?
 - (a) 65 Km
- (b) 60 Km
- (c) 70 Km
- (d) 75 Km

[Based on MAT, 2013]

Answer Keys

DIFFICULTY LEVEL-1

- 1. (b) 2. (c) 3. (d) 4. (b) 5. (c)
- 6. (a) 7. (b)
- 9. (c)
- **10.** (b) **11.** (a) **12.** (a) **13.** (c)

- 14. (c) 15. (c)
- 16. (d)
- 17. (d) 18. (d)
- 19. (d)
- 20. (c)
- 21. (c) **22.** (b)

- 27. (a) 28. (d)
- 29. (b)

16. (c)

- 30. (b)
- 31. (a) 32. (a)
- 33. (b)

8. (c)

- 23. (a) 24. (d) 25. (a) 26. (a, c)
- **34.** (d) **35.** (d) **36.** (c) **37.** (b) **38.** (d) **39.** (a)

40. (b) **41.** (a) 42. (b) 43. (a)

DIFFICULTY LEVEL-2

- 1. (d) 2. (b) 3. (c) 15. (b)
- 4. (c) 17. (c)

43. (b)

- 5. (c) 6. (a)
- 7. (d)
- 8. (c)
- 9. (a) 10. (a) 11. (b) 12. (d) 13. (d) **22.** (c)

 - 23. (d) 24. (a) 25. (d) 26. (c)

- **14.** (b) 27. (b)
- 28. (a)
- 30. (a) 29. (c)
- 18. (c) 19. (b) 31. (a) 32. (c)
- 20. (c) 33. (a)
- 21. (d)

- **34.** (b) **35.** (c) **36.** (a) **37.** (b) **38.** (d) **39.** (b)

- **40.** (a) 41. (c) 42. (c)
- **Explanatory Answers**

DIFFICULTY LEVEL-1

1. (b)
$$\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$$
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$
$$= \frac{b^2}{a^2} - \frac{2c}{a} = \frac{b^2 - 2ac}{a^2}$$
$$\therefore \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$$

$$=\frac{(\alpha+\beta)(\alpha^2+\beta^2-\alpha\beta)}{\alpha\beta}$$

$$=\frac{\left(-\frac{b}{a}\right)\left(\frac{b^2-2ac}{a^2}-\frac{c}{a}\right)}{\frac{c}{a}}$$

$$= \frac{-b(b^2 - 3ac)}{a^3} \times \frac{a}{c}$$
$$= \frac{3abc - b^3}{a^2c}.$$

2. (c)
$$a+b=24, a-b=8 \Rightarrow a=16, b=8$$

.. Required equation is the one whose sum of the roots is 24 and product of the roots is 128 $x^2 - 24x + 128 = 0$

3. (d) Suppose total number of cows = x

 $\frac{1}{4}$ x of the cows are in forest,

 $2\sqrt{x}$ have gone to mountains and 15 are on the banks

$$\therefore 2\sqrt{x} + \frac{1}{4}x + 15 = x$$

$$\Rightarrow 2\sqrt{x} - \frac{3}{4}x + 15 = 0$$

$$\Rightarrow 8\sqrt{x} - 3x + 60 = 0$$

$$\Rightarrow 3(\sqrt{x})^2 - 8\sqrt{x} - 60 = 0$$

$$\Rightarrow 3(\sqrt{x})^2 - 18\sqrt{x} + 10\sqrt{x} - 60 = 0$$

$$\Rightarrow 3\sqrt{x}(\sqrt{x} - 6) + 10(\sqrt{x} - 6) = 0$$

$$\Rightarrow \sqrt{x} = 6, \sqrt{x} = -\frac{10}{3}$$

$$\Rightarrow x = 36.$$

4. (b) Discriminant $= [2(a^2 - bc)]^2 - 4(c^2 - ab)(b^2 - ac) = 0$ for the roots to be equal $\therefore a^4 + b^2c^2 - 2a^2bc - c^2b^2 + ac^3 + ab^3 - a^2bc = 0$ $\Rightarrow a^3 - 2abc + c^3 + b^3 - abc = 0$ $\Rightarrow a^3 + b^3 + c^3 = 3abc$.

5. (c)
$$2\frac{x^2}{y^2} - 7\frac{x}{y} + 3 = 0$$

$$\Rightarrow \frac{x}{y} = \frac{7 \pm \sqrt{49 - 24}}{2 \times 2}$$

$$= \frac{7 \pm 5}{4} = 3, \frac{1}{2}.$$

 \Rightarrow

6. (a)
$$(\alpha + \gamma) (\beta + \delta) (\alpha + \delta) (\beta + \gamma)$$

$$= [(\alpha + \gamma) (\beta + \gamma)] [(\beta + \delta) (\alpha + \delta)]$$

$$= [\alpha\beta + \gamma(\alpha + \beta) + \gamma^2] [\alpha\beta + \delta(\alpha + \beta) + \delta^2]$$

$$= (-1 - 2\gamma + \gamma^2) (-1 - 2\gamma + \delta^2)$$

[Since γ and δ are the roots of the equation $x^2 + 3x - 4 = 0$ $= (\gamma^2 + 3\gamma - 4 - 5\gamma + 3) (\delta^2 + 3\delta - 4 - 5\delta + 3)$ $=(-5\gamma+3)(-5\delta+3)$ $= (25\gamma\delta + 9 - 15(\delta + \gamma))$

7. (b) Given that
$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = \frac{45}{14}$$

and, $\left(\alpha + \frac{1}{\beta}\right) \times \left(\beta + \frac{1}{\alpha}\right) = \frac{81}{14}$
 $\Rightarrow (\alpha + \beta) + \frac{\left[(\alpha + \beta)^2 - 2\alpha\beta\right]}{\alpha\beta} = \frac{45}{14}$
 $\Rightarrow \alpha\beta + \frac{1}{\alpha\beta} + 2 = \frac{81}{14}$

=(-100+9+45)=-46.

