Applied Mathematics (XI) Term-wise

(Code-241)

Session- 2021-22

Secondary School Education prepares students to explore future career options after graduating from schools. Mathematics is an important subject that helps students to choose various fields of their choices. Mathematics is widely used in higher studies as an allied subject in the field of Economics, Commerce, Social Sciences and many others. It has been observed that the syllabus of Mathematics in senior secondary grades meant for Science subjects may not be appropriate for the students who wish to pursue Commerce or Social Science-based subjects in university education. By keeping this in mind, one more elective course in the Mathematics syllabus is developed for Senior Secondary classes with an aim to provide students relevant experience in Mathematics that can be used in fields other than Physical Sciences.

This course is designed to develop substantial mathematical skills and methods needed in other subject areas. Topics covered in two years aim to enable students to use mathematical knowledge in the field of business, economic and social sciences. It aims to promote appreciation of mathematical power and simplicity for its countless applications in diverse fields. The course continues to develop mathematical language and symbolism to communicate and relate everyday experiences mathematically. In addition, it reinforces the logical reasoning skills of formulating and validating mathematical arguments, framing examples, finding counterexamples. It encourages students to engage in mathematical investigations and to build connections within mathematical topics and with other disciplines. The course prepares students to use algebraic methods as a means of representation and as a problem-solving tool. It also enables students to interpret two-dimensional geometrical figures using algebra and to further deduce properties of geometrical figures in a coordinate system. The course content will help students to develop a sound understanding of descriptive and inferential statistics which they can use to describe and analyze a given set of data and to further make meaningful inferences out of it. Data based case studies from the field of business, economics, psychology, education, biology and census data will be used to appreciate the power of data in contemporary society.

It is expected that the subject is taught connecting concepts to the applications in various fields. The objectives of the course areas are as follows:

Objectives:

- a) To develop an understanding of basic mathematical and statistical tools and their applications in the field of commerce (business/ finance/economics) and social sciences.
- b) To model real-world experiences/problems into mathematical expressions using numerical/algebraic/graphical representation.
- c) To make sense of the data by organizing, representing, interpreting, analyzing, and making meaningful inferences from real-world situations.
- d) To develop logical reasoning skills and apply the same in simple problem-solving.
- e) To reinforce mathematical communication by formulating conjectures, validating logical arguments and testing hypothesis.
- f) To make connections between Mathematics and other disciplines.

Grade XI (2021-22)

Term 1

One Paper Time: 90 minutes

Max. Marks: 40

No.	Units	Marks
I	Numbers, Quantification and Numerical Applications	09
II	Algebra	09
	Mathematical Reasoning	06
IV	Calculus	04
VI	Descriptive Statistics	12
	Total	40

	CLASS- XI Term - 1			
SI. No.	Contents	Learning Outcomes: Students will be able to	Notes / Explanation	
UNIT	- 1 NUMBERS. (QUANTIFICATION AND NUM	ERICAL APPLICATIONS	
	bers & Quantific			
1.2	Binary Numbers	 Express decimal numbers in binary system Express binary numbers in decimal system 	 Definition of number system (decimal and binary) Conversion from decimal to binary system and vice - versa 	
1.4	Indices, Logarithm and Antilogarithm	 Relate indices and logarithm /antilogarithm Find logarithm and antilogarithms of given number 	 Applications of rules of indices Introduction of logarithm and antilogarithm Common and Natural logarithm 	
1.5	Laws and properties of logarithms	 Enlist the laws and properties of logarithms Apply laws of logarithm 	 Fundamental laws of logarithm 	
1.6	Simple applications of logarithm and antilogarithm	 Use logarithm in different applications 	 Express the problem in the form of an equation and apply logarithm/ antilogarithm 	
Nume	erical Application	ns		
1.7	Averages	 Determine average for a given data 	 Definition and meaning Problems on average, weighted average 	
1.8	Clock	 Evaluate the angular value of a minute Calculate the angle formed between two hands of clock at given time Calculate the time for which hands of clock meet 	 Number of rotations of minute hand / hour hand of a clock in a day Number of times minute hand and hour hand coincides in a day 	
1.9	Calendar	 Determine Odd days in a month/ year/ century Decode the day for the given date 	 Definition of odd days Odd days in a year/ century. Day corresponding to a given date 	
1.10	Time, Work and Distance	 Establish the relationship between work and time Compare the work done by the individual / group w.r.t. time Calculate the time taken/ distance covered/ Work done from the given data 	 Basic concept of time and work Problems on time taken / distance covered / work done 	
1.11	Mensuration	 Solve problems based on surface area and 	 Comparison between 2D and 3D shapes Combination of solids 	

