
deadlock
It is a situation where a process or set of processes is blocked,
waiting for some resource that is held by other waiting processes.

System Model
Let the resource types be R

1
, R

2
 ... R

m
 (like CPU cycles, memory

space, input/output (I/O) devices, etc.). Each resource type R
i
 has

W
i
 instances; each process utilizes a resource as follows:

Request A process, needing a resource, will request the operat-
ing system (OS) for assignment of the needed resource. Then the
process waits, till operating system assigns it an instance of the
requested resource.

Assignment The OS will assign to the requesting process an
instance of the requested resource, whenever, it is available. Then,
the process comes out of its waiting state.

Use The process will use the assigned resource. In case, the
resource is non-sharable, the process will have exclusive access to it.

Release After the process fi nished with the use assigned resource,
it will return the resource to the system pool. The released resource
can now be assigned to another waiting process.

Example:

Bridge crossing

Traffi c is allowed only in one direction. Each section of a bridge
can be viewed as a resource.

If a deadlock occurs, it can be resolved if one car backs up (pre-
empt resources and rollback). Several cars may have to be backed
up if a deadlock occurs.

Problem of starvation (infi nite wait) is possible.

Resources
Types of resources:

 1. Reusable resources
 2. Consumable resources

Reusable resources These resources can be safely used by only
one process at a time, and are not depleted by that use.

Examples: Processors, I/O channels, main and secondary
memory, devices and fi les, etc.

Consider two processes P and Q that compete for exclusive
access to a disk fi le D and tape drive T. Let their implementation
is as shown below:

Table 1 Process P

Step Action
P0 Request (D)

P1 Lock (D)

P2 Request (T)

P3 Lock (T)

P4 Perform function

P5 Unlock (D)

P6 Unlock (T)

Table 2 Process Q

Step Action
Q0 Request (T)

Q1 Lock (T)

Q2 Request (D)

Q3 Lock (D)

Q4

Perform
Function

Q5 Unlock (T)

Q6 Unlock (D)

Chapter 3

Deadlock and CPU Scheduling

  Deadlock

  System model

  Bridge crossing

  Resources

  Resource allocation graph

  Methods of handling deadlocks

  Deadlock prevention

  Resource allocation denial (OR) banker’s algorithm

  Deadlock detection

  Dining philosophers problem

  Scheduling algorithms

  Scheduling policies

  Round Robin scheduling

  Shortest remaining time

  Highest response ratio next

  Multilevel feedback queue scheduling

LEARNING OBJECTIVES

7.36  |  Unit 7  •  Operating System

P and Q are executing on a single processor in interleaved
fashion. Then deadlock occurs if each process holds one
resource and requests the other.

For example, deadlock occurs if the multiprogramming
system interleaves the execution of the two processes as
follows:

P
0
, P

1
, Q

0
, Q

1
, P

2
, Q

2

One strategy to deal with this type of deadlocks is to impose
system design constraints concerning the order in which
resources can be requested.

Consumable resources  A consumable resource is one that
can be created and destroyed. There is no limit on the num-
ber of consumable resources of a particular type.

Examples:  Interrupts, signals, messages, etc.
Consider the following pair of processes, in which each pro-
cess attempts to receive a message from the other process
and then send a message to the other process:

P1 P2

.
receive (P2);
.
send (P2, M1);

.
receive (P1);
.
send (P1, M2);

Deadlock occurs in above case, if the receive is blocking.
There is no single effective strategy that can deal with all
types of deadlocks.

Deadlock Characteristics
Deadlock is an undesirable state of the system. The follow-
ing are the four conditions that must hold simultaneously
for a deadlock to occur:

Mutual exclusion  A resource can be used by only one pro-
cess at a time. If another process requests for that resource
then the requesting process must be delayed until the
resource has been released.

Hold-and-wait  Some processes must be holding some
resources in a non-sharable mode and at the same time must
be waiting to acquire some more resources, which are cur-
rently held by other processes in a non-sharable mode.

No pre-emption  Resources granted to a process can be
released back to the system only as a result of the voluntary
action of that process, after the process has completed its
task.

Circular wait  Deadlocked processes are involved in a
circular chain such that each process holds one or more
resources being requested by the next process in the chain.

P1
P2

P3P4

R1

R2

R3

R4

Resource Allocation Graph
A deadlock is described in terms of a directed graph called
a system Resource Allocation Graph (RAG). It consists of
two sets:

	 1.	 The set of vertices, V
	 2.	 The set of edges, E

The set of vertices is again divided into two categories.
The set of all active processes in the system is P = {P

1
,

P
2
, ... P

n
} and the set of all different type of resources i.e.,

R = {R
1
, R

2
 ... R

m
}

There are two types of edges in the RAG:

	 1.	 A directed edge from the process P
i
 to resources type

R
j
 and is denoted by P

i
 → R

j
. It signifies that the ith

process is requesting one unit of the resource type j.
This edge is request edge.

	 2.	 A directed edge from the resource R
i
 to process P

j

denoted by R
i
 → P

j
. It signifies that one unit of ith

resource is held by the process j. This edge is also
called as an allocation edge/assignment edge.

Notations Used in RAGs
We denote a process by a circle and each resource by a
rectangle.

Process Pi requests
instance of Rj

Pi

Rj

Resource
Type with four
instances

Pi is holding
an instance
of Rj

Pi

Rj

However, if we have more number of instances of a resource
type, then it is denoted by more dots.

R

P1 P2 P3

R1 R2

R3
R4

Figure 1  RAG with deadlock.

Chapter 3  •  Deadlock and CPU Scheduling  |  7.37

Notes: 

	 1.	 If a cycle exists in the RAG, there may or may not be a
deadlock.

	 2.	 Acyclic RAG implies no deadlock.
	 3.	 No deadlock implies acyclic RAG. This means that

cycles can be there even if there is no deadlock.

R1

R3

P1

P2

P3

P4

Figure 2  RAG with no deadlock but contains cycle.

Notes: 
	 1.	 If graph contains no cycles, then no deadlock.
	 2.	 If graph contains a cycle

If there is only one instance per resource type, then dead-
lock occurs.

If there are several instances per resource type, deadlock
may occur.

Methods of Handling Deadlocks
There are three approaches to deal with deadlocks. They are

	 1.	 Deadlock prevention
	 2.	 Deadlock avoidance
	 3.	 Deadlock detection

Deadlock Prevention
	 1.	 The strategy of deadlock prevention is to design a sys-

tem in such a way that the possibility of deadlock is
excluded.

	 2.	 Two classes of deadlock prevention are
•• Indirect method
•• Direct method

Indirect method  Prevent the occurrence of one of three
necessary conditions of deadlock i.e., mutual exclusion, No
pre-emption and hold and wait.

Direct method  Prevent the occurrence of circular wait.

Prevention Techniques
Mutual exclusion  This is supported by the OS.

Hold and wait 

	 1.	 This condition can be prevented by requiring that
a process request all of its required resources at one
time and blocking the process until all requests can be
granted simultaneously.

	 2.	 But this prevention does not yield good results because

•• Long waiting time required
•• Not efficient use of allocated resources
•• A process may not know all the required resources

in advance.

Advantages
	 1.	 Works well for processes that perform a single burst of

activity.
	 2.	 No pre-emption necessary.

No pre-emption  Prevention strategies for ‘no pre-emption’ are

	 1.	 If a process that is holding some resources, requests
another resource that cannot be immediately allo-
cated to it, then all resources currently being held are
released and if necessary request them again together
with the additional resources.

	 2.	 If a process requests a resource that is currently held
by another process, the OS may pre-empt the second
process and require it to release its resources. This
technique works only when two processes do not have
same priority.

Advantages
Convenient when applied to resources whose state can be
saved and restored easily.

Disadvantage
Pre-empts more often than necessary.

Circular wait  One way to ensure that this condition never
holds is to impose a total ordering of all resource types and
to require that each process requests resource in an increas-
ing order of enumeration, i.e., if a process has been allo-
cated resources of type R, then it may subsequently request
only those resources of types following R in the ordering.