Solve for $\alpha\beta$ and $(\alpha + \beta)$, we get

$$\alpha + \beta = \frac{5}{2}$$
 and $\alpha\beta = \frac{7}{2}$

Therefore, $2x^2 - 5x + 7 = 0$.

8. (c) We have,
$$\alpha + \beta = 8$$
, $\alpha\beta = P$
 $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
 $= 64 - 2P = 40$ (given)

9. (c) By the condition given in question

$$3X^{2} - 18X = X + 4 - 2X^{2}$$

$$\Rightarrow 5X^{2} - 19X - 4 = 0$$

$$\Rightarrow (5X + 1)(X - 4) = 0$$

$$\Rightarrow X = 4 \text{ or } X = -\frac{1}{5}$$

So, the present age of man = $18 \times 4 = 72$ years

Note: Can be directly obtained from options.

Man's present age is given as 18X years.

Therefore the answer should be divisible by 18 and from options only 72 is divisible by 18.

10. (b) Let the number of children in the family be X. Given: $11X - 12 = 2X^2 \Rightarrow 2X^2 - 11X + 12 = 0$ Solving the quadratic equation, we get

$$X = \frac{3}{2} \text{ or } X = 4$$

Number of children can not be $\frac{3}{2}$. Hence the number of children is 4.

11. (a) For any quadratic equation, $ax^2 + bx + c = 0$, to have equal roots,

$$b^2 - 4ac = 0$$

$$\Rightarrow [2 (k-4)]^2 - 4 \times 2k = 0$$

$$\Rightarrow (k-4)^2 - 2k = 0$$

$$\Rightarrow k+16-8k-2k = 0$$

$$\Rightarrow k^2 - 10k + 16 = 0$$

$$\Rightarrow k=8, 2.$$

12. (a) Let the equation be $ax^2 + bx + c = 0$ Suppose its roots are α and β .

Then,
$$\alpha + \beta = -\frac{b}{a}$$
 (1)

$$\alpha\beta = \frac{c}{a} \tag{2}$$

Also,
$$\alpha^2 + \beta^2 = -\frac{b}{a}$$
 (3)

$$\alpha^2 \beta^2 = \frac{c}{a} \tag{4}$$

From (2) and (4), we get

$$\Rightarrow$$
 $\alpha\beta = 1 \text{ or } c = a$

From (1), we get

$$\alpha^2 + \beta^2 + 2\alpha\beta = \frac{b^2}{a^2}$$

$$\Rightarrow \frac{-b}{a} + 2 = \frac{b^2}{a^2}$$

$$\Rightarrow$$
 $b^2 + ab - 2a^2 = 0$

or,
$$b = \frac{-a \pm \sqrt{a^2 + 8a^2}}{2} = a, -2a.$$

$$\mathbf{13.} \ (c) \qquad \qquad \alpha + \beta = \frac{7}{2}$$

$$\alpha\beta = \frac{-3}{2}$$

$$(\alpha + 2) (\beta + 2) = \alpha \beta + 2\alpha + 2\beta + 4$$

$$= \alpha \beta + 2 (\alpha + \beta) + 4$$

$$= \frac{3}{2} + 2 \times \frac{7}{2} + 4$$

$$= \frac{-3}{2} + 11 = \frac{19}{2} = 9.5.$$

14. (c) Let us consider choice (a). When we put the values of A and B respectively, we get the values of α, β, γ and δ as -1, 1/3, 1/5, 1/3, which are not in H.P. So, this option is not correct.

Now for our convenience we consider choice (c), then by substituting the values of A and B, we get the value of α , β , γ and δ as 1, 1/2, 1/3 and 1/4 which are in H.P. Hence, this could be the correct choice.

15. (c) Let original cost per student be ξx .

16. (d) Let no. of rows be x and no. of students in each row be n

Then, total no. of students = xn

Again,
$$(n + 4)(x - 2) = (n - 4)(x + 4) = xn$$

$$\Rightarrow \qquad n = 12 \text{ and } x = 8$$

$$\therefore$$
 No. of students = $12 \times 8 = 96$.

17. (d)
$$\sqrt{25 - x^2} = x - 1$$

$$\Rightarrow 25 - x^2 = (x - 1)^2$$

$$\Rightarrow 25 - x^2 = x^2 + 1 - 2x$$

$$\Rightarrow 2x^2 - 2x - 24 = 0$$

$$\Rightarrow x^2 - x - 12 = 0$$

$$\Rightarrow (x - 4)(x + 3) = 0$$

$$\Rightarrow x = 4, x = -3.$$

18. (d) $x = \frac{1}{2}$ satisfies the given equation.

19. (*d*) Suppose total number of cows = x

$$\frac{1}{4}$$
 x of the cows are in forest,

 $2\sqrt{x}$ have gone to mountains and 15 are on the banks of a river.

20. (c) Suppose the positive number is x.

According to the question,

$$x-4 = 21 - \frac{1}{x}$$
or, $x^2 - 4x = 21$
or, $x^2 - 4x - 21 = 0$
or, $x(x-7) + 3(x-7) = 0$
or, $(x-7)(x+3) = 0$
 \therefore $x = 7$ or $x = -3$
Since x is positive

21. (c)
$$y^{2} = x^{2}$$

$$2x^{2} - 2kx + k^{2} - 1 = 0$$

$$D = 0$$

$$4k^{2} = 8k^{2} - 8 \Rightarrow 4k^{2} = 8$$

$$\Rightarrow k = \sqrt{2}.$$

22. (b) Sum of the roots =
$$-\frac{\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$$

= $\frac{(-8)}{4} = 2$.