1.12	Seating arrangement	 volume of 2D and 3D shapes Calculate the volume/ surface area for solid formed using two or more shapes Create suitable seating plan/ draft as per given conditions (Linear/circular) Locate the position of a person in a seating arrangement 	 Transforming one solid shape to another Linear and circular seating arrangement Position of a person in a seating arrangement
UNIT	2 ALGEBRA		
Sets			
2.1	Introduction to sets – definition	 Define set as well-defined collection of objects 	 Definition of a Set Examples and Non-examples of Set
2.2	Representation of sets	 Represent a set in Roster form and Set builder form 	 Write elements of a set in Set Builder form and Roster Form Convert a set given in Roster form into Set builder form and vice- versa
2.3	Types of sets and their notations	 Identify different types of sets on the basis of number of elements in the set Differentiate between equal set and equivalence set 	 Types of Sets: Finite Set, Infinite Set, Empty Set, Singleton Set
2.4	Subsets	 Enlist all subsets of a set Find number of subsets of a given set Find number of elements of a power set 	 Subset of a given set Familiarity with terms like Superset, Improper subset, Universal set, Power set
2.5	Intervals	 Express subset of real numbers as intervals 	 Open interval, closed interval, semi open interval and semi closed interval
2.6	Venn diagrams	 Apply the concept of Venn diagram to understand the relationship between sets Solve problems using Venn diagram 	 Venn diagrams as the pictorial representation of relationship between sets Practical Problems based on Venn Diagrams
2.7	Operations on sets	 Perform operations on sets to solve practical problems 	 Operations on sets include i) Union of sets ii) Intersection of sets iii) Difference of sets iv) Complement of a set v) De Morgan's Laws

Relat	ions		
2.8	Ordered pairs Cartesian product of two sets	 Explain the significance of specific arrangement of elements in a pair Write Cartesian product of two sets Find the number of elements in a Cartesian product of two sets 	 Ordered pair, order of elements in an ordered pair and equality of ordered pairs Cartesian product of two non- empty sets
2.9	Relations	 Express relation as a subset of Cartesian product Find domain and range of a relation 	 Definition of Relation, examples pertaining to relations in the real number system
2.10	Types of relations	 Define and illustrate different types of relations: Empty relation and universal relation Examine whether the relation is equivalence or not Define function as a special type of relation Categorize relations that are functions and non- functions 	 Types of relations: Empty relation, universal relation, reflexive relation, symmetric relation, transitive relation, equivalence relation Introducing a function as a special type of relation Examples and non-examples of functions
Sequ	ences and Serie	S	
2.11	Sequence and Series	 Differentiate between sequence and series 	• Sequence: $a_1, a_2, a_3,, a_n$ • Series: $a_1 + a_2 + a_3 + \dots + a_n$
2.12	Arithmetic Progression	 Identify Arithmetic Progression (AP) Establish the formulae of finding nthterm and sum of n terms Solve application problems based on AP Find arithmetic mean (AM) of two positive numbers 	• General term of AP: $t_n = a + (n - 1)d$ • Sum of n terms of AP : $S_n = \frac{n}{2} [2a + (n - 1)d]$ AM of a and $b = \frac{a+b}{2}$

2.13	Geometric Progression	 Identify Geometric Progression (GP) Derive the nthterm and sum of n terms of a given GP Solve problems based on applications of GP Find geometric mean (GM) of two positive numbers Solve problems based on relation between AM and GM 	• General term of GP: $t_n = ar^{n-1}$ • Sum of n terms of a GP: $S_n = \frac{a(r^n-1)}{r-1}$ • Sum of infinite term of GP = $\frac{a}{1-r}$, where $-1 < r < 1$ • Geometric mean of <i>a</i> and <i>b</i> = \sqrt{ab}
2.14	Applications of AP and GP	 Apply appropriate formulas of AP and GP to solve application problems 	Applications based onEconomy StimulationThe Virus spread etc.
UNIT -	3 MATHEMATIC	CAL REASONING	
3.1	Mathematical reasoning	 Identify mathematically acceptable statements Express the implications of the compound statement Validate mathematical statements 	 Meaning of mathematical statements Negation Compound statements Quantifiers Converse and Contrapositive of the statement Implications Validating statements
3.2	Logical reasoning	 Solve logical problems involving odd man out, syllogism, blood relation and coding decoding 	 Odd man out Syllogism Blood relations Coding Decoding
	- 4 CALCULUS		Dependent 111
4.1	Functions	 Identify dependent and independent variables Define a function using dependent and independent variable 	 Dependent variable and independent variable Function as a rule or law that defines a relationship between one variable (the independent variable) and another variable (the dependent variable)
4.2	Domain and Range of a function	 Define domain, range and co-domain of a given function 	 Domain as a set of all values of independent variable Co-domain as a set of all values of dependent variable Range of a function as set of all possible resulting values of dependent variable
4.3	Types of functions	 Define various types of functions 	Following types of functions with definitions and characteristics