Advantages
	 1.	 Feasible to enforce via compile time checks.
	 2.	 No run-time computation required.

Disadvantages
	 1.	 Disallows incremental resources requests.

Note:  The deadlock prevention strategies are conservative
and undercommits resources.

Deadlock Avoidance
	 1.	 This approach allows the three necessary conditions

of deadlock but makes judicious choices to assure that
deadlock point is never reached.

	 2.	 Deadlock avoidance allows more concurrency than
prevention.

	 3.	 A decision is made dynamically whether the current
resource allocation request will, if granted, potentially
lead to a deadlock.

7.38  |  Unit 7  •  Operating System

	 4.	 It requires the knowledge of future process requests.
	 5.	 Two techniques to avoid deadlock:

•• Process Initiation Denial

•• Resource Allocation Denial

Process initiation denial  In this technique, do not start a
process if its demands might lead to deadlock.

Consider a system of ‘n’ processes and ‘m’ different types of
resources. Let us define the following vectors and matrices:

Resources R = (R
1
, R

2
, ... R

m
)

R
1
: amount of type 1 resources

R
2
: amount of type 2 resources

Available = V = (V
1
, V

2
, ... V

m
)

‘V’ specifies total amount of each resource not allocated
to any process.

Claim C

P

P

P

C C C

C C C

C C Cn

m

m

n n nm

=

















1

2

11 12 1

21 22 2

1 2

�
�
�

C
ij
 = requirement of process i for resources j

Allocation A

P

P

P

A A A

A A A

A A An

m

m

n n nm

=

















1

2

11 12 1

21 22 2

1 2

�
�
�

A
ij
 = Current allocation to process i of resource j.

The following relationships must hold:

	 1.	 All resources are either available or allocated, that is,

R V A jj j iji

n= + ∀
=∑ ,

1

	 2.	 No process can claim more than the total amount of
resources in the system, that is,

		 C
ij
 ≤ R

j
, ∀ i, j

	 3.	 No process is allocated more resources of any type
than the process originally claimed to need, that is,

		 A
ij
 ≤ C

ij
 , ∀ i, j

With these properties satisfied, we can define a deadlock
avoidance policy that refuses to start a new process if its
resource requirements might lead to deadlock. Start a new
process P

n+1
 only if

R C C jj n j iji

n≥ + ∀+ =∑() ,1 1

that is, a process is only started if the maximum claim of all
current processes plus those of the new process can be met.

Resource allocation denial (OR) banker’s algorithm 
Consider a system with a fixed number of processes and a
fixed number of resources. At any time, a process may have
zero or more resources allocated to it.

State:  The state of a system reflects the current allocation
of resources to processes.

Safe state 

	 1.	 When a process requests an available resource, the
system must decide if immediate allocation leaves the
system in a safe state.

	 2.	 A state is safe if the system can allocate resources to
each process in some order and still avoid deadlock.

	 3.	 More formally, a system is in safe state if there exists a
safe sequence of all processes.

	 4.	 A sequence of processes <P
1
, P

2
, …, P

n
> is a safe

sequence for the current allocation state, if for each
P

i
, the resource requests that P

i
 can still make can be

satisfied by the currently available resources plus the
resources held by all the P

j
, with j < i.

	 5.	 When P
j
 is finished, P

i
 can obtain the needed resources,

completed its designated task, return its allocated
resources and terminates.

	 6.	 When P
i
 terminates, P

i+1
 can obtain its needed resources

and so on.
	 7.	 If a system is in safe state, no deadlock occurs.
	 8.	 If a system is in unsafe state deadlock may occur.
	 9.	 Avoidance ensures that a system will never enter an

unsafe state.

P1 P2P1 P2

R1 R1

R2 R2

	10.	 The dotted line in the above graph represents a claim
edge, i.e., a process may request that resource some-
time in the future.

	11.	 A request can only be granted if it does not result in the
formation of a cycle in the graph.

	12.	 If P
2
 request R

2
, we cannot allocate it, since this would

create a cycle.
	13.	 A cycle indicates the system is in unsafe state.

Example 1:  Consider the following state of a system
consisting of three processes and two resources:

R = (R
1
, R

2
) = (5 3)

V = (V
1
, V

2
) = (2 1)

R1 R2

C = P1
4 3

P2
2 1

P3
3 3

R1 R2

A = P1
2 1

P2
1 1

P3
0 0

Is this is a safe state?

Chapter 3  •  Deadlock and CPU Scheduling  |  7.39

Solution: 
To check whether the state is safe or not, identify whether
any one of the three process can run to completion with the
resources available, that is, C

ij
 – A

ij
 ≤ V

j
, ∀ j

R
1 

R
2

C A

P

P

P

− =
















1

2

3

2 2

1 0

3 3

We can identify that
[1 0] < [2 1].
\ P

2
 can execute first.

After P
2
 execution it will release all its resources then

V = (2 1) + (1 1) = (3 2).
Now P

1
 can execute as (2 2) < (3 2).

After that P
1
 can release its resources then

V = (3 2) + (2 1) = (5 3)
Now P

3
 can execute and release the resources after completion.

Hence, the safe sequence is < P
2
, P

1
, P

3
 >.

Example 2:  Now suppose for the above system the
allocation matrix

A V=
















=
2 1

1 1

2 1

00 and ()

Then no process can run to completion as no C
ij
 – A

ij
 ≤ V

j
, ∀j

Hence, the system is in unsafe state.

Detection Algorithm for Several
Instances of a Resource Type
Safety algorithm
To find out whether or not a system is in a safe state.

	 Step I:        � Let ‘work’ and ‘finish’ be the two vectors of
length m and n.

		      � Initialize: Work = Available and Finish [i] =
false;

	 Step II:     Find i such that both:
	       (a)  Finish [i] = false;
	       (b)  Need ≤ Work (Need = claim – Allocation)
			     If no such i exists, go to step 4.

	 Step III:  Work = Work + Allocation
	       Finish [i] = true
	       Go to step 2

	 Step IV:  � If Finish [i] = true for all i, then the system
is in safe state else it is in unsafe state. This
algorithm takes O(m × n2) operations to
decide whether a state is safe.

Resource–Request algorithm
Let Request

i
 be the request vector for process, P

i
. If

Request
i
[j] = k, the process P

i
 wants k instances of resource

type R
j
. When a request for resources is made by process, P

i
,

the following actions are taken.

Step I: �  �If Request
i
 ≤ Need

i
, go to step 2. Else raise an

exception (error) as the process has exceeded its
maximum claim.

Step II:  � If Request
i
 ≤ Available, go to step 3. Else P

1
 must

wait, since the resources are not available.

Step IIII: � Have the system pretend to have allocated the
requested resources to process, P

i
, by modifying

the state as follows.

	 Available = Available – Request
i

	 Allocation = Allocation + Request
i

	 Need
i
 = Need

i
 – Request

i

If the resulting resource–allocation is safe, then the transac-
tion is completed and process, P

i
 is allocated its resources.

However, if the new state is unsafe then P
i
 must wait for

Requesti and the old resource allocation state is restored.

Advantages of deadlock avoidance technique
	 1.	 Not necessary to pre-empt and rollback processes.
	 2.	 Less restrictive than deadlock prevention.

Disadvantages
	 1.	 Future resource requirement must be known in advance.
	 2.	 Processes can be blocked for long periods.
	 3.	 Exists fixed number of resources for allocation.

Deadlock Detection
	 1.	 This technique does not limit resource access or restrict

process action.
	 2.	 Requested resources are granted to processes when-

ever possible.

Deadlock detection is used by employing an algorithm that
tracks the circular waiting and killing one or more processes
so that the deadlock is removed.

The system state is examined periodically to determine if
a set of processes is deadlocked.

A deadlock is resolved by aborting and restarting a pro-
cess, relinquishing all the resources that the process held.

For single instance of each resource type  If in the RAG,
every resource has only one instance (or single instance)
then we define a deadlock detection algorithm that uses a
variant of the RAG and is called a wait-for-graph.

