

Contents			
4.1	Definition		
4.2	Standard forms of equation of a Circle		
2.3	Equation of a circle in some special cases		
4.4	Intercepts on the axes		
4.5	Position of a point with respect to a circle		
4.6	Intersection of a line and a circle		
4.7	Tangent to a circle at a given point		
4.8	Length of tangents		
4.9	Pair of tangents		
4.10	Power of point with respect to a circle		
4.11	Normal to a circle at a given point		
4.12	Chord of contact of tangents		
4.13	Director circle		
4.14	Diameter of a circle		
4.15	Pole and Polar		
4.16	Two circles touching each other		
4.17	Common tangents to two circles		
4.18	Common chords of two circles		
4.19	Angle of intersection of two circles		
4.20	Family of circles		
4.21	Radical axis		
4.22	Radical centre		
4.23	Co-axial system of circles		
4.24	Limiting points		
4.25	Image of the circle by the line mirror		
4.26	Some important results		
Assignment (Basic and Advance Level)			
Answer Sheet of Assignment			

Cramer (1750 A.D.) made formal use of the two axes and gane the equation of a circle as $(y - a)^2 + (b - x)^2 = r.r.$ He gave the best exposition of the analytic geometry of his time.

Kochanski gives an approximate method to find the length of the circumference of a circle.

Jones introduces the Greek latter to represent the ratio of the circumference of a circle to its diameter in his Synopsis palmariorum matheseos (A new introduction to Mathematics).

H'euerbach publishes his discoveries on the nine point circle of a triangle.

Nicholas of Cusa studies geometry and logic. He contributes to the study of infinity, the infinitely large and the infinitely small. He looks at the circle as the limit of regular polygons.

4.1 Definition

A circle is defined as the locus of a point which moves in a plane such that its distance from a fixed point in that plane always remains the same *i.e.* $(Moving p \in \mathbb{C})^{(Moving p$

The fixed point is called the centre of the circle and the fixed distance is called the radius of the circle.

- *Note* : \Box If r(r > 0) is the radius of a circle, the diameter
 - d = 2r is the maximum distance between any two points on the given circle.
 - □ The length of the curve or perimeter (also called circumference) of circle = $2\pi r$ or πd .
 - $\Box \text{ The area of circle} = \pi r^2 \text{ or } \frac{\pi d^2}{4}.$
 - □ Line joining any two points of a circle is called chord of circle.
 - **u** Curved section between any two points of a circle is called arc of circle.
 - \Box Angle subtended at the centre of a circle by any arc = arc/radius.
 - □ Angle subtended at the centre of a circle by an arc is double of angle subtended at the circumference of a circle.

4.2 Standard forms of Equation of a Circle

(1) **General equation of a circle :** The general equation of a circle is $x^2 + y^2 + 2gx + 2fy + c = 0$, where *g*, *f*, *c* are constant.

(i) Centre of the circle is
$$(-g, -f)$$
. *i.e.*, $(-\frac{1}{2} \text{ coefficient of } x, -\frac{1}{2} \text{ coefficient of } y)$

(ii) Radius of the circle is $\sqrt{g^2 + f^2 - c}$.

Note: The general equation of second degree $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ represents a circle if $a = b \neq 0$ and h = 0.

- □ Locus of a point *P* represent a circle if its distance from two points *A* and *B* is not equal *i.e.* PA = kPB represent a circle if $k \neq 1$.
- Discussion on nature of the circle :
 - If $g^2 + f^2 c > 0$, then the radius of the circle will be real. Hence, in this case, it is possible to draw a circle on a plane.
 - If $g^2 + f^2 c = 0$, then the radius of the circle will be zero. Such a circle is known as point circle.

• If $g^2 + f^2 - c < 0$, then the radius $\sqrt{g^2 + f^2 - c}$ of the circle will be an imaginary number. Hence, in this case, it is not possible to draw a circle.

□ Special features of the general equation $x^2 + y^2 + 2gx + 2fy + c = 0$ of the circle : This equation has the following peculiarities :

- It is a quadratic equation in *x* and *y*.
- Here the co-efficient of x^2 = the co-efficient of y^2

In working out problems it is advisable to keep the co-efficient of x^2 and y^2 as unity.

- There is no term containing *xy*, *i.e.* the co-efficient of the term *xy* is zero.
- This equation contains three arbitrary constants. If we want to find the equation of a circle of which neither the centre nor the radius is known, we take the equation in the above form and determine the values of the constants *g*, *f*, *c* for the circle in question from the given geometrical conditions.
- $\hfill\square$ Keeping in mind the above special features, we can say that the equation

 $ax^{2} + ay^{2} + 2gx + 2fy + c = 0$ (i) also represents a circle.

This equation can also be written as $x^2 + y^2 + 2\frac{g}{a}x + 2\frac{f}{a}y + \frac{c}{a} = 0$, dividing by $a \neq 0$.

Hence, the centre
$$=\left(\frac{-g}{a}, \frac{-f}{a}\right)$$
 and radius $=\sqrt{\frac{g^2}{a^2} + \frac{f^2}{a^2} - \frac{c}{a}}$

(2) **Central form of equation of a circle** : The equation of a circle having centre (h, k) and radius r is

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

Note : \Box If the centre is origin, then the equation of the circle i $x^2 + y^2 = r^2$

□ If r = 0, then circle is called point circle and its equation is $(x - h)^2 + (y - k)^2 = 0$

(3) **Concentric circle**: Two circles having the same centre *C* (*h*, *k*) but different radii r_1 and r_2 respectively are called concentric circles. Thus the circles $(x-h)^2 + (y-k)^2 = r_1^2$ and $(x-h)^2 + (y-k)^2 = r_2^2$, $r_1 \neq r_2$ are concentric circles. Therefore, the equations of concentric circles differ only in constant terms.

(4) **Circle on a given diameter** : The equation of the circle drawn on the straight line joining two given points (x_1, y_1) and (x_2, y_2) as diameter is $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$.

the centre and radius. The centre is the mid-point of the diameter and radius is half of the length of the diameter.

(5) Parametric coordinates

(i) The parametric coordinates of any point on the circle $(x - h)^2 + (y - k)^2 = r^2$ are given by

 $(h + r\cos\theta, k + r\sin\theta)$, $(0 \le \theta < 2\pi)$

In particular, co-ordinates of any point on the circle $x^2 + y^2 = r^2$ are $(r \cos \theta, r \sin \theta)$, $(0 \le \theta < 2\pi)$

(ii) The parametric co-ordinates of any point on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ are

$$x = -g + \sqrt{(g^2 + f^2 - c)} \cos \theta$$
 and $y = -f + \sqrt{(g^2 + f^2 - c)} \sin \theta$, $(0 \le \theta < 2\pi)$

(6) Equation of a circle under given conditions: The general equation of circle, *i.e.*, $x^2 + y^2 + 2gx + 2fy + c = 0$ contains three independent constants *g*, *f* and *c*. Hence for determining the equation of a circle, three conditions are required.

(i) The equation of the circle through three non-collinear points $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$:

Let the equation of circle be $x^2 + y^2 + 2gx + 2fy + c = 0$ (i)

If three points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) lie on the circle (i), their co-ordinates must satisfy its equation. Hence solving equations $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0$ (ii)

$$x_3^2 + y_3^2 + 2gx_3 + 2fy_3 + c = 0 \qquad \dots (iv)$$

g, *f*, *c* are obtained from (ii), (iii) and (iv). Then to find the circle (i).

Alternative method

(1) The equation of the circle through three non-collinear points $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$ is

$$\begin{vmatrix} x^{2} + y^{2} & x & y & 1 \\ x_{1}^{2} + y_{1}^{2} & x_{1} & y_{1} & 1 \\ x_{2}^{2} + y_{2}^{2} & x_{2} & y_{2} & 1 \\ x_{3}^{2} + y_{3}^{2} & x_{3} & y_{3} & 1 \end{vmatrix} = 0$$

(2) From given three points taking any two as extremities of diameter of a circle S = 0 and equation of straight line passing through these two points is L = 0. Then required equation of circle is $S + \lambda L = 0$, where λ is a parameter which can be found out by putting third point in the equation.

Note : **Cyclic quadrilateral :** If all the four vertices of a quadrilateral lie on a circle, then the quadrilateral is called a cyclic quadrilateral. The four vertices are said to be concylic.

4.3 Equation of a Circle in Some special cases

(1) If centre of the circle is (h,k) and it passes through origin then its equation is

$$(x-h)^{2} + (y-k)^{2} = h^{2} + k^{2} \implies x^{2} + y^{2} - 2hx - 2ky = 0$$

(2) If the circle touches x axis then its equation is (Four cases) $(x \pm h)^2 + (y \pm k)^2 = k^2$

(3) If the circle touches y axis then its equation is (Four cases) $(x \pm h)^2 + (y \pm k)^2 = h^2$

(4) If the circle touches both the axes then its equation is (Four $(x \pm r)^2 + (y \pm r)^2 = r^2$

(6) If the circle touches *y*-axis at origin (Two cases)

(5) If the circle touches *x*- axis at origin (Two cases)

$$(x \pm h)^2 + y^2 = h^2$$
$$\Rightarrow x^2 + y^2 \pm 2xh = 0$$

 $x^{2} + (y \pm k)^{2} = k^{2}$

 $\Rightarrow x^2 + y^2 \pm 2ky = 0$

(7) If the circle passes through origin and cut intercepts of *a* and *b* on axes, the equation of circle is (Four cases)

 $x^{2} + y^{2} - ax - by = 0$ and centre is (a/2, b/2)

Note : Circumcircle of a triangle : If we are given sides of a triangle, then first we should find vertices then we can find the equation of the circle using general form.

Alternate : If equation of the sides are $L_1 = 0$, $L_2 = 0$ and $L_3 = 0$, then equation of circle is $(L_1.L_2) + \lambda(L_2.L_3) + \mu(L_3.L_1) = 0$, where λ and μ are the constant which can be found out by the conditions, coefficient of $x^2 =$ coefficient of y^2 and coefficient of xy = 0

- □ If the triangle is right angled then its hypotenuse is the diameter of the circle. So using diameter form we can find the equation.
- □ **Circumcircle of a square or a rectangle** : Diagonals of the square and rectangle will be diameters of the circumcircle. Hence finding the vertices of a diagonal, we can easily determine the required equation. **Alternate :** If sides of a quadrilateral are $L_1 = 0$, $L_2 = 0$, $L_3 = 0$ and $L_4 = 0$. Then

Alternate : If sides of a quadrilateral are $L_1 = 0$, $L_2 = 0$, $L_3 = 0$ and $L_4 = 0$. Then equation of circle is $L_1L_3 + \lambda L_2L_4 = 0$, where λ is a constant which can be obtained by the condition of circle.

- □ If a circle is passing through origin then constant term is absent *i.e.* $x^2 + y^2 + 2gx + 2fy = 0$
- □ If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ touches *X*-axis, then $-f = \sqrt{g^2 + f^2 c}$ or $g^2 = c$
- □ If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ touches *Y*-axis, then $-g = \sqrt{g^2 + f^2 c}$ or $f^2 = c$
- □ If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ touches both axes, then $-g = -f = \sqrt{g^2 + f^2 c}$ or $q^2 = f^2 = c$
- **Example: 1**A point P moves in such a way that the ratio of its distances from two coplanar points is always fixed
number $(\neq 1)$. Then its locus is[IIT 1970]

(a) Straight line(b) Circle(c) Parabola(d) A pair of straight linesSolution:(b) Let two coplanar points are (0, 0) and (a, 0) and coordinates of point *P* is (*x*, *y*).

Under given conditions, we get

 $\frac{\sqrt{x^2 + y^2}}{\sqrt{(x - a)^2 + y^2}} = \lambda$ (where λ is any number and

 $\lambda \neq 1$)

$$\Rightarrow x^2 + y^2 = \lambda^2 \left[(x - a)^2 + y^2 \right] \Rightarrow x^2 + y^2 + \left(\frac{\lambda^2}{\lambda^2 - 1} \right) \quad (a^2 - 2ax) = 0 \text{, which is equation of a circle.}$$

Example : 2 The lines 2x - 3y = 5 and 3x - 4y = 7 are the diameters of a circle of area 154 square units. The equation of the circle is

- [IIT 1989; AIEEE 2003; DCE 2001]
- (a) $x^2 + y^2 + 2x 2y = 62$ (b) $x^2 + y^2 - 2x + 2y = 47$ (c) $x^2 + y^2 + 2x - 2y = 47$ (d) $x^2 + y^2 - 2x + 2y = 62$

Solution : (b) Centre of circle = Point of intersection of diameters,

On solving equations, 2x - 3y = 5 and 3x - 4y = 7, we get, (x, y) = (1, -1)

 \therefore Centre of circle = (1,-1). Now area of circle = 154 $\Rightarrow \pi r^2 = 154 \Rightarrow r = 7$

Hence, the equation of required circle is $(x-1)^2 + (y+1)^2 = (7)^2 \implies x^2 + y^2 - 2x + 2y = 47$.

