

				Vacuum tubes (Diode and Triode)
1.	Thermionic emission from	a heated filament varies with its	temperature Tas	[CBSE 1990; RPMT 2000; CPMT 2002]
	(a) T^{-1}	(b) <i>T</i>	(c) T^2	(d) $T^{3/2}$
2.	Number of secondary elec	ctrons emitted per number of prin	nary electrons depends on	[RPET 2000]
	(a) Material of target		(b) Frequency of prima	ary electrons
	(c) Intensity		(d) None of the above	
3.	Due to S.C.R in vacuum to	ube		[RPET 2000]
	(a) $I_p \rightarrow \text{Decrease}$	(b) I_p – Increase	(c) $V_p = $ Increase	(d) $V_g = $ Increase
4.	In diode, when there is sa	turation current, the plate resistant	nce (r_p) is	[AIIMS 1997; Haryana PMT 2000]
	(a) Zero	(b) Infinite	(c) Some finite quantit	ty (d) Data is insufficient
5.	The grid voltage of any tri plate circuit current will be		t to - 3 <i>volt</i> and the mutual con	ductance is 3×10^{-4} <i>mho</i> . The change in [MNR 1999]
	(a) 0.8 <i>mA</i>	(b) 0.6 <i>mA</i>	(c) 0.4 <i>mA</i>	(d) 1 <i>mA</i>
6.	In a triode, $g_m = 2 \times 10^{-3} o$ be	hm^{-1} ; $\mu = 42$, resistance load, R	r = 50 kilo ohm. The voltage a	mplification obtained from this triode will
				[MNR 1999]
	(a) 30.42	(b) 29.57	(c) 28.18	(d) 27.15
7.	In an amplifier the load rea	sistance R_L is equal to the plate	resistance (r_p) . The voltage a	mplification is equal to [CPMT 1995]
	(a) μ	(b) 2 <i>µ</i>	(c) μ / 2	(d) μ/4
8.	For a given plate-voltage,	the plate current in a triode is ma	aximum when the potential of	[IIT-JEE 1985; CPMT 1995; AFMC 1999]
	(a) The grid is positive an	nd plate is negative	(b) The grid is positive	e and plate is positive
	(c) The grid is zero and p	plate is positive	(d) The grid is negativ	e and plate is positive
9.	If $R_p = 7 K\Omega$, $g_m = 2.5$ min	<i>llimho</i> , then on increasing plate	voltage by $50V$, how much the	ne grid voltage is changed so that plate
	current remains the same			[RPET 1996]
	(a) - 2.86 V	(b) - 4 V	(c) +4 V	(d) +2 V
10.	The amplification factor of is	f a triode is 20 and trans-conduct	ance is 3 <i>milli mho</i> and load re	sistance $3 \times 10^4 \Omega$, then the voltage gain
	() 10.00	(1) 00	() 70	[RPMT 1996]
	(a) 16.36	(b) 28	(c) 78	(d) 108
11.		1	sistance $R_L = 10$ kilo ohm. If	the input signal voltage is 0.5 volt, then
	output signal voltage will b			[RPMT 1995]
	(a) 1.25 <i>volt</i>	(b) 5 <i>volt</i>	(c) 2.5 <i>volt</i>	(d) 10 <i>volt</i>