How can we get this graph from RAG? : We can get this
by removing the nodes of type resource and collapsing the
appropriate edges. Wait-for-graph has a cycle, then there is
deadlock in the system.

To detect deadlocks, the system needs to maintain the
wait-for-graph and to periodically invoke an algorithm. The
complexity of this algorithm is O(n2) where n is the number
of vertices in the graph.

7.40  |  Unit 7  •  Operating System

Consider the RAG:

P1 P3

P2

P4

R1

R2 R5

R4

We draw the wait-for-graph by removing all nodes that rep-
resents resources and collapsing their edges.

P1 P2 P3

P4

  Wait-for-graph 

The system is in deadlock state.
Cycle → P

1
, P

2
, P

4
, P

1

Cycle → P
1
, P

2
, P

3
, P

4
, P

1

Deadlock Detection Algorithm
for Several Instances of Resource Type
Consider the Allocation matrix, A, Request matrix Q (Q

ij

represents the amount of resource of type j requested by
process i), Resource vector R and available vector V.

The algorithm proceeds by marking processes that are
not deadlocked. Initially all processes are unmarked.

	 1.	 Mark each process that has a row in the Allocation
matrix of all zeros.

	 2.	 Initialize a temporary vector W to equal the Available
vector.

	 3.	 Find an index i such that process i is currently
unmarked and the ith row of Q is less than or equal to
W, that is, Q

ik
 ≤ W

k
, for 1 ≤ k ≤ M. If no such row is

found, terminate the algorithm.
	 4.	 If such a row is found, mark process i and add the cor-

responding row of the allocation matrix to W. That is,
set W

k
 = W

k
 + A

ik
 for 1 ≤ k ≤ M. Return to step 3.

A deadlock exists if and only if there are unmarked pro-
cesses at the end of the algorithm. Each unmarked process
is deadlocked.

Example 3:  Let the

R1 R2 R3

P1 1 1 1
Request matrix Q = P2 1 0 0

P3 1 1 1
P4 1 1 1

R1 R2 R3

P1 1 1 0
Allocation matrix A = P2 1 0 0

P3 0 1 1
P4 0 1 1

Resource vector R = (3 3 3)
Available Vector V = (1 0 1)
Is deadlock existing in this system?

Solution: 
W = (1 0 1)
The request of P

2
 is less than W. So W = W + (1 0 0) = (2 0 1)

So mark P
2
. No other unmarked process has a row Q that is

less than or equal to W.
Terminate the algorithm.
\ P

1
, P

3
, P

4
 are in deadlock.

Advantages
	 1.	 Never delays process initiation
	 2.	 Facilitates online handling

Disadvantages
	 1.	 Inherent pre-emption losses

Deadlock Recovery
The possible deadlock recovery strategies are as follows:
	 1.	 Abort all deadlocked processes.
	 2.	 Back up each deadlocked process to some previously

defined checkpoint and restart all processes.
	 3.	 Successively abort deadlocked processes until dead-

lock no longer exists.
	 4.	 Successively pre-empt resources until deadlock no

longer exists.

Dining Philosophers Problem
Consider the following solution for dining philosophers
problem using semaphores:

Semaphore fork[5] = {1};
int i;
void philosopher(int i)
{
while (true)
{
think();
wait(fork[i]);
wait(fork[(i + 1) mod 5]);
eat();
signal(fork[(i + 1) mod 5]);
signal(fork[i]);
}
}
void main()
{
Begin(Philosopher(0),Philosopher(1
), Philosopher(2), Philosopher(3),
Philosopher(4));
}

Here, each philosopher picks up first the fork on the left
and then the fork on the right. After the philosopher is fin-
ished eating, the two forks are placed on the table. But this

Chapter 3  •  Deadlock and CPU Scheduling  |  7.41

solution leads to deadlock, if all of the philosophers are
hungry at the same time, they all sit down, they all pick up
the fork on their left and they all reach out for the other fork,
which is not there.

A refined solution to dining philosophers problem which
is deadlock free is shown below:
Semaphore fork[5] = {1};
Semaphore room = {4};

int i;
void philosopher(int i)
{
while(true)
{
think();
wait(room);
wait(fork[i]);
wait(fork[(i + 1) mod 5]);
eat();
signal(fork[(i + 1) mod 5]);
signal(fork[i]);
signal(room);
}
}
void main ()
{
Begin
{
(Philosopher (0), Philosopher (1), Philosopher
(2), Philosopher (3), Philosopher (4));
}
}
This solution is free from deadlock and starvation.

CPU Scheduling
	 1.	 The objective of multi programmed OS is to maximize

CPU utilization by having some process running at all
times.

	 2.	 The objective of time shared OS is to switch the CPU
among processes so frequently that the users can inter-
act with each program while it is executing.

	 3.	 When there are more than one process ready to execute
with the processor, a selection decision needs to be made
to pick a process for execution from among the ready
processes. This activity is called process scheduling.

Scheduling queue:  It maintains information of all ready
processes for CPU devices. It is maintained as a linked list.

Types of Scheduling Queue
	 1.	 Job queue: It consists of all processes in the system.
	 2.	 Ready queue: It consists of all processes that are resid-

ing in the main memory and are ready but waiting to
execute on CPU.

	 3.	 Device queue: It consists of processes waiting for a
particular I/O device. Each device has its own queue.

Process CPU–I/O Burst Cycle
The execution of process consists of CPU burst and I/O
burst. The execution of process starts with CPU burst and
I/O burst, which are executed alternatively.

The alternating sequence of CPU and I/O burst are
shown below:

Read a
Inc a
Read x

 CPU Burst

I/O waiting } I/O Burst
Dec x
Store x

 CPU Burst

I/O waiting } I/O Burst
.
.
.
.
There should be proper balance between CPU bound pro-
cess and I/O bound process in a schedule.

Scheduler
A process migrates between various scheduling queues
throughout its lifetime. The process of selecting processes
from the queues is carried out by scheduler.

Types of Processor Scheduling
There are three types of processor scheduling:

	 1.	 Long-term scheduling
	 2.	 Medium-term scheduling
	 3.	 Short-term scheduling

The following figure relates the scheduling functions to the
process state transition diagram:

Blocked/
suspend

Ready/
suspend

Medium term
Long term

Short term

Blocked

Ready

Running

New Exit

Figure 3  Levels of Scheduling

7.42  |  Unit 7  •  Operating System

Long-term Scheduling
	 1.	 This is performed when a new process is created.

This is also called job scheduling.
	 2.	 This is a decision whether to add a new process to the

set of process that is currently active.
	 3.	 It controls the degree of multiprogramming.
	 4.	 The long-term scheduler creates processes from the

queue when it can.
	 5.	 This involves two decisions:

•• The Scheduler must decide when the OS can take
on one or more additional processes.

•• The scheduler must decide which job(s) to accept
and turn into processes.

Medium-term Scheduling
	 1.	 It is a part of swapping function.
	 2.	 This is a decision whether to add a process to those

that are at least partially in main memory and therefore
avail for execution.

Short-term Scheduling
	 1.	 It is the decision regarding which ready process to be

executed next.
	 2.	 This is also known as CPU scheduler.
	 3.	 This is invoked whenever an event occurs that may

lead to the blocking of the current process or that may
provide an opportunity to pre-empt a currently running
process in favour of another.

	 4.	 Another term involved in short-term scheduling is
dispatcher which is a module that gives control of the
CPU to the process selected by short-term scheduler.

Examples:  Clock interrupts, I/O interrupts, OS calls, etc.

Scheduling Algorithms

Scheduling Criteria
The commonly used scheduling criteria can be categorized
along two dimensions:

	 1.	 User oriented versus system oriented.
	 2.	 Performance related versus others.

User-oriented, performance-related criteria
	 1.	 Turnaround time: It is the time taken to execute a pro-

cess. It is calculated as the interval from the time of
submission of a process to the time of completion.

		 Turnaround time = waiting time + execution
		 time + time spent in I/O + time spent to get into

memory
	 2.	 Response time: Amount of time it takes from when a

request was submitted until the first response is pro-
duced. It should be minimum.