Example : 3	The equation of a circ whose median is of ler 1992; AIEEE 2002]	le with origin as centre] ngth 3a is	passing through the v	ertices of an equilatera [BIT	l triangle Ranchi
	(a) $x^2 + y^2 = 9a^2$	(b) $x^2 + y^2 = 16a^2$	(c) $x^2 + y^2 = a^2$	(d) None of these	
Solution : (d)	Since the triangle is e	equilateral, therefore cen	troid of the triangle	is the same as the circ	umcentre
	and radius of the circu	m-circle = $\frac{2}{3}$ (median) =	$\frac{2}{3}(3a) = 2a$	[:: Centroid	divides
	median in ratio of 2 : 1	1]			
	Hence, the equation $\Rightarrow x^2 + y^2 = 4a^2$	of the circum-circle who	ose centre is (0, 0)	and radius 2 <i>a</i> is x^2 +	$y^2 = (2a)^2$
Example:4	A circle of radius 5 units touches both the axes and lies in first quadrant. If the circle makes one complete roll on x -axis along the positive direction of x -axis, then its equation in the new position is				
	(a) $x^2 + y^2 + 20\pi x - 10y$	$+100 \pi^2 = 0$	(b) $x^2 + y^2 + 20\pi x + 1$	$0y + 100 \pi^2 = 0$	
	(c) $x^2 + y^2 - 20\pi x - 10y$	$+100\pi^{2}=0$	(d) None of these		
Solution : (d)	The <i>x</i> -coordinate of the	e new position of the circ	le is 5 + circumferren	ce of the first circle $= 5$	$+10\pi$
	The <i>y</i> -coordinate is 5 and the radius is also 5.				
	Hence, the equation of	the circle in the new pos	ition is $(x-5-10\pi)^2$ +	$(y-5)^2 = (5)^2$	
	$\Rightarrow x^2 + 25 + 100\pi^2 - 10$	$x + 100 \pi - 20 \pi x + y^2 + 25 - 10$	0y = 25		
	$\Rightarrow x^2 + y^2 - 20\pi x - 10x$	$-10y + 100\pi^2 + 100\pi + 25 =$	0		
Example : 5 The abscissae of <i>A</i> and <i>B</i> are the roots of the equation $x^2 + 2ax - b^2 = 0$ and their ord roots of the equation $y^2 + 2by - q^2 = 0$. The equation of the circle with <i>AB</i> as diameter is			² = 0 and their ordinate AB as diameter is	s are the	
	(a) $x^2 + y^2 + 2ax + 2by -$	$-b^2 - q^2 = 0$	(b) $x^2 + y^2 + 2ax + by$	$b^2 - b^2 - q^2 = 0$	
	(c) $x^2 + y^2 + 2ax + 2by + 2by + 2ax + 2by + 2by + 2ax + 2by + $	$b^2 + q^2 = 0$	(d) None of these		
Solution : (a)	Let x_1, x_2 and y_1, y_2 b	be roots of $x^2 + 2ax - b^2 = 0$	0 and $y^2 + 2by - q^2 = 0$	respectively.	
	Then, $x_1 + x_2 = -2a$, x_1 .	$x_2 = -b^2$ and $y_1 + y_2 = -2b$,	$y_1 y_2 = -q^2$		
	The equation of the circle with $A(x_1, y_1)$ and $B(x_2, y_2)$ as the end points of diameter is $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$				
	$x^{2} + y^{2} - x(x_{1} + x_{2}) - y(y)$	$(1 + y_2) + x_1 x_2 + y_1 y_2 = 0$;	$x^{2} + y^{2} + 2ax + 2by - b^{2}$	$-q^{2}=0$	
Example : 6	The equation of a circl	e of radius 1 touching the	circles $x^{2} + y^{2} - 2 x =$	= 0 is	
	(a) $x^2 + y^2 + 2\sqrt{3}x - 2 =$	0	(b) $x^2 + y^2 - 2\sqrt{3}y + 3$	2=0	
	(c) $x^2 + y^2 + 2\sqrt{3}y + 2 =$	0	(d) $x^2 + y^2 + 2\sqrt{3}x + $	2=0	
Solution : (b,c)The given circles are	$x^2 + y^2 - 2x = 0, x > 0, \text{ and}$	$x^2 + y^2 + 2x = 0, \ x < 0.$	\bigcirc	- L
	From the figure, the centres of the required circles will be $(0, \sqrt{3})$ ar				- 1
	$\therefore \text{ The equations of the circles are } (x-0)^2 + (y \mp \sqrt{3})^2 = 1^2.$			- 1	
	$\Rightarrow x^2 + y^2 + 3 \pm 2\sqrt{3}y = 1$				- 1
	$\Rightarrow x^2 + y^2 \mp 2\sqrt{3}y + 2 = 0$)	l,		
Example : 7	If the line <i>x</i> + 2 <i>by</i> + 7 = [MP PET 1991]	0 is a diameter of the cire	cle $x^2 + y^2 - 6x + 2y = 0$), then $b =$	
	(a) 3	(b) – 5	(c) - 1	(d) 5	

Solution : (d) Here the centre of circle (3, -1) must lie on the line x + 2by + 7 = 0. Therefore, $3 - 2b + 7 = 0 \implies b = 5$ The centre of the circle $r^2 = 2 - 4r\cos\theta + 6r\sin\theta$ is Example:8 (c) (- 2, - 3) (d) (2, - 3) (a) (2, 3) (b) (- 2, 3) **Solution :** (b) Let $r \cos \theta = x$ and $r \sin \theta = y$ Squaring and adding, we get $r^2 = x^2 + y^2$. Putting these values in given equation, $x^2 + y^2 = 2 - 4x + 6y$ $\Rightarrow x^2 + y^2 + 4x - 6y - 2 = 0$ Hence, centre of the circle = (-2, 3)Example:9 The number of integral values of λ for which $x^2 + y^2 + \lambda x + (1 - \lambda)y + 5 = 0$ is the equation of a circle whose radius cannot exceed 5, is (d) None of these (c) 16 (a) 14 (b) 18 **Solution :** (c) Centre of circle $=\left(-\frac{\lambda}{2}, -\frac{(1-\lambda)}{2}\right)$; Radius of circle $=\sqrt{\left(\frac{\lambda}{2}\right)^2 + \left(\frac{1-\lambda}{2}\right)^2 - 5} \le 5$ $\Rightarrow 2\lambda^2 - 2\lambda - 119 \le 0 \quad , \qquad \qquad \therefore \quad \frac{1 - \sqrt{239}}{2} \le \lambda \le \frac{1 + \sqrt{239}}{2}$ \Rightarrow -7.2 $\leq \lambda \leq 8.2$ (Nearly). $\therefore \lambda = -7, -6, \dots, 7, 8$. Hence number of integral values of λ is 16 **Example : 10** Let f(x, y) = 0 be the equation of a circle. If $f(0, \lambda) = 0$ has equal roots $\lambda = 2, 2$ and $f(\lambda, 0) = 0$ has roots $\lambda = \frac{4}{5}$,5, then the centre of the circle is (a) $\left(2, \frac{29}{10}\right)$ (b) $\left(\frac{29}{10}, 2\right)$ (c) $\left(-2, \frac{29}{10}\right)$ (d) None of these **Solution : (b)** :: $f(x,y) \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ Now, $f(0,\lambda) \equiv \lambda^2 + 2f\lambda + c = 0$ and its roots are 2, 2. $\therefore 2 + 2 = -2f$, $2 \times 2 = c$, *i.e.* f = -2, c = 4 $f(\lambda, 0) \equiv \lambda^2 + 2g\lambda + c = 0$, and its roots are $\frac{4}{5}$, 5. $\therefore \frac{4}{5} + 5 = -2g, \quad \frac{4}{5} \times 5 = c, \quad i.e., \quad g = \frac{-29}{10}, \quad c = 4$. Hence, centre of the circle $= (-g, -f) = \left(\frac{29}{10}, 2\right).$ **Example : 11** If the lines 3x - 4y + 4 = 0 and 6x - 8y - 7 = 0 are tangents to a circle, then the radius of the circle is [IIT 1984; MP PET 1994, 2002; Rajasthan PET 1995, 97; Kurukshetra CEE 1998] (a) 3/2 (b) 3/4 (c) 1/10 (d) 1/20 Solution : (b) Since both tangents are parallel to each other. The diameter of the circle is perpendicular distance between the parallel lines (tangents) 3x - 4y + 4 = 0 and $3x - 4y - \frac{7}{2} = 0$ and so it is equal to $\frac{4}{\sqrt{9+16}} + \frac{7/2}{\sqrt{9+16}} = \frac{3}{2}$. Hence radius of circle is $\frac{3}{4}$. (0, 1) 3x -Alternative method : Perpendicular distance = $\frac{3(0)-4(1)-7/2}{5} = \frac{3}{2}$, 3x - 4uDiameter = $\frac{3}{2}$ i.e.,

Hence radius of circle is $\frac{3}{4}$.

4.4 Intercepts on the Axes

The lengths of intercepts made by the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ with X and Y axes are $2\sqrt{g^2 - c}$ and $2\sqrt{f^2 - c}$ respectively.

Let the equation of circle be $x^2 + y^2 + 2gx + 2fy + c = 0$ (i)

Length of intercepts on *x*-axis and *y*-axis are $|AB| = |x_2 - x_1|$ and $|CD| = |y_2 - y_1|$ respectively.

The circle intersects the *x*-axis, when y = 0, then $x^2 + 2gx + c = 0$

Since the circle intersects the *x*-axis at $A(x_1,0)$ and $B(x_2,0)$.

Then
$$x_1 + x_2 = -2g$$
, $x_1x_2 = c$

AB
$$|= |x_2 - x_1| = \sqrt{(x_2 + x_1)^2 - 4x_1x_2} = 2\sqrt{(g^2 - c_1)^2 - 4x_1x_2}$$

As the circle intersects the *y*-axis, when x = 0, then $y^2 + 2fy + c = 0$

Since the circle intersects the *y*-axis at *C* (0, *y*₁) and *D* (0, *y*₂), then $y_1 + y_2 = -2f$, $y_1y_2 = c$

:.
$$|CD| = |y_2 - y_1| = \sqrt{(y_2 + y_1)^2 - 4y_2y_1} = 2\sqrt{(f^2 - c)}$$

- **Note**: If $g^2 > c$, then the roots of the equation $x^2 + 2gx + c = 0$ are real and distinct, so the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ meets the *x*-axis in two real and distinct points and the length of the intercept on *x*-axis is $2\sqrt{g^2 - c}$.
 - □ If $g^2 = c$, then the roots of the equation $x^2 + 2gx + c = 0$ are real and equal, so the circle touches *x*-axis and the intercept on *x*-axis is zero.
 - □ If $g^2 < c$, then the roots of the equation $x^2 + 2gx + c = 0$ are imaginary, so the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ does not meet *x*-axis in real points.
 - □ Similarly, the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ cuts the *y*-axis in real and distinct points, touches or does not meet in real points according as $f^2 > =$ or < c.

4.5 Position of a point with respect to a Circle

A point (x_1, y_1) lies outside, on or inside a circle $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ according as

 $S_1 \equiv x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$ is positive, zero or negative *i.e.*,

- $S_1 > 0 \Rightarrow$ Point is outside the circle.
- $S_1 = 0 \Rightarrow$ Point is on the circle.
- $S_1 < 0 \Rightarrow$ Point is inside the circle.

(1) The least and greatest distance of a point from a circle : Let S = 0 be a circle and $A(x_1, y_1)$ be a point. If the diameter of the circle is passing through the circle at P

AP = AC - r = least distance ; AQ = AC + r = greatest distance where 'r' is the radius and *C* is the centre of the circle.

Example : 12 The number of points with integral coordinates that are interior to the circle $x^2 + y^2 = 16$ is (a) 43 (b) 49 (c) 45 (d) 51

Solution : (c) The number of points is equal to the number of integral solutions (x, y) such that $x^2 + y^2 < 16$. So, x, y are integers such that $-3 \le x \le 3$, $-3 \le y \le 3$ satisfying the inequation $x^2 + y^2 < 16$. The number of selections of values of x is 7, namely -3, -2, -1, 0, 1, 2, 3. The same is true for y. So the number of ordered pairs (x, y) is 7×7 . But (3, 3), (3, -3), (-3, -3) are rejected because they do not satisfy the inequation $x^2 + y^2 < 16$.

So the number of points is 45.

Example : 13 The range of values of *a* for which the point (*a*, 4) is outside the circles $x^2 + y^2 + 10x = 0$ and $x^2 + y^2 - 12x + 20 = 0$ is

(a)
$$(-\infty, -8) \cup (-2, 6) \cup (6, +\infty)$$
 (b) $(-8, -2)$

(c)
$$(-\infty, -8) \cup (-2, +\infty)$$
 (d) None of these

Solution : (a) For circle, $x^2 + y^2 + 10x = 0$; $a^2 + (4)^2 + 10a > 0 \implies a^2 + 10a + 16 > 0 \implies (a+8)(a+2) > 0 \implies a < -8$ or a > -2(i) For circle, $x^2 + y^2 - 12x + 20 = 0$; $a^2 + (4)^2 - 12a + 20 > 0 \implies a^2 - 12a + 36 > 0$ $\implies (a-6)^2 > 0 \implies a \in R \sim \{6\}$ (ii) Taking common values from (i) and (ii), $a \in (-\infty, -8) \cup (-2, 6) \cup (6, +\infty)$.

4.6 Intersection of a Line and a Circle

Let the equation of the circle be $x^2 + y^2 = a^2$(i)and the equation of the line bey = mx + c.....(ii)

From (i) and (ii), $x^2 + (mx + c)^2 = a^2$ or $(1 + m^2)x^2 + 2mcx + c^2 - a^2 = 0$ (iii)

Case I: When points of intersection are real and distinct. In this case (iii) has two distinct roots.

$$\therefore \quad B^2 - 4AC > 0 \text{ or } 4m^2c^2 - 4(1+m^2)(c^2 - a^2) > 0 \text{ or } a^2 > \frac{c^2}{1+m^2}$$

or $a > \frac{|c|}{\sqrt{(1+m^2)}} = \text{ length of perpendicular from (0, 0) to } y = mx$

 \Rightarrow a > length of perpendicular from (0, 0) to y = mx + c

Thus, a line intersects a given circle at two distinct points if radius of circle is greater than the length of perpendicular from centre of the circle to the line.

Case II: When the points of intersection are coincident in this case (iii) has two equal roots.

$$\therefore \quad B^2 - 4AC = 0 \implies 4m^2c^2 - 4(1+m^2)(c^2 - a^2) = 0$$

$$\therefore \quad a^2 = \frac{c^2}{1+m^2} \quad \text{or} \quad a = \frac{|c|}{\sqrt{(1+m^2)}}$$

a =length of perpendicular from the point (0, 0) to y = mx + c.

Thus, a line touches the circle if radius of circle is equal to the length of perpendicular from centre of the circle to the line.

Case III: When the points of intersection are imaginary. In this case (iii) has imaginary roots.

- $\therefore \quad B^2 4AC < 0 \implies 4m^2c^2 4(1+m^2)(c^2 a^2) < 0, \quad \therefore \quad a^2 < \frac{c^2}{1+m^2}$
- or $a < \frac{|c|}{\sqrt{(1+m^2)}}$ = length of perpendicular from (0, 0) to y = mx
- \Rightarrow a < length of perpendicular from (0, 0) to y = mx + c

Thus, a line does not intersect a circle if the radius of circle is less than the length of perpendicular from centre of the circle to the line.

(1) The length of the intercept cut off from a line by a circle : The length of the intercept cut off

from the line
$$y = mx + c$$
 by the circle $x^2 + y^2 = a^2$ is $2\sqrt{\frac{a^2(1+m^2) - c^2}{1+m^2}}$

(2) **Condition of tangency** : A line L = 0 touches the circle S = 0, if length of perpendicular drawn from the centre of the circle to the line is equal to radius of the circle *i.e.* p = r. This is the condition of tangency for the line L = 0.

Circle $x^2 + y^2 = a^2$ will touch the line y = mx + c if $c = \pm a\sqrt{1 + m^2}$

Again, (i) If $a^2(1+m^2)-c^2 > 0$ line will meet the circle at real and different points.

- (ii) If $c^2 = a^2(1+m^2)$ line will touch the circle.
- (iii) If $a^2(1+m^2)-c^2 < 0$ line will meet circle at two imaginary points.