23. (a)
$$\sqrt{5x-1} + \sqrt{x-1} = 2$$
 $\sqrt{5x-1} = 2 - \sqrt{x-1}$

Squaring both sides,

$$5x - 1 = 4 + x - 1 - 2\sqrt{x - 1}$$
$$4x - 4 = -2\sqrt{x - 1}$$
$$2x - 2 = -\sqrt{x - 1}$$

Squaring both sides,

$$4x^{2} + 4 - 8x = x - 1$$

$$4x^{2} - 9x + 5 = 0 \Rightarrow (4x - 5)(x - 1) = 0$$

$$x = \frac{5}{4} \text{ or, } x = 1$$

 $x = \frac{5}{4}$ does not satisfy the original equation.

Since
$$y = \frac{1}{2 + \frac{1}{3 + \frac{1}{2 + \frac{1}{3 + \dots}}}}$$

$$\Rightarrow \qquad y = \frac{1}{2 + \frac{1}{3 + y}}$$

$$\Rightarrow \qquad y = \frac{3 + y}{6 + 2y + 1}$$

or,
$$2y^2 + 7y = 3 + y$$
 or, $2y^2 + 6y - 3 = 0$

$$\therefore \qquad y = \frac{-6 \pm \sqrt{36 + 24}}{4}$$

$$= \frac{-3 \pm \sqrt{15}}{2}$$

As the contained fraction is positive, $y = \frac{\sqrt{15} - 3}{2}$.

25. (a) For any quadractic equation, $ax^2 + bx + c = 0$, to have equal roots,

$$b^{2} - 4ac = 0 \Rightarrow [2(k-4)]^{2} - 4 \times 2k = 0$$

$$\Rightarrow (k-4)^{2} - 2k = 0$$

$$\Rightarrow k+16 - 8k - 2k = 0$$

$$\Rightarrow k^{2} - 10k + 16 = 0$$

$$\Rightarrow k = 8, 2.$$

26. (*a*, *c*) Option (*a*) is correct.

Option (b) is incorrect.

Option (c) as P, Q, R in AP their reciprocals are in HP.

Option (d) is wrong as these terms in HP, not in AP. Hence, Options (a) and (c) are correct.

27. (a) Let the roots of the given equation are α and β .

Given,
$$\alpha = 2\beta$$
 (1)

Given equation be $x^2 + bx + c = 0$

Sum of the roots
$$(\alpha + \beta) = -\frac{b}{a}$$

and product of roots $(\alpha \times \beta) = \frac{c}{a}$

From $\alpha + \beta = -\frac{b}{a}$

$$2 \beta + \beta = -\frac{b}{a} \qquad \text{[by Eq. (1)]}$$

$$\Rightarrow \qquad 3\beta = -\frac{b}{a} \Rightarrow \beta = -\frac{b}{3a}$$

$$\beta^2 = \frac{b^2}{9a^2} \qquad (2)$$

Now, $\alpha \times \beta = \frac{c}{a}$

$$2\beta \times \beta = \frac{c}{a} \Rightarrow 2\beta^2 = \frac{c}{a}$$

$$\Rightarrow \qquad \qquad \beta^2 = \frac{c}{2a} \tag{3}$$

From Eqs. (2) and (3)
$$\frac{b^2}{9a^2} = \frac{c}{2a}$$

$$2b^2 = \frac{9a^2 + c}{a} = 9ca$$
$$2b^2 = 9ca.$$

28. (d) Let α , β be the roots of the equation

...

$$x^{2}-x+m=0$$

$$\alpha+\beta=1, \alpha\beta=m$$
(1)

Let 2α , γ be the roots of the equation

$$x^2 - x + 3m = 0$$

$$\therefore \qquad 2\alpha + \gamma = 1, \, 2\alpha\gamma = 3m \qquad (2)$$

$$(1) \Rightarrow \alpha + \frac{m}{\alpha} = 1$$

$$(2) \Rightarrow \alpha^2 - \alpha + m = 0 \tag{3}$$

$$\Rightarrow \qquad 2\alpha + \frac{3m}{2\alpha} = 1$$

$$\Rightarrow 4\alpha^2 - 2\alpha + 3m = 0 \tag{4}$$

Equations (3) and (4)

$$\Rightarrow m = 2\alpha$$

$$\therefore \qquad 2\alpha\gamma = 3m \Rightarrow \gamma = 3$$

$$\therefore \qquad 2\alpha + \gamma = 1 \Rightarrow \alpha = -1$$

$$\alpha+\beta=1 \Longrightarrow \beta=2$$

$$\therefore \qquad \alpha = -1, \ \beta = 2, \ \gamma = 3 \Rightarrow m = -2.$$

29. (b) Equation $x^2 + 3x + k = 0$ puting x = 4

$$16 + 12 + k = 0$$

$$k = -28$$

By option method, put x = -7

$$x^{2} + 3x + k = (-7)^{2} + 3(-7) - 28$$

= $49 - 21 - 28$
= 0 satisfy equation.

$$r = -7$$

30. (b) Equation $x^2 + px + q = 0$

If coefficient of x was wrong the product = 30

 \therefore Roots of correct equation are -3, $-10 \rightarrow 30$.