	 3.	 Deadlines: When process completion deadlines can be
specified, the scheduling discipline should subordinate
other goals to that of maximizing the percentage of
deadlines met.

Waiting time: It is the amount of time that a process spends
in ready queue and doing I/O, and it should be minimum.

User-oriented, other criteria
Predictability:  A given job should run in about the same
amount of time and at about the same cost regardless of the
load on the system.

System-oriented, performance-related
criteria
	 1.	 Throughput: The scheduling policy should attempt to

maximize the number of processes completed per unit
of time. This is a measure of how much work is being
performed.

	 2.	 Processor (CPU) utilization: This is the percentage of
time that the processor is busy. In real system, it should
range from 40–90%.

System-oriented, other criteria
	 1.	 Fairness: No process should suffer from starvation.
	 2.	 Enforcing priorities: Should favour higher priority

processes and use Aging technique in order to increase
the priority of processes is that wait in the system for
long time.

	 3.	 Balancing resources: Should keep the resources of the
system busy.

Use of priorities
	 1.	 Each process is assigned a priority, and the scheduler

will always choose a process of higher priority over
one of lower priority.

Release

Pre-emption

Admit

Event waitEvent
occur

Processor
Dispatch

RQ0

RQ1

RQn

Blocked queue

Priority queuing

Here RQ
0
, RQ

1
,…RQ

n
 are ready queues with priority (RQ

i
)

> priority (RQ
j
) for i < j. The scheduler starts with RQ

0
 pro-

cesses, if it is empty choose a process from RQ
1
 and so on.

Scheduling Policies
We will discuss the following scheduling algorithms:

	 1.	 FCFS
	 2.	 Round Robin
	 3.	 SPN

	 4.	 SRN
	 5.	 HRRN
	 6.	 Feedback

Chapter 3  •  Deadlock and CPU Scheduling  |  7.43

Before discussing these algorithms, let us discuss some
basic concepts:

Selection function
	 1.	 Determines which process among ready process, is

selected next for execution.
	 2.	 This may depend on priority, resource requirement,

execution characteristics of process.
	 3.	 Execution characteristics of a process include

w = waiting time
e = execution time,
S = w + e

Decision mode It is of the following two types:

	 1.	 Non-pre-emptive
	 2.	 Pre-emptive

•• In non-pre-emptive scheduling, if once the CPU has
been allocated to a process, the process can keep
the CPU until it releases it, either by terminating or
switching to waiting state.

•• In pre-emptive scheduling, CPU can be taken away
from a process during execution.

Comparison of non-pre-emptive and
pre-emptive scheduling

Non-pre-emptive
Scheduling Pre-emptive Scheduling

1. In non-pre-emptive sched-
uling, if once a process has
been allocated CPU then
the CPU cannot be taken
away from that process.

In pre-emptive schedul-
ing, the CPU can be taken
away before the completion
of the process.

2. No preference is given
when a higher priority job
comes.

It is useful when a higher
priority job comes as here
the CPU can be snatched
from a lower priority
process.

3. The treatment of all pro-
cesses is fairer.

The treatment of all pro-
cesses is not fairer as CPU
snatching is done either
due to constraints or due
to higher priority, process
request for its execution.

4. It is a cheaper scheduling
method. First come first
served is an example.

It is a costlier scheduling
method. Round Robin is an
example.

First come, first served scheduling (FCFS)  The process that
requests the CPU first is allocated the CPU first. It is non-
pre-emptive scheduling and average waiting time is quite long.

Example 4:  Consider the following processes:

Process Cpu Burst Time (Millisecond)

P1

P2

P3

20
5
3

Find the average waiting time.

Solution: 
Suppose they are in the order P

1
, P

2
, P

3
 at time 0. So, Gantt

chart is

P1 P2 P3

0 20 25	 28

Average waiting time
(0 20 25)

3

+ +=

			 = 15 ms

		 If they arrived in order P
3
, P

2
, P

1

		 then, Gantt chart is

P3 P2 P1

0 3 8	 28

Average waiting time = + + =0 3 8

3

11

3

			 = 3.67 ms

Notes:

	 1.	 Throughput is not that much emphasized.
	 2.	 Response time may be high especially if there is a large

variance in process execution times.
	 3.	 Minimum overhead required.
	 4.	 It penalizes short processes, also penalizes I/O bound

processes.
	 5.	 There is no possibility of starvation.

Advantages
	 1.	 Simple and brutally fair.
	 2.	 It is suitable for batch systems.

Disadvantages
	 1.	 The average waiting time is not minimal.
	 2.	 Not suitable for time sharing systems like Unix.
	 3.	 Convoy effect: Short process behind long process

results in lower CPU utilization.

Round Robin scheduling
	 1.	 It is designed for time sharing system.
	 2.	 Similar to FCFS with pre-emption added.
	 3.	 Each process gets a small central CPU time (a time

slice) usually 10 – 100 ms.
	 4.	 After time slice has elapsed and added to the end of the

ready queue.
	 5.	 The scheduler picks the first process from the ready queue,

sets a timer to interrupt after one time quantum and then
dispatches the process. One of the following happens.

	 6.	 The process may have a CPU burst of less than 1 time
quantum. (or)

	 7.	 CPU burst time of the currently executing process is
longer than one time quantum. In this case, the timer
will go off, cause an interrupt, a context switch is then

7.44  |  Unit 7  •  Operating System

executed and the process is put at the tail of the ready
queue.

	 8.	 Average waiting time is quite long.

Performance of Round Robin scheduling

Let us assume that we have onlys one process of 10 time
units.

Process time = 10 Quantum Switch

0� 10
12 0

0 6 10
6 1

0 1 2 3 4 5 6 7 8 9 10
1 9

Example 5:  Consider the following processes, arrival
times and CPU processing requirements with Round Robin
scheduling algorithm.

Process CPU time Arrival time

A
B
C
D
E

8
1
2
1
5

0
1
3
4
2

What will be the mean turnaround time if time quantum is
4 msec?

Solution: 
Plotting the Gantt chart

A B E C D A E

 0 4 5 9 11 12 16 17
Turnaround time = Finish time – Arrival time
TAT of A = 16 – 0 =16
B = 5 – 1 = 4
C = 11 – 3 = 8
D = 12 – 4 = 8
E = 17 – 2 = 15

Mean Turnaround time = + + + +16 4 8 8 15

5
		 = 10.2 msec
	 1.	 If there are n processes in the ready queue and time

quantum q, then each process gets
1

n
of the CPU time

in chunks of at most q time units at once.
	 2.	 No process waits more than (n – 1)q time units until

the next time quantum.
	 3.	 The performance of Round Robin depends on time

slice. If it is larger it is same as FCFS. If q is very small
overhead is too high as the number of context switches
increases.

Notes:
	 1.	 Throughput is low if quantum is too small.
	 2.	 Provides good response time for short processes.

	 3.	 Minimum overhead.
	 4.	 All processes treated fairly.
	 5.	 No starvation.

Shortest process next (SPN)
	 1.	 This is a non-pre-emptive policy in which the process

with the shortest expected processing time is selected
next.

	 2.	 A short process will jump to the head of the queue past
longer jobs.

Example 6:  Consider the following process, such that all
have arrived at time = 0

Process Burst time

P1

P2

P3

P4

5
9
6
3

Find the average waiting time using SPN.

Solution:  Gantt chart is

0 3 8 14 23
P4 P1 P3 P2

Average waiting time = + + + =0 3 8 14

4
6 25. ms

Notes:

	 1.	 Difficulty with this policy is that we need to know or
at least estimate the required processing time of each
process.

	 2.	 High throughput is possible.
	 3.	 Provides good response time for short processes.
	 4.	 High overhead.
	 5.	 It penalizes long processes.
	 6.	 There is a possibility of starvation.

Shortest remaining time (SRT)

	 1.	 It is a pre-emptive version of SPN.
	 2.	 Here the scheduler always chooses the process that has

the shortest expected remaining processing time.
	 3.	 When a new process joins the ready queue, it may in

fact have a shorter remaining time than the currently
running process.