186 Valve & Digital Electronics

100							
2.	The amplification factor of a t voltage is to be increased by	triode is 20. If the grid potential is	reduce	d by 0.2 <i>volt</i> then to k	eep the pl	ate current constant its [RPMT 199	
	(a) 10 <i>volt</i>	(b) 4 <i>volt</i>	(c)	40 <i>volt</i>	(d)	100 <i>volt</i>	
3.	For a triode $r_p = 10$ kilo ohm	and $g_m = 3$ milli mho. If the load	resista	ance is double of plat	e resistano	ce, then the value of vo	oltag
	gain will be					[RPMT	r 1994
	(a) 10	(b) 20	(c)	15	(d)	30	
4.	The amplification produced b	by a triode is due to the action of				[AFMC	C 199
	(a) Filament	(b) Cathode	(c)	Grid	(d)	Plate	
5.	In an experiment, the saturat current. It can be done, if	tion in the plate current in a diode	is obs	erved at 240 V. But a s	student stil	II wants to increase the [MNR]	-
	(a) The plate voltage is incre	eased further	(b)	The plate voltage is	decreased	l	
	(c) The filament current is d	ecreased	(d)	The filament current	is increas	ed	
6.	In a triode amplifier, the value	e of maximum gain is equal to				[MP PMT	r 199
	(a) Half the amplification fac	ctor		(b)	Am	plification factor	
	(c) Twice the amplification f	actor	(d)	Infinity			
7.	For a given triode $\mu = 20$. The second sec	he load resistance is 1.5 times the	anode	e resistance. The max	imum gain	will be [CPMT	r 199
	(a) 16	(b) 12	(c)	10	(d)	None of the above	
8.	The amplification factor of a t	triode is 20. Its plate resistance is	10 kilo	ohms. Mutual conduc	tance is		
	(a) 2×10^5 <i>mhos</i>	(b) 2×10^4 <i>mhos</i>	(c)	500 <i>mhos</i>	(d)	2×10^{-3} <i>mhos</i>	
Э.	The voltage gain of a triode of		()			[CPMT	г 19 9
	(a) Filament voltage	(b) Plate voltage	(c)	Plate resistance	(d)	Plate current	
0.	In a triode valve					[MP PET	r 199
	(a) If the grid voltage is zero	then plate current will be zero					
	(b) If the temperature of filar	ment is doubled, then the thermion	nic cur	rent will also be doubl	ed		
	(c) If the temperature of filar	ment is doubled, then the thermion	nic cur	rent will nearly be four	times		
	(d) At a definite grid voltage	the plate current varies with plate	e voltag	e according to Ohm's	law		
1.	The plate current i_p in a triod	de valve is given $i_p = K(V_p + \mu)$	$(V_g)^{3/2}$	where i_{ρ} is in millian	npere and	V_p and V_g are in volt.	If r _p
	10 ⁴ ohm, and $g_m = 5 \times 10^{-3}$	${}^{3}mho$, then for $i_{p} = 8 mA$ and V_{p}	, = 300) volt, what is the val	ue of Kan	d grid cut off voltage	
		i i				[Roorkee	ə 199
	(a) - 6 <i>V</i> , (30) ^{3/2}	(b) $-6V,(1/30)^{3/2}$	(\mathbf{c})	+ 6 V, (30) ^{3/2}	(d)	+ 6 <i>V</i> , (1/30) ^{3/2}	
`			. ,		. ,		
2.	keep the plate current consta	. ,	-	4.5	-		aer
3.	(a) 0.02 The slopes of anode and mu	(b) 0.002 utual characteristics of a triode are	• • •		. ,	5.0 Ny What is the amplific	catio
0.	factor of the valve		6 0.02		respective	[MP PMT	
	(a) 5	(b) 50	(c)	500	(d)	0.5	
4.	The slope of plate characte	eristic of a vacuum tube diode f	for cer	tain operating point	on the cu	rve is $10^{-3} \frac{mA}{V}$. The	pla
	resistance of the diode and it	s nature respectively					
	(a) 100 kilo-ohms static	(b) 1000 kilo-ohms static	(c)	1000 <i>kilo-ohms</i> dyna	amic (d)	100 <i>kilo-ohms</i> dynam	nic
5.		ductance of $2 \times 10^{-3} mho$ and an to a 250 <i>volts</i> supply. The voltage			. The and	ode is connected throu [MP PMT]	•
	(a) 50	(b) 25	(c)	100	(d)	12.5	

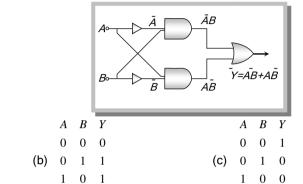
26. 14×10^{15} electrons reach the anode per second. If the power consumed is 448 *milliwatts*, then the plate (anode) voltage is [MP PMT 1989]