Example : 14 If the straight line y = mx is outside the circle $x^2 + y^2 - 20y + 90 = 0$, then [Roorkee 1999] (a) m > 3 (b) m < 3 (c) |m| > 3 (d) |m| < 3Solution : (d) If the straight line y = mx is outside the given circle then perpendicular distance of line from centre of circle > radius of circle

$$\frac{10}{\sqrt{1+m^2}} > \sqrt{10} \qquad \qquad \Rightarrow \quad (1+m^2) < 10 \quad \Rightarrow \quad m^2 < 9 \qquad \Rightarrow |m| < 3$$

Example : 15 If the chord y = mx + 1 of the circle $x^2 + y^2 = 1$ subtends an angle of measure 45° at the major segment of the circle then value of *m* is **[AIEEE 2002]**

4.7 Tangent to a Circle at a given Point

The limiting position of the line *PQ*, when *Q* moves towards *P* and ultimately coincides with *P*, is called the tangent to the circle at the point *P*. The point *P* is calle

(1) **Point form**

(i) The equation of tangent at (x_1, y_1) to circle $x^2 + y^2 = a^2$ is $xx_1 + y^2 = a^2$

(ii) The equation of tangent at (x_1, y_1) to circle $x^2 + y^2 + 2gx + 2fy + gy + 2gy + 2gy$

 $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$

- *Wole* : Given For equation of tangent of circle at (x_1, y_1) , substitute xx_1 for x^2, yy_1 for $y^2, \frac{x+x_1}{2}$ for $x, \frac{y+y_1}{2}$ for y and $\frac{xy_1+x_1y}{2}$ for xy and keep the constant as such.
 - □ This method of tangent at (x_1, y_1) is applied any conics of second degree. *i.e.*, equation of tangent of

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$
 at (x_{1}, y_{1})

is
$$axx_1 + h(xy_1 + x_1y) + byy_1 + g(x + x_1) + f(y + y_1) + c = 0$$

(2) **Parametric form :** Since parametric co-ordinates of circle $x^2 + y^2 = a^2$ is $(a\cos\theta, a\sin\theta)$, then equation of tangent at $(a\cos\theta, a\sin\theta)$ is $x \cdot a\cos\theta + y \cdot a\sin\theta = a^2$ or $x\cos\theta + y\sin\theta = a$.

(3) Slope form : Let y = mx + c is the tangent of the circle $x^2 + y^2 = a^2$.

:. Length of perpendicular from centre of circle (0, 0) on line (y = mx + c) = radius of circle

$$\therefore \quad \frac{|c|}{\sqrt{1+m^2}} = a \implies c = \pm a\sqrt{1+m^2}$$

Substituting this value of *c* in y = mx + c, we get $y = mx \pm a\sqrt{1 + m^2}$. Which are the required equations of tangents.

- **Note** : \Box The reason why there are two equations $y = mx \pm a\sqrt{1+m^2}$ is that there are two tangents, both are parallel and at the ends of a diameter.
 - □ The line ax + by + c = 0 is a tangent to the circle $x^2 + y^2 = r^2$ if and only if $c^2 = r^2(a^2 + b^2)$.
 - **The condition that the line** lx + my + n = 0 touches the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is $(lg + mf n)^2 = (l^2 + m^2)(g^2 + f^2 c)$.
 - **□** Equation of tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ in terms of slope is $y = mx + mg - f \pm \sqrt{(g^2 + f^2 - c)} \sqrt{(1 + m^2)}$

(4) **Point of contact :** If circle be $x^2 + y^2 = a^2$ and tangent in terms of slope be $y = mx \pm a\sqrt{(1+m^2)}$,

Solving $x^2 + y^2 = a^2$ and $y = mx \pm a\sqrt{(1+m^2)}$ simultaneously, we get $x = \pm \frac{am}{\sqrt{(1+m^2)}}$ and

$$y = \mp \frac{a}{\sqrt{(1+m^2)}}$$

Thus, the co-ordinates of the points of contact are $\left(\pm \frac{am}{\sqrt{(1+m^2)}}, \mp \frac{a}{\sqrt{(1+m^2)}}\right)$

Alternative method : Let point of contact be (x_1, y_1) then tangent at (x_1, y_1) of $x^2 + y^2 = a^2$ is $xx_1 + yy_1 = a^2$. Since $xx_1 + yy_1 = a^2$ and $y = mx \pm a\sqrt{(1+m^2)}$ are identical, $\therefore \frac{x_1}{m} = \frac{y_1}{-1} = \frac{+a^2}{\pm a\sqrt{1+m^2}}$

$$\therefore$$
 $x_1 = \pm \frac{am}{\sqrt{(1+m^2)}}$ and $y_1 = \mp \frac{a}{\sqrt{(1+m^2)}}$

Thus, the co-ordinates of the points of contact are $\left(\pm \frac{am}{\sqrt{(1+m^2)}}, \mp \frac{a}{\sqrt{(1+m^2)}}\right)$

Vote : If the line y = mx + c is the tangent to the circle $x^2 + y^2 = r^2$ then point of contact is given by $\left(-\frac{mr^2}{c}, \frac{r^2}{c}\right)$

□ If the line ax+by+c = 0 is the tangent to the circle $x^2+y^2=r^2$ then point of contact is given by $\left(-\frac{ar^2}{c}, -\frac{br^2}{c}\right)$

Example : 16 The equations to the tangents to the circle $x^2 + y^2 - 6x + 4y = 12$ which are parallel to the straight line 4x+3y+5=0, are [ISM Dhanbad 1973, MP PET 1991]

(a) 3x - 4y - 19 = 0, 3x - 4y + 31 = 0(b) 4x + 3y - 19 = 0, 4x + 3y + 31 = 0(c) 4x + 3y + 19 = 0, 4x + 3y - 31 = 0(d) 3x - 4y + 19 = 0, 3x - 4y + 31 = 0

Solution : (c) Let equation of tangent be 4x + 3y + k = 0, then $\sqrt{9 + 4 + 12} = \left|\frac{4(3) + 3(-2) + k}{\sqrt{16 + 9}}\right| \Rightarrow 6 + k = \pm 25 \Rightarrow k = 19$ and -31

Hence the equations of tangents are 4x + 3y + 19 = 0 and 4x + 3y - 31 = 0

Example : 17 The equations of any tangents to the circle $x^2 + y^2 - 2x + 4y - 4 = 0$ is

(a)
$$y = m(x-1) + 3\sqrt{1+m^2} - 2$$

(b) $y = mx + 3\sqrt{1+m^2}$
(c) $y = mx + 3\sqrt{1+m^2} - 2$
(d) None of these

(c)
$$y = mx + 3\sqrt{1 + m^2} - 2$$
 (d) None of these
Solution : (a) Equation of circle is $(x - 1)^2 + (y + 2)^2 = 3^2$.

As any tangent to $x^2 + y^2 = 3^2$ is given by $y = mx + 3\sqrt{1 + m^2}$

Any tangent to the given circle will be $y+2 = m(x-1)+3\sqrt{1+m^2} \Rightarrow y = m(x-1)+3\sqrt{1+m^2}-2$

Example : 18 If a circle, whose centre is (-1, 1) touches the straight line x + 2y + 12 = 0, then the coordinates of the point of contact are [MP PET 1998]

> (b) $\left(-\frac{18}{5}, -\frac{21}{5}\right)$ (c) (2, -7) (a) $\left(-\frac{7}{2}, -4\right)$

Solution : (b) Let point of contact be $P(x_1, y_1)$.

This point lies on the given line , $\therefore x_1 + 2y_1 = -12$

Gradient of $OP = m_1 = \frac{y_1 - 1}{x_1 + 1}$,

Both are perpendicular, $\therefore m_1 m_2 = -1$

$$\Rightarrow \left(\frac{y_1 - 1}{x_1 + 1}\right) \left(\frac{-1}{2}\right) = -1 \Rightarrow y_1 - 1 = 2x_1 + 2 \Rightarrow 2x_1 - y_1 = -3 \qquad \dots (ii)$$

On solving the equation (i) and (ii), $(x_1, y_1) = \left(\frac{-18}{5}, \frac{-21}{5}\right)$

4.8 Length of Tangent

From any point, say $P(x_1, y_1)$ two tangents can be drawn to a circle which are real, coincident or imaginary according as P lies outside, on or inside the $\sqrt{S_1}$ circle.

Le *PQ* and *PR* be two tangents drawn from $P(x_1, y_1)$ to the circle $x^{2} + y^{2} + 2gx + 2fy + c = 0$. Then *PQ* =*PR* is called the length of tangent drawn from point P and is given by PQ = PR $=\sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c} = \sqrt{S_1}$

4.9 Pair of Tangents

From a given point $P(x_1, y_1)$ two tangents PQ and PR can be drawn to the circle $S = x^2 + y^2 + 2gx + 2fy + c = 0$. Their combined equation is $SS_1 = T^2$.

Where S = 0 is the equation of circle, T = 0 is the equation of tangent at (x_1, y_1) and S_1 is obtained by replacing x by x_1 and y by y_1 in S.

4.10 Power of Point with respect to a Circle

Let $P(x_1, y_1)$ be a point outside the circle and *PAB* and *PCD* drawn two secants. The power of $P(x_1, y_1)$ with respect to $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ is equal to PA. PB

$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0 \implies S_1 = 0$$

Power remains constant for the circle *i.e.*, independent of A

$$\therefore PA.PB = PC.CD = (PT)^2 = S_1 = (\sqrt{S_1})^2$$

 $\therefore PA \cdot PB = (\sqrt{S_1})^2$ = square of the length of tangent.

 $P(x_1,y_1)$

0(-

(d) (- 2, - 5)

Gradient of x + 2y + y = 0

Note : \Box If *P* is outside, inside or on the circle then *PA* . *PB* is +*ve*, -*ve* or zero respectively.

Important Tips

- The length of the tangent drawn from any point on the circle $x^2 + y^2 + 2gx + 2fy + c_1 = 0$ to the circle $x^2 + y^2 + 2gx + 2fy + c_1 = 0$ is $\sqrt{c c_1}$.
- The formula of the origin to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ are perpendicular to each other, then $g^2 + f^2 = 2c$.
- The tangent to the circle $x^2 + y^2 = r^2$ at the point (a, b) meets the coordinate axes at the points A and B and O is the origin, then the area of the triangle OAB is $\frac{r^4}{2ab^-}$.
- The is the angle subtended at $P(x_1, y_1)$ by the circle $S = x^2 + y^2 + 2gx + 2fy + c = 0$, then $\cot \frac{\theta}{2} = \frac{\sqrt{S_1}}{\sqrt{g^2 + f^2 c}}$
- The angle between the tangents from (α, β) to the circle $x^2 + y^2 = a^2$ is $2 \tan^{-1} \left(\frac{a}{\sqrt{\alpha^2 + \beta^2 a^2}} \right)$.
- For If OA and OB are the tangents from the origin to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ and C is the centre of the circle, then the area of the quadrilateral OACB is $\sqrt{c(g^2 + f^2 - c)}$.
- **Example : 19** If the distances from the origin to the centres of three circles $x^2 + y^2 + 2\lambda_i x c^2 = 0$ (*i* = 1, 2, 3) are in *G.P.* then the lengths of the tangents drawn to them from any point on the circle $x^2 + y^2 = c^2$ are in

(a) *A.P.* (b) *G.P.* (c) *H.P.* (d) None of these **Solution :** (b) The centres of the given circles are $(-\lambda_i, 0)$ (i = 1, 2, 3)The distances from the origin to the centres are λ_i (i = 1, 2, 3). It is given that $\lambda_2^2 = \lambda_1 \lambda_3$. Let P(h,k) be any point on the circle $x^2 + y^2 = c^2$, then, $h^2 + k^2 = c^2$ Now, L_i = length of the tangent from (h, k) to $x^2 + y^2 + 2\lambda_i x - c^2 = 0$

$$= \sqrt{h^2 + k^2 + 2\lambda_i h - c^2} = \sqrt{c^2 + 2\lambda_i h - c^2} = \sqrt{2\lambda_i h} \qquad [\because h^2 + k^2 = c^2 \text{ and } i = 1, 2, 3]$$

Therefore, $L_2^2 = 2\lambda_2 h = 2h(\sqrt{\lambda_1 \lambda_3})$
 $= \sqrt{2h\lambda_1}\sqrt{2h\lambda_3} = L_1 L_3$. Hence, L_1, L_2, L_3 are in *G.P.*

(c) 2α

Example : 20 From a point on the circle $x^2 + y^2 = a^2$, two tangents are drawn to the circle $x^2 + y^2 = a^2 \sin^2 \alpha$. The angle between them is **[Rajasthan PET 2002]**

...

Solution : (c) Let any point on the circle $x^2 + y^2 = a^2$ be $(a \cos t, a \sin t)$ and $\angle OPQ = \theta$ Now; PQ = length of tangent from P on the circle $x^2 + y^2 = a^2 \sin^2 \alpha$

(b) $\frac{\alpha}{2}$

$$PQ = \sqrt{a^2 \cos^2 t + a^2 \sin^2 t - a^2 \sin^2 \alpha} = a \cos \alpha$$

(d) None of these

OQ = Radius of the circle $x^2 + y^2 = a^2 \sin^2 \alpha$

$$OQ = a \sin \alpha$$
, \therefore $\tan \theta = \frac{OQ}{PQ} = \tan \alpha \implies \theta = \alpha$; \therefore Angle between tangents $\angle QPR = 2\alpha$.

Alternative Method : We know that, angle between the tangent from (α, β) to the circle $x^2 + y^2 = a^2$

is
$$2\tan^{-1}\left(\frac{a}{\sqrt{\alpha^2+\beta^2-a^2}}\right)$$
. Let point on the circle $x^2 + y^2 = a^2$ be $(a\cos t, a\sin t)$

Angle between tangent = $2 \tan^{-1} \left(\frac{a \sin \alpha}{\sqrt{a^2 \cos^2 t + a^2 \sin^2 t - a^2 \sin^2 \alpha}} \right) = 2 \tan^{-1} \left(\frac{a \sin \alpha}{a \cos \alpha} \right) = 2\alpha$

Example : 21 Two tangents to the circle $x^2 + y^2 = 4$ at the points A and B meet at P (- 4, 0). The area of quadrilateral *PAOB*, where O is the origin, is

(a) 4 (b) $6\sqrt{2}$ (c) $4\sqrt{3}$ **Solution :** (c) Clearly, $\sin\theta = \frac{2}{4} = \frac{1}{2}$, $\therefore \theta = 30^{\circ}$. So area $(\Delta POA) = \frac{1}{2} \cdot 2 \cdot 4 \cdot \sin 60^{\circ}$

> $\therefore \text{ Area (quadrilateral$ *PAOB* $)} = 2 \cdot \frac{1}{2} \cdot 2 \cdot 4 \sin 60^{\circ} = 8 \cdot \frac{\sqrt{3}}{2} = 4\sqrt{3}.$ **Trick :** Area of quadrilateral $= r\sqrt{S_1} = 2\sqrt{12} = 4\sqrt{3}$

P θ 2 0(0,0)

(d) None of these

Example : 22 The angle between a pair of tangents drawn from a point *P* to the circle $x^2 + y^2 + 4x - 6y + 9 \sin^2 \alpha + 13 \cos^2 \alpha = 0$ is 2α . The equation of the locus of the point *P* is

[IIT 1996]

(a)
$$x^{2} + y^{2} + 4x - 6y + 4 = 0$$

(b) $x^{2} + y^{2} + 4x - 6y - 9 = 0$
(c) $x^{2} + y^{2} + 4x - 6y - 4 = 0$
(d) $x^{2} + y^{2} + 4x - 6y + 9 = 0$

Solution : (d) The centre of the circle $x^2 + y^2 + 4x - 6y + 9\sin^2 \alpha + 13\cos^2 \alpha = 0$ is C(-2,3) and its radius is

 $\sqrt{2^2 + (-3)^2 - 9\sin^2 \alpha - 13\cos^2 \alpha} = \sqrt{4 + 9 - 9\sin^2 \alpha - 13\cos^2 \alpha} = 2\sin \alpha$

Let *P* (*h*, *k*) be any point on the locus. The $\angle APC = \alpha$. Also $\angle PAC = \pi/2$ *i.e.* triangle *APC* is a right angle triangle.