	 4.	 Accordingly, the scheduler may pre-empt the current
process when a new process becomes ready.

Example 7:  Consider the following process. Find the
average waiting time for SRT.

Process Arrival time Burst time

P1

P2

P3

P4

0
1
2
3

8
4
9
5

Chapter 3  •  Deadlock and CPU Scheduling  |  7.45

Solution:  Gantt chart

P1 P2 P4 P1 P3

	 0 1	 5	 10 17 26

So average waiting time

() () () ()10 1 1 1 17 2 5 3

4

− + − + − + −

9 0 15 2

4

26

4

+ + + =

 = 6.5 ms

Here P
3
 starts at time 17 but the arrival time was at 2. So

waiting time of P
3
 will be (17 – 2).

Notes:
	 1.	 High throughput.
	 2.	 Provides good response time.
	 3.	 High overhead.
	 4.	 Penalizes long processes.
	 5.	 Starvation is possible.

Highest Response Ratio Next (HRRN)
This algorithm works on the principle the executes the
job first which has the highest response ratio. We define
response ratio as the ratio between turnaround time and
response time.

Response Ratio = +()
,

W S

S
 where

W – Time spend waiting for the processor
S – Service time
This response ratio is also named as normalized turnaround
time.

Example 8:  Consider 5 processes with their arrival and
service times:

Process Arrival time Service time

P1 0 3

P2 2 6

P3 4 4

P4 6 5

P5 8 2

What is the average turnaround time using HRRN technique?

Solution: 

Gantt chart

P1 P2 P3 P5 P4

 0 3 9 13 15 20

Average turnaround time

= + + + + + + + + = =3 6 1 4 5 5 9 2 5

5

40

5
8

() () () ()
 ms

Notes:
	 1.	 It is a non-pre-emptive scheduling algorithm.
	 2.	 High throughput.
	 3.	 Provides good response time.
	 4.	 High overhead.
	 5.	 Good balance of any type processes.
	 6.	 No starvation.

Multilevel feedback queue scheduling

	 1.	 In multilevel queue scheduling algorithm, processes
are permanently assigned to a queue on entry to the
system. Processes cannot move between queues.

	 2.	 Processes can move between queues. If a process uses
too much CPU time, it will be moved to a lower prior-
ity queue.

	 3.	 I/O bound and interactive processes are put into higher
priority queue.

	 4.	 A process that waits too long in a lower priority queue
may be moved to a higher priority queue. This form of
aging prevents starvation.

In general, a multilevel feedback queue scheduler is defined
by following parameters:

	 1.	 The number of queues.
	 2.	 The scheduling algorithm for each queue.
	 3.	 The method used to determine when to upgrade a pro-

cess to a higher priority queue.
	 4.	 The method used to determine when to denote a pro-

cess to a lower priority queue.
	 5.	 The method used to determine in which queue a pro-

cess will enter when process needs service.

Notes:

	 1.	 Pre-emptive at time quantum.
	 2.	 Throughput is not that much emphasized.
	 3.	 Response time is not that much emphasized.
	 4.	 High overhead.
	 5.	 Favours I/O bound processes.
	 6.	 Starvation is possible.

7.46  |  Unit 7  •  Operating System

Exercises

Practice Problem 1
Directions for questions 1 to 19:  Select the correct alterna-
tive from the given choices.

	 1.	 Consider the following processes; find the average wait-
ing time using non-pre-emptive priority scheduling?

Process
Arrival time
(ms)

Burst time
(ms) Priority

P0

P1

P2

P3

0
1
3
5

10
6
2
4

5
4
2
0

	 (A)	 2.36 ms	 (B)	 0.31 ms
	 (C)	 7.75 ms	 (D)	 13.25 ms

	 2.	 Consider a set of five processes whose arrival time, CPU
times needed are given below.

Process
CPU time
(in m sec)

Arrival time
(in msec)

P1 10 5

P2 5 2

P3 3 0

P4 20 4

P5 2 3

		 If the CPU scheduling policy is SJF, find the average
waiting time (with pre-emption).

	 (A)	 4.8 ms	 (B)	 5.6 ms
	 (C)	 2.16 ms	 (D)	 2.8 ms

	 3.	 Consider the following snapshot of a system:

Allocation Max Available
A B C D A B C D A B C D

P0

P1

P2

P3

P4

0 0 1 2
1 0 0 0
1 3 5 4
0 6 3 2
0 0 1 4

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

1 5 2 0

Which of the following is true?
	 (i)	 The system is in a safe state.
	 (ii)	� If a request from process P, arrives for (0, 4, 2, 0).

Then the request can be granted.
	 (A)	 Only (i)	 (B)	 Only (ii)
	 (C)	 Both (i) and (ii)	 (D)	 Neither (i) nor (ii)

	 4.	 In a Round Robin scheduling context switch time is 4
units, the average process running time before blocking
is 6 units then CPU efficiency is

	 (A)	 0.2	 (B)	 0.4
	 (C)	 0.6	 (D)	 0.1

	 5.	 A short-term scheduler executes at least once every 20
msec. If it takes 2 msec to decide to execute a process

for 2 msec, what is the percentage of CPU time wasted?
	 (A)	 8%	 (B)	 9%
	 (C)	 10%	 (D)	 11%

	 6.	 Consider a system which has n resources of the same
type. The n resources are shared among three processes
A, B, C, which have high demands of 3, 5, 6, respec-
tively. For what value of n will deadlock not occur?

	 (A)	 11	 (B)	 10
	 (C)	 9	 (D)	 15

	 7.	 A comparative study of scheduling algorithm was per-
formed, the average arrival time in the queue is 5 m sec
and waiting time of the processes is 10 msec. What is
the average queue length of the waiting processes?

	 (A)	 50	 (B)	 60
	 (C)	 70	 (D)	 80

	 8.	 A CPU scheduling algorithm determines an order for
the execution of its scheduled processes. Given five
processes to be scheduled on one processor, how many
possible different schedules are there?

	 (A)	 50	 (B)	 100	
	 (C)	 120	 (D)	 150

	 9.	 Consider the following set of jobs (processes) along
with their Arrival Time (AT), start time (ST) and Finish
Time (FT). Find weighted turnaround time.

Job no. AT ST FT
1 10.0 10.0 10.3
2 10.2 10.3 10.8
3 10.4 10.8 10.9
4 10.5 10.9 11.3
5 10.8 11.3 11.4

	 (A)	 3.04	 (B)	 2.04
	 (C)	 4.04	 (D)	 0.56

	10.	 Is the following resource allocation graph in a deadlock
state?

R1

R2

P1

P2

P3

P4

	 (A)	 Yes	 (B)	 No
	 (C)	 Not predictable	 (D)	 Insufficient data

	11.	 Starvation of longer jobs happens in one of the follow-
ing scheduling algorithm?

	 (A)	 Shortest run remaining time first
	 (B)	 Round Robin
	 (C)	 Highest response ratio next
	 (D)	 First-come first-served

Chapter 3  •  Deadlock and CPU Scheduling  |  7.47

	12.	 Suppose n processes, P
1
 … P

n
 share n identical resource

units, which can be reserved and released one at a time.
The maximum resource requirement of process P

i
 is S

i
,

where S
i
 > 0. Which one of the following is a sufficient

condition for ensuring that deadlock does not occur?
	 (A)	 +∀i, S

i
 < m	 (B)	 +∀i, S

i
 < n

	 (C)	 S m nii

n < +
=∑ ()

1
	 (D)	 S m nii

n < ∗
=∑ ()

1

	13.	 A system with following processes and resources
exists. Check the system for safe state and find the safe
sequence of processes

Allocation Max Available

X Y Z X Y Z X Y Z
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

	 (A)	 < P
1
, P

3
, P

4
, P

2
, P

0
 >

	 (B)	 < P
3
, P

4
, P

2
, P

0
, P

1
 >

	 (C)	 < P
2
, P

4
, P

0
, P

1
, P

3
 >

	 (D)	 The system is in unsafe state.