							Valve & Digital Electronics 18
	(a) 150 V	(b)	200 <i>V</i>		(c)	$14 \times 448 V$	(d) 448/14 V
7.	A valve oscillator is						[MP PMT 1
	(a) Simple diode	(b)	Double diode		(c)	Triode	(d) <i>L-C</i> circuit
3.	Amplification factor of a triod that plate current remains co		If the grid volt	age is red	uced by o	one volt, how much	should the plate voltage be increase
	(a) 10 V	(b)	1/10 V		(c)	1/20 <i>V</i>	(d) 20 V
•	If the amplification factor of a	triode	valve is 100, tł	nen at plat	e potentia	al of 250 <i>volt</i> the cut	off voltage of its grid will be [MP PET
	(a) 0 V	(b)	-0.4 V		(c)	-2.5 V	(d) - 150 V
	In the circuit of a triode valve volt and the grid potential is of						tential is increased from 200 <i>volt</i> to of this valve is
	(a) 15	(b)	20		(c)	25	(d) 35
•	If the amplification factor of a mho is	a triode	(<i>µ</i>) is 22 and	its plate r	esistance	e is 6600 <i>ohm</i> , then	the mutual conductance of this value
	(a) $\frac{1}{300}$	(b)	25×10^{-2}		(c)	2.5×10^{-2}	(d) 0.25×10^{-2}
•	For a triode, at $V_g = -1$ volt, resistance will be	the foll	owing observa	tions were	e taken V	$V_p = 75 V, I_p = 2mA$,	$V_p=100V, I_p=4m\!A$. The value of μ [MP PMT 1
	(a) 25 KΩ	(b)	20.8 KΩ		(c)	12.5 KΩ	(d) 100 KΩ
	The triode constant is out of	he follo	owing				[RPMT 1
	(a) Plate resistance	(b)	Amplification f	factor	(c)	Mutual conductance	ce (d) All the above
	The unit of mutual conductar	ice of a	triode valve is	;			[MP PMT 1
	(a) Siemen	(b)	Ohm		(c)	Ohm metre	(d) Joule Coulomb ¹
•	With a change of load resist changes from 25 to 30. Plate				nplifier, fr	rom 50 <i>kilo ohms</i> to	100 <i>kilo ohms</i> , its voltage amplifica [MP PET 1]
	(a) 25 <i>Kilo ohms</i>	(b)	75 <i>Kilo ohms</i>		(c)	7.5 <i>Kilo ohms</i>	(d) 2.5 <i>Kilo ohms</i>
	The linear portions of the cha	racteris	stic curves of a	a triode va	lve give tl	ne following reading	IS [Roorkee 1
	V_g (volt)	0	- 2	- 4	- 6		
	$I_p(mA)$ for $V_p = 150$ volts	15	12.5	10	7.5		
	$I_p(mA)$ for $V_p = 120$ volts	10	7.5	5	2.5		
	The plate resistance is						
	(a) 2000 <i>ohms</i>	(b)	4000 <i>ohms</i>		(c)	8000 <i>ohms</i>	(d) 6000 <i>ohms</i>
•	The amplification factors of potential, so that the current		-	grid poten	tial is red	uced by 0.4 volt the	en what should be the increase in p [RPET 1
	(a) 0.4 V	(b)	40 V		(c)	4 <i>V</i>	(d) 14 V
	Select the correct statements	s from t	ne following				[IIT-JEE 1
	(a) A diode can be used as	a rectifi	er				
	(b) A triode cannot be used	as a re	ctifier				
	(c) The current in a diode is	always	proportional t	o the appl	ied voltag	je	
	(d) The linear portion of the	I-V cha	racteristic of a	triode is u	used for a	mplification without	distortion
	The output current versus tin	ne curve	e of a rectifier i	s shown i	n the figu	re. The average valu	ue of the output current in this case i
	(a) 0					Current →	[AIIMS 1

