

General Aptitude

Q.1 – Q.5 Carry ONE mark Each

Q.1	Despite his initial hesitation, Rehman's to contribute to the success of the project never wavered.
	Select the most appropriate option to complete the above sentence.
(A)	ambivalence
(B)	satisfaction
(C)	resolve
(D)	revolve
	GATE 2025
	117 Roorkee

Q.2	Bird : Nest :: Bee :
	Select the correct option to complete the analogy.
(A)	Kennel
(B)	Hammock
(C)	Hive
(D)	Lair
	GATE 2025 77 Roorkee
	KOOL

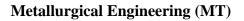
Q.3	If $Pe^x = Qe^{-x}$ for all real values of x, which one of the following statements is true?
(A)	P = Q = 0
(B)	P = Q = 1
(C)	P = 1; Q = -1
(D)	$\frac{P}{Q} = 0$
	GATE 2025
	117 Roorkee

Q.4 The paper as shown in the figure is folded to make a cube where each square corresponds to a particular face of the cube. Which one of the following options correctly represents the cube? Note: The figures shown are representative. • Δ 0 (A) Δ **(B)** Δ (C) Δ -(D) Δ 117 Roorkee

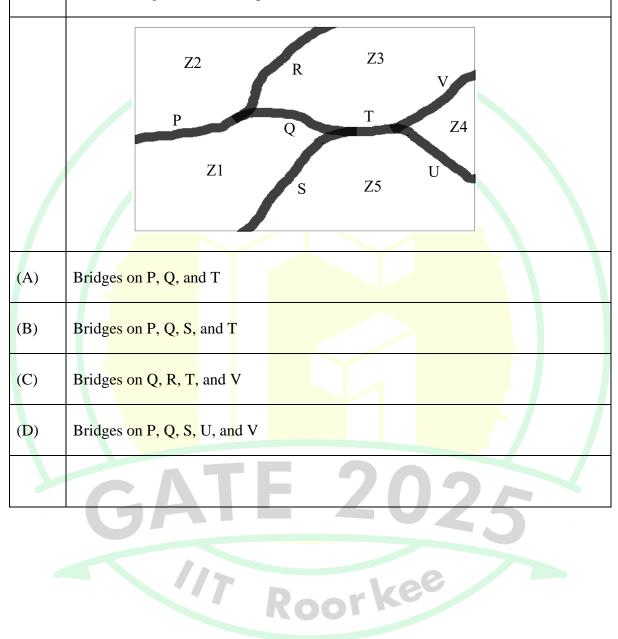
Q.5	Let p_1 and p_2 denote two arbitrary prime numbers. Which one of the following statements is correct for all values of p_1 and p_2 ?
(A)	$p_1 + p_2$ is not a prime number.
(B)	p_1p_2 is not a prime number.
(C)	$p_1 + p_2 + 1$ is a prime number.
(D)	$p_1p_2 + 1$ is a prime number.
	GATE 2025

Q.6 – Q.10 Carry TWO marks Each

Q.6	Based only on the conversation below, identify the logically correct inference:				
	"Even if I had known that you were in the hospital, I would not have gone there to see you", Ramya told Josephine.				
(A)	Ramya knew that Josephine was in the hospital.				
(B)	Ramya did not know that Josephine was in the hospital.				
(C)	Ramya and Josephine were once close friends; but now, they are not.				
(D)	Josephine was in the hospital due to an injury to her leg.				
	GATE 2025				
	117 Roorkee				


Q.7	If IMAGE and FIELD are coded as FHBNJ and EMFJG respectively then, which one among the given options is the most appropriate code for BEACH ?
(A)	CEADP
(B)	IDBFC
(C)	JGIBC
(D)	IBCEC
	GATE 2025 // Roorkee

Q.8	Which one o	f the following	options	is correct f	for the give	en data in the	table?
		Iteration (<i>i</i>)	0	1	2	3	
		Input (<i>I</i>)	20	-4	10	15	
		Output (X)	20	16	26	41	
		Output (Y)	20	-80	-800	-12000	
(A)	X(i) = X(i)	-1) + I(i);	Y(i) = Y(i)	Y(i - 1)I(i); i >	0	
(B)	X(i) = X(i -	– 1) <i>I</i> (i); Y(f(i) = Y(i)	z – 1) + <i>I</i> ((i); i>	0	
(C)	X(i) = X(i)	– 1) <i>I</i> (i); Y	(i) = Y(i – 1)I(i)	; i > 0		
(D)	X(i) = X(i - i)	– 1) + I(i);	Y(i) =	Y(i – 1)I	(i – 1);	<i>i</i> > 0	
					1	ļ	
	G	AT	E	2	0	25	
		117	Ro	oor	kee		


Q.9 In the given figure, PQRS is a square of side 2 cm and PLMN is a rectangle. The corner L of the rectangle is on the side QR. Side MN of the rectangle passes through the corner S of the square. What is the area (in cm²) of the rectangle PLMN? Note: The figure shown is representative. Р S M R 0 (A) $2\sqrt{2}$ **(B)** 2 (C) 8 4 (D) 117 Roorkee

Q.10 The diagram below shows a river system consisting of 7 segments, marked P, Q, R, S, T, U, and V. It splits the land into 5 zones, marked Z1, Z2, Z3, Z4, and Z5. We need to connect these zones using the least number of bridges. Out of the following options, which one is correct?

Note: The figure shown is representative.

