5. CORRELATION

EXERCISE 5.1

1) Draw scatter diagram for the data given below and interpret it.

	10	20	30	40	50	60	70
x							
у	32	20	24	36	40	28	38

Sol: The scatter diagram is as given below:

 \therefore There is positive correlation

2) For the following data of marks of 7 students in physics (*) and Mathematics (
 ^y), draw scatter diagram and state the type of correlation.

	8	6	2	4	7	8	9
x							
у	6	5	1	4	4	7	8

Sol:

	8	6	2	4	7	8	9
Physics (*)							
Mathematics (6	5	1	4	4	7	8
y)							

 \therefore There is positive correlation

3) Draw scatter diagram for the data given below. Is there any correlation between Aptitude score and Grade points?

	40	50	55	60	70	80
Aptitude score						
Grade points	1.8	3.8	2.8	1.7	2.8	3.2

Sol:

	40	50	55	60	70	80
Aptitude						
Grade	1.8	3.8	2.8	1.7	2.8	3.2
points (^y)						

 \therefore There is positive correlation

4) Find correlation coefficient between x and y series for the following data.

 $n = 15, \overline{x} = 25, \overline{y} = 18, \sigma_x = 3.01, \sigma_y = 3.03$ $\Sigma(x_i - \overline{x}) (y_i - \overline{y}) = 122$ Sol: Given: $n = 15, \overline{x} = 25, \overline{y} = 18, \sigma_x = 3.01, \sigma_y = 3.03, \Sigma(x_i - \overline{x}) (y_i - \overline{y}) = 122$ To find: r $\operatorname{cov} (x, y) = \frac{1}{n} \Sigma(x_i - \overline{x}) (y_i - \overline{y})$ $= \frac{122}{15}$ = 8.133Karl Pearson's coefficient of correlation, $r = \frac{\operatorname{cov} (xy)}{\sigma_x \sigma_y}$

 $=\frac{8.133}{3.01 \times 3.03}$ = 0.892

∴ *r* = 0.892

5) The correlation coefficient between two variables x and y is 0.48. The covariance is 36 and the variance of x is 16. Find the standard deviation of y.

```
Sol: Given: r = 0.48, cov(x, y) = 36, v_x = 16,
To find: \sigma_y
v_x = 16
\therefore \quad \sigma_x = \sqrt{v_x} = \sqrt{16} = 4
```

Karl Pearson's coefficient of correlation,

 $r = \frac{\cot(xy)}{\sigma_x \cdot \sigma_y}$ $\therefore 0.48 = \frac{36}{4 \times \sigma_y}$ $\therefore \sigma_y = \frac{36}{4 \times 0.48}$ $\therefore \sigma_y = 0.892$

6) In the following data one of the value of y is missing. Arithmetic means of x and y series are 6 and 8 respectively.

$$(\sqrt{2} = 1.4142)$$

x	6	2	10	4	8
у	9	11	?	8	7

(I) Estimate missing observation

(II) Calculate correlation coefficient

Sol: Let the missing observation be ^{*a*}

	6	2	10	4	8
x					
у	9	11	a	8	7

$$\overline{x} = 6, \quad \overline{y} = 8, \quad n = 5$$

$$\overline{y} = \frac{\sum y}{n} = \frac{35+a}{5}$$
$$\therefore 8 = \frac{35+a}{5}$$
$$\therefore a + 35 = 40$$

 \therefore Missing frequency = 5

x	У	* 2	у 2	xy
6	9	36	81	54
2	11	4	121	22
10	5	100	25	50
4	8	16	64	32
8	7	64	49	56
30	40	220	340	214

Here, $\Sigma x = 30$; $\Sigma y = 40$ $\sum x$ $\sum y$ 2 = 220; 2 = 320 $\sum xy$ n = 214; = 5 $\stackrel{:.}{\underset{r}{\overset{Karl Pearson's charge ficient}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}} Karl participation Karl participation for the field of the f$ = 5(214)-30(40) $\sqrt{5(220)-(30)^2}\sqrt{5(340)-(40)^2}$ = - 130 $\sqrt{200} \sqrt{100}$ = r := 0.919

 \therefore There is high degree negative correlation.

√3

7) Find correlation coefficient from the following data, [Given = = 1.732]

	3	6	2	9	5
x					
y	4	5	8	6	7

Sol:

x	У	* 2	y 2	ху
3	4	9	16	12
6	5	36	25	30
2	8	4	64	16
9	6	81	36	54
5	7	25	49	
25	30	155	190	147

Here, $\sum x = 25$; $\sum y = 30$

 $\Sigma x_2 = 155; \quad \Sigma y_2 = 190$

 $\sum xy = 147; n = 5$

∴ Karl Pearson's coefficient of correlation,

$$r = \frac{n\sum xy - \sum x \sum y}{\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2 - (\sum y)^2}}$$
$$= \frac{5(147) - 25(30)}{\sqrt{5(155) - (25)^2} \sqrt{5(190) - (30)^2}}$$
$$= \frac{-15}{\sqrt{150} \sqrt{50}}$$

 $\therefore \mathbf{r} = -0.173$

 \therefore There is high degree negative correlation.

8) Correlation coefficient between xy 0.3 and their covariance3 is 12. The variance of x is 9, Find the standard deviation of y.

Sol: Given: r = 0.3, cov(x, y) = 12, $v_x = 9$, To find: σ_y

 $v_x = 9$ $\sigma_x = 3$

Karl Pearson's coefficient of correlation,

$$r = \frac{\cos(x,y)}{\sigma_x \sigma_y}$$
$$\therefore 0.3 = \frac{12}{3 \times \sigma_y}$$
$$\therefore \frac{\sigma_y}{\sigma_y} = \frac{12}{3 \times 0.3}$$
$$\therefore \frac{\sigma_y}{\sigma_y} = 13.33$$