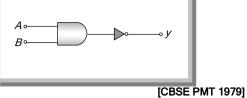
188	Valve & Digital Electronics		
	(b) $\frac{i_0}{-}$		
	π		
	(c) $\frac{2i_0}{\pi}$		
	(d) <i>i</i> ₀		
40.	The introduction of a grid in a triode valve affects plate current b	v	[CPMT 1975, 90]
	(a) Making the thermionic emission easier at low temperature	(b) Releasing more electrons from the plate	
	(c) By increasing plate voltage	(d) By neutralising space charge	
41.	Before the saturation state of a diode at the plate voltages of 40 The ratio \dot{n}/\dot{n} will be	0 <i>V</i> and 200 <i>V</i> respectively the currents are \dot{h}	and <i>i</i> ₂ respectively.
	(a) $\sqrt{2}/4$ (b) $2\sqrt{2}$	(c) 2 (d) 1/2	
42.	The value of constant A in Richardson-Dushman equation in A/	<i>n²/ k</i> ² is	
	(a) $\frac{4\pi me}{h^3}$ (b) $\frac{4\pi me^2}{h^3}$	(c) $\frac{4\pi m e^{2}k}{h^{3}}$ (d) $\frac{4\pi m k^{2}e}{h^{3}}$	
43.	The value of plate current in the given circuit diagram will be		1
	(a) 3 <i>mA</i>		
	(b) 8 <i>mA</i>		
	(c) 13 <i>mA</i>		
	(d) 18 <i>mA</i>		
44.	The plate resistance of a diode value is 5000 Ω . If the value of be the plate potential at plate current of 6.5 <i>mA</i>		0 V, then what will
45	(a) $60 V$ (b) $70 V$	(c) 80 V (d) 90 V	
45.	A certain triode shows the following readings V_{ρ} V_{g} I_{ρ}		
	V_{p}^{r} V_{g}^{r} V_{p}^{r} 150 V - 2 V 5 mA		
	150 V - 3.5 V 3.2 mA		
	195 V - 3.5 V 5 mA		
	The amplification factor of the triode is		
46.	(a) 22.5 (b) 45 The relation between dynamic plate resistance (r_p) of a vacuum	(c) 30 (d) 60 diode and plate current in the space charge li	mited region, is
	(a) $r_p \propto I_p$ (b) $r_p \propto I_p^{3/2}$	(c) $r_p \propto \frac{1}{I_p}$ (d) $r_p \propto \frac{1}{(I_p)}$	1/3
47.	The voltage gain of a triode amplifier is 50. An input signal of V_g be	= $20 \sin \omega t mV$ is applied in the grid circuit. The	e output voltage will
	(a) - 1000 sin $\omega t V$ (b) - 50 sin $\omega t V$	(c) $-20 \sin \omega t V$ (d) $-\sin \omega t$	V
48.	The mutual characteristic curves of a triode are shown in the foll	owing figure. The ac mutual conductance of tri	ode will be
		$\uparrow l_p(mA)$	1
		220 <i>V</i>	1
	(a) 2.5 <i>m mho</i>	150 <i>V</i>	
		///201007	
	(b) 5.0 <i>m mho</i>	15	1
	(c) 7.5 <i>m mho</i>		1
	(d) 10.0 <i>m mho</i>	$-6V - 4V - 2V 0 + 2V V_g(volt) \rightarrow$	
49.	An a.c. signal of IV (<i>r.m.s.</i>) and frequency 1 <i>KHz</i> is applied to th $K\Omega$, then the voltage gain of the amplifier will be	he grid of a triode. If, for the triode μ = 24, r_{ρ} =	10 $k\Omega$ and R_L = 10
	(a) 4 (b) 8	(c) 12 (d) 16	