Q.11 – Q.35 Carry ONE mark Each

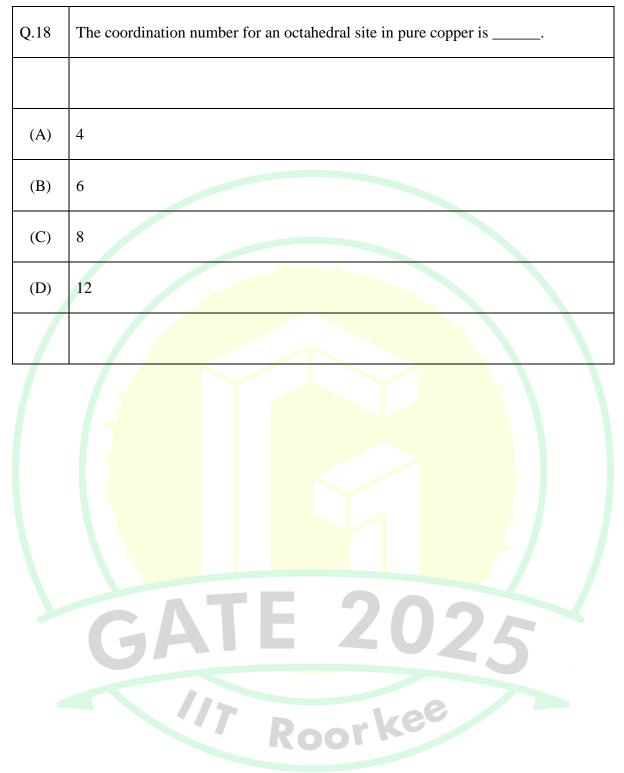
Q.11	Which one of the following matrices has eigenvalues 1 and 6?
(A)	$\begin{bmatrix} 5 & -2 \\ -2 & 2 \end{bmatrix}$
(B)	$\begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$
(C)	$\begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$
(D)	$\begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$
	GATE 2025
	17 Roorkee

Q.12	For an isobaric process, the heat transferred is equal to the change in of the system.			
(A)	enthalpy			
(B)	entropy			
(C)	Helmholtz free energy			
(D)	Gibbs free energy			
	GATE 2025 // Roorkee			

Q.13	Match each crystal defect in Column I with the corresponding type in Column II		
	Column I	Column II	
	P. Edge dislocation	1. Zero-dimensional defect	
	Q. Stacking fault	2. One-dimensional defect	
	R. Frenkel defect	3. Two-dimensional defect	
	S. Porosity	4. Three-dimensional defect	
(A)	P - 3, Q - 4, R - 2, S - 1		
(B)	P-3, Q-4, R-1, S-2		
(C)	P-2, Q-3, R-1, S-4		
(D)	P-2, Q-4, R-3, S-1		
	GATE	2025	
	//7 Ro	orkee	

Q.14 At high temperatures, which one of the following empirical expressions correctly describes the variation of dynamic viscosity μ of a Newtonian liquid with absolute temperature T? Given: *A* and *B* are positive constants. (A) $\mu = A + BT$ $\mu = A \exp\left(-\frac{B}{T}\right)$ **(B)** (C) $\mu = A \exp(BT)$ $\mu = A \exp\left(\frac{B}{T}\right)$ (D) SATE 2024 //7 Roorkee

Q.15	Which one of the following is an intensive property?
(A)	Chemical potential
(B)	Volume
(C)	Mass
(D)	Entropy
	GATE 2025 // Roorkee



Q.16	Hot metal from a blast furnace is treated with mill scale prior to oxygen steelmaking for		
(A)	dephosphorization		
(B)	decarburization		
(C)	desulphurization		
(D)	desiliconization		
	GATE 2025 // Roorkee		

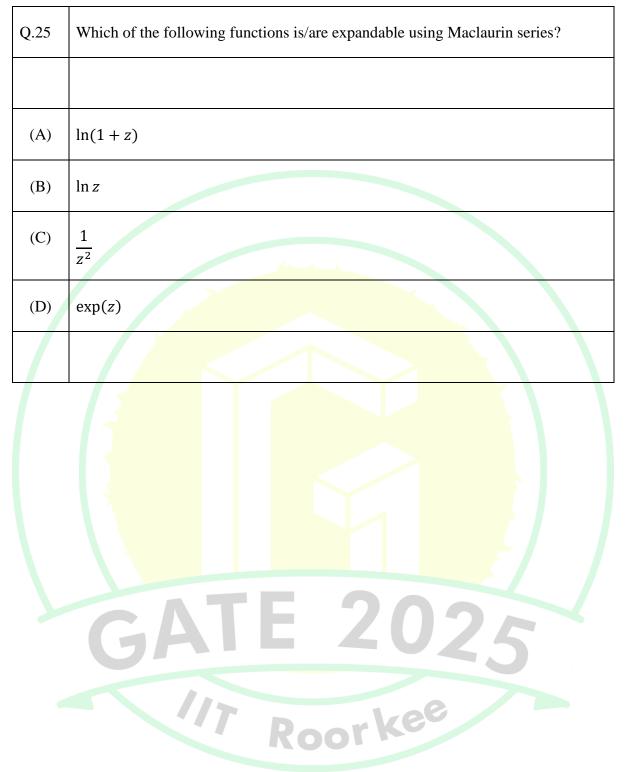
Q.17	In optical microscopy, which one of the following combinations of wavelength (λ) and numerical aperture (NA) provides the best spatial resolution?
(A)	$\lambda = 400 \text{ nm and NA} = 1.0$
(B)	$\lambda = 600 \text{ nm and NA} = 1.2$
(C)	$\lambda = 400 \text{ nm and NA} = 1.2$
(D)	$\lambda = 600 \text{ nm and } \text{NA} = 1.0$
	GATE 2025 Vir Roorkee