4.4	Graphical representation of functions	 Identify domain, co- domain and range of the function Representation of function graphically 	Constant function, Identity function, Polynomial function, Rational function, Logarithm function, Exponential function, Modulus function, Greatest integer function, Signum function, Algebraic function • Graph of some polynomial functions, Logarithm function, Exponential Function, Modulus function, Greatest integer function, Signum function
UNIT-	6 DESCRIPTIVE	E STATISTICS	
6.1	Types of data	 Identify real life situations for collecting data Categorize data based on nature of data (Primary and Secondary Data, Raw and Organized Data) Identify and differentiate univariate, bivariate and multi-variate data Identify and differentiate discrete data and continuous data Collect raw data from practical examples 	 Examples of raw data from different surveys, sports Multi-variate data from not more than three variables Collection of data up to three variables from real life examples, such as, data of students (age, weight, height)
6.2	Data on various scales	 Describe nominal, ordinal, interval and ratio scale of data collection Collect and classify data on different scales of measurement 	 Examples and non-examples of data on different scales Benefit and limitations of collecting data on various scales
6.3	Data representation and data visualization	 Organize raw data in discrete and continuous form Represent data on nominal and ordinal scales of measurement using pie chart and bar graphs Represent data on interval and ratio scale using histogram and frequency polygon Represent bivariate continuous data using line graph Choose appropriate graph to represent data of various kinds 	 Data organization in increasing/decreasing order, using frequency table and in class intervals of various length Graphical representation of data using pie-chart/bar graphs/histogram using class interval of equal and unequal length Visualization of data using Excel Spreadsheet or any other computer assisted tool

6.4	Data Interpretation	n	
	Measure of Dispersion	 Understand meaning of dispersion in a data set Differentiate between range, quartile deviation, mean deviation and standard deviation Calculate range, quartile deviation, mean deviation and standard deviation for ungrouped and grouped data set Choose appropriate measure of dispersion to calculate spread of data 	 Mean deviation around mean and median Standard deviation and variance Examples of different kinds of data helping students to choose and compare different measures of dispersion
	Skewness and Kurtosis	 Define Skewness and Kurtosis using graphical representation of a data set Interpret Skewness and Kurtosis of a frequency distribution by plotting the graph Calculate coefficient of Skewness and interpret the results 	 Examples of symmetrical and asymmetrical data Visualization of graphical representation of data using Excel Spreadsheet or any other computer assisted tool
6.5	Percentile rank and Quartile rank	 Define Percentile rank and Quartile rank Calculate and interpret Percentile and Quartile rank of scores in a given data set 	 Emphasis on visualizing, analysing and interpreting percentile and quartile rank scores
6.6	Correlation	 Define correlation in values of two data sets Calculate Product moment correlation for ungrouped and grouped data Calculate Karl Pearson's coefficient of correlation Calculate Spearman's rank correlation Interpret the coefficient of correlation 	 Emphasis on application, analysis and interpreting the results of coefficient of correlation using practical examples

Internal Assessment:

The weightage of internal assessment may be as under:

Term	Area and	Assessment Area	Marks
	Weightage		allocated
Term 1	Project	Project work and record	5
		Term-end Presentation + Viva of the Project	5
		Total	10

Note: The list of suggested projects is given in the end

Assessment Plan (First term)

- 1. First term assessment of the course is out of 50 marks.
- 2. The assessment plan consists of an External Exam and Internal Assessment.
- 3. There will be end term external exam of 40 marks.
- 4. The weightage of the Internal Assessment is 10 marks. It consists of a project work. Teachers may choose a project from the suggested list

Grade XI

Term 2

One Paper Time: 2 Hours

Max. Marks: 40

No.	Units	Marks
	Algebra (Continued)	06
IV	Calculus (Continued)	06
V	Probability	08
VII	Basics of Financial Mathematics	15
VIII	Coordinate Geometry	05
	Total	40