Thus
$$\sin \alpha = \frac{AC}{PC} = \frac{2 \sin \alpha}{\sqrt{(h+2)^2 + (k-3)^2}}$$

 $\Rightarrow \sqrt{(h+2)^2 + (k-3)^2} = 2 \Rightarrow (h+2)^2 + (k-3)^2 = 4$
or $h^2 + k^2 + 4h - 6k + 9 = 0$
Thus the required equation of the locus is $x^2 + y^2 + 4x - 6y + 9 = 0$.

4.11 Normal to a Circle at a given Point

The normal of a circle at any point is a straight line, which is perpendicular to the tangent at the point and always passes through the centre of the circle.

(1) Equation of normal: The equation of normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at any

point
$$(x_1, y_1)$$
 is $y - y_1 = \frac{y_1 + f}{x_1 + g}(x - x_1)$ or $\frac{x - x_1}{x_1 + g} = \frac{y - y_1}{y_1 + f}$

Note : \Box The equation of normal to the circle $x^2 + y^2 = a^2$ at any point (x_1, y_1) is $xy_1 - x_1y = 0$ or

$$\frac{x}{x_1} = \frac{y}{y_1}$$

- □ The equation of any normal to the circle $x^2 + y^2 = a^2$ is y = mx where *m* is the slope of normal.
- □ The equation of any normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is y + f = m(x + g). where *m* is the slope of normal.
- □ If the line y = mx + c is a normal to the circle with radius *r* and centre at (*a*, *b*) then b = ma + c.

(2) **Parametric form :** Since parametric co-ordinates of circle $x^2 + y^2 = a^2$ is $(a \cos \theta, a \sin \theta)$.

- \therefore Equation of normal at $(a \cos \theta, a \sin \theta)$ is $\frac{x}{a \cos \theta} = \frac{y}{a \sin \theta}$ or $\frac{x}{\cos \theta} = \frac{y}{\sin \theta}$
- or $y = x \tan \theta$ or y = mx where $m = \tan \theta$, which is slope form of normal.

Example : 23 The line lx + my + n = 0 is a normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$, if [MP **PET 1995**] (a) lg+mf - n = 0 (b) lg+mf + n = 0 (c) lg-mf - n = 0 (d) lg-mf + n = 0

Solution : (a) Since normal always passes through centre of circle, therefore (-g, -f) must lie on lx + my + n = 0. Hence, lg+mf - n = 0

4.12 Chord of Contact of Tangents

(1) **Chord of contact** : The chord joining the points of contact of the two tangents to a conic drawn from a given point, outside it, is called the chord of contact of tangents. $(x',y')^P$

(2) **Equation of chord of contact** : The equation of the chord of contact of tangents drawn from a point (x_1, y_1) to the circle $x^2 + y^2 = a^2$ is $xx_1 + yy_1 = a^2$.

Equation of chord of contact at (x_1, y_1) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$.

It is clear from the above that the equation to the chord of contact coincides with the equation of the tangent, if point (x_1, y_1) lies on the circle.

The length of chord of contact = $2\sqrt{r^2 - p^2}$; (*p* being length of perpendicular from centre to the chord)

Area of $\triangle APQ$ is given by $\frac{a(x_1^2 + y_1^2 - a^2)^{3/2}}{x_1^2 + y_1^2}$.

(3) Equation of the chord bisected at a given point : The equation of the chord of the circle $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ bisected at the point (x_1, y_1) is given by T = S'

i.e. $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$.

Example : 24 Tangents are drawn from any point on the circle $x^2 + y^2 = a^2$ to the circle $x^2 + y^2 = b^2$. If the chord of contact touches the circle $x^2 + y^2 = c^2$, a > b, then [MP PET 1999, Rajasthan PET 1999]

(a) *a*, *b*, *c* are in *A*.*P*. (b) *a*, *b*, *c* are in *G*.*P*. (c) *a*, *b*, *c* are in *H*.*P*. (d) *a*, *c*, *b* are in *G*.*P*.

Solution : (b) Chord of contact of any point $(a\cos\theta, a\sin\theta)$ on 1st circle with respect to 2nd circle is $ax\cos\theta + ay\sin\theta = b^2$

This chord touches the circle $x^2 + y^2 = c^2$,

Hence, Radius = Perpendicular distance of chord from centre.

$$c = \frac{b^2}{a\sqrt{\cos^2 \theta + \sin^2 \theta}} \implies b^2 = ac$$
 .Hence *a,b,c* are in G.P.

Example : 25 The area of the triangle formed by the tangents from the point (4, 3) to the circle $x^2 + y^2 = 9$ and the line joining their points of contact is [IIT 1981, MP PET 1991]

(a)
$$\frac{25}{192} sq.units$$
 (b) $\frac{192}{25} sq.units$ (c) $\frac{384}{25} sq.units$ (d) None of these

Solution : (b) The equation of the chord of contact of tangents drawn from *P* (4, 3) to $x^2 + y^2 = 9$ is 4x + 3y = 9. The equation of *OP* is $y = \frac{3}{4}x$.

Now, OM = (length of the perpendicular from (0, 0) on 4x + 3y - 9 = (

$$\therefore QR = 2.QM = 2\sqrt{OQ^2 - OM^2} = 2\sqrt{9 - \frac{81}{25}} = \frac{2}{3}$$

Now, $PM = OP - OM = 5 - \frac{9}{5} = \frac{16}{5}$. So, Area of $\triangle PQR = \frac{1}{2} \left(\frac{24}{5}\right) \left(\frac{16}{5}\right) = \frac{192}{25} sq.$ units

Example : 26 The locus of the middle points of those chords of the circle $x^2 + y^2 = 4$ which subtend a right angle at the origin is [MP PET 1990; IIT 1984; Rajasthan PET 1997; DCE 2000, 01]

(c) $x^2 + y^2 = 2$

(a) $x^2 + y^2 - 2x - 2y = 0$ (b) $x^2 + y^2 = 4$

Solution : (c) Let the mid-point of chord is (*h*, *k*). Also radius of circle is 2. Therefore

$$\frac{OC}{OB} = \cos 45^{\circ} \Rightarrow \frac{\sqrt{h^2 + k^2}}{2} = \frac{1}{\sqrt{2}} \Rightarrow h^2 + k^2 = 2$$

Hence locus is $x^2 + y^2 = 2$

(d) $(x-1)^2 + (y-2)^2 = 5$

Example : 27 If two distinct chords, drawn from the point (p, q) on the circle $x^2 + y^2 = px + qy$ (where $p, q \neq 0$) are bisected by the x-axis, then [IIT 1999] (a) $p^2 = q^2$ (b) $p^2 = 8q^2$ (c) $p^2 < 8q^2$ (d) $p^2 > 8q^2$

Solution : (d) Let (h, 0) be a point on x-axis, then the equation of chord whose mid-point is (h, 0) will be $xh - \frac{1}{2}p(x+h) - \frac{1}{2}q(y+0) = h^2 - ph$. This passes through (p, q), hence $ph - \frac{1}{2}p(p+h) - \frac{1}{2}q.q = h^2 - ph$

$$\Rightarrow ph - \frac{1}{2}p^2 - \frac{1}{2}ph - \frac{1}{2}q^2 = h^2 - ph \Rightarrow h^2 - \frac{3}{2}ph + \frac{1}{2}(p^2 + q^2) = 0; \quad \therefore \quad h \text{ is real, hence } B^2 - 4AC > 0$$

$$\therefore \quad \frac{9}{4}p^2 - 4.\frac{1}{2}(p^2 + q^2) > 0 \Rightarrow 9p^2 - 8(p^2 + q^2) > 0 \Rightarrow p^2 - 8q^2 > 0 \Rightarrow p^2 > 8q^2$$

4.13 Director Circle

The locus of the point of intersection of two perpendicular tangents to a circle is called the Director circle.

Let the circle be $x^2 + y^2 = a^2$, then equation of the pair of tangents to a circle from a point is $(x^2 + y^2 - a^2)(x_1^2 + y_1^2 - a^2) = (xx_1 + yy_1 - a^2)^2$. If this represents a pair of perpendicular lines, coefficient of x^2 + coefficient of $y^2 = 0$ *i.e.* $(x_1^2 + y_1^2 - a^2 - x_1^2) + (x_1^2 + y_1^2 - a^2 - y_1^2) = 0 \implies x_1^2 + y_1^2 = 2a^2$

Hence the equation of director circle is $x^2 + y^2 = 2a^2$.

Obviously director circle is a concentric circle whose radius is $\sqrt{2}$ times the radius of the given circle.

Note : \Box Director circle of circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is $x^2 + y^2 + 2gx + 2fy + 2c - g^2 - f^2 = 0$.

4.14 Diameter of a Circle

The locus of the middle points of a system of parallel chords of a circle is called a diameter of the circle.

The equation of the diameter bisecting parallel chords y = mx + c (c is a parameter) of the circle $x^2 + y^2 = a^2$ is x + my = 0.

Note :
The diameter corresponding to a system of parallel chords of a circle always passes through the centre of the circle and is perpendicular to the parallel chords.

Example : 28 A foot of the normal from the point (4, 3) to a circle is (2, 1) and a diameter of the circle has the equation 2x - y = 2. Then the equation of the circle is

(a)
$$x^2 + y^2 + 2x - 1 = 0$$
 (b) $x^2 + y^2 - 2x - 1 = 0$ (c) $x^2 + y^2 - 2y - 1 = 0$ (d) None of these.

- **Solution :** (b) The line joining (4, 3) and (2, 1) is also along a diameter. So, the centre is the intersection of the diameters 2x y = 2 and y 3 = (x 4). Solving these, the centre = (1, 0)
 - \therefore Radius = Distance between (1, 0) and (2, 1) = $\sqrt{2}$.
 - :. Equation of circle $(x-1)^2 + y^2 = (\sqrt{2})^2 \implies x^2 + y^2 2x 1 = 0$
- **Example : 29** The diameter of the circle $x^2 + y^2 4x + 2y 11 = 0$ corresponding to a system of chords parallel to the line x 2y + 1 = 0
 - (a) x-2y+3=0 (b) 2x-y+3=0 (c) 2x+y-3=0 (d) None of these

Solution : (c) The centre of the given circle is (2, -1) the equation of the line perpendicular to chord x - 2y + 1 = 0 is 2x + y + k = 0

Since the line passes through the point (2, -1) therefore k = -3. The equation of diameter is 2x + y - 3 = 0.

4.15 Pole and Polar

Let $P(x_1, y_1)$ be any point inside or outside the circle. Draw chords *AB* and *A' B'* passing through *P*. If tangents to the circle at *A* and *B* meet at *Q* (*h*, *k*), then locus of *Q* is called the polar of *P* with respect to circle and *P* is called the pole and if tangents to the circle at *A'* and *B'* meet at *Q'*, then the straight line *QQ'* is polar with *P* as its pole.

If circle be $x^2 + y^2 = a^2$ then *AB* is the chord of contact of *Q* (*h*, *k*), $hx + ky = a^2$ is its equation. But $P(x_1, y_1)$ lies on *AB*, $\therefore hx_1 + ky_1 = a^2$.

Hence, locus of *Q* (*h*, *k*) is $xx_1 + yy_1 = a^2$, which is polar of $P(x_1, y_1)$ with respect to the circle $x^2 + y^2 = a^2$.

(1) **Coordinates of pole of a line :** The pole of the line lx + my + n = 0 with respect to the circle $x^2 + y^2 = a^2$. Let pole be (x_1, y_1) , then equation of polar with respect to the circle $x^2 + y^2 = a^2$ is $xx_1 + yy_1 - a^2 = 0$, which is same as lx + my + n = 0

Then $\frac{x_1}{l} = \frac{y_1}{m} = -\frac{a^2}{n}$, $\therefore x_1 = -\frac{a^2l}{n}$ and $y_1 = -\frac{a^2m}{n}$. Hence, the required pole is $\left(-\frac{a^2l}{n}, -\frac{a^2m}{n}\right)$.

(2) Properties of pole and polar

(i) If the polar of $P(x_1,y_1)$ w.r.t. a circle passes through $Q(x_2,y_2)$ then the polar of Q will pass through P and such points are said to be conjugate points.

(ii) If the pole of the line ax + by + c = 0 w.r.t. a circle lies on another line $a_1x + b_1y + c_1 = 0$; then the pole of the second line will lie on the first and such lines are said to be conjugate lines.

(iii) The distance of any two points $P(x_1,y_1)$ and $Q(x_2,y_2)$ from the centre of a circle is proportional to the distance of each from the polar of the other.

(iv) If *O* be the centre of a circle and *P* any point, then *OP* is perpendicular to the polar of *P*.

(v) If *O* be the centre of a circle and *P* any point, then if *OP* (produced, if necessary) meet the polar of *P* in *Q*, then *OP* . $OQ = (radius)^2$.

Wate : \Box Equation of polar is like as equation of tangent *i.e.*, T = 0 (but point different)

- □ Equation of polar of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ with respect to (x_1, y_1) is $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$
- □ If the point *P* is outside the circle then equation of polar and chord of contact will coincide. In this case the polar cuts the circle at two points.

- □ If the point *P* is on the circle then equation of polar, chord of contact and tangent at *P* will coincide. So in this case the polar touches the circle.
- □ If the point *P* is inside the circle (not its centre) then only its polar will exist. In this case the polar is outside the circle. The polar of the centre lies at infinity.
- □ If a triangle is like that its each vertex is a pole of opposite side with respect to a circle then it is called self conjugate triangle.