Q.19	Consider the following gas-phase reaction:
	$2SO_2 + O_2 \rightleftharpoons 2SO_3$
	If the enthalpy of reaction is negative, which one of the following conditions promotes a higher equilibrium concentration of SO ₃ ?
(A)	Higher pressure and higher temperature
(B)	Higher pressure and lower temperature
(C)	Lower pressure and higher temperature
(D)	Lower pressure and lower temperature
	GATE 2025
	117 Roorkee

Q.20	Which one of the following slag components is responsible for the oxidizing power of steelmaking slags?
(A)	SiO ₂
(B)	CaO
(C)	MgO
(D)	FeO
	GATE 2025 77 Roorkee

Q.21	Two randomly oriented polycrystalline copper samples with average grain sizes of 10 μ m (Sample A) and 100 μ m (Sample B) were tested at room temperature.
	Given:
	$E_A =$ Young's modulus of Sample A
	E_B = Young's modulus of Sample B
	$YS_A = Yield$ strength of Sample A
	$YS_B = Yield$ strength of Sample B
	Which one of the following statements is CORRECT?
(A)	$E_A > E_B$ and $YS_A > YS_B$
(B)	$E_A = E_B \text{ and } YS_A < YS_B$
(C)	$E_A > E_B$ and $YS_A = YS_B$
(D)	$E_A = E_B \text{ and } YS_A > YS_B$
7	GATE 2025
	117 Roorkee

Q.22	In metal casting, which one of the following gating ratios (sprue-runner-gate area ratio) represents a non-pressurized gating system?
(A)	1:2:3
(B)	3:2:1
(C)	4:3:1
(D)	5:4:1
	GATE 2025 // Roorkee



Q.23	In the Fe-C system, the invariant reaction Liquid + $\delta \rightleftharpoons \gamma$ takes place at 1493 °C. This type of reaction is called
(A)	eutectic
(B)	eutectoid
(C)	peritectic
(D)	monotectic
	GATE 2025

Q.24	Match the following element	tts in Column I with their respective ores in Column II .
	Column I	Column II
	P. Al	1. Rutile
	Q. Fe	2. Hematite
	R. Ti	3. Chalcopyrite
	S. Cu	4. Bauxite
(A)	P-4, Q-2, R-3, S-1	
(B)	P – 2, Q – 4, R – 1, S – 3	
(C)	P – 3, Q – 1, R – 4, S – 2	
(D)	P – 4 <mark>, Q – 2, R – 1,</mark> S – 3	
	GAT	E 2025
	117	Roorkee

Q.26	With reference to edge and screw dislocations, which of the following statements is/are CORRECT?
(A)	Both edge and screw dislocations can leave the slip plane by climb.
(B)	Burgers vector of a screw dislocation is parallel to its line vector.
(C)	Both edge and screw dislocations can leave the slip plane by cross-slip.
(D)	Strain energy per unit length of an edge dislocation is higher than that of a screw dislocation.

117 Roorkee

Q.27	Which of the following conditions is/are favorable for producing low-silicon hot metal in blast furnace ironmaking?
(A)	Reduced raceway adiabatic flame temperature
(B)	Oxygen-enriched blast
(C)	Lime injection through tuyeres
(D)	Increased hearth temperature
	GATE 2025

Q.28	Which of the following statements is/are CORRECT with respect to the initial stage of GP zone formation in a precipitation hardenable Al - 4.5 wt.% Cu alloy?
(A)	GP zones are Cu-rich clusters.
(B)	GP zones are CuAl ₂ precipitates.
(C)	GP zones are incoherent with the matrix.
(D)	GP zones are coherent with the matrix.
	GATE 2025

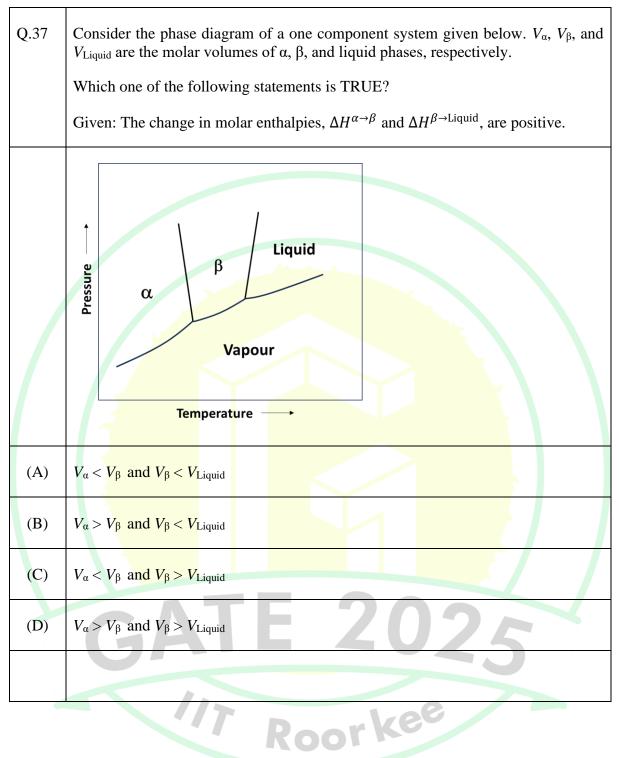
Q.29	Which of the following techniques can be used to detect an internal defect in a metal casting?
(A)	Ultrasonic inspection
(B)	Liquid (or dye) penetrant inspection
(C)	Gamma-ray radiography
(D)	X-ray radiography
	GATE 2025