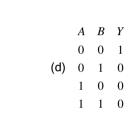
				Valve & Digital E	lectronics 189
50.	Mutual characteristic curves in working field of triode an	re parallel lines	6.		
	When $V_p = 200$ V value of plate current $i_p = (3V_g + 10)n_g$	mA and when	<i>V_p</i> = 150,	V value of plate current $i_p = (3 V_g)$	+ 6) <i>mA</i>
	Application factor of triode value is				
	(a) 12.5 (b) 4.33	(c)	15.5	(d) 37.5	
					Logic gates
51.	How many NAND gates are used to form an AND gate				[MP PET 2004]
	(a) 1 (b) 2	(c)	3	(d) 4	
52.	A gate has the following truth table				[CBSE PMT 2000]
	P 1 1 0 0				
	Q 1 0 1 0				
	R 1 0 0 0				
	The gate is				
	(a) NOR (b) OR	(c)	NAND	(d) AND	
53.	A logic gate is an electronic circuit which				[BHU 2000]
	(a) Makes logic decisions	(b)	Allows e	lectrons flow only in one directior	ı
	(c) Works binary algebra	(d)	Alternate	es between 0 and 1 values	
54.	The logic behind 'NOR' gate is that it gives			[CPMT	1999, AFMC 1999]
	(a) High output when both the inputs are low	(b)	Low outp	out when both the inputs are low	
	(c) High output when both the inputs are high	(d)	None of	these	
55.	Boolean algebra is essentially based on				[AIIMS 1999]
	(a) Truth (b) Logic	(c)	Symbol	(d) Numbers	
56.	The following configuration of gate is equivalent to				[AMU 1999]
				OR	
	(a) NAND				
	(b) XOR				Y
	(c) OR				
	(d) None of these				
57.	The truth-table given below is for which gate				[CBSE PMT 1998]
07.					
	B 0 1 0 1				
	C 1 1 1 0				
	(a) XOR (b) OR	(c)	AND	(d) NAND	
58.	For the given combination of gates, if the logic states of	of inputs <i>A</i> , <i>B</i> , o	Care as fo	ollows $A = B = C = 0$ and $A = B =$	1, $C = 0$ then the
	logic states of output D are				[AMU 1998]
			A•		
	(a) 0, 0		B•		
	(b) 0, 1		<u>^</u>		

C•


(b) 0, 1

190	Valve & Digital Electro	onics			
	(c) 1, 0				
	(d) 1, 1				
59.	The truth table shown in	n figure is for		[Pb.	CET 1998]
	A 0 0 1 1				
	B 0 1 0 1				
	Y 1 0 0 1				
	(a) XOR	(b) AND	(c) XNOR	(d) OR	
60.	Which one of the follow	ing gates can be served as a	a building block for any digital circuit	[C	PMT 1996]
	(a) OR	(b) AND	(c) NOT	(d) NAND	
61.	A truth table is given be	elow. Which of the following h	has this type of truth table	[CBSE	PMT 1996]
	A 0 1 0 1				
	B 0 0 1 1				
	y 1 0 0 0				
	(a) XOR gate	(b) NOR gate	(c) AND gate	(d) OR gate	
62.	The combination of 'NA	ND' gates shown here unde	r (figure) are equivalent to	[Haryana C	CEET 1996]
	A• B•			C	
	(a) An OR gate and ar	n AND gate respectively	(b) An AND gate and a NO	T gate respectively	
	(c) An AND gate and a	an OR gate respectively	(d) An OR gate and a NOT	gate respectively.	
63.	The following truth table	e corresponds to the logic ga	te		[BHU 1994]
	A 0 0 1 1 B 0 1 0 1				
	X 0 1 1 1				
	(a) NAND	(b) OR	(c) AND	(d) XOR	
64.	Given below are four lo	gic gate symbol (figure). The	se for OR, NOR and NAND are respective	ely [N	ISEP 1994]
	 (a) 1, 4, 3 (b) 4, 1, 2 (c) 1, 3, 4 (d) 4, 2, 1 		$\begin{array}{c} A \\ B \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Y \\ B \end{array} \\ \end{array} \\ \begin{array}{c} Y \\ \end{array} \\ \end{array} \\ \begin{array}{c} Y \\ Y \\ \end{array} \\ \begin{array}{c} Y \\ Y \\ \end{array} \\ \end{array} \\ \begin{array}{c} Y \\ Y \\ Y \\ \end{array} \\ \begin{array}{c} Y \\ Y \\ Y \\ \end{array} \\ \begin{array}{c} Y \\ Y $		
65.	Given below are symbol	ols for some logic gates			
		(i)		(iv)	
	The XOR gate and NO	R gate respectively are		[A	FMC 1994]
	(a) 1 and 2	(b) 2 and 3	(c) 3 and 4	(d) 1 and 4	


66. What is the name of the gate obtained by the combination shown in figure


- (a) NAND
 - (b) NOR
 - (c) NOT
 - (d) XOR
- 67. Which of the following represent correctly the truth table in of the configuration