Example : 30 The polar of the point
$$\left(5, -\frac{1}{2}\right)$$
 with respect to circle $(x-2)^2 + y^2 = 4$ is [Rajasthan PET 1006]

(a)
$$5x - 10y + 2 = 0$$
 (b) $6x - y - 20 = 0$ (c) $10x - y - 10 = 0$ (d) $x - 10y - 2 = 0$

Solution : (b) The polar of the point
$$\left(5, -\frac{1}{2}\right)$$
 is $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$

$$\Rightarrow 5x - \frac{1}{2}y - 2(x+5) + 0 + 0 = 0 \Rightarrow 3x - \frac{y}{2} - 10 = 0 \Rightarrow 6x - y - 20 = 0.$$

Example : 31 The pole of the straight line 9x + y - 28 = 0 with respect to circle $2x^2 + 2y^2 - 3x + 5y - 7 = 0$ is

[Rajasthan PET 1990, 99;

(d) (-3, 1)

MNR 1984; UPSEAT 2000]
(a) (3, 1) (b) (1, 3) (c) (3, -1)
Equation of given circle is
$$x^2 + y^2 - \frac{3}{2}x + \frac{5}{2}y - \frac{7}{2} = 0$$

$$\Rightarrow \left(x - \frac{3}{4}\right)^2 + \left(y + \frac{5}{4}\right)^2 - \frac{9}{16} - \frac{25}{16} - \frac{7}{2} = 0 \Rightarrow \left(x - \frac{3}{4}\right)^2 + \left(y + \frac{5}{4}\right)^2 - \frac{45}{8} = 0$$

Put $X = x - \frac{3}{4}$ and $Y = y + \frac{5}{4}$, we get the equation of circle $X^2 + Y^2 - \frac{45}{8} = 0$ and the line $9X + Y - \frac{45}{2} = 0$
Hence pole $= \left[\frac{9 \times \frac{45}{8}}{\frac{45}{2}}, \frac{1 \times \frac{45}{8}}{\frac{45}{2}}\right] = \left(\frac{9}{4}, \frac{1}{4}\right)$. But, $x = \frac{9}{4} + \frac{3}{4} = 3$ and $y = \frac{1}{4} - \frac{5}{4} = -1$, hence the pole is $x = 1$.

(3, - 1).

4.16 Two Circles touching each other

(1) When two circles touch each other externally : Then distance between their centres = Sum of their radii *i.e.*, $|C_1C_2| = r_1 + r_2$

In such cases, the point of contact *P* divides the line joining C_1 and C_2 internally in the ratio $r_1: r_2 \implies \frac{C_1 P}{C_2 P} = \frac{r_1}{r_2}$

If $C_1 \equiv (x_1, y_1)$ and $C_2 \equiv (x_2, y_2)$, then co-ordinate of *P* is

$$\left(\frac{r_1x_2 + r_2x_1}{r_1 + r_2}, \frac{r_1y_2 + r_2y_1}{r_1 + r_2}\right)$$

(2) When two circles touch each other internally : Then distance between their centres = Difference of their radii *i.e.*, $|C_1C_2| = r_1 - r_2$

In such cases, the point of contact *P* divides the line joining C_1 and C_2 externally in the ratio $r_1 : r_2 \implies \frac{C_1 P}{C_2 P} = \frac{r_1}{r_2}$

If $C_1 \equiv (x_1, y_1)$ and $C_2 \equiv (x_2, y_2)$, then co-ordinate of *P* is

$$\left(\frac{r_1x_2 - r_2x_1}{r_1 - r_2}, \frac{r_1y_2 - r_2y_1}{r_1 - r_2}\right)$$

4.17 Common Tangents to Two circles

Different cases of intersection of two circles :

Let the two circles be
$$(x - x_1)^2 + (y - y_1)^2 = r_1^2$$
(i)
and $(x - x_2)^2 + (y - y_2)^2 = r_2^2$ (ii)

with centres $C_1(x_1, y_1)$ and $C_2(x_2, y_2)$ and radii r_1 and r_2 respectively. Then following cases may arise :

Case I: When $|C_1C_2| > r_1 + r_2$ *i.e.*, the distance between the centres is greater than the sum of radii.

In this case four common tangents can be drawn to the two circles, in which two are direct common tangents and the other two are transverse common tangents.

Case II : When $|C_1C_2| = r_1 + r_2$ *i.e.*, the distance between the centres is equal to the sum of radii.

In this case two direct common tangents are real and distinct while the transverse tangents are coincident.

Case III : When $|C_1C_2| < r_1 + r_2$ *i.e.*, the distance between the centres is less than sum of radii.

In this case two direct common tangents are real and distinct while the transverse tangents are imaginary.

Case IV : When $|C_1C_2| = |r_1 - r_2|$, *i.e.*, the distance between the centres is equal to the difference of the radii.

In this case two tangents are real and coincident while the other two tangents are imaginary.

Case V: When $|C_1C_2| < |r_1 - r_2|$, *i.e.*, the distance between the centres is less than the difference of the radii.

In this case, all the four common tangents are imaginary.

- *Wole* : **D Points of intersection of common tangents :** The points T_1 and T_2 (points of intersection of indirect and direct common tangents) divides C_1C_2 internally and externally in the ratio $r_1:r_2$ respectively.
 - **\Box** Equation of the common tangents at point of contact is $S_1 S_2 = 0$.
 - □ If the circle $x^2 + y^2 + 2gx + c^2 = 0$ and $x^2 + y^2 + 2fy + c^2 = 0$ touch each other, then

$$\frac{1}{g^2} + \frac{1}{f^2} = \frac{1}{c^2}$$

	Condition	Position	Diagram	No. of common tangents
(i)	$C_1 C_2 > r_1 + r_2$	Do not intersect or one outside the other	C_1 T_1 C_2 T_2	4
(ii)	$C_1 C_2 < r_1 - r_2 $	One inside the other		0
(iii)	$C_1 C_2 = r_1 + r_2$	External touch	T_1 C_1 C_2 T_2	3
(iv)	$C_1 C_2 = r_1 - r_2 $	Internal touch		1
(v)	$ r_1 - r_2 < C_1 C_2 < r_1 + r_2$	Intersection at two real points	C_1 T_2	2

Example : 32 If circles
$$x^2 + y^2 + 2ax + c = 0$$
 and $x^2 + y^2 + 2by + c = 0$ touch each other, then [MNR 1987]
(a) $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ (b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ (c) $\frac{1}{a} + \frac{1}{b} = c^2$ (d) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$
Solution : (d) $C_1 = (-a, 0), r_1 = \sqrt{a^2 - c}$; $C_2 = (0, -b), r_2 = \sqrt{b^2 - c}$; $C_1 C_2 = \sqrt{a^2 + b^2}$
 \therefore Circles touch each other, therefore $r_1 + r_2 = C_1 C_2$
 $\Rightarrow \sqrt{a^2 - c} + \sqrt{b^2 - c} = \sqrt{a^2 + b^2} \Rightarrow a^2b^2 - b^2c - a^2c = 0$
Multiplying by $\frac{1}{a^2b^2c^2}$, we get $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$.
Example : 33 If two circles $(x - 1)^2 + (y - 3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then
[IIT 1989; Karnataka CET 2002; DCE 2000, 01; AIEEE 2003]
(a) $2 < r < 8$ (b) $r = 2$ (c) $r < 2$ (d) $r > 2$
Solution : (a) When two circles intersect each other, then difference between their radii < Distance between their centres
 $\Rightarrow r - 3 < 5 \Rightarrow r < 8$ (i)
Sum of their radii > Distance between their centres
 $\Rightarrow r + 3 > 5 \Rightarrow r > 2$ (ii)
Hence by (i) and (ii), $2 < r < 8$.

Example : 34	The equation of the circle having the lines $x^2 + 2$.	xy + 3x + 6y = 0 as its normals as	nd having size just sufficient to contain the
	circle $x(x-4) + y(y-3) = 0$ is		[Roorkee 1990]
	(a) $x^2 + y^2 + 3x - 6y - 40 = 0$	(b) $x^2 + y^2 + 6x - 3y$	y - 45 = 0
	(c) $x^2 + y^2 + 8x + 4y - 20 = 0$	(d) $x^2 + y^2 + 4x + 8y^2$	y + 20 = 0
Solution : (b)	Given pair of normals is $x^2 + 2xy + 3x + 6y = 0$	or $(x+2y)(x+3) = 0$	
	\therefore Normals are $x + 2y = 0$ and $x + 3 = 0$		
	The point of intersection of normals $x + 2y = 0$	and $x + 3 = 0$ is the centre of	
	required circle, we get centre $C_1 = (-3, 3/2)$ and c	other circle is	$C_1 \qquad C_2 \bullet$
	$x(x-4)+y(y-3)=0$ or $x^{2}+y^{2}-4x-3y=$	0(i)	
	Its centre $C_2 = (2, 3/2)$ and radius $r = \sqrt{4 + \frac{9}{4}} =$	$\frac{5}{2}$	
	Since the required circle just contains the given circle	cle (i), the given circle should touc	h the required circle internally from inside.
	Therefore, radius of the required circle $= C_1 - C_2 $	$+r = \sqrt{(-3-2)^2 + \left(\frac{3}{2} - \frac{3}{2}\right)^2 + \frac{5}{2}}$	$= 5 + \frac{5}{2} = \frac{15}{2}$
	Hence, equation of required circle is $(x + 3)^2 + (y + 3)^2 + (y$	$\left(-\frac{3}{2}\right)^2 = \left(\frac{15}{2}\right)^2$ or $x^2 + y^2 + 6$.	x-3y-45=0.
Example : 35	The equation of the circle which touches the	e circle $x^2 + y^2 - 6x + 6y + 17$	= 0 externally and to which the lines
	$x^2 - 3xy - 3x + 9y = 0$ are normals, is		[Roorkee 1994]
	(a) $x^2 + y^2 - 6x - 2y - 1 = 0$	(b) $x^2 + y^2 + 6x + 2y$	y + 1 = 0
	(c) $x^2 + y^2 - 6x - 6y + 1 = 0$	(d) $x^2 + y^2 - 6x - 2y$	y + 1 = 0
Solution : (d)	Joint equations of normals are $x^2 - 3xy - 3x + 9y$	$x = 0 \Rightarrow x(x - 3y) - 3(x - 3y) =$	$= 0 \implies (x-3)(x-3y) = 0$
	\therefore Given normals are $x - 3 = 0$ and $x - 3y = 0$, which intersect at centre of circle	whose coordinates are (3, 1).
	The given circle is $C_1 = (3, -3), r_1 = 1; C_2 = 0$	$(3, 1), r_2 = ?$	
	If the two circles touch externally, then $C_1C_2 = r_1$	$+r_2 \implies 4 = 1 + r_2 \implies r_2 = 3$	
	\therefore Equation of required circle is $(x-3)^2 + (y-1)^2$	$x^2 = (3)^2 \implies x^2 + y^2 - 6x - 2y$	+1 = 0
Example : 36	The number of common tangents to the circles x^2 -	$+y^{2} = 4$ and $x^{2} + y^{2} - 6x - 8y =$	= 24 is [IIT 1998]
Solution (b)	(a) 0 (b) 1 Circles $S = r^2 + y^2 - (2)^2$ and $S = (r - 3)^2$.	(c) 3 + $(y - 4)^2 = (7)^2$	(d) 4
50111011.(0)	\therefore Centres $C_1 = (0, 0)$ $C_2 = (3, 4)$ and radii r	$r_{1} = 2$ $r_{2} = 7$	
	$1 = \frac{1}{2} = $	$1 - 2, r_2 - r$	
	$C_1C_2 = \sqrt{(3)^2 + (4)^2} = 5$, $r_2 - r_1 = 7 - 2 = 5$	····· •••	
	$C_1C_2 = r_2 - r_1$ <i>i.e.</i> circles touch internally. He	$\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$	gent.
Example : 37	There are two circles whose equations are $x^2 + y^2$ two common tangents, then the number of possible	$x^2 = 9$ and $x^2 + y^2 - 8x - 6y + n^2$	= 0, $n \in \mathbb{Z}$. If the two circles have exactly
	(a) 2 (b) 8	(c) 9	(d) None of these
Solution : (c)	For $x^2 + y^2 = 9$, the centre = (0, 0) and the radius	s = 3	
	For $x^2 + y^2 - 8x - 6y + n^2 = 0$. The centre = (4,	3) and the radius = $\sqrt{(4)^2 + (3)^2}$ -	$\overline{-n^2}$
	:. $4^2 + 3^2 - n^2 > 0$ or $n^2 < 5^2$ or $-5 < n < -5 < -5$	5.	
	Circles should cut to have exactly two common tang	gents.	
	So, $r_1 + r_2 > C_1 C_2$, $\therefore 3 + \sqrt{25 - n^2} > \sqrt{(4)^2 + (3)^2}$ or $\sqrt{25 - n^2} > 2$ or $25 - n^2 > 4$		
	:. $n^2 < 21$ or $-\sqrt{21} < n < \sqrt{21}$		
	Therefore, common values of <i>n</i> should satisfy $-\sqrt{2}$	$\overline{21} < n < \sqrt{21}.$	
	But $n \in Z$, So, $n = -4, -3, \dots, 3, 4$. \therefore Numb	per of possible values of $n = 9$.	

4.18 Common chord of two Circles

- (1) **Definition :** The chord joining the points of intersection of two given circles is called their common chord.
- (2) Equation of common chord : The equation of the common chord of two circles

$$S_1 \equiv x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$$
(i)

and
$$S_2 \equiv x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$$

is
$$2x(g_1 - g_2) + 2y(f_1 - f_2) + c_1 - c_2 = 0$$
 i.e. $S_1 - S_2 = 0$.

(3) Length of the common chord : $PQ = 2(PM) = 2\sqrt{C_1P^2 - C_1M^2}$

Where C_1P = radius of the circle S = 0 and C_1M = length of the perpendicular from the centre C_1 to the common chord PQ.

- **Note** : \Box The length of the common chord is $2\sqrt{r_1^2 p_1^2} = 2\sqrt{r_2^2 p_2^2}$ where p_1 and p_2 are the lengths of perpendicular drawn from the centre to the chord.
 - □ While using the above equation of common chord the coefficient of x^2 and y^2 in both equation should be equal.

....(ii)

- **u** Two circle touches each other if the length of their common chord is zero.
- \Box Maximum length of the common chord = diameter of the smaller circle.

Example : 38 If the common chord of the circles $x^2 + (y - \lambda)^2 = 16$ and $x^2 + y^2 = 16$ subtend a right angle at the origin, then λ is equal to

(a) 4 (b)
$$4\sqrt{2}$$
 (c) $\pm 4\sqrt{2}$ (d) 8

Solution : (c) The common chord of given circles is $S_1 - S_2 = 0$

$$\Rightarrow x^{2} + (y - \lambda)^{2} - 16 - \{x^{2} + y^{2} - 16\} = 0 \text{ i.e., } y = \frac{\lambda}{2} \qquad (\because \lambda \neq 0)$$

The pair of straight lines joining the origin to the points of intersection of $y = \frac{\lambda}{2}$ and $x^2 + y^2 = 16$ is $x^2 + y^2 = 16\left(\frac{2y}{\lambda}\right)^2$

 $\Rightarrow \lambda^2 x^2 + (\lambda^2 - 64)y^2 = 0.$ These lines are at right angles if $\lambda^2 + \lambda^2 - 64 = 0$, *i.e.*, $\lambda = \pm 4\sqrt{2}.$

Example: 39 Which of the following is a point on the common chord of the circles $x^2 + y^2 + 2x - 3y + 6 = 0$ and $x^2 + y^2 + x - 8y - 13 = 0$ [Karnataka CET 2003] (a) (1, -2) (b) (1, 4) (c) (1, 2) (d) (1, -4)

Solution : (d) Given circles are, $S_1 \equiv x^2 + y^2 + 2x - 3y + 6 = 0$ (i) and $S_2 \equiv x^2 + y^2 + x - 8y - 13 = 0$ (ii)

 \therefore Equation of common chord is $S_1 - S_2 = 0$

 \Rightarrow x+5y+19 = 0, and out of the four given points only point (1, -4) satisfies it.