Q.30	Standard Gibbs free energies of formation of some solid oxides per mole of O_2 at 1000 K are given below.
	SiO ₂ : -728 kJ, TiO ₂ : -737 kJ, VO: -712 kJ, MnO: -624 kJ
	Regarding thermodynamic feasibility of oxide reduction, which of the following statements is/are CORRECT under standard conditions at 1000 K?
(A)	Si can reduce TiO ₂ .
(B)	Mn can reduce VO.
(C)	Ti can reduce MnO.
(D)	V can reduce SiO ₂ .
	GATE 2025
	117 Roorkee

Q.31 Consider a fully developed, steady, one-dimensional, laminar flow of a Newtonian liquid through a pipe. The maximum velocity in the pipe is proportional to which of the following quantities? Given: ΔP is the difference between the outlet and inlet pressure, μ is the dynamic viscosity of the liquid, and R and L are radius and length of the pipe, respectively. ΔP (A) $1/R^{2}$ (B) (C) $1/\mu$ (D) 1/LJAIL 2024 17 Roorkee

Q.32	The hydrostatic stress for the stress tensor provided below is MPa (<i>in integer</i>).		
	$\begin{bmatrix} 150 & 0 & 0 \\ 0 & -100 & 100 \\ 0 & 100 & 250 \end{bmatrix} MPa$		
Q.33	For an application where the Reynolds number is to be kept constant, a liqui a density of 1 g cm ⁻³ and viscosity 0.01 Poise results in a characteristic sp 1 cm s ⁻¹ . If this liquid is replaced by another with a density of 1.25 g cm ⁻³ and visco 0.015 Poise, the characteristic velocity will be cm s ⁻¹ (<i>rounded off</i>		
	<i>decimal place</i>). Assume the characteristic length of the flow to be the same in both cases.		
Q.34	Consider the gas phase reaction: $CO + \frac{1}{2}O_2 \rightleftharpoons CO_2$ At equilibrium for a particular temperature, the partial pressures of CO, O ₂ , and CO ₂ are found to be 10^{-6} atm, 10^{-6} atm, and 16 atm, respectively. The equilibrium constant for the reaction is × 10^{10} (<i>rounded off to one decimal place</i>).		

Q.35A linear regression model was fitted to a set of (x, y) data. The total sum of squares
and sum of squares of error are 1200 and 120, respectively.The coefficient of determination (R^2) of the fit is _____ (rounded off to one
decimal place).



Q.36 – Q.65 Carry TWO marks Each

Q.36	For two continuous functions $M(x, y)$ and $N(x, y)$, the relation $M dx + N dy = 0$ describes an exact differential equation if		
(A)	$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$		
(B)	$\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$		
(C)	$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$		
(D)	$\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$		
	GATE 2025		
	117 Roorkee		

Q.38	Match the steel plant related processes in Column I with the associated information in Column II .	
	Column I	Column II
	P. Corex	1. Melter-gasifier
	Q. Electric Arc Furnace	2. Natural gas reformer
	R. Midrex	3. Electromagnetic stirrer
	S. Continuous Casting	4. Hot heel
(A)	P-1, Q-4, R-2, S-3	
(B)	P – 1, <mark>Q – 4, R – 3,</mark> S – 2	
(C)	P - 2, Q - 4, R - 1, S - 3	
(D)	P – 1, <mark>Q – 3, R – 2,</mark> S – 4	
	GAT	E 2025
	117	Roorkee

Q.39	Radiative heat flux \dot{q} at a hot surface at a temperature T_s can be expressed as $\dot{q} = A f(T_s, T_{\infty}) (T_s - T_{\infty})$
	where A is a constant and T_{∞} is the temperature of the surroundings (temperatures are expressed in K).
	The function $f(T_s, T_\infty)$ is given by
(A)	$(T_s + T_{\infty})^2 (T_s - T_{\infty})$
(B)	$(T_s^2 + T_\infty^2)(T_s + T_\infty)$
(C)	$(T_s^2 - T_\infty^2) \left(T_s + T_\infty\right)$
(D)	$(T_s - T_{\infty})^2 (T_s + T_{\infty})$

Q.40	Match the phenomena in Co l	umn I with the typical observations in Column II .
	Column I	Column II
	P. Dynamic strain aging	1. Grain boundary sliding
	Q. Recrystallization	2. Decrease in yield stress with a reversal of loading direction
	R. Bauschinger effect	3. Decrease in dislocation density
	S. Superplasticity	4. Serrations in stress-strain curve
(A)	P-4, Q-1, R-2, S-3	
(B)	P – 4, <mark>Q – 3, R – 2,</mark> S – 1	
(C)	P – 3, Q – 4, R – 2, S – 1	
(D)	P – 1, Q <mark>– 4, R – 2,</mark> S – 3	
	CAT	E 2022
	GAI	
	117	Roorkee

Q.41	Which one of the following matrices is orthogonal?
(A)	$\begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix}$
(B)	$\begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$
(C)	$\begin{bmatrix} 1/\sqrt{2} & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix}$
(D)	$\begin{bmatrix} 1/\sqrt{2} & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/\sqrt{2} \end{bmatrix}$
	GATE 2025
	17 Roorkee