31. (a) We have, $7x_2 - 4x_1 = 47$

and,
$$x_1 + x_2 = 2$$

On solving, $11x_1 = 55 \text{ or } x_1 = 5$

$$\therefore$$
 $x_2 = -$

$$c = -15$$

32. (a) Given that $-2\sqrt{3}$ is a root of

$$x^2 + p x - 6 = 0 ag{1}$$

$$\therefore$$
 $-2\sqrt{3}$ must satisfy Eq. (1)

Put $x = -2\sqrt{3}$ in Eq. (1), we have

$$(-2\sqrt{3})^2 + p(-2\sqrt{3}) - 6 = 0$$

$$\Rightarrow 12 - 2\sqrt{3}p - 6 = 0$$

$$\Rightarrow \qquad \qquad 6 = 2\sqrt{3}p$$

$$p = \frac{6}{2\sqrt{3}} = \sqrt{3}$$

Another given equation is

$$x^2 + p x + q = 0$$

$$\Rightarrow \qquad x^2 + \sqrt{3} x + q = 0 \tag{2}$$

Also, given that Eq. (2) has equal roots let α be the root of Eq. (2)

Then, sum of roots
$$=\frac{-b}{a}=\frac{-\sqrt{3}}{1}=-\sqrt{3}$$

i.e.,
$$(\alpha + \alpha) = -\sqrt{3}$$

$$\therefore \qquad \alpha = \frac{-\sqrt{3}}{2} \tag{3}$$

and product of roots = $\frac{c}{a}$

$$\Rightarrow \alpha \times \alpha = \frac{q}{1}$$

$$\alpha^2 = q$$

$$\therefore \qquad q = \left(\frac{-\sqrt{3}}{2}\right)^2 \qquad \text{[by Eq. (3)]}$$

$$\therefore \qquad q = \frac{3}{4} \, .$$

33. (b) Suppose
$$y = x^2 - 4x + 7$$

For minimum value of y, $\frac{dy}{dx}$ must be 0.

i.e.,
$$\frac{d}{dx}(x^2) - 4\frac{d(x)}{dx} + \frac{d(7)}{dx} = 0$$

$$\Rightarrow 2x - 4 + 0 = 0$$

$$\Rightarrow$$
 $2x = 4 \Rightarrow x = 2.$

34. (d)
$$x^2 - 6x + 5 = 0$$

$$\Rightarrow x^2 - 5x - x + 5 = 0$$

$$\Rightarrow x(x-5)-1(x-5)=0$$

$$\Rightarrow (x-5)(x-1)=0$$

$$x = 5 \text{ or, } 1$$

:. Roots of given equation are 5 and 1.

Now, roots of equation (4)

i.e.,
$$2x^2 - 2 = 0$$

$$\Rightarrow$$
 $2x^2 = 2, x^2 = 1$

$$\therefore$$
 $x = \pm 1$

Which is common with root of Eq. (1).

35. (d) Given,
$$(x-3)(2x+1) = 0$$

Then, $(x-3) = 0$

$$\Rightarrow \qquad \qquad x = 3$$

and,
$$(2x+1) = 0$$

If
$$x = 3$$
, then $(2x + 1) = 7$

 \therefore Possible values of (2x + 1) are 0 and 7.

36. (c) As M and N are the roots of $y^2 + My + N = 0$, M + N = -M and MN = N $MN = N \Rightarrow N = 0$ or M = 1 If N = 0, then $M = -M \Rightarrow M = 0$ If M = 1, then $N = -2M \Rightarrow N = -2$ That is two (M, N) pairs (0, 0) and (1, -2) are possible.

37. (b) Let the required number system be N, then $(100)_{N} = (24)_{N} + (32)_{N}$ $N^{2} = 2N + 4 + 3N + 2 = 5N + 6$ $\Rightarrow N^{2} - 5N - 6 = 0$ $\Rightarrow (N+1)(N-6) = 0$ So, N = 6 as -1 is not possible.

38. (d) We have,

$$a = 2$$
, $b = 2(p+1)$ and $c = p$.

Therefore, the discriminant is

$$[2(p+1)]^{2} - 4 \cdot 2 \cdot p$$

$$= 4(p+1)^{2} - 8p$$

$$= 4[(p+1)^{2} - 2p]$$

$$= 4[(p^{2} + 2p + 1) - 2p]$$

$$= (4p^{2} + 1)$$

For any real value of p, $4(p^2 + 1)$ will always be positive as p^2 cannot be negative for real p.

Hence, the roots of the quadratic equation are real.

39. (a) Since the roots of the given equation are real, therefore

$$(2(b^2 + c^2))^2 - 4(a^2 + b^2)(b^2 + c^2) \ge 0$$

$$\Rightarrow (b^2 + c^2) - (a^2 + b^2) \ge 0$$

$$\Rightarrow c^2 \ge a^2.$$

40. (b) We have,

$$\frac{p^6 - p}{p - 1} = m^2 + m + 6$$

$$\Rightarrow p^5 + p^4 + p^3 + p^2 + p = m(m + 1) + 6$$

41. (a) Let the three consecutive positive integers be

(n-1), n and (n+1)
Given,
$$n+1+n^2+(n+1)^3=(3n)^2$$

 $\Rightarrow n^3+4n^2+4n=9n^2$
 $\Rightarrow n^2-5n+4=0$
 $\Rightarrow n=1 \text{ or } n=4$

Since, the three integers are positive, the value of 'n' cannot be equal to 1, therefore the value of n = 4 or m = n - 1 = 3

Hence, three consecutive integers are 3, 4 and 5 Hence, option (a) is the correct choice.

42. (b) Number of questions for team A = 300

Also, number of questions for team B 90% of 300

$$=\frac{90\times300}{100}=270$$

Now, let the questions attempted per hour by A = xThen, questions attempted per hour by B = x + 7We are given,

$$\frac{270}{x} + 3 = \frac{300}{x+7} + 6$$

$$\frac{270}{x} = \frac{300}{x+7} + 3$$

$$\frac{270}{x} = \frac{300+3(x+7)}{x+7}$$

$$270(x+7) = (300+3x+21)x$$

$$270x+1890 = 321x+3x^2$$

$$3x^2 + 51x - 1890 = 0$$

$$x^2 + 17x - 630 = 0$$

$$x^2 + 35 - 18x - 630 = 0$$

$$x(x+35) - 18(x+35) = 0$$

$$(x-18)(x+35) = 0$$

$$\Rightarrow x = 18, -35$$

So, team A attempted 18 questions per h.