	14.	 Does the below statements be executed concurrently?
	 S

1
 : a = x + y

	 S
2
 : b = z + 1

	 (A)	 Yes	 (B)	 No
	 (C)	 Not predictable	 (D)	 None of the above

	15.	 Let A, B, C be three jobs. Their arrival time and execu-
tion time are shown below. By applying monoprogram-
ming and multiprogramming (use Round Robin with
time slice 1 unit) approaches, calculate the amount of
reduction in turnaround time?

Job Arrival time
Execution

time

A 1 2

B 2 6

C 3 1

	 (A)	 3.33	 (B)	 4.33
	 (C)	 5.33	 (D)	 2.33

	16.	 Consider a system with three processes A, B, C with 15
tape drivers. Process A has 4 tape drives but requires 14
tape drives.

	 Process B has 5 tape drives but requires 9 tape drives.
	 Process C has 3 tape drives but requires 7 tape drives.

Among the following processes which will enter the
deadlock state?
	 (A)	 A, B

only

	 (B)	 A, B, C

	 (C)	 A, C only	 (D)	 B, C only

	17.	 Assume that the following jobs are to be executed on a
uniprocessor system:

Job id CPU burst time

P 4

Q 1

R 8

S 1

T 2

The jobs are assumed to have arrived at 0, and in the order
P, Q, R, S and T. Calculate the departure with time slice
(completion time) for job P if scheduling is Round Robin
with time slices of 1 unit (slice).
	 (A)	 4	 (B)	 10
	 (C)	 11	 (D)	 12

Common data for questions 18 and 19:  Consider the fol-
lowing Resource Allocation Graph:

P2P3

P0P1

	18.	 The system is in a deadlock state. This remark is:
	 (A)	 True	 (B)	 False
	 (C)	 Impossible to determine
	 (D)	 Unpredictable

	19.	 Which one is a safe sequence?
	 (A)	 P

0
, P

1
, P

2
, P

3
	 (B)	 P

1
, P

0
, P

2
, P

3

	 (C)	 P
2
, P

0
, P

1
, P

3
	 (D)	 Both (A) and (C)

Practice Problem 2
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.

	 1.	 Let there be five processes (P
1
 to P

5
) and three resource

types A, B, C.
	 Resource type A has 10 instances,
	 Resource type B has 5 instances,
	 Resource type C has 7 instances.

	� Suppose that at time T
0
, the following snapshot of the

system has been taken.

Allocation Max Available
P1

0 1 0 7 5 3 3 3 2
P2

2 0 0 3 2 2
P3

3 0 2 9 0 2
P4

2 1 1 2 8 2
P5

0 0 2 4 3 3

	 Which of the following statement is true?

7.48  |  Unit 7  •  Operating System

	 (A)	 The system is in safe state.
	 (B)	 The system has process initiation denial problem.
	 (C)	 No process causes initiation denial
	 (D)	 Both (A) and (C)

	 2.	 Consider three CPU intensive processes, which require
20, 30 and 40 time units and arrive at times 0, 2 and 4,
respectively. How many context switches are needed if
the operating system implements a shortest remaining
time first scheduling algorithm? Do not count the con-
text switches at time zero and at the end.

	 (A)	 0	 (B)	 1
	 (C)	 2	 (D)	 3

	 3.	 Consider the set of processes P
1
 to P

5
 with the follow-

ing CPU burst times. Find the average turnaround time
using shortest remaining time first.

Process CPU burst time Arrival time
P1

P2

P3

P4

P5

3
6
4
5
2

0
2
4
6
8

	 (A)	 1.3 ms	 (B)	 3.5 ms
	 (C)	 5.8 ms	 (D)	 7.2 ms

	 4.	 All processes are arriving at time 0, find the average
waiting time.

Process Burst time Priority
P1

P2

P3

P4

P5

10
1
2
1
5

3
1
3
4
2

	 (A)	 8.2 ms	 (B)	 4.1 ms	
	 (C)	 2.0 ms	 (D)	 1.3 ms

	 5.	 Consider a set of three processes P
1
, P

2
 and P

3
 with

their priorities and arrival times as given below.

Process Burst time Priority Arrival time
P1

P2

P3

10
5
2

3
2

1(highest)

0
1
2

		 Find the average waiting time.
	 (A)	 1 ms	 (B)	 2 ms
	 (C)	 3 ms	 (D)	 4 ms

	 6.	 The portion of the process scheduler in an OS that dis-
patches processes is concerned with:

	 (A)	 assigning ready processes to the CPU
	 (B)	 activating suspended I/O bound processes
	 (C)	� temporarily suspending processes when the CPU

load is too great.
	 (D)	 All the above

	 7.	 In a time-sharing OS, when the time slot given to a pro-
cess is completed, the process goes from the running
state to the

	 (A)	 blocked state	 (B)	 ready state
	 (C)	 suspended state	 (D)	 terminated state

	 8.	 On a system with n CPUs, what is the maximum num-
ber of processes that can be in the ready state?

	 (A)	 n processes
	 (B)	 No process can be in ready state
	 (C)	� There is no limit to the number of processes in the

ready state
	 (D)	 None of the above

	 9.	 Consider a set of n tasks with known runtimes r
1
, r

2
,…,

r
n

to be run on a uniprocessor machine. Which of the
following processor scheduling algorithms will result
in the maximum throughput?

	 (A)	 Round Robin
	 (B)	 SJF
	 (C)	 Highest response ratio next
	 (D)	 First-come first-served

	10.	 Match the following:

A Critical region I Hoare’s monitor

B Wait/signal II Mutual exclusion

C Working set III Principle of locality

D Deadlock IV Circular wait

	 (A)	 A – II, B – I, C – III, D – IV
	 (B)	 A – I, B – II, C – III, D – IV
	 (C)	 A – II, B – I, C – IV, D – III
	 (D)	 A – I, B – II, C – IV, D – III

	11.	 Consider three processes A, B, C to be scheduled as
per SRT algorithm. A is known to be scheduled first
and when A has been running for 7 units of time, C has
arrived. C has run for 1 unit of time when B has arrived
and completed running in 2 units of time, what could be
the minimum time of executions for A and C?

	 (A)	 11 and 4	 (B)	 11 and 3
	 (C)	 12 and 3	 (D)	 12 and 4

	12.	 Select the correct statements from below:
	 (i)	� SRT and SPN can cause starvation for larger pro-

cesses.
	 (ii)	� FCFS can potentially block small processes in fa-

vour of much larger processes.
	 (iii)	� Round Robin algorithm gives fair treatment to all

the processes.
	 (iv)	 FCFS is a pre-emptive algorithm.
	 (v)	� The throughput for Round Robin is high even for

small time slices.
	 (A)	 (i), (ii), (iii)	 (B)	 (i), (ii), (iv)
	 (C)	 (iii), (iv), (v)	 (D)	 (i), (ii), (iii), (v)

	13.	 Three processes share four resource units that can be
reserved and released only one at a time. Each process
needs a maximum of two units. Then

	 (A)	 there is a possibility of deadlock
	 (B)	 no deadlock will occur

Chapter 3  •  Deadlock and CPU Scheduling  |  7.49

	 (C)	 there will be a circular wait
	 (D)	 nothing can be predicted about dead lock.

	14.	 N processes share M resource units that can be reserved
and released only one at a time. The maximum need
of each process does not exceed M and the sum of all
maximum needs is less than M + N, then

	 (A)	 there is a possibility of deadlock
	 (B)	 there will be no deadlock

	 (C)	 circular wait exists
	 (D)	 nothing can be predicted about dead lock.