Q. 42	Match the casting defects in in Column II .	Column I with the characteristic features
	Column I	Column II
	P. Misrun	1. Penetration of liquid metal behind surface layer of sand moulds
	Q. Expansion scab	2. Metal solidifies prematurely in the mould and some sections of the casting are not filled
	R. Pin holes	3. Cracking because of restraint to contraction in certain areas of the casting during solidification and cooling to room temperature
	S. Hot tearing	4. Evolution of gases during solidification resulting in porosity
(A)	P – 2, <mark>Q – 4, R – 3,</mark> S – 1	
(B)	P - 1, Q - 3, R - 2, S - 4	
(C)	P - 1, Q - 2, R - 4, S - 3	E 2025
(D)	P-2, Q-1, R-4, S-3	
		Roorkee

Q.43	The following are the activation energies for diffusion of carbon and iron at 773 K in polycrystalline BCC iron:
	P = Activation energy for diffusion of carbon in BCC iron through the lattice
	Q = Activation energy for diffusion of iron in BCC iron through the lattice
	R = Activation energy for diffusion of iron in BCC iron along the grain boundary
	Which one of the following statements is CORRECT?
(A)	R < P < Q
(B)	R < Q < P
(C)	Q < P < R
(D)	P < R < Q

117 Roorkee

Q.44	Front tension is applied during cold rolling of a thin metal sheet. Which of the following statements is/are TRUE?
(A)	The neutral point shifts towards the roll entrance.
(B)	The rolling load is decreased.
(C)	The neutral point shifts towards the roll exit.
(D)	The rolling load is increased.
Q.45	Which of the following statements is/are CORRECT when Ni is added as an alloying element to a low alloy steel?
(A)	Hardenability is increased AND the M _s temperature is lowered.
(B)	Hardenability is decreased AND the M _s temperature is lowered.
(C)	Hardenability is increased AND the M _s temperature is raised.
(D)	Hardenability is decreased AND the M _s temperature is raised.
	Roorkee

Q.46	Which of the following statements is/are CORRECT with respect to fusion welding and solid-state welding of metals and alloys?
(A)	Thermomechanically affected zone is found in the fusion welding of pure metals.
(B)	Partially melted zone is NOT found in the fusion welding of pure metal.
(C)	Diffusion bonding is one type of solid-state welding process.
(D)	Partially melted zone is found in the fusion welding of alloys with a large freezing range.
Q.47	Which of the following welding processes does NOT / do NOT utilize consumable electrode?
(A)	Plasma arc welding
(B)	Gas metal arc welding
(C)	Shielded metal arc welding
(D)	Electron beam welding
	Koorn

Q.48	For a two-dimensional field described by $T(x, y) = \frac{1}{3}xy(x + y)$, the magnitude of its gradient at the point (1,1) is (rounded off to two decimal places).
Q. 49	X-ray diffraction using a monochromatic radiation of wavelength 0.154 nm is performed on powder samples of metal A (with FCC crystal structure) and metal B (with BCC crystal structure).
	If the first peak in both the cases occurs at a Bragg angle $\theta = 20^\circ$, then the value of
	$\frac{\text{lattice parameter of metal A}}{\text{lattice parameter of metal B}} = \underline{\qquad} (rounded off to two decimal places).$
	GATE 2025
	117 Roorkee

Q.50	The excess molar Gibbs free energy of a solution of element A and B at 1000 K is given by $G^{XS} = -3000 X_A X_B \text{ J mol}^{-1}$, where X_A and X_B are mole fractions of A and B, respectively.
	The activity of B in a solution of A and B containing 40 mol% of B at 1000 K is (rounded off to two decimal places).
	Given: Ideal gas constant $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
Q.51	Molten steel at 1900 K having dissolved hydrogen needs to be vacuum degassed.
	The equilibrium partial pressure of hydrogen to be maintained to achieve 1 ppm (mass basis) of dissolved hydrogen isTorr (<i>rounded off to two decimal places</i>).
	Given: For the hydrogen dissolution reaction in molten steel ($\frac{1}{2}$ H ₂ (g) = [H]), the equilibrium constant (expressed in terms of ppm of dissolved H) is:
	$\log_{10} K_{\rm eq} = -\frac{1900}{T} + 2.4$
	1 atm = 760 Torr
	GATE 2025
Q.52	The value of $\lim_{x\to 0} \frac{6(x-\sin x)}{x^3}$ is(<i>in integer</i>).
	Roorkee

Q.53	Consider the following reactions and their standard Gibbs free energies (in J):
	$Fe(s) + \frac{1}{2}O_2(g) \rightleftharpoons FeO(s)$ $\Delta G^\circ = -264900 + 65T$
	$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(g)$ $\Delta G^{\circ} = -492900 + 109T$
	Assuming Fe and FeO to be pure and no solubility of gases in the solids, the value of $\frac{p_{H_20}}{p_{H_2}}$ required to reduce solid FeO to solid Fe at 1000 K is (rounded off to two decimal places).
	Given: Ideal gas constant $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
Q.54	The diameter of spherical galena particles that have the same settling velocity as spherical quartz particles of diameter 25 μ m (both settling in water) is μ m (<i>rounded off to one decimal place</i>).
	Assume Stokes law of settling to be valid.
	Given: Density of galena = 7400 kg m ⁻³ , density of quartz = 2600 kg m ⁻³ , density of water = 1000 kg m ⁻³ .
	CATE 202
	641-4623
	17 Roorkee