(\therefore Negative value of x is not permitted)

43. (a) $ax^3 + bx^2 + cx + d$ intersect x-axis at 1 and -1 Hence when x = 1 or -1 then

$$ax^3 + bx^2 + cx + d = 0$$

$$\therefore a+b+c+d=0 \tag{1}$$

$$-a+b-c+d=0 (2)$$

on adding (1) and (2), we get

$$2(b+d)=0$$

$$\Rightarrow b+d=0$$

Since $ax^3 + bx^2 + cx + d$ intersects y-axis at 2

Hence when x = 0, then $ax^3 + bx^2 + cx + d = 0$

$$0 + d = 2$$

$$\Rightarrow d=2$$

DIFFICULTY LEVEL-2

1. (d) Sum of the root =
$$p + q = \frac{-\{-(\alpha - 2)\}}{1}$$

= $\alpha - 2$

Product of the roots

$$=pq=\frac{-(\alpha+1)}{1}=-(\alpha+1)$$

Now,
$$p^{2} + q^{2} = (p+q)^{2} - 2pq$$
$$= (\alpha - 2)^{2} - 2 (-1) (\alpha + 1)$$
$$= \alpha^{2} - 4\alpha + 4 + 2\alpha + 2$$
$$= \alpha^{2} - 2\alpha + 6$$

We have to find the minimum possible value of $a^2 - 2a + 6$.

$$D = (-2)^2 - 4 \times 1 \times 6 = -20$$

and coefficient of α^2 is +ve

 \therefore Rough diagram of $\alpha^2 - 2\alpha + 6$ is

:. minimum value =
$$\frac{-D}{4a} = \frac{-(-20)}{4/1} = \frac{20}{4} = 5$$
.

2. (b)
$$ax^2 + bx + 1 = 0$$
 has real roots if $b^2 - 4a \ge 0$

Value of a	Corresponding value of <i>b</i> for which $b^2 - 4a \ge 0$	No. of ways
1	2, 3, 4	3
2	3, 4	2
3	4	1
4	4	1

Total no. of ways = 7.

3. (c) Let Arjun has x arrows. According to the given condition
$$\frac{1}{2}x + 6 + 1 + 1 + 1 + 1 + 4\sqrt{x} = x \Rightarrow 8\sqrt{x} - 20$$
. Squaring both the sides, we get $64x = x^2 - 40x$

 $+400 \Rightarrow x^2 - 104x + 400 = 0 \Rightarrow (x - 4)(x - 100) = 0$ $\Rightarrow x = 4 \text{ or } x = 100$. x has to be greater than 4 because Arjun killed the chariot driver of Pitamaha with six arrows. Hence, x = 100.

4. (c)
$$f(1, 1, z) = 1 + 2 + 3 + ... + z$$
 terms
Given, $\frac{z(z+1)}{2} = 21$
 $\Rightarrow z^2 + z - 42 = 0$
or, $(z+7)(z-6) = 0$
 $\therefore z=6$.

5. (c) Here, $B^2 - 4AC = 25 (l + m)^2 + 8(l - m)^2 > 0$ \Rightarrow Roots are real and unequal.

6. (a)

$$X^{2} - 2X - 3 = (X - 3)(X + 1)$$

$$(a) \Rightarrow X^{2} - 7X + 6 = (X - 6)(X - 1)$$

$$(b) \Rightarrow X^{2} - 9 = (X + 3)(X - 3)$$

$$(c) \Rightarrow X^{2} - 4X + 3 = (X - 3)(X - 1)$$

$$(d) \Rightarrow X^{2} - 6X + 9 = (X - 3)^{2}.$$

7. (d)
$$p^{2} - 18p + 77 = 0$$

 $\Rightarrow p = 11, p = 7$
 $3q^{2} - 25q + 28 = 0$
 $\Rightarrow 3q^{2} - 21q - 4q + 28 = 0$
 $\Rightarrow 3q (q - 7) - 4 (q - 7) = 0$
 $\Rightarrow (3q - 4) (q - 7) = 0$
 $\Rightarrow q = \frac{4}{3}, 7.$
 $\therefore p \ge q.$

8. (c)
$$6q^2 + q - 1 - 0$$

 $\Rightarrow 6q^2 + 3q - 2q - 1 = 0$
 $\Rightarrow 3q (2q + 1) - (2q + 1) = 0$
 $\Rightarrow (3q - 1) (2q + 1) = 0$
 $\Rightarrow q = \frac{1}{3}, \frac{-1}{2}$
 $6p^2 - 7p + 2 = 0$
 $\Rightarrow 6p^2 - 4p - 3p + 2 = 0$
 $\Rightarrow 2p (3p - 2) - (3p - 2) = 0$
 $\Rightarrow p = \frac{1}{2}, p = \frac{2}{3}$
 $\therefore p > q$.

9. (a)
$$7p^{2} + 6p - 1 = 0$$

$$\Rightarrow 7p^{2} + 7p - p - 1 = 0$$

$$\Rightarrow 7p (p + 1) - (p + 1) = 0$$

$$\Rightarrow p = \frac{1}{7}, p = -1$$

$$32q^{2} - 20q + 3 = 0$$

$$\Rightarrow 32q^{2} - 12q - 8q + 3 = 0$$

$$\Rightarrow 4q (8q - 3) - 1 (8q - 3) = 0$$

$$\Rightarrow q = \frac{3}{8}, \frac{1}{4}$$

$$\therefore p < q.$$

10. (a)
$$4p^{2} = 9 \Rightarrow p = \pm \frac{3}{2}$$

$$2q^{2} - 9q + 10 = 0$$

$$\Rightarrow 2q^{2} - 5q - 4q + 10 = 0$$

$$\Rightarrow q(2q - 5) - 2(2q - 5) = 0$$

$$\Rightarrow q = \frac{5}{2}, 2$$
∴ $p < q$.