	15.	 Which of the following scheduling algorithms could
result in starvation?

	 (A)	 First-come, first-served
	 (B)	 Shortest job first
	 (C)	 Round Robin
	 (D)	 Highest response ratio next

Previous Years’ Questions

	 1.	 Consider three processes (process id 0, 1, 2, respec-
tively) with compute bursts 2, 4 and 8 time units. All
processes arrive at time zero. Consider the longest
remaining time first (LRTF) scheduling algorithm. In
LRTF ties are broken by giving priority to the process
with the lowest process id. The average turnaround
time is:� [2006]

	 (A)	 13 units	 (B)	 14 units
	 (C)	 15 units	 (D)	 16 units

	 2.	 Consider three processes, all arriving at zero, with
total execution time of 10, 20 and 30 units, respec-
tively. Each process spends the first 20% of execution
time doing I/O, the next 70% of time doing computa-
tion, and the last 10% of time doing I/O again. The
operating system uses a shortest remaining compute
time first scheduling algorithm and schedules a new
process either when the running process gets blocked
on I/O or when the running process finishes its com-
pute burst. Assume that all I/O operations can be over-
lapped as much as possible. For what percentage of
time does the CPU remain idle?� [2006]

	 (A)	 0%	 (B)	 10.6%
	 (C)	 30.0%	 (D)	 89.4%

	 3.	 A single processor system has three resource types X,
Y and Z, which are shared by three processes. There
are five units of each resource type. Consider the
following scenario, where the column alloc denotes
the number of units of each resource type allocated
to each process, and the column request denotes the
number of units of each resource type requested by
a process in order to complete execution. Which of
these processes will finish last?

P

P

P

X Y Z X Y Z

0

1

2

1 2 1 1 0 3

2 0 1 0 1 2

2 2 1 1 2 0

alloc request

	 (A)	 P
0
� [2007]

	 (B)	 P
1

	 (C)	 P
2

	 (D)	� None of the above, since the system is in a dead-
lock.

	 4.	 Which of the following is not true of deadlock preven-
tion and deadlock avoidance schemes?� [2008]

	 (A)	� In deadlock prevention, the request for resources
is always granted if the resulting state is safe

	 (B)	� In deadlock avoidance, the request for resources
is always granted if the result state is safe

	 (C)	� Deadlock avoidance is less restrictive than dead-
lock prevention

	 (D)	� Deadlock avoidance requires knowledge of re-
source requirements a priori

	 5.	 In the following process state transition diagram for
a uniprocessor system, assume that there are always
some processes in the ready state:� [2009]

Start

Blocked

TerminatedRunningReady
A

B

C

E F

D

	 Now consider the following statements:
	 I.	� If a process makes a transition D, it would result

in another process making transition A immedi-
ately.

	 II.	� A process P
2
 in blocked state can make transi-

tion E, while another process P
1
 is in running

state.
	 III.	 The OS uses pre-emptive scheduling.
	 IV.	 The OS uses non-pre-emptive scheduling.
	 Which of the above statements are true?
	 (A)	 I and II	 (B)	 I and III
	 (C)	 II and III	 (D)	 II and IV

	 6.	 Which of the following statements are true?
	 I.	� Shortest remaining time first scheduling may

cause starvation
	 II.	 Pre-emptive scheduling may cause starvation
	 III.	� Round Robin is better than FCFS in terms of re-

sponse time� [2010]
	 (A)	 I only	 (B)	 I and III only
	 (C)	 II and III only	 (D)	 I, II and III

	 7.	 A system has n resources R
0
, … , R

n–1
, and k processes

P
0
, … P

k–1
. The implementation of the resource request

logic of each process P
i
, is as follows:

7.50  |  Unit 7  •  Operating System

		 if (i% 2 = = 0) {
		 if (i<n) request Ri

;

		 if (i+2<n) request Ri+2
;

		 }

		 else {

		 if (i<n) request Rn-i
;

		 if (i+2<n) request Rn-i-2
;

		 }

		 In which one of the following situations is a deadlock
possible?� [2010]

	 (A)	 n = 40, k = 26	 (B)	 n = 21, k = 12
	 (C)	 n = 20, k = 10	 (D)	 n = 41, k = 19

	 8.	 Consider the following table of arrival time and burst
time for three processes P

0
, P

1
 and P

2
.� [2011]

Process Arrival time Burst time
P0 0 ms 9 ms
P1 1 ms 4 ms
P2 2 ms 9 ms

		 The pre-emptive shortest job first scheduling algo-
rithm is used. Scheduling is carried out only at arrival
or completion of processes. What is the average wait-
ing time for the three processes?

	 (A)	 5.0 ms	 (B)	 4.33 ms
	 (C)	 6.33 ms	 (D)	 7.33 ms

	 9.	 Consider the three processes, P
1
, P

2
 and P

3
 as shown

in the table.	� [2012]

Process Arrival time Time units required

P1 0 5

P2 1 7

P3 3 4

		 The completion order of the three processes under
the policies FCFS and RR

2
 (Round Robin scheduling

with CPU quantum of 2 time units) are
	 (A)	 FCFS: P

1
, P

2
, P

3
 RR2: P

1
, P

2
, P

3

	 (B)	 FCFS: P
1
, P

3
, P

2
 RR2: P

1
, P

3
, P

2

	 (C)	 FCFS: P
1
, P

2
, P

3
 RR2: P

1
, P

3
, P

2

	 (D)	 FCFS: P
1
, P

3
, P

2
 RR2: P

1
, P

2
, P

3

10.	 A scheduling algorithm assigns priority proportional
to the waiting time of a process. Every process starts
with priority zero (the lowest priority). The scheduler
re-evaluates the process priorities every T time units
and decides the next process to schedule. Which one
of the following is TRUE if the processes have no I/O
operations and all arrive at time zero?� [2013]

	 (A)	� This algorithm is equivalent to the first-come-
first-serve algorithm.

	 (B)	� This algorithm is equivalent to the Round Robin
algorithm.

	 (C)	� This algorithm is equivalent to the shortest-job-
first algorithm.

	 (D)	� This algorithm is equivalent to the shortest-
remaining-time-first algorithm.

	11.	 An operating system uses the Banker’s algorithm for
deadlock avoidance when managing the allocation of
three resource types X, Y and Z to three processes P

0
,

P
1
, and P

2
. The table given below presents the current

system state. Here, the allocation matrix shows the
current number of resources of each type allocated to
each process and the Max matrix shows the maximum
number of resources of each type required by each
process during its execution. � [2014]

Allocation Max
X Y Z X Y Z

P0 0 0 1 8 4 3
P1 3 2 0 6 2 0
P2 2 1 1 3 3 3

	� There are three units of type X, two units of type Y
and two units of type Z still available. The system is
currently in a safe state. Consider the following inde-
pendent requests for additional resources in the current
state:

	� REQ1: P
0
 requests 0 units of X, 0 units of Y and two

units of Z
	� REQ 2: P

1
 requests two units of X, 0 units of Y and 0

units of Z
	 Which one of the following is true?
	 (A)	 Only REQ1 can be permitted
	 (B)	 Only REQ2 can be permitted
	 (C)	 Both REQ1 and REQ2 can be permitted
	 (D)	 Neither REQ1 nor REQ2 can be permitted

	12.	 Consider the following set of processes that need to
be scheduled on a single CPU. All the times are given
in milliseconds.