Q.55	Consider the following cell reaction:
	$Mg + Cd^{2+} \rightleftharpoons Mg^{2+} + Cd$
	The standard Gibbs free energy change for the reaction is kJ (<i>rounded off</i> to an integer).
	Given: Standard oxidation potentials for the reactions with respect to standard hydrogen electrode are:
	$Mg \rightleftharpoons Mg^{2+} + 2e^{-}$ $E^{\circ} = 2.37 V$
	$Cd \rightleftharpoons Cd^{2+} + 2e^{-}$ $E^{\circ} = 0.403 V$
	Faraday's constant = 96500 C mol^{-1}
Q.56	Copper is being electrodeposited from a CuSO ₄ bath onto a stainless steel cathode of total surface area of 2 m ² in an electrolytic cell operated at a current density of 200 A m ⁻² with a current efficiency of 90%.
	The mass of copper deposited in 24 h is kg (<i>rounded off to two decimal places</i>).
	Given: Faraday's constant = 96500 C mol ⁻¹ , atomic mass of copper = 63.5 g mol ⁻¹
	ATE 202
	GAIL 2023
	17 Roorkee

Q.57	An intrinsic semiconductor has conductivity of $100 \ \Omega^{-1} \ m^{-1}$ at 300 K and $300 \ \Omega^{-1} \ m^{-1}$ at 500 K.
	The band gap of the semiconductor is eV (rounded off to two decimal places).
	Given: Boltzmann constant $k_B = 8.6 \times 10^{-5} \text{ eV K}^{-1}$
Q.58	For a component fabricated from an alloy A with plane strain fracture toughness, $K_{IC} = 50$ MPa m ^{1/2} , fracture was observed to take place at a crack length of 0.4 mm at a tensile service stress of σ .
	If the same component is instead fabricated from alloy B with $K_{IC} = 75$ MPa m ^{1/2} , the crack length at which a similar crack geometry will result in fracture (under identical tensile service stress of σ) is mm (<i>rounded off to one decimal place</i>).
	ATE 200
	GATE 2025
	117 Roorkee

Q.59	Temperatures at two sides of a 0.4 m thick copper plate are 1000 and 500 °C.					
	Assuming steady state, one-dimensional conductive heat transfer through the wall and ignoring end-effects, the magnitude of the heat flux through the wall is $___ \times 10^5 \text{ W m}^{-2}$ (<i>in integer</i>).					
	Given: Thermal conductivity of copper is 400 W m ^{-1} K ^{-1}					
Q.60	In polycrystalline Ni, Nabarro-Herring diffusion creep was found to be the rate controlling creep mechanism at a certain temperature.					
	At that temperature, if the steady state strain rate is 10^{-8} s ⁻¹ at a stress of 10 MPa, the steady state strain rate of 10^{-9} s ⁻¹ will be obtained at a stress value of					
	MPa (in integer).					
	Assume that the same creep mechanism is rate controlling during the creep deformation.					
	GATE 2025					
	117 408					
	17 Roorkee					

Q.61	A single crystal BCC metal with a lattice parameter $a = 0.4$ nm is subjected to deformation at a shear strain rate of 0.001 s ⁻¹ .						
	If the average mobile dislocation density in the single crystal is 10^{10} m ⁻² , the average dislocation velocity is × 10^{-3} m s ⁻¹ (rounded off to two decimal places).						
	Given: Burgers vector $\mathbf{b} = \frac{a}{2} \langle 111 \rangle$						
Q.62	A cylindrical specimen is subjected to plastic deformation in tension up to a uniform elongation of 10%. The final cross-sectional area of the gage section is found to be 20 mm ² . The initial cross-sectional area of the gage section ismm ² (<i>rounded off to an integer</i>).						
Q.63	The reaction represented by $A \rightarrow B$ follows first order kinetics. At a given temperature, 20% of the reaction is completed in 223 s.						
	The time taken to complete 50% of the reaction at the same temperature iss (<i>rounded off to the nearest integer</i>).						
	17 Roorkee						

Q.64	A cylindrical Al alloy billet of 300 mm diameter is hot extruded to produce a cylindrical rod of 75 mm diameter at a constant true strain rate ($\dot{\varepsilon}$) of 10 s ⁻¹ . The flow stress (σ) of the alloy at the extrusion temperature is given by $\sigma = 10 \ (\dot{\varepsilon})^{0.3}$ MPa.						
	Assume the alloy is perfectly plastic and there is no temperature rise during the extrusion process.						
	The ideal plastic work of deformation per unit volume is $\times 10^6$ J m ⁻³ (<i>rounded off to one decimal place</i>).						
	Le contra de la co						
Q.65	Two consecutive estimates of the root of a function $f(x)$ obtained using the Newton-Raphson method are $x_i = 8.5$ and $x_{i+1} = 13.5$, and the value of the function at x_i is 15.						
	The numerical value of first derivative of the function evaluated at x_i is (<i>in integer</i>).						
	ATE 200						
	GAIE ZUZS						
	117 Roorkee						

GRADUATE APTITUDE TEST IN ENGINEERING 2025 अभियांत्रिकी स्नातक अभिक्षमता परीक्षा २०२५ Organising Institute: INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Answer Key for Metallurgical Engineering (MT)