Example : 40 If the circle $x^2 + y^2 = 4$ bisects the circumference of the circle $x^2 + y^2 - 2x + 6y + a = 0$, then *a* equals

[Rajasthan PET 1999]

(a) 4 (b) -4 (c) 16 (d) -16 Solution: (c) The common chord of given circles is $S_1 - S_2 = 0 \implies 2x - 6y - 4 - a = 0$ (i) Since $x^2 + x^2 = 4$ bisects the since of the since $x^2 + x^2 = 2x + 6x + a = 0$ therefore (i)

Since, $x^2 + y^2 = 4$ bisects the circumferences of the circle $x^2 + y^2 - 2x + 6y + a = 0$, therefore (i) passes through the centre of second circle *i.e.* (1, -3). $\therefore 2 + 18 - 4 - a = 0 \Rightarrow a = 16$.

4.19 Angle of Intersection of Two Circles

The angle of intersection between two circles S = 0 and S' = 0 is defined as the angle between their tangents at their point of intersection.

If
$$S \equiv x^{2} + y^{2} + 2g_{1}x + 2f_{1}y + c_{1} = 0$$

 $S' \equiv x^{2} + y^{2} + 2g_{2}x + 2f_{2}y + c_{2} = 0$

are two circles with radii r_1 , r_2 and d be the distance between their centres then the angle of intersection θ between

them is given by
$$\cos\theta = \frac{r_1^2 + r_1^2 - d^2}{2r_1r_2}$$
 or $\cos\theta = \frac{2(g_1g_2 + f_1f_2) - (c_1 + c_2)}{2\sqrt{g_1^2 + f_1^2 - c_1}\sqrt{g_2^2 + f_2^2 - c_2}}$

(1) **Condition of Orthogonality :** If the angle of intersection of the two circles is a right angle ($\theta = 90^{\circ}$), then such circles are called orthogonal circles and condition for their orthogonality is

 $2g_1g_2 + 2f_1f_2 = c_1 + c_2$

Note : • When the two circles intersect orthogonally then the length of tangent on one circle from the centre of other circle is equal to the

of tangent on one circle from the centre of other circle is equal to the radius of the other circle.

 \Box Equation of a circle intersecting the three circles $x^2 + y^2 + 2g_ix + 2f_iy + c_i = 0$ (*i* = 1, 2, 3)

	$x^{2} + y^{2}$	х	У	1	
orthogonally is	$-c_{1}$	g_1	f_1	-1	= 0
orthogonary is	$-c_{2}$	g_2	f_2	-1	- 0
	$-c_3$	g_3	f_3	-1	

Example : 41 A circle passes through the origin and has its centre on y = x. If it cuts $x^2 + y^2 - 4x - 6y + 10 = 0$ orthogonally, then the equation of the circle is [EAMCET 1994] (a) $x^2 + y^2 - x - y = 0$ (b) $x^2 + y^2 - 6x - 4y = 0$ (c) $x^2 + y^2 - 2x - 2y = 0$ (d) $x^2 + y^2 + 2x + 2y = 0$

(a)
$$x^2 + y^2 - x - y = 0$$
 (b) $x^2 + y^2 - 6x - 4y = 0$ (c) $x^2 + y^2 - 2x - 2y = 0$ (d) $x^2 + y^2 + 2x + 2y = 0$
(c) Let the required circle be $x^2 + y^2 + 2gx + 2fy + c = 0$ (i)

Solution : (c) Let the required circle be $x^2 + y^2 + 2gx + 2fy + c = 0$ (i) This passes through (0, 0), therefore c = 0The centre (-g, -f) of (i) lies on y = x, hence g = f. Since (i) cuts the circle $x^2 + y^2 - 4x - 6y + 10 = 0$ orthogonally, therefore 2(-2g - 3f) = c + 10 $\Rightarrow -10g = 10 \Rightarrow g = f = -1$ ($\because g = f$ and c = 0). Hence the required circle is $x^2 + y^2 - 2x - 2y = 0$. Example : 42 The centre of the circle, which cuts orthogonally each of the three circles $x^2 + y^2 + 2x + 17y + 4 = 0$,

[MP PET 2003]

(a)
$$(3, 2)$$
 (b) $(1, 2)$ (c) $(2, 3)$ (d) $(0, 2)$

Solution : (a) Let the circle is $x^2 + y^2 + 2gx + 2fy + c = 0$ (i) Circle (i) cuts orthogonally each of the given three circles. Then according to condition $2g_1g_2 + 2f_1f_2 = c_1 + c_2$

2g + 17f = c + 4	(ii)
7g + 6f = c + 11	(iii)
-g + 22f = c + 3	(iv)

 $x^{2} + y^{2} + 7x + 6y + 11 = 0$ and $x^{2} + y^{2} - x + 22y + 3 = 0$ is

On solving (ii), (iii) and (iv), g = -3, f = -2. Therefore, the centre of the circle (-g, -f) = (3, 2)

The locus of the centre of a circle which cuts orthogonally the circle $x^2 + y^2 - 20x + 4 = 0$ and which touches x = 2 is Example: 43 [UPSEAT 2001] (c) $x^2 = 16y + 4$ (d) $y^2 = 16x$ (a) $y^2 = 16x + 4$ (b) $x^2 = 16y$ Let the circle be $x^2 + y^2 + 2gx + 2fy + c = 0$ Solution : (d)(i) It cuts the circle $x^2 + y^2 - 20x + 4 = 0$ orthogonally ÷ $2(-10g + 0 \times f) = c + 4 \implies -20g = c + 4$(ii) Circle (i) touches the line x = 2; $\therefore x + 0y - 2 = 0$ $\therefore \left| \frac{-g+0-2}{\sqrt{1}} \right| = \sqrt{g^2 + f^2 - c} \implies (g+2)^2 = g^2 + f^2 - c \implies 4g+4 = f^2 - c$(iii) Eliminating c from (ii) and (iii), we get $-16g + 4 = f^2 + 4 \implies f^2 + 16g = 0$.

Hence the locus of (-g, -f) is $y^2 - 16x = 0 \implies y^2 = 16x$.

4.20 Family of Circles

(1) The equation of the family of circles passing through the point of intersection of two given circles S = 0 and S' = 0 is given as

 $S + \lambda S' = 0$ (where λ is a parameter, $\lambda \neq -1$)

(2) The equation of the family of circles passing through the point of intersection of circle S = 0 and a line L = 0 is given as

 $S + \lambda L = 0$ (where λ is a parameter)

(3) The equation of the family of circles touching the circle S = 0 and the line L = 0 at their point of contact P is

$$S + \lambda L = 0$$
 (where λ is a parameter)

(4) The equation of a family of circles passing through two given points $P(x_1, y_1)$ and $Q(x_2, y_2)$ can be written in the form

$$\Rightarrow (x - x_1)(x - x_2) + (y - y_1)(y - y_2) + \lambda \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

(where λ is a parameter)

(5) The equation of family of circles, which touch $y - y_1 = m(x - x_1)$ at (x_1, y_1) for any finite *m* is $(x - x_1)^2 + (y - y_1)^2 + \lambda \{(y - y_1) - m(x - x_1)\} = 0$

 (x_1, y_1)

 $y_{-}y_{1}=m(x_{-}x_{1})$

And if *m* is infinite, the family of circles is $(x - x_1)^2 + (y - y_1)^2 + \lambda(x - x_1) = 0$ (where λ is a parameter)

(6) Equation of the circles given in diagram is $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) \pm \cot \theta \{(x - x_1)(y - y_2) - (x - x_2)(y - y_1)\} = 0$

Example : 44 The equation of the circle through the points of intersection of $x^2 + y^2 - 1 = 0$, $x^2 + y^2 - 2x - 4y + 1 = 0$ and touching the line x + 2y = 0 is [Roorkee 1989]

(a) $x^2 + y^2 + x + 2y = 0$ (b) $x^2 + y^2 - x + 20 = 0$ (c) $x^2 + y^2 - x - 2y = 0$ (d) $2(x^2 + y^2) - x - 2y = 0$ Family of circles is $x^2 + y^2 - 2x - 4y + 1 + \lambda(x^2 + y^2 - 1) = 0$

$$x^{2} + y^{2} - \frac{2}{1+\lambda}x - \frac{4}{1+\lambda}y + \frac{1-\lambda}{1+\lambda} = 0$$

Centre is $\left[\frac{1}{1+\lambda}, \frac{2}{1+\lambda}\right]$ and radius $= \sqrt{\left(\frac{1}{1+\lambda}\right)^{2} + \left(\frac{2}{1+\lambda}\right)^{2} - \left(\frac{1-\lambda}{1+\lambda}\right)} = \sqrt{\frac{4+\lambda^{2}}{(1+\lambda)^{2}}}$

Since it touches the line x + 2y = 0, Hence Radius = perpendicular distance from centre to the line = $\begin{vmatrix} \frac{1}{1+\lambda} + \frac{4}{1+\lambda} \\ \frac{1}{\sqrt{1^2 + 2^2}} \end{vmatrix}$

$$=\sqrt{\frac{4+\lambda^2}{(1+\lambda)^2}}=\frac{\sqrt{4+\lambda^2}}{1+\lambda} \implies \sqrt{5}=\sqrt{4+\lambda^2} \implies \lambda=\pm 1$$

 $\lambda = -1 \text{ cannot be possible in case of circle, so } \lambda = 1. \therefore \text{ Equation of circle is } x^2 + y^2 - x - 2y = 0$ Example : 45
The equation of the circle through the points of intersection of the circles $x^2 + y^2 - 6x + 2y + 4 = 0$, $x^2 + y^2 + 2x - 4y - 6 = 0$ and with its centre on the line y = x(a) $7x^2 + 7y^2 + 10x - 10y - 12 = 0$ (b) $7x^2 + 7y^2 - 10x - 10y - 12 = 0$ (c) $7x^2 + 7y^2 - 10x + 10y - 12 = 0$ (d) $7x^2 + 7y^2 + 10x + 10y + 12 = 0$ Solution : (b)
Equation of any circle through the points of intersection of given circles is $(x^2 + y^2 - 6x + 2y + 4) + \lambda(x^2 + y^2 + 2x - 4y - 6) = 0 \Rightarrow x^2(1 + \lambda) + y^2(1 + \lambda) - 2x(3 - \lambda) + 2y(1 - 2\lambda) + (4 - 6\lambda) = 0$ or, $x^2 + y^2 - \frac{2x(3 - \lambda)}{(1 + \lambda)} + \frac{2y(1 - 2\lambda)}{(1 + \lambda)} + \frac{(4 - 6\lambda)}{(1 + \lambda)} = 0$(i)
Its centre = $\left\{\frac{3 - \lambda}{1 + \lambda}, \frac{2\lambda - 1}{1 + \lambda}\right\}$ lies on the line y = x. Then $\frac{2\lambda - 1}{1 + \lambda} = \frac{3 - \lambda}{1 + \lambda} \Rightarrow 2\lambda - 1 = 3 - \lambda$ {: $\lambda \neq -1$ } $\Rightarrow 3\lambda = 4 \Rightarrow \lambda = \frac{4}{3}$ Substituting the value of $\lambda = \frac{4}{3}$ in (i), we get the required equation as $7x^2 + 7y^2 - 10x - 10y - 12 = 0$.

4.21 Radical Axis

Solution : (c)

The radical axis of two circles is the locus of a point which moves such that the lengths of the tangents drawn from it to the two circles are equal.

Consider, $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ (i) and $S' \equiv x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ (ii) Let $P(x_1, y_1)$ be a point such that |PA| = |PB| $\Rightarrow \sqrt{(x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c)} = \sqrt{(x_1^2 + y_1^2 + 2g_1x_1 + 2f_1y_1 + c_1)}$ On squaring, $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = x_1^2 + y_1^2 + 2g_1x_1 + 2f_1y_1 + c_1$ $\Rightarrow 2(g-g_1)x_1 + 2(f-f_1)y_1 + c - c_1 = 0$:. Locus of $P(x_1, y_1)$ is $2(g - g_1)x + 2(f - f_1)y + c - c_1 = 0$ $P(x_1, y_1)$ $P(x_1, y_1)$

S ′=0

 \hat{C}_{2}

(1) Some properties of the radical axis

 C_1

S=0

(i) The radical axis and common chord are identical : Since the radical axis and common chord of two circles S = 0and S' = 0 are the same straight line S - S' = 0, they are identical. The only difference is that the common chord exists only if the circles intersect in two real points, while the radical axis exists for all pair of circles irrespective of their position (Except when one circle is inside the other).

 C_1

 \dot{c}_{2}

(ii) The radical axis is perpendicular to the straight line which joins the centres of the circles :

Consider,
$$S \equiv x^{2} + y^{2} + 2gx + 2fy + c = 0$$

and

 C_1

S=0

.....(i)

 $S_1 \equiv x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ Since $C_1 \equiv (-g, -f)$ and $C_2 \equiv (-g_1, -f_1)$ are the centres of the circles

(i) and (ii), then slope of the straight line $C_1C_2 = \frac{-f_1 + f}{-g_1 + g} = \frac{f - f_1}{g - g_1} = m_1$ (say)

Equation of the radical axis is, $2(g - g_1)x + 2(f - f_1)y + c - c_1 = 0$

Slope of radical axis is
$$-\frac{(g-g_1)}{(f-f_1)} = m_2$$
 (say). $\therefore m_1m_2 = -1$

Hence C_1C_2 and radical axis are perpendicular to each other.

(iii) The radical axis bisects common tangents of two circles : Let AB be the common tangent. If it meets the radical axis LM in M then MA and MB are two tangents to the circles. Hence MA = MB, since length of tangents are equal from any point on radical axis. Hence radical axis bisects the common tangent AB.

 $P(x_1, y_1)$

 C_{2}

S'=0

If the two circles touch each other externally or internally then *A* and *B* coincide. In this case the common tangent itself becomes the radical axis.