1 1 0

1 1 1

- 68. The combination of the gates shown in the fig. produces
 - (a) OR gate

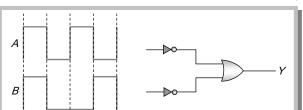
A B Y

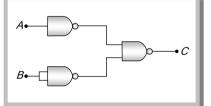
0

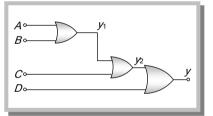
1

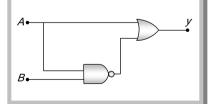
1 1 1

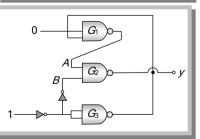
(a) 0

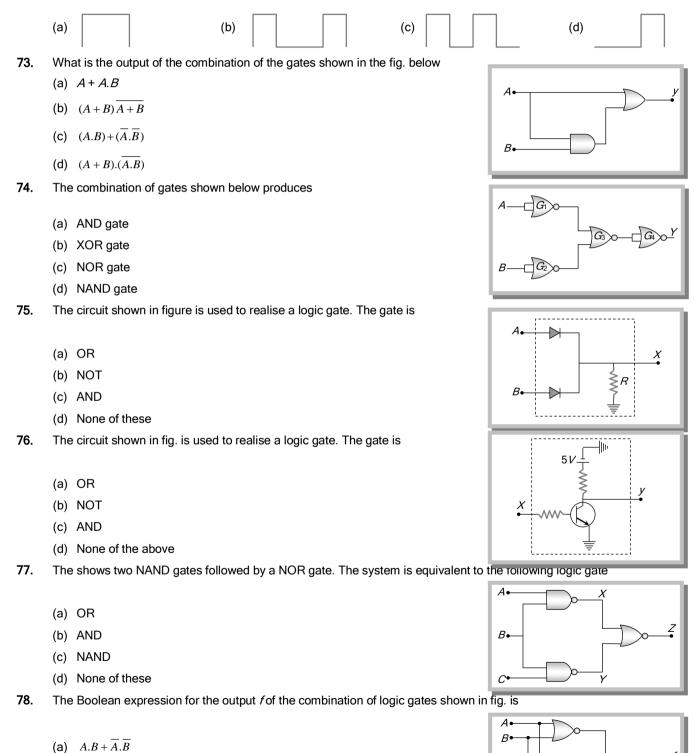

0 0

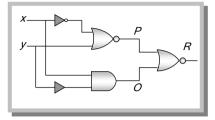

1 0

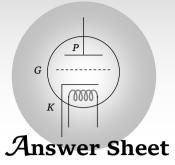

0


0


- (b) AND gate
- (c) NOR gate
- (d) XOR gate
- 69. The expression y in the following circuit is
 - (a) ABCD
 - (b) *B* + *ACD*
 - (c) AB + CD
 - (d) A + B + C + D
- 70. What is the output of the combination of the gates shown in the fig.
 - (a) $A + \overline{A.B}$
 - (b) $(A.B) + (\overline{A}.\overline{B})$
 - (c) $(A+B).(\overline{A.B})$
 - (d) $(A+B)(\overline{A}+\overline{B})$
- 71. In circuit in following fig. the value of Y is
 - (a) 0
 - (b) 1
 - (c) Fluctuates between 0 and 1
 - (d) Indeterminate as the circuit can't be realised
- 72. In a given circuit as shown the two input waveform A and B are applied simultaneously. The resultant waveform Y is







- (a) A.B + A.B
- (b) $A..\overline{B} + \overline{A}.B$

- (c) $A + B \dots \overline{A} + \overline{B}$
- (d) None of these
- **79.** Figure gives a system of logic gates. From the study of truth table it can be found that to produce a high output (1) at *R*, we must have
 - (a) X = 0, Y = 1
 - (b) X = 1, Y = 1
 - (c) X = 1, Y = 0
 - (d) X = 0, Y = 0

	Assignments																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	с	a	b	b	b	с	b	a	a	с	b	b	с	d	b	b	d	с	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	с	b	b	b	b	d	d	с	с	a	с	d	a	a	d	с	a, d	с	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	d	с	с	с	d	d	a	с	d	b	d	a	a	b	b	d	d	с	d
61	62	63	64	65	66	67	68	69	7 0	71	72	73	74	75	76	77	78	79	
b	a	b	с	b	a	b	a	d	a	a	a	a	d	a	b	b	с	с	