Q. No.SessionQ. TypeSectionKey/RangeMarks12MCQGAC122MCQGAC132MCQGAA142MCQGAA152MCQGAB162MCQGAB272MCQGAB272MCQGAA292MCQGAD2102MCQGAD2112MCQMTA1122MCQMTA1132MCQMTA1142MCQMTD1152MCQMTD1162MCQMTD1172MCQMTD1182MCQMTB1192MCQMTD1202MCQMTD1212MCQMTD122MCQMTA1232MCQMTD1242MCQMTA1252MSQMTA;C1242MSQMTA;C1252MSQMT <td< th=""><th></th><th>-</th><th></th><th></th><th></th><th></th></td<>		-				
2 2 MCQ GA C 1 3 2 MCQ GA A 1 4 2 MCQ GA A 1 5 2 MCQ GA B 1 6 2 MCQ GA B 2 7 2 MCQ GA B 2 7 2 MCQ GA B 2 9 2 MCQ GA D 2 10 2 MCQ GA C 2 11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 15 2 MCQ MT D 1 16 2 MCQ MT D 1 <th>Q. No.</th> <th>Session</th> <th>Q. Type</th> <th>Section</th> <th>Key/Range</th> <th>Marks</th>	Q. No.	Session	Q. Type	Section	Key/Range	Marks
3 2 MCQ GA A 1 4 2 MCQ GA A 1 5 2 MCQ GA B 1 6 2 MCQ GA B 2 7 2 MCQ GA B 2 8 2 MCQ GA B 2 9 2 MCQ GA A 2 9 2 MCQ GA A 2 9 2 MCQ GA C 2 10 2 MCQ MT A 1 12 MCQ MT A 1 13 2 MCQ MT D 1 14 2 MCQ MT D 1 15 2 MCQ MT D 1 16 2 MCQ MT D 1	1	2	MCQ	GA	С	1
4 2 MCQ GA A 1 5 2 MCQ GA B 1 6 2 MCQ GA B 2 7 2 MCQ GA B 2 8 2 MCQ GA B 2 9 2 MCQ GA D 2 10 2 MCQ GA C 2 11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 15 2 MCQ MT D 1 16 2 MCQ MT D 1 17 2 MCQ MT D 1 18 2 MCQ MT D 1 <	2	2	MCQ	GA	С	1
5 2 MCQ GA B 1 6 2 MCQ GA B 2 7 2 MCQ GA B 2 8 2 MCQ GA A 2 9 2 MCQ GA A 2 10 2 MCQ GA D 2 11 2 MCQ GA C 2 11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 15 2 MCQ MT D 1 16 2 MCQ MT D 1 17 2 MCQ MT D 1 18 2 MCQ MT D 1	3	2	MCQ	GA	A	1
6 2 MCQ GA B 2 7 2 MCQ GA B 2 8 2 MCQ GA A 2 9 2 MCQ GA A 2 10 2 MCQ GA C 2 11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 15 2 MCQ MT D 1 16 2 MCQ MT D 1 17 2 MCQ MT B 1 18 2 MCQ MT D 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1	4	2	MCQ	GA	А	1
7 2 MCQ GA B 2 8 2 MCQ GA A 2 9 2 MCQ GA D 2 10 2 MCQ GA C 2 11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 15 2 MCQ MT D 1 16 2 MCQ MT D 1 17 2 MCQ MT D 1 18 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 MCQ MT D 1 1	5	2	MCQ	GA	В	1
8 2 MCQ GA A 2 9 2 MCQ GA D 2 10 2 MCQ GA C 2 11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 15 2 MCQ MT D 1 16 2 MCQ MT D 1 17 2 MCQ MT B 1 18 2 MCQ MT D 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 MCQ MT D 1 1 23 2 MCQ MT D 1	6	2	MCQ	GA	В	2
9 2 MCQ GA D 2 10 2 MCQ GA C 2 11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 15 2 MCQ MT A 1 16 2 MCQ MT D 1 17 2 MCQ MT B 1 18 2 MCQ MT B 1 19 2 MCQ MT D 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 23 2 MCQ MT A 1 24 2 MCQ MT A;D 1 <td>7</td> <td>2</td> <td>MCQ</td> <td>GA</td> <td>В</td> <td>2</td>	7	2	MCQ	GA	В	2
10 2 MCQ GA C 2 11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 14 2 MCQ MT D 1 15 2 MCQ MT A 1 16 2 MCQ MT D 1 17 2 MCQ MT D 1 18 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT A 1 24 2 MCQ MT D 1	8	2	MCQ	GA	А	2
11 2 MCQ MT A 1 12 2 MCQ MT A 1 13 2 MCQ MT A 1 14 2 MCQ MT D 1 14 2 MCQ MT D 1 15 2 MCQ MT D 1 16 2 MCQ MT D 1 17 2 MCQ MT D 1 18 2 MCQ MT B 1 19 2 MCQ MT D 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT D 1 24 2 MCQ MT D 1	9	2	MCQ	GA	D	2
12 2 MCQ MT A 1 13 2 MCQ MT C 1 14 2 MCQ MT D 1 15 2 MCQ MT A 1 16 2 MCQ MT A 1 17 2 MCQ MT D 1 18 2 MCQ MT B 1 19 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 21 2 MCQ MT D 1 23 2 MCQ MT A 1 23 2 MCQ MT D 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26	10	2	MCQ	GA	С	2
13 2 MCQ MT C 1 14 2 MCQ MT D 1 15 2 MCQ MT A 1 16 2 MCQ MT D 1 16 2 MCQ MT D 1 17 2 MCQ MT D 1 18 2 MCQ MT B 1 19 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 23 2 MCQ MT A 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT A;C 1 27 2 MSQ MT A;C;D <t< td=""><td>11</td><td>2</td><td>MCQ</td><td>MT</td><td>A</td><td>1</td></t<>	11	2	MCQ	MT	A	1
14 2 MCQ MT D 1 15 2 MCQ MT A 1 16 2 MCQ MT D 1 16 2 MCQ MT D 1 17 2 MCQ MT D 1 18 2 MCQ MT B 1 19 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT A 1 23 2 MCQ MT D 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT A;C 1<	12	2	MCQ	MT	A	1
15 2 MCQ MT A 1 16 2 MCQ MT D 1 17 2 MCQ MT C 1 18 2 MCQ MT B 1 19 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT D 1 24 2 MCQ MT D 1 25 2 MCQ MT D 1 26 2 MSQ MT A;D 1 26 2 MSQ MT A;C 1 28 2 MSQ MT A;C 1 29 2 MSQ MT A;C;D 1	13	2	MCQ	MT	С	1
16 2 MCQ MT D 1 17 2 MCQ MT C 1 18 2 MCQ MT B 1 19 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT A 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;C;D	14	2	MCQ	MT	D	1
17 2 MCQ MT C 1 18 2 MCQ MT B 1 19 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT A 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;C,D 1 29 2 MSQ MT A;C;D 1	15	2	MCQ	MT	А	1
18 2 MCQ MT B 1 19 2 MCQ MT B 1 20 2 MCQ MT D 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT A 1 24 2 MCQ MT D 1 25 2 MCQ MT D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;C;D 1	16	2	MCQ	MT	D	1
19 2 MCQ MT B 1 20 2 MCQ MT D 1 21 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT A 1 23 2 MCQ MT D 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;C;D 1	17	2	MCQ	MT	С	1
20 2 MCQ MT D 1 21 2 MCQ MT D 1 22 2 MCQ MT D 1 23 2 MCQ MT A 1 23 2 MCQ MT C 1 24 2 MCQ MT D 1 25 2 MCQ MT D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;D 1	18	2	MCQ	MT	В	1
21 2 MCQ MT D 1 22 2 MCQ MT A 1 23 2 MCQ MT A 1 23 2 MCQ MT C 1 24 2 MCQ MT D 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;C;D 1	19	2	MCQ	MT	В	1
22 2 MCQ MT A 1 23 2 MCQ MT C 1 24 2 MCQ MT D 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;C,D 1	20	2	MCQ	MT	D	1
23 2 MCQ MT C 1 24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;C;D 1	21	2	MCQ	MT	D	1
24 2 MCQ MT D 1 25 2 MSQ MT A;D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;D 1	22	2	MCQ	MT	А	1
25 2 MSQ MT A;D 1 26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;C 1 29 2 MSQ MT A;C 1	23	2	MCQ	MT	С	1
26 2 MSQ MT B;D 1 27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;C;D 1	24	2	MCQ	MT	D	1
27 2 MSQ MT A;C 1 28 2 MSQ MT A;D 1 29 2 MSQ MT A;C;D 1	25	2	MSQ	MT	A;D	1
28 2 MSQ MT A;D 1 29 2 MSQ MT A;C;D 1	26	2	MSQ	MT	B;D	1
29 2 MSQ MT A;C;D 1	27	2	MSQ	MT	A;C	1
	28	2	MSQ	MT	A;D	1
30 2 MSQ MT C 1	29	2	MSQ	MT	A;C;D	1
	30	2	MSQ	MT	С	1