11. (b)
$$2p^{2} - 12p + 16 = 0$$

$$\Rightarrow p^{2} - 6p + 8 = 0$$

$$\Rightarrow (p - 4)(p - 2) = 0$$

$$\Rightarrow p = 4, 2$$

$$q^{2} - 9q + 20 = 0$$

$$\Rightarrow q = 5, 4$$

$$\therefore p \le q.$$

.:.

12. (d) If $2 + i\sqrt{3}$ is a root the equation $x^2 + px + q = 0$

then its other root will be $2-i\sqrt{3}$

$$x^{2} + px + q = (x - 2 - i\sqrt{3})(x - 2 + i\sqrt{3})$$

$$= (x - 2)^{2} - (i\sqrt{3})^{2}$$

$$= x^{2} + 4 - 4x + 3 = x^{2} - 4x + 7$$

$$\therefore p = -4, q = 7.$$

...

13. (d)
$$f(x) = ax^2 + bx + c$$
f attains a maximum at $x = 1$

$$f(x) = 0$$

$$2ax + b = 0 \Rightarrow x = \frac{-b}{2a} = 1 \Rightarrow b = -2a$$

$$\max f(x) = 3$$

$$a + b + c = 3$$

$$c - a = 3$$

$$f(0) = 1 \Rightarrow c = 1, a = -2$$

$$f(x) = -2x^2 + 4x + 1$$

$$f(10) = -2(10)^2 + 4(10) + 1$$

$$= -159.$$

14. (b) Let the equal roots be m and m

$$\Rightarrow b^2 - 4ac = 0$$

$$\Rightarrow (2a+3)^2 = 4^{n+1}$$

$$\Rightarrow 2a+3 = 2^{n+1} \text{ or, } -(2^{n+1})$$

Only possible solution for (a, n) are (-1, -1) or (-2, -1) So, only one possible value of n exists.

15. (b) p, q r are in A.P.

$$q = \frac{p+r}{2} \qquad [p+r = 2p]$$

For the real roots $q^2 - 4pr \ge 0$

$$\Rightarrow \qquad \left(\frac{p+r}{2}\right)^2 - 4pr$$

$$\geq \qquad 0 \Rightarrow p^2 + r^2 - 14pr \ge 0$$

$$\Rightarrow \qquad \left(\frac{p}{2}\right)^2 - 14\left(\frac{p}{r}\right) + 1 \ge 0$$

$$\Rightarrow \qquad \left(\frac{p}{r} - 7\right)^2 \ge 48$$

$$\Rightarrow \qquad \left|\frac{p}{r} - 7\right| \ge 4\sqrt{3}.$$

16. (c) The given equation is $|x-2|^2 + |x-2| = 0$

|x-2| = m $m^2 + m - 2 = 0$ Let us assume then. (m-1)(m+2)=0 \Rightarrow

Only admissible value is

$$m = 1 [m \neq -2 \text{ as } m \geq 0]$$

$$\therefore |x-2| = 1$$

$$\Rightarrow x-2 = 1 \Rightarrow x = 3$$
or,
$$-(x-2) = 1 \Rightarrow x = 1$$
Hence, $x = 1, 3$

 \therefore Sum of the roots of equation = 1 + 3 = 4.

17. (c) Assume some values of α , β conforming the basic constraints of the problem.

> e.g., $\alpha = -2$, $\beta = 8$, then the equation becomes $x^2 - 6x - 16$

$$\Rightarrow b = -5 \text{ and } c = -16$$

$$\therefore 1 + \frac{c}{a} + \left| \frac{b}{a} \right| = 1 - 16 + 6 = -9$$

.. The value of the expression is negative, hence choice (a) is correct.

Since $\alpha < 1$ and $\beta > 1$

$$\therefore \qquad \alpha\beta < 1 \Rightarrow \frac{c}{a} < 1$$

Further the product of any two numbers $(n_1, n_2 \neq 0)$ is less then the sum of the number if any one of them is negative.

So,
$$\alpha\beta < \alpha + \beta$$
 (: Here $\alpha\beta$ is negative)

$$\therefore \qquad \frac{c}{a} < \left| \frac{b}{a} \right|$$

but $\frac{c}{a}$ is numerically greater than $\frac{b}{a}$

$$\Rightarrow 1 + \frac{c}{a} + \left| \frac{b}{a} \right| < 0.$$

18. (c) For a = 0 or $a = \frac{1}{2}$ one of the quadratic equation

becomes linear, So, $a \neq 0$, $a \neq \frac{1}{2}$.

Hence, the only answer is $a = \frac{2}{9}$.

19. (b) Let $f(x) = ax^2 + bx + c$. Since 1 lies outside the roots of f(x) = 0. So,

$$af(1) > 0 \Rightarrow f(1) > 0$$

$$\Rightarrow a+b+c > 0.$$

20. (c)
$$n^2 + 2\sqrt{n}(n+4) + 16$$

$$= n^2 + 2n\sqrt{n} + 8\sqrt{n} + 16$$

$$= n\sqrt{n}(\sqrt{n} + 2) + 8(\sqrt{n} + 2)$$

$$= (\sqrt{n} + 8)(\sqrt{n} + 2)$$

$$= (n\sqrt{n} + 2)[(\sqrt{n})^3 + (2)^3]$$

$$= (\sqrt{n} + 2)(\sqrt{n} + 2)(n - 2\sqrt{n} + 4)$$

$$\therefore x = \frac{n^2 + 2\sqrt{n}(n+4) + 16}{n+4\sqrt{n} + 4}$$

$$=\frac{(\sqrt{n}+2)^2(n-2\sqrt{n}+4)}{(\sqrt{n}+2)^2}$$

$$= n - 2\sqrt{n} + 4$$

If
$$n = 36$$
 then $x = 36 - 2\sqrt{36} + 4 = 28$

If
$$n = 72$$
 then $x = 72 - 2\sqrt{72} + 4 \approx 59$

$$\Rightarrow$$
 25 < x < 64.