	CLASS- XI			
	Term - 2			
SI. No.	Contents	Learning Outcomes: Students will be able to	Notes / Explanation	
_	Permutations and Combinations			
2.15	Factorial	 Define factorial of a number Calculate factorial of a number 	 Definition of factorial: n! = n(n-1)(n-2)3.2.1 Usage of factorial in counting principles 	
2.16	Fundamental Principle of Counting	 Appreciate how to count without counting 	 Fundamental Principle of Addition Fundamental Principle of Multiplication 	
2.17	Permutations	 Define permutation Apply the concept of permutation to solve simple problems 	 Permutation as arrangement of objects in a definite order taken some or all at a time Theorems under different conditions resulting in "Pr=^{n!}/_{(n-r)!} or n^r or ^{n!}/_{n₁!n₂!n_k! arrangements} 	
2.20	Combinations	 Define combination Differentiate between permutation and combination Apply the formula of combination to solve the related problems 	-The number of combinations of n different objects taken r at a time is given by ${}^{n}C_{r} = \frac{n!}{r!.(n-r)!}$ Some results on combinations: ${}^{n}C_{0} = 1 = {}^{n}C_{n}$ ${}^{n}C_{a} = {}^{n}C_{b} \Rightarrow a = b \text{ or } a + b = n$ ${}^{n}C_{r} = {}^{n}C_{n-r}$ ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$	
UNIT	-4 CALCULUS			
4.5	Concepts of limits and continuity of a function	 Define limit of a function Solve problems based on the algebra of limits Define continuity of a function 	 Left hand limit, Right hand limit, Limit of a function, Continuity of a function 	
4.6	Instantaneous rate of change	 Define instantaneous rate of change 	• The ratio $\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x)-f(x)}{\Delta x}$ as instantaneous rate of change, where Δy is change in y and Δx is change in x at any instant	
4.7	Differentiation as a process of finding derivative	 Find the derivative of the functions 	 Derivatives of functions (non- trigonometric only) 	
4.8	Derivatives of algebraic functions using Chain Rule	 Find the derivative of function of a function 	• If $y = f(u)$ where $u = g(x)$ then differential coefficient of y w.r.t x is $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$	
UNIT				
5.1	Introduction	 Appreciate the use of probability in daily life situations 	 Probability as quantitative measure of uncertainty Use of probability in determining the insurance premium, weather forecasts etc. 	

5.2	Random experiment and sample space	 Define random experiment and sample space with suitable examples 	 Sample space as set of all possible outcomes
5.3	Event	 Define an event Recognize and differentiate different types of events and find their probabilities 	 Types of Event: Impossible and sure event, Independent and dependent event, mutually exclusive and exhaustive event
5.4	Conditional Probability	 Define the concept of conditional probability Apply reasoning skills to solve problems based on conditional probability 	• Conditional Probability of event E given that F has occurred is: $P(E F) = \frac{P(E \cap F)}{P(F)}$, $P(F) \neq 0$
5.5	Total Probability	 Interpret mathematical information and identify situations when to apply total probability Solve problems based on application of total probability 	• Total Probability: Let $E_{1,}E_{2,,}E_{n}$ be a partition of the sample space S, then probability of an event A associated with S is: $P(A) = \sum_{j=1}^{n} P(E_{j})P(A E_{j})$
5.6	Bayes' Theorem	 State Bayes' theorem Solve practical problems based on Bayes' Theorem 	•Bayes' Theorem: If $E_1, E_2,, E_n$ be <i>n</i> non empty events which constitute a partition of a sample space <i>S</i> and <i>A</i> be any event with non zero probability, then: $P(E_i A) = \frac{P(E_i)P(A E_i)}{\sum_{i=1}^{n} P(E_i)P(A E_i)}$
UNIT	-7 FINANCIAL	MATHEMATICS	
7.1	Interest and Interest Rates	 Define the concept of Interest Rates Compare the difference between Nominal Interest Rate, Effective Rate and Real Interest Rate Solve Practical applications of interest rate 	 Impact of high interest rates and low interest rates on the business
7.2	Accumulation with simple and compound interest	 Interpret the concept of simple and compound interest Calculate Simple Interest and Compound Interest 	 Meaning and significance of simple and compound interest Compound interest rates applications on various financial products
7.3	Simple and compound interest rates with equivalency	 Explain the meaning, nature and concept of equivalency Analyze various examples for 	 Concept of Equivalency Annual Equivalency Rate