31	2	MSQ	MT	A;C;D	1
32	2	NAT	MT	100 to 100	1
33	2	NAT	MT	1.2 to 1.2	1
34	2	NAT	MT	1.6 to 1.6	1
35	2	NAT	MT	0.9 to 0.9	1
36	2	MCQ	MT	С	2
37	2	MCQ	MT	В	2
38	2	MCQ	MT	A	2
39	2	MCQ	MT	В	2
40	2	MCQ	MT	В	2
41	2	MCQ	MT	В	2
42	2	MCQ	MT	D	2
43	2	MCQ	MT	D	2
44	2	MSQ	MT	A;B	2
45	2	MSQ	MT	A	2
46	2	MSQ	MT	B;C;D	2
47	2	MSQ	MT	A;D	2
48	2	NAT	MT	1.40 to 1.42	2
49	2	NAT	MT	1.20 to 1.25	2
50	2	NAT	MT	0.34 to 0.36	2
51	2	NAT	MT	1.19 to 1.22	2
52	2	NAT	MT	1 to 1	2
53	2	NAT	MT	0.37 to 0.39	2
54	2	NAT	MT	12.5 to 12.5	2
55	2	NAT	MT	-381 to -379	2
56	2	NAT	MT	10.20 to 10.30	2
57	2	NAT	MT	0.13 to 0.15	2
58	2	NAT	MT	0.9 to 0.9	2
59	2	NAT	MT	5 to 5	2
60	2	NAT	MT	1 to 1	2
61	2	NAT	MT	0.27 to 0.30	2
62	2	NAT	MT	22 to 22	2
63	2	NAT	MT	685 to 705	2
64	2	NAT	MT	53.3 to 57.3	2
65	2	NAT	MT	-3 to -3	2
-					