(iv) The radical axis of three circles taken in pairs are concurrent : Let the equations of three circles be

$$S_{1} \equiv x^{2} + y^{2} + 2g_{1}x + 2f_{1}y + c_{1} = 0 \qquad \dots (i)$$

$$S_{2} \equiv x^{2} + y^{2} + 2g_{2}x + 2f_{2}y + c_{2} = 0 \qquad \dots (ii)$$

$$S_{3} \equiv x^{2} + y^{2} + 2g_{3}x + 2f_{3}y + c_{3} = 0 \qquad \dots (iii)$$

The radical axis of the above three circles taken in pairs are given by

$$S_1 - S_2 \equiv 2x(g_1 - g_2) + 2y(f_1 - f_2) + c_1 - c_2 = 0 \qquad \dots \text{(iv)}$$

$$S_2 - S_3 \equiv 2x(g_2 - g_3) + 2y(f_2 - f_3) + c_2 - c_3 = 0 \qquad \dots \text{(v)}$$

$$S_3 - S_1 \equiv 2x(g_3 - g_1) + 2y(f_3 - f_1) + c_3 - c_1 = 0$$
(vi)

Adding (iv), (v) and (vi), we find L.H.S. vanished identically. Thus the three lines are concurrent.

(v) If two circles cut a third circle orthogonally, the radical axis of the two circles will pass through the centre of the third circle or

The locus of the centre of a circle cutting two given circles orthogonally is the radical axis of the two circles.

Let

$$S_{1} \equiv x^{2} + y^{2} + 2g_{1}x + 2f_{1}y + c_{1} = 0 \qquad \dots (i)$$

$$S_{2} \equiv x^{2} + y^{2} + 2g_{2}x + 2f_{2}y + c_{2} = 0 \qquad \dots (ii)$$

$$S_{3} \equiv x^{2} + y^{2} + 2g_{3}x + 2f_{3}y + c_{3} = 0 \qquad \dots (iii)$$

Since (i) and (ii) both cut (iii) orthogonally, $\therefore 2g_1g_3 + 2f_1f_3 = c_1 + c_3$ and $2g_2g_3 + 2f_2f_3 = c_2 + c_3$ Subtracting, we get $2g_3(g_1 - g_2) + 2f_3(f_1 - f_2) = c_1 - c_2$ (iv) Now radical axis of (i) and (ii) is $S_1 - S_2 = 0$ or $2x(g_1 - g_2) + 2y(f_1 - f_2) + c_1 - c_2 = 0$ Since it will pass through the centre of circle (iii) $\therefore -2g_3(g_1 - g_2) - 2f_3(f_1 - f_2) + c_1 - c_2 = 0$ or $2g_3(g_1 - g_2) + 2f_3(f_1 - f_2) = c_1 - c_2$ (v)

Note : Radical axis need not always pass through the mid point of the line joining the centres of the two circles.

4.22 Radical Centre

The radical axes of three circles, taken in pairs, meet in a point, which is called their radical centre. Let the three circles be $S_1 = 0$ (i), $S_2 = 0$ (ii), $S_3 = 0$ (iii)

Let OL, OM and ON be radical axes of the pair sets of circles

 $\{S_1 = 0, S_2 = 0\}, \{S_3 = 0, S_1 = 0\}$ and $\{S_2 = 0, S_3 = 0\}$ respectively.

Equation of *OL*, *OM* and *ON* are respectively

$$S_1 - S_2 = 0$$
(iv), $S_3 - S_1 = 0$ (v), $S_2 - S_3 = 0$ (vi)

Let the straight lines (iv) and (v) *i.e.*, *OL* and *OM* meet in *O*. The equation of any straight line passing through *O* is $(S_1 - S_2) + \lambda(S_3 - S_1) = 0$ where λ is any constant

For $\lambda = 1$, this equation become $S_2 - S_3 = 0$, which is by (vi), equation of ON.

Thus the third radical axis also passes through the point where the straight lines (iv) and (v) meet.

In the above figure *O* is the radical centre.

(1) Properties of radical centre

(i) Co-ordinates of radical centre can be found by solving the equations

$$S_1 = S_2 = S_3 = 0$$

(ii) The radical centre of three circles described on the sides of a triangle as diameters is the orthocentre of the triangle :

Draw perpendicular from A on BC. $\therefore \ \angle ADB = \angle ADC = \pi/2$

Therefore, the circles whose diameters are AB and AC passes through D and A. Hence AD is their radical axis. Similarly the radical axis of the circles on AB and BC as diameter is the perpendicular line from B on CA and radical axis of the circles on BC and CA as diameter is the perpendicular line from C on AB. Hence the radical axis of three circles meet in a point. This point I is radical centre but here radical centre is the point of intersection of altitudes *i.e.*, AD, BE and CF. Hence radical centre = orthocentre.

(iii) The radical centre of three given circles will be the centre of a fourth circle which cuts all the three circles orthogonally and the radius of the fourth circle is the length of tangent drawn from radical centre of the three given circles to any of these circles.

Let the fourth circle be $(x - h)^2 + (y - k)^2 = r^2$, where (h, k) is centre of this circle and r be the radius. The centre of circle is the radical centre of the given circles and r is the length of tangent from (h, k) to any of the given three circles.

(c) $-\frac{1}{2}$ (d) $-\frac{2}{3}$

Example : 46 The gradient of the radical axis of the circles $x^2 + y^2 - 3x - 4y + 5 = 0$ and $3x^2 + 3y^2 - 7x + 8y + 11 = 0$ is

$$\frac{1}{3}$$
 (b) $-\frac{1}{10}$

Solution : (b) Equation of radical axis is
$$S_1 - S_2 = 0$$

(a)

$$S_1 \equiv x^2 + y^2 - 3x - 4y + 5 = 0$$
, $S_2 \equiv x^2 + y^2 - \frac{7}{3}x + \frac{8y}{3} + \frac{11}{3} = 0$

 \therefore Radical axis is -2x - 20y + 4 = 0.

Hence, gradient of radical axis = $-\frac{1}{10}$

Example: 47 The equations of three circles are $x^2 + y^2 - 12x - 16y + 64 = 0$, $3x^2 + 3y^2 - 36x + 81 = 0$ and $x^2 + y^2 - 16x + 81 = 0$. The coordinates of the point from which the length of tangents drawn to each of the three circles is equal [Rajasthan PET 2002] (a) $\left(\frac{33}{4}, 2\right)$ (b) (2, 2) (c) $\left(2, \frac{33}{4}\right)$ (d) None of these

Solution : (d) The required point is the radical centre of the three given circles
Now,
$$S_1 - S_2 = 0 \Rightarrow -16y + 37 = 0$$
, $S_2 - S_3 = 0 \Rightarrow 4x - 54 = 0$ and $S_3 - S_1 = 0 \Rightarrow -4x + 16y + 17 = 0$

[MP PET 2000]

Solving these equations, we get $x = \frac{54}{4}$, $y = \frac{37}{16}$ \Rightarrow $x = \frac{27}{2}$, $y = \frac{37}{16}$. Hence the required point is $\left(\frac{27}{2}, \frac{37}{16}\right)$. The equation of the circle, which passes through the point (2a, 0) and whose radical axis is $x = \frac{a}{2}$ with respect to the circle Example : 48 $x^{2} + y^{2} = a^{2}$, will be [Rajasthan PET 1999] (b) $x^{2} + y^{2} + 2ax = 0$ (c) $x^{2} + y^{2} + 2ay = 0$ (d) $x^{2} + y^{2} - 2ay = 0$ (a) $x^2 + y^2 - 2ax = 0$ Equation of radical axis is $x = \frac{a}{2} \implies 2x - a = 0$ Solution : (a) Equation of required circle is $x^2 + y^2 - a^2 + \lambda(2x - a) = 0$: It is passes through the point (2a, 0), $\therefore 4a^2 - a^2 + \lambda(4a - a) = 0 \implies \lambda = -a$ \therefore Equation of circle is $x^2 + y^2 - a^2 - 2ax + a^2 = 0 \implies x^2 + y^2 - 2ax = 0$ 4.23 Co-Axial System of Circles A system (or a family) of circles, every pair of which have the same radical axis, are called co-axial circles. $S + \lambda P = 0$

(1) The equation of a system of co-axial circles, when the equation of the radical axis and of one circle of the system are $P \equiv lx + my + n = 0$ and $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ respectively, is $S + \lambda P = 0$ (λ is an arbitrary constant).

(2) The equation of a co-axial system of circles, where the equation of any two circles of the system are

Respectively, is $S_1 + \lambda(S_1 - S_2) = 0$, $(\lambda \neq -1)$ or $S_2 + \lambda_1(S_1 - S_2) = 0$, $(\lambda_1 \neq -1)$ Other form $S_1 + \lambda S_2 = 0$, $(\lambda \neq -1)$

(3) The equation of a system of co-axial circles in the simplest form is $x^2 + y^2 + 2gx + c = 0$, where g is variable and c is a constant.

4.24 Limiting Points

Limiting points of a system of co-axial circles are the centres of the point circles belonging to the family (Circles whose radii are zero are called **point circles**).

(1) Limiting points of the co-axial system : Let the circle is $x^2 + y^2 + 2gx + c = 0$ (i) where g is variable and c is constant.

 \therefore Centre and the radius of (i) are (-g, 0) and $\sqrt{(g^2 - c)}$ respectively. Let $\sqrt{g^2 - c} = 0 \implies g = \pm \sqrt{c}$

Thus we get the two limiting points of the given co-axial system as $(\sqrt{c}, 0)$ and $(-\sqrt{c}, 0)$

Clearly the above limiting points are real and distinct, real and coincident or imaginary according as c>, =, <0

(2) System of co-axial circles whose two limiting points are given : Let (α, β) and (γ, δ) be the two given limiting points. Then the corresponding point circles with zero radii are

$$(x - \alpha)^2 + (y - \beta)^2 = 0$$
 and $(x - \gamma)^2 + (y - \delta)^2 = 0$

or
$$x^{2} + y^{2} - 2\alpha x - 2\beta y + \alpha^{2} + \beta^{2} = 0$$
 and $x^{2} + y^{2} - 2\gamma x - 2\delta y + \gamma^{2} + \delta^{2} = 0$
The equation of co-axial system is $(x^{2} + y^{2} - 2\alpha x - 2\beta y + \alpha^{2} + \beta^{2}) + \lambda(x^{2} + y^{2} - 2\gamma x - 2\delta y + \gamma^{2} + \delta^{2}) = 0$
where $\lambda \neq -1$ is a variable parameter.

$$\Rightarrow x^{2}(1 + \lambda) + y^{2}(1 + \lambda) - 2x(\alpha + \gamma\lambda) - 2y(\beta + \delta\lambda) + (\alpha^{2} + \beta^{2}) + \lambda(\gamma^{2} + \delta^{2}) = 0$$
or $x^{2} + y^{2} - \frac{2(\alpha + \gamma\lambda)}{(1 + \lambda)}x - 2\frac{(\beta + \delta\lambda)}{(1 + \lambda)}y + \frac{(\alpha^{2} + \beta^{2}) + \lambda(\gamma^{2} + \delta^{2})}{(1 + \lambda)} = 0$
Centre of this circle is $\left(\frac{(\alpha + \gamma\lambda)}{(1 + \lambda)}, \frac{(\beta + \delta\lambda)}{(1 + \lambda)}\right)$ (i)

For limiting point, radius =
$$\sqrt{\frac{(\alpha + \gamma\lambda)^2}{(1+\lambda)^2} + \frac{(\beta + \delta\lambda)^2}{(1+\lambda)^2} - \frac{(\alpha^2 + \beta^2) + \lambda(\gamma^2 + \delta^2)}{(1+\lambda)}} = 0$$

After solving, find λ . Substituting value of λ in (i), we get the limiting point of co-axial system.

(3) Properties of limiting points

(i) The limiting point of a system of co-axial circles are conjugate points with respect to any member of the system : Let the equation of any circle be $x^2 + y^2 + 2gx + c = 0$ (i)

Limiting points of (i) are $(\sqrt{c}, 0)$ and $(-\sqrt{c}, 0)$. The polar of the point $(\sqrt{c}, 0)$ with respect to (i) is

 $x\sqrt{c} + y.0 + g(x + \sqrt{c}) + c = 0$ or $x\sqrt{c} + g(x + \sqrt{c}) + c = 0$ or $(x + \sqrt{c})(g + \sqrt{c}) = 0$ or $x + \sqrt{c} = 0$ and it clearly passes through the other limiting point $(-\sqrt{c}, 0)$. Similarly polar of the point $(-\sqrt{c}, 0)$ with respect to (i) also passes through $(\sqrt{c}, 0)$. Hence the limiting points of a system of co-axial circles are conjugate points.

(ii) Every circle through the limiting points of a co-axial system is orthogonal to all circles of the system :

Let the equation of any circle be $x^2 + y^2 + 2gx + c = 0$ (i)

where g is a parameter and c is constant. Limiting points of (i) are $(\sqrt{c}, 0)$ and $(-\sqrt{c}, 0)$

Now let
$$x^2 + y^2 + 2g'x + 2f'y + c' = 0$$
(ii)

be the equation of any circle. If it passes through the limiting points of (i), then $c + 2g'\sqrt{c} + c' = 0$ and $c - 2g'\sqrt{c} + c' = 0$. Solving, we get c' = -c and g' = 0

From (ii),
$$x^2 + y^2 + 2f'y - c = 0$$
(iii)

where c is constant and f' is variable. Applying the condition of orthogonality on (i) and (iii) *i.e.*, $2g_1g_2 + 2f_1f_2 = c_1 + c_2$ we find that $2 \times g \times 0 + 2 \times 0 \times f' = c - c$ *i.e.*, 0 = 0

Hence condition is satisfied for all values of g' and f'.