		understanding annual	
		equivalency rate	
7.4	Effective rate of interest	 Define with examples the concept of effective rate of interest 	 Effective Annual Interest Rate = (1 + i/n)ⁿ - 1 where: i = Nominal Interest Rate n = No. of Periods
7.5	Present value, net present value and future value	 Interpret the concept of compounding and discounting along with practical applications Compute net present value Apply net present value in capital budgeting decisions 	 Formula for Present Value: PV = CF/(1 + r)ⁿ Where: CF = Cash Flow in Future Period r = Periodic Rate of return or Interest (also called the discount rate or the required rate of return) n = no. of periods Use of PVAF, FVAF tables for practical purposes Solve problems based on Application of net present value
7.6	Annuities, Calculating value of Regular Annuity	 Explain the concept of Immediate Annuity, Annuity due and Deferred Annuity Calculate General Annuity 	 Definition, Formulae and Examples
7.7	Simple applications of regular annuities (upto 3 period)	 Calculate the future value of regular annuity, annuity due Apply the concept of Annuity in real life situations 	 Examples of regular annuity: Mortgage Payment, Car Loan Payments, Leases, Rent Payment, Insurance payouts etc.
7.8	Tax, calculation of tax, simple applications of tax calculation in Goods and service tax, Income Tax	 Explain fundamentals of taxation Differentiate between Direct and indirect tax Define and explain GST Calculate GST Explain rules under State Goods and Services Tax (SGST) Central Goods and Services Tax (CGST) and Union Territory Goods and Services Tax (UTGST) 	 Computation of income tax Add Income from Salary, house property, business or profession, capital gain, other sources, etc. Less deductions PF, PPF, LIC, Housing Ioan, FD, NSC etc. Assess the Individuals under Income Tax Act Formula for GST Different Tax heads under GST
7.9	Bills, tariff rates, fixed charge, surcharge, service charge	 Describe the meaning of bills and its various types Analyze the meaning and rules determining tariff rates Explain the concept of fixed charge 	 Tariff rates- its basis of determination Concept of fixed charge service charge and their applications in various sectors of Indian economy

7.10	Calculation and interpretation of electricity bill, water supply bill and other supply bills	 To interpret and analyze electricity bills, water bills and other supply bills Evaluate how to calculate units consumed under electricity bills/water bill 	 Components of electricity bill/water supply and other supply bills: i) overcharging of electricity ii) water supply bills iii) units consumed in electricity bills 			
	UNIT – 8 COORDINATE GEOMETRY					
8.1	Straight line	 Find the slope and equation of line in various form Find angle between the two lines Find the perpendicular from a given point on a line Find the distance between two parallel lines 	 Gradient of a line Equation of line: Parallel to axes, point-slope form, two-points form, slope intercept form, intercept form Application of the straight line in demand curve related to economics problems 			
8.2	Circle	 Define a circle Find different form of equations of a circle Solve problems based on applications of circle 	 Circle as a locus of a point in a plane Equation of a circle in standard form, central form, diameter form and general form 			
8.3	Parabola	 Define parabola and related terms Define eccentricity of a parabola Derive the equation of parabola 	 Parabola as a locus of a point in a plane. Equation of a parabola in standard form: Focus, Directrix, Axis, Latus rectum, Eccentricity 			

Internal Assessment:

The weightage of internal assessment may be as under:

Term	Area and Weightage	Assessment Area	Marks allocated
Term 2	Practical	Performance of practical and record	5
		Term-end test of any one practical + Viva	5
		Total	10

Practical: Use of spreadsheet

Calculating average, interest (simple and compound), creating pictographs, drawing pie chart, bar graphs, calculating central tendency visualizing graphs (straight line, circles and parabola using real-time data)

Suggested practical using spreadsheet

- 1. Plot the graph of functions on excel study the nature of function at various points, drawing lines of tangents
- 2. Create a budget of income and spending
- 3. Create and compare sheet of price & features to buy a product
- 4. Prepare the best option plan to buy a product by comparing cost, shipping charges, tax and other hidden costs
- 5. Smart purchasing during sale season
- 6. Prepare a report card using scores of the last four exams and compare the performance
- 7. Collect the data on weather, price, inflation, and pollution. Sketch different types of graphs and analyze the results

Assessment Plan (Second term)

- 1. Second term assessment of the course is out of 50 marks.
- 2. The assessment plan consists of an External Exam and Internal Assessment.
- 3. There will be external exam of 40 marks.
- 4. The weightage of the Internal Assessment is 10 marks. It consists of practical work. Teachers can choose activities from the suggested list of practical or they can plan activities of a similar nature. For data-based practical, teachers are encouraged to use data from local sources to make it more relevant for students.