21. (d) There are two equations to be formed

$$40 m + 50 f = 1000$$
$$250 m + 300 f + 40 \times 15 m + 50 \times 10 \times f = A$$
$$850 m + 8000 f = A$$

m and f are the number of males and females A is amount paid by the employer.

Then, the possible value of f = 8, 9, 10, 11, 12

If,
$$f = 8$$

 $m = 15$

If f = 9, 10, 11 then m will not be an integer while f = 12, then m will be 10.

22. (c)

23. (d) Let number of boys = x

$$Girls = 60 - x$$

According to question,

$$2x(60 - x) = 1600$$
$$x^2 - 60x - 800 = 0$$

 \Rightarrow On solving, we get two values of x but we cannot determine which value is that of boys and which value is that of girls, hence data is inadequate.

24. (a)
$$lx^2 + mx + n = 0$$

Let us consider $x^2 + 4x + 4 = 0$

Then,
$$\frac{p}{q} = 1$$
 and $\frac{n}{l} = 4$

$$\therefore \sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = \sqrt{1} + \sqrt{1} + \sqrt{4} = 4.$$

25. (d)
$$\alpha + \beta = 6 + 2 = 8$$
$$\alpha \times \beta = 7$$
$$\alpha = 7 \text{ and } \beta = 1.$$

26. (c) Let,
$$a = x + 9$$
 and $b = x - 9$

.. The given equation is,

$$a^{\frac{1}{3}} - b^{\frac{1}{3}} = 27$$

Cubing both the sides we get,

$$a - b - 3a^{\frac{1}{3}} b^{\frac{1}{3}} \left(a^{\frac{1}{3}} - b^{\frac{1}{3}} \right) = 3$$

$$\Rightarrow \qquad a - b - 9a^{\frac{1}{3}} b^{\frac{1}{3}} = 27$$

$$\Rightarrow \qquad x + 9 - x + 9 - 9(x + 9)^{\frac{1}{3}} (x - 9)^{\frac{1}{3}} = 27$$

$$\Rightarrow \qquad 18 - 9(x + 9)^{\frac{1}{3}} (x - 9)^{\frac{1}{3}} = 27$$

$$\Rightarrow -9(x+9)^{\frac{1}{3}}(x-9)^{\frac{1}{3}} = 9$$

$$\Rightarrow (x+9)^{\frac{1}{3}}(x-9)^{\frac{1}{3}} = -1$$

$$\Rightarrow (x+9)(x-9) = -1$$

$$\Rightarrow x^2 - 81 = -1$$

$$\Rightarrow x^2 = 80$$

$$\Rightarrow 75 < x^2 < 85$$

27. (b)
$$2^{2x^2-7x+5} = 1 = 2^0$$

$$\Rightarrow 2x^2 - 7x + 5 = 0$$

$$\Rightarrow 2x^2 - 5x - 2x + 5 = 0$$

$$\Rightarrow x(2x-5) - 1(2x-5) = 0$$

$$\Rightarrow (2x-5)(x-1) = 0$$

$$x = 1 \text{ or } 5/2$$

So, there are two real values of x which satisfy the equation.

28. (a)
$$2x^{2} + x < 6$$
⇒
$$2x^{2} + x - 6 < 0$$
⇒
$$2x^{2} + 4x - 3x - 6 < 0$$
⇒
$$2x(x + 2) - 3(x + 2) < 0$$
⇒
$$(2x - 3)(x + 2) < 0$$
∴
$$-2 < x < 3/2.$$

29. (c)
$$y = x^2 \text{ and } y = 3x + k$$
$$\therefore \qquad x^2 = 3x + k$$
$$\Rightarrow \qquad x^2 - 3x - k = 0$$

This equation has two identical solutions when the discriminant of the equation is 0.

$$\therefore \quad (-3)^2 - 4(-k) = 0$$

$$\Rightarrow \quad 9 + 4k = 0$$

$$\therefore \quad k = -9/4.$$

30. (a)
$$\frac{x^2 - bx}{ax - c} = \frac{m - 1}{m + 1}$$
$$(x^2 - bx)(m + 1) = (ax - c)(m - 1)$$
$$x^2m + x^2 - bxm - bx = axm - ax - cm + c$$
$$x^2(m + 1) + x(a - am - bm - b) + cm - c = 0$$

Since, the roots are numerically equal but opposite in sign, so the sum of the roots will be zero.

$$a - am - bm - b = 0$$

$$- m(a + b) = b - a$$

$$m = \frac{a - b}{a + b}.$$

31. (a) The student obtained the roots as 8 and 2, when he made a mistake only with the constant term, i.e., the coefficient of x that he obtained was correct.

Thus, the correct sum of the roots = 10

In the same way, the correct value of the constant term is the product of the roots =(-9)(-1) = 9

Thus, the quadratic equation = $x^2 - 10x + 9 = 0$.

32. (c)
$$2x^2 + 6x + 5y + 1 = 0$$
 (1)

$$2x + y + 3 = 0 (2)$$

In the options, all the equations involved have only y in them. So, we take x in terms of y from one equation and substitute it in the other. From Eq. (2),

$$x = -\left(\frac{y+3}{2}\right)$$

Substituting the value of x in Eq. (1),

$$\frac{2(y+3)^2}{4} - \frac{6(y+3)}{2} + 5y + 1 = 0$$
$$\frac{y^2 + 6y + 9}{2} - 3(y+3) + 5y + 1 = 0$$

$$y^{2} + 6y + 9 + 4y - 16 = 0$$
$$x^{2} + 10y - 7 = 0.$$

33. (a)
$$a = -b$$
, or $a + b = 0$

Use discriminant, $D = b^2 - 4ac$.