Process name Arrival time Execution time
A 0 6
B 3 2
C 5 4
D 7 6
E 10 3

	� Using the shortest remaining time first scheduling
algorithm, the average process turnaround time (in
msec) is ––––.� [2014]

	13.	 Three processes A, B and C each execute a loop of
100 iterations. In each iteration of the loop, a process
performs a single computation that requires t

c
 CPU

milliseconds and then initiates a single I/O operation
that lasts for t

io
 milliseconds. It is assumed that the

computer where the processes execute has sufficient
number of I/O devices and the OS of the computer
assigns different I/O devices to each process. Also,
the scheduling overhead of the OS is negligible. The
processes have the following characteristics:

Chapter 3  •  Deadlock and CPU Scheduling  |  7.51

Process id tc tio

A 100 ms 500 ms
B 350 ms 500 ms
C 200 ms 500 ms

		 The processes A, B and C are started at times 0, 5 and
10 milliseconds, respectively, in a pure time sharing
system (Round Robin scheduling) that uses a time
slice of 50 milliseconds. The time in milliseconds at
which process C would complete its first I/O opera-
tion is ––––––� [2014]

	14.	 A system contains three programs and each requires
three tape units for its operation. The minimum num-
ber of tape units which the system must have such that
deadlocks never arise is ––––––.� [2014]

	15.	 An operating system uses shortest remaining time
first scheduling algorithm for pre-emptive schedul-
ing of processes. Consider the following set of pro-
cesses with their arrival times and CPU burst times
(in milliseconds):

Process Arrival time Burst time
P1 0 12
P2 2 4
P3 3 6
P4 8 5

		 The average waiting time (in milliseconds) of the pro-

cesses is _____.� [2014]

	16.	 Consider a uniprocessor system executing three tasks
T

1
, T

2
 and T

3
, each of which is composed of an infinite

sequence of jobs (or instances) which arrive periodi-
cally at intervals of 3, 7 and 20 milliseconds, respec-
tively. The priority of each task is the inverse of its
period, and the available tasks are scheduled in order
of priority, with the highest priority task schedule
first. Each instance of T

1
, T

2
 and T

3
 requires an exe-

cution time of 1, 2 and 4 milliseconds, respectively.
Given that all tasks initially arrive at the beginning of
the 1st millisecond and task preemptions are allowed,
the first instance of T

3
 completes its execution at the

end of ________ milliseconds.� [2015]

	17.	 A system has 6 identical resources and N processes
competing for them. Each process can request atmost
2 resources. Which one of the following values of N
could lead to a deadlock?� [2015]

	 (A)	 1	 (B)	 2
	 (C)	 3	 (D)	 4

	18.	 The maximum number of processes that can be in
Ready state for a computer system with n CPUs is

� [2015]
	 (A)	 n	 (B)	 n2

	 (C)	 2n	 (D)	 Independent of n

	19.	 Consider the following policies for preventing dead-
lock in a system with mutually exclusive resources.

� [2015]

		 (1) � Processes should acquire all their resources at
the beginning of execution. If any resource is
not available, all resources acquired so far are
released.

		 (2) � The resources are numbered uniquely, and pro-
cesses are allowed to request for resources only
in increasing resource numbers.

		 (3) � The resources are numbered uniquely, and pro-
cesses are allowed to request for resources only in
decreasing resource numbers.

		 (4) � The resources are numbered uniquely. A process
is allowed to request only for a resource with
resource number larger than its currently held
resources.

		 Which of the above policies can be used for prevent-
ing deadlock?

	 (A)	 Any one of 1 and 3 but not 2 or 4
	 (B)	 Any one of 1, 3 and 4 but not 2
	 (C)	 Any one of 2 and 3 but not 1 or 4
	 (D)	 Any one of 1, 2, 3 and 4

	20.	 For the processes listed in the following table, which
of the following scheduling schemes will give the
lowest average turnaround time?� [2015]

Process Arrival Time Processing Time

A 0 3

B 1 6

C 4 4

D 6 2

	 (A)	 First Come First Serve
	 (B)	 Non-preemptive Shortest Job First
	 (C)	 Shortest Remaining Time

	 (D)	 Round Robin with Quantum value two

	21.	 Consider an arbitrary set of CPU - bound processes
with unequal CPU burst lengths submitted at the same
time to a computer system. Which one of the follow-
ing process scheduling algorithms would minimize
the average waiting time in the ready queue?� [2016]

	 (A)	 Shortest remaining time first
	 (B)	� Round-robin with time quantum less than the

shortest CPU burst
	 (C)	 Uniform random
	 (D)	� Highest priority first with priority proportional to

CPU burst length

	22.	 Consider the following processes, with the arrival
time and the length of the CPU burst given in mil-
liseconds. The scheduling algorithm used is preemp-
tive shortest remaining - time first.

Process Arrival Time Burst Time
P1 0 10

P2 3 6

7.52  |  Unit 7  •  Operating System

P3 7 1

P4 8 3

The average turn around time of these processes is ____
milliseconds.� [2016]

	23.	 Consider the following CPU processes with arrival
times (in milliseconds) and length of CPU bursts (in
milliseconds) as given below :

Process Arrival time Burst time

P1 0 7

P2 3 3

P3 5 5

P4 6 2

		 If the pre-emptive shortest remaining time first sched-
uling algorithm is used to schedule the processes,
then the average waiting time across all processes is
milliseconds.� [2017]

	24.	 A system shares 9 tape drives. The current allocation
and maximum requirement of tape drives for three
processes are shown below:

Process
Current

Allocation
Maximum

Requirement

P1 3 7

P2 1 6

P3 3 5

		 Which of the following best describes current state of
the system?� [2017]

	 (A) Safe. Deadlocked
	 (B) Safe. Not Deadlocked
	 (C) Not Safe. Deadlocked
	 (D) Not Safe, Not Deadlocked

	25.	 Consider the set of processes with arrival time (in
milliseconds). CPU burst time (in milliseconds). and
priority (0 is the highest priority) shown below. None
of the processes have I/O burst time.

Process Arrival Time Burst Time Priority

P1 0 11 2

P2 5 28 0

P3 12 2 3

P4 2 10 1

P5 9 16 4

		 The average waiting time (in milliseconds) of all the
processes using preemptive priority scheduling algo-
rithm is________.� [2017]

	26.	 Consider a system with 3 processes that share 4
instances of the same resource type. Each process
can request a maximum of K instances. Resource
instances can be requested and released only one at
a time. The largest value of K that will always avoid
deadlock is ______.� [2018]

	27.	 In a system, there are three types of resources: E, F
and G. Four processes P

0
, P

1
, P

2
 and P

3
 execute con-

currently. At the outset, the processes have declared
their maximum resource requirements using a matrix
named Max as given below. For example, Max[P

2
,

F] is the maximum number of instances of F that
P

2
 would require. The number of instances of the

resources allocated to the various processes at any
given state is given by a matrix named Allocation.

		 Consider a state of the system with the Allocation
matrix as shown below, and in which 3 instances of E
and 3 instances of F are the only resources available.

Allocation Max

E F G E F G

P0 1 0 1 P0 4 3 1

P1 1 1 2 P1 2 1 4

P2 1 0 3 P2 1 3 3

P3 2 0 0 P3 5 4 1

		 From the perspective of deadlock avoidance, which
one of the following is true?� [2018]

(A)	 The system is in safe state.
(B)	 The system is not in safe state, but would be safe

if one more instance of E were available.
(C)	 The system is not in safe state, but would be safe

if one more instance of F were available.
(D)	 The system is not in safe state, but would be safe

if one more instance of G were available.

Chapter 3  •  Deadlock and CPU Scheduling  |  7.53

Answer Keys

Exercises

Practice Problem 1
	 1.  C	 2.  A	 3.  C	 4.  C	 5.  B	 6.  D	 7.  A	 8.  C	 9.  A	 10.  B
	11.  A	 12.  C	 13.  A	 14.  A	 15.  B	 16.  B	 17.  C	 18.  B	 19.  D

Practice Problem 2
	 1.  B	 2.  C	 3.  D	 4.  A	 5.  C	 6.  A	 7.  B	 8.  C	 9.  B	 10.  A
	11.  D	 12.  A	 13.  B	 14.  B	 15.  B

Previous Years’ Questions
	 1.  A	 2.  B	 3.  C	 4.  A	 5.  C	 6.  D	 7.  B	 8.  A	 9.  C	 10.  B
	11.  B	 12.  7.2	 13.  1000	 14.  7	 15.  5.5	 16.  12	 17.  none	 18.  D	 19.  D	 20.  C
	21.  A	 22.  8.2 to 8.3		 23.  3	 24.  B	 25.  29	 26.  2	 27.  A

	Unit 7: Operating System
	Chapter 3: Deadlock and CPU Scheduling
	Deadlock
	Methods of Handling Deadlocks
	Dining Philosophers Problem
	CPU Scheduling
	Types of Processor Scheduling
	Scheduling Algorithms
	Exercises
	Previous Years’ Questions
	Answer Keys