34. (b) Since, one root is the square of the other root in equation

$$x^{2} + px + q = 0$$

:. $p^{3} - q(3p - 1) + q^{2} = 0$.

35. (c) Given, $bx^2 - 2ax + a = 0$

The roots are

$$x = \frac{2a \pm \sqrt{4a^2 - 4ab}}{2b}$$

$$= \frac{a + \sqrt{a^2 - ab}}{b} \text{ and } \frac{a - \sqrt{a^2 - ab}}{b}$$
Consider = $\frac{a + \sqrt{a^2 - ab}}{b}$, rationalise this

$$\frac{a+\sqrt{a^2-ab}}{b} \times \frac{a-\sqrt{a^2-ab}}{a-\sqrt{a^2-ab}} = \frac{a^2-(a^2-ab)}{b(a-\sqrt{a^2-ab})}$$
$$= \frac{a}{a-\sqrt{a^2-ab}}$$

$$=\frac{\sqrt{a}}{\sqrt{a}-\sqrt{a-b}}$$

Hence, the roots are

$$\frac{\sqrt{a}}{\sqrt{a} - \sqrt{a - b}}$$
 and $\frac{\sqrt{a}}{\sqrt{a} + \sqrt{a - b}}$

The most likely answer is option (c).

36. (a) Since x + 2 is a factor of both the polynomials.

Put,
$$x + 2 = 0 \Rightarrow x = -2$$

Let, $f(x) = px^2 + qx + r$
and, $g(x) = qx^2 + px + r$
 \therefore $f(-2) = 0 \Rightarrow p(-2)^2 + q(-2) + r = 0$
 \Rightarrow $4p - 2q + r = 0$ (1)
and, $g(-2) = 0 \Rightarrow q(-2)^2 + p(-2) + r = 0$
 \Rightarrow $4q - 2p + r = 0$ (2)

Adding Eqs. (1) and (2), we get p + q + r = 0

Subtracting Eq. (2) from Eq. (1), we get p = q

37. (b) Given,
$$x^2 - y^2 = 0$$

 $\Rightarrow x^2 = y^2$ (1)
and, $(x-a)^2 + y^2 = 1$
 $\Rightarrow (x-a)^2 + x^2 = 1$
 $\Rightarrow 2x^2 - 2ax + a^2 - 1 = 0$

For x to be real, D > 0

$$4a^{2} - 8(a^{2} - 1) > 0$$

$$\Rightarrow 4a^{2} - 8a^{2} + 8 > 0$$

$$\Rightarrow 4a^{2} < 8$$

$$\Rightarrow a^{2} < 2$$

As a is non-negative, a = 1.

38. (d)
$$(1-p)x^2 + 4x + p = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{4^2 - 4(1-p)p}}{2(1-p)}$$

.. Roots of the equation will be real and both negative.

39. (b)
$$y^2 - 2y \cos x + 1 = 0$$

Now, $D = (-2 \cos x)^2 - 4 = -4 \sin^2 x < 0$
Hence, no real solution of y exists.

40. (a) Here,
$$a+b=-3$$
 and $a \times b = -1$

$$\therefore P_2 = a^2 + b^2 = (a+b)^2 - 2ab$$

$$= 9 - (-2) = 11$$

Now go through options

For
$$(a) -3P_{n-1} + P_{n-2} = P_n$$

$$\Rightarrow P_2 = -3(P_1) + P_0$$

$$= -3(a+b) + (a^0 + b^0)$$

$$= -3(-3) + 1 + 1 = 9 + 2 = 11.$$

41. (c) Given one root is
$$\frac{115}{11+\sqrt{6}}$$

$$\Rightarrow \frac{115}{11+\sqrt{6}} \times \left(\frac{11-\sqrt{6}}{11-\sqrt{6}}\right)$$

$$\Rightarrow \frac{115(11-\sqrt{6})}{121-6} \Rightarrow 11-\sqrt{6}$$

$$\therefore \text{ Other root is } = 11+\sqrt{6}$$

$$\therefore \text{ Equation will be}$$

$$x^2 - (11-\sqrt{6}+11+\sqrt{6})x + (11-\sqrt{6})(11+\sqrt{6}) = 0$$

$$\Rightarrow x^2 - 22x + (121-6) = 0$$

$$\Rightarrow x^2 - 22x + 115 = 0$$

42. (c) Roots of the equation $x^3 - 6x^2 + 11x - 6 = 0$ are 1, 2 and 3

 \therefore Roots of the equation $x^3 - px^2 + qx - r$ are 3, 4 and 5

 \therefore r = 60 [: constant term be the product of roots].

43. (*b*) Let the distance covered be *d* km and speed of train be *x* Km/h

We are given,

$$\frac{d}{x} - \frac{d}{x+4} = \frac{30}{60}$$

$$\Rightarrow \frac{d(x+4-x)}{x(x+4)} = \frac{1}{2}$$

$$\Rightarrow 8d = x^2 + 4x \tag{1}$$
and
$$\frac{d}{x-2} - \frac{d}{x} = \frac{20}{60}$$

$$\Rightarrow d\left[\frac{x-x+2}{x(x-2)}\right] = \frac{1}{3}$$

$$\Rightarrow 6d = x^2 - 2x \tag{2}$$

From Eqs. (1) and (2), we get

$$\frac{x^2 + 4x}{8} = \frac{x^2 - 2x}{6}$$

$$\Rightarrow 6x^2 + 24x = 8x^2 - 16x$$

$$\Rightarrow 2x^2 - 40x = 0$$

$$\therefore 2x(x - 20) = 0$$

$$\therefore x = 20 \text{ Km/h}$$

Hence, distance covered =
$$\frac{(20)^2 - 2 \times 20}{6}$$
$$= 60 \text{ Km}.$$