Example : 49 The point (2, 3) is a limiting point of a co-axial system of circles of which $x^2 + y^2 = 9$ is a member. The coordinates of the other limiting point is given by [MP PET 1993]

(a)
$$\left(\frac{18}{13}, \frac{27}{13}\right)$$
 (b) $\left(\frac{9}{13}, \frac{6}{13}\right)$ (c) $\left(\frac{18}{13}, -\frac{27}{13}\right)$ (d) $\left(-\frac{18}{13}, -\frac{9}{13}\right)$

Solution : (a)

: (a) Equation of circle with (2, 3) as limiting point is $(x - 2)^2 + (y - 3)^2 = 0$

or $(x^2 + y^2 - 9) - 4x - 6y + 22 = 0$ or $(x^2 + y^2 - 9) - \lambda(2x + 3y - 11) = 0$ represents the family of co-axial circles. $c = \left(\lambda, \frac{3\lambda}{2}\right), \quad r = \sqrt{\lambda^2 + \frac{9\lambda^2}{4} - 11\lambda + 9}$. For limiting points $r = 0 \implies 13\lambda^2 - 44\lambda + 36 = 0 \implies \lambda = \frac{18}{13}$, 2

$$\therefore \text{ The limiting points are } (2, 3) \text{ and } \left[\frac{18}{13}, \frac{2}{2}\left(\frac{18}{13}\right)\right] \text{ or } \left(\frac{18}{13}, \frac{27}{13}\right).$$
Example : 50 In the co-axial system of circle $x^2 + y^2 + 2gx + e = 0$ where g is a parameter, if $e > 0$. Then the circles are **Iternatus CET 1999**
(a) Orthogonal (b) Touching type (c) Intersecting type (d) Non intersecting type.
Solution : (d) The equation of a system of circle with its centre on the axis of x is $x^2 + y^2 + 2gx + e = 0$. Any point on the radical axis is $(0, y_1)$ Putting, $x = 0, y = \pm \sqrt{e}$.
If e is positive $(e>0)$, we have no real point on radical axis, then circles are said to be non-intersecting type.
4.25 Image of the Circle by the Line Mirroof
Let the circle be $x^3 + y^2 + 2gx + 2fy + e = 0$ and line mirror $lx + my + n = 0$. In this condition, radius of circle remains unchanged but centre changes. Let the centre of image circle be (x_1, y_1) .
Slope of $C_1(C_2 \times \text{slope of } lx + my + n = -1$ (i)
and mid point of $C_1(-g, -f)$ and $C_2(x_1, y_1)$ lie on $lx + my + n = 0$
i.e., $l\left(\frac{x_1 - B}{2}\right) + m\left(\frac{y_1 - f}{2}\right) + n = 0$ (ii)
Solving (i) and (ii), we get (x_1, y_1)
 \therefore Required image circle is $(x - x_1)^2 + (y - y_1)^2 = r^2$, where $r = \sqrt{g^2 + f^2 - c}$
Example : 51 The equation of the image of the circle $x^2 + y^2 + 16x - 24y + 183 = 0$ by the line mirror $4x + 7y + 13 = 0$ is
(a) $x^2 + y^2 + 32x - 4y - 235 = 0$ (d) $x^2 + y^2 + 32x + 4y - 235 = 0$
(c) $x^2 + y^2 + 32x - 4y - 235 = 0$ (d) $x^2 + y^2 + 32x + 4y - 235 = 0$
(e) $x^2 + y^2 + 32x - 4y - 135 = 0$ (ii)
and mid point of C_1C_2 i.e., $\left(\frac{x_1 - 8}{2}, \frac{y_1 + 12}{2}\right\right)$ lie on $4x + 7y + 13 = 0$.
Then slope of C_1C_3 x slope of $4x + 7y + 13 = -1$
 $\Rightarrow \left(\frac{y_1 - 12}{x_1 + 8}\right)x\left(-\frac{4}{7}\right) = -1$ or $4y_1 - 48 = 7x_1 + 56$
or $7x_1 - 4y_1 + 104 = 0$ (ii)
and mid point of C_1C_2 i.e., $\left(\frac{x_1 - 8}{2}, \frac{y_1 + 12}{2}\right\right)$ lie on $4x + 7y + 13 = 0$(iv)
Solving (ii) and (iv), we get $(x_1, y_1) = (-16, -2)$
 \therefore Equation of the image cir

Required equation is
$$x \cos\left(\frac{\alpha+\beta}{2}\right) + y \sin\left(\frac{\alpha+\beta}{2}\right) = a \cos\left(\frac{\alpha-\beta}{2}\right)$$

(3) The point of intersection of the tangents at the point $P(\alpha)$ and $Q(\beta)$ on the circle $x^2 + y^2 = a^2$ is

$$\left(\frac{a\cos\left(\frac{\alpha+\beta}{2}\right)}{\cos\left(\frac{\alpha-\beta}{2}\right)}, \frac{a\sin\left(\frac{\alpha+\beta}{2}\right)}{\cos\left(\frac{\alpha-\beta}{2}\right)}\right)$$

(4) Maximum and Minimum distance of a point from the circle : Let any point $P(x_1, y_1)$ and circle $x^2 + y^2 + 2gx + 2fy + c = 0$ (i) The centre and radius of the circle are

C(-g,-f) and $\sqrt{(g^2+f^2-c)}$ respectively.

The maximum and minimum distance from $P(x_1, y_1)$ to the circle (i) are

PB = CB + PC = r + PC and PA = |CP - CA| = |PC - r| (P inside or outside) where $r = \sqrt{(g^2 + f^2 - c)}$

(5) Length of chord of contact is $AB = \frac{2LR}{\sqrt{(R^2 + L^2)}}$

and area of the triangle formed by the pair of tangents and its chord of contact is $\underline{RL^{3}}$

$$R^{2} + L^{2}$$

Where *R* is the radius of the circle and *L* is the length of tangent from $P(x_1, y_1)$ on S=0. Here $L = \sqrt{S_1}$.

(6) Length of an external common tangent and internal common tangent to two circles is given by

Length of external common tangent $L_{ex} = \sqrt{d^2 - (r_1 - r_2)^2}$ and length of internal common tangent

$$L_{in} = \sqrt{d^2 - (r_1 + r_2)^2}$$
 [Applicable only when $d > (r_1 + r_2)$]

where *d* is the distance between the centres of two circles *i.e.*, $|C_1C_2| = d$ and r_1 and r_2 are the radii of two circles. (7) Family of circles circumscribing a triangle whose sides are given by $L_1 = 0$; $L_2 = 0$ and $L_3 = 0$ is given by $L_1L_2 + \lambda L_2L_3 + \mu L_3L_1 = 0$ provided coefficient of xy = 0 and coefficient of $x^2 = \text{coefficient of } y^2$.

Equation of the circle circumscribing the triangle formed by the lines $a_r x + b_r y + c_r = 0$, where r = 1, 2, 3, is

$$\begin{vmatrix} \frac{a_1^2 + b_1^2}{a_1 x + b_1 y + c_1} & a_1 & b_1 \\ \frac{a_2^2 + b_2^2}{a_2 x + b_2 y + c_2} & a_2 & b_2 \\ \frac{a_3^2 + b_3^2}{a_3 x + b_3 y + c_3} & a_3 & b_3 \end{vmatrix} = 0$$

 $L_{2}=0$

 $P(x_1,y_1)$

(8) Equation of circle circumscribing a quadrilateral whose sides in order are represented by the lines $L_1 = 0, L_2 = 0, L_3 = 0$ and $L_4 = 0$ is given by

$$L_1L_3 + \lambda L_2L_4 = 0$$

provided coefficient of x^2 = coefficient of y^2 and coefficient of xy = 0

(9) Equation of the circle circumscribing the triangle PAB is

$$(x - x_1)(x + g) + (y - y_1)(y + f) = 0$$

where O(-g, -f) is the centre of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$

(10) Locus of mid point of a chord of a circle $x^2 + y^2 = a^2$, which subtends an angle α at the centre is $x^2 + y^2 = (a \cos \alpha / 2)^2$

(11) The locus of mid point of chords of circle $x^2 + y^2 = a^2$, which are making right angle at centre is $x^2 + y^2 = \frac{a^2}{2}$

(12) The locus of mid point of chords of circle $x^2 + y^2 + 2gx + 2fy + c = 0$, which are making right angle at origin is $x^2 + y^2 + gx + fy + c/2 = 0$.

(13) The area of triangle, which is formed by co-ordinate axes and the tangent at a point (x_1, y_1) of circle $x^2 + y^2 = a^2$ is $a^4 / 2x_1y_1$

(14) If a point is outside, on or inside the circle then number of tangents from the points is 2, 1 or none.

(15) A variable point moves in such a way that sum of square of distances from the vertices of a triangle remains constant then its locus is a circle whose centre is the centroid of the triangle.

(16) If the points where the line $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ meets the coordinate axes are concyclic then $a_1a_2 = b_1b_2$.

Example : 52 If
$$\binom{n_i, \frac{1}{m_i}}{i}$$
, $i = 1, 2, 3, 4$ are concylic points, then the value of $m_1.m_2.m_3.m_4$ is [Karnataka CET 2002]
(a) 1 (b) -1 (c) 0 (d) None of these
Solution : (a) Let the equation of circle be $x^2 + y^2 + 2gx + 2fy + c = 0$
Since the point $\binom{m_i, \frac{1}{m_i}}{m_i}$ lies on this circle
 $\therefore m_i^2 + \frac{1}{m_i^2} + 2gm_i + \frac{2f}{m_i} + c = 0 \Rightarrow m_i^4 + 2gm_i^3 + cm_i^2 + 2fm_i + 1 = 0$
Clearly its roots are m_1, m_2, m_3 and $m_4, \therefore m_1.m_2.m_3.m_4 = \text{product of roots} = \frac{1}{1} = 1$

Example : 53Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the
circumference of the circle, then 2r equals[IIT Screening 2001]

Circle and System of Circles 113

	(a) $\sqrt{PQ \cdot RS}$	(b) $\frac{PQ + RS}{2}$	(c) $\frac{2 PQ.RS}{PQ+RS}$	(d) $\frac{\sqrt{PQ^2 + RS^2}}{2}$
Solution : (a)	$\tan \theta = \frac{PQ}{PR} = \frac{PQ}{2r}$		г	SN 40
	Also $\tan\left(\frac{\pi}{2} - \theta\right) = \frac{RS}{2r}$			
	<i>i.e.</i> $\cot \theta = \frac{RS}{2r}$			$R \xrightarrow{\left\langle \Theta \frac{\pi 2 - \theta}{r} \right\rangle}_{r} P$
	$\therefore \tan \theta . \cot \theta = \frac{PQ . RS}{4r^2}$	<u></u>		
	$\Rightarrow 4r^2 = PQ.RS \Rightarrow$	$2r = \sqrt{(PQ)(RS)}$		

		Definition, Equa	tion of the Circle
	Basi	ic Level	
1.	The two points A and B in a plane such that for all points P lies or	n circle satisfied $\frac{PA}{PB} = k$, then k will not be equal to	[IIT 1982]
	(a) 0 (b) 1	(c) 2 (d) None of the	se
2.	Locus of a point which moves such that sum of the squares of its (a) Straight line (b) Circle	distances from the sides of a square of side unity is 9, is (c) Parabola (d) None of the	[IIT 1976] ese
3.	The equation of the circle which touches both the axes and whose	e radius is <i>a</i> , is	[MP PET 1984]
	(a) $x^2 + y^2 - 2ax - 2ay + a^2 = 0$	(b) $x^2 + y^2 + ax + ay - a^2 = 0$	
	(c) $x^2 + y^2 + 2ax + 2ay - a^2 = 0$	(d) $x^2 + y^2 - ax - ay + a^2 = 0$	
4.	ABCD is a square the length of whose side is a. Taking AB and vertices of the square, is	d AD as the coordinate axes, the equation of the circle	passing through the [MP PET 2003]
	(a) $x^2 + y^2 + ax + ay = 0$ (b) $x^2 + y^2 - ax - ay = 0$	(c) $x^{2} + y^{2} + 2ax + 2ay = 0$ (d) $x^{2} + y^{2} - $	2ax - 2ay = 0
5.	The equation of the circle in the first quadrant touching each coord	dinate axis at a distance of one unit from the origin is	
		[Rajasthan PET 1991	; MP PET 1987, 1989]
	(a) $x^2 + y^2 - 2x - 2y + 1 = 0$	(b) $x^2 + y^2 - 2x - 2y - 1 = 0$	
	(c) $x^2 + y^2 - 2x - 2y = 0$	(d) None of these	
6.	The equation of the circle which touches both axes and whose cer	the is (x_1, y_1) , is	[MP PET 1988]
	(a) $x^2 + y^2 + 2x_1(x+y) + x_1^2 = 0$	(b) $x^{2} + y^{2} - 2x_{1}(x + y) + x_{1}^{2} = 0$	
	(c) $x^2 + y^2 = x_1^2 + y_1^2$	(d) $x^2 + y^2 + 2xx_1 + 2yy_1 = 0$	
7.	The equation of the circle which touches <i>x</i> -axis and whose centre	is (1, 2), is	[MP PET 1984]
	(a) $x^2 + y^2 - 2x + 4y + 1 = 0$	(b) $x^2 + y^2 - 2x - 4y + 1 = 0$	
	(c) $x^2 + y^2 + 2x + 4y + 1 = 0$	(d) $x^2 + y^2 + 4x + 2y + 4 = 0$	
8.	The equation of the circle having centre $(1, -2)$ and passing through	agh the point of intersection of lines $3x + y = 14$, $2x + y = 1$	5y = 18 is
			[MP PET 1990]
	(a) $x^2 + y^2 - 2x + 4y - 20 = 0$	(b) $x^2 + y^2 - 2x - 4y - 20 = 0$	
	(c) $x^2 + y^2 + 2x - 4y - 20 = 0$	(d) $x^2 + y^2 + 2x + 4y - 20 = 0$	
9.	The equation of the circle passing through (4, 5) and having the co	entre at (2, 2), is [MNR 1986; MP PET	1984; UPSEAT 2000]
	(a) $x^2 + y^2 + 4x + 4y - 5 = 0$	(b) $x^2 + y^2 - 4x - 4y - 5 = 0$	
	(c) $x^2 + y^2 - 4x = 13$	(d) $x^2 + y^2 - 4x - 4y + 5 = 0$	
10.	The equation of the circle which passes through the points (2, 3) a	and (4, 5) and the centre lies on the straight line $y - 4x$	+3 = 0, is
		[Rajasthan PE]	1985; MP PET 1989]
	(a) $x^2 + y^2 + 4x - 10y + 25 = 0$	(b) $x^2 + y^2 - 4x - 10y + 25 = 0$	
	(c) $x^{2} + y^{2} - 4x - 10y + 16 = 0$	(d) $x^2 + y^2 - 14y + 8 = 0$	

11. The equation of the circle passing through the points (0, 0), (0, b) and (a, b) is

[AMU 1978]

	(a) $x^{2} + y^{2} + ax + by = 0$ (b) $x^{2} + y^{2} - ax + by = 0$	(c) $x^2 + y^2 - ax - by = 0$	(d) $x^2 + y^2 + ax - by = 0$
12.	The equation $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ will represent	t a circle, if [MNR 1979; M	IP PET 1988; Rajasthan PET 1997, 2003]
	(a) $a = b = 0$ and $c = 0$ (b) $f = g$ and $h = 0$	(c) $a = b \neq 0$ and $h = 0$	(d) $f = g$ and $c = 0$
13.	The equation of the circle whose diameters have the end points $(a, 0)$)), $(0, b)$ is given by	[MP PET 1993]
	(a) $x^2 + y^2 - ax - by = 0$ (b) $x^2 + y^2 + ax - by = 0$	(c) $x^2 + y^2 - ax + by = 0$	(d) $x^2 + y^2 + ax + by = 0$
14.	The equation of the circle which touches x-axis at $(3, 0)$ and passes t	through $(1, 4)$ is given by	[MP PET 1993]
	(a) $x^2 + y^2 - 6x - 5y + 9 = 0$	(b) $x^2 + y^2 + 6x + 5y - 9 = 0$	
	(c) $x^2 + y^2 - 6x + 5y - 9 = 0$	(d) $x^2 + y^2 + 6x - 5y + 9 = 0$	
15.	From three non-collinear points we can draw (a) Only one circle (b) Three circle	(c) Infinite circles	[MP PET 1984; BIT Ranchi 1990] (d) No circle
16.	Equation of a circle whose centre is origin and radius is equal to the	distance between the lines $x = 1$ and	dx = -1 is [MP PET 1984]
	(a) $x^2 + y^2 = 1$ (b) $x^2 + y^2 = \sqrt{2}$	(c) $x^2 + y^2 = 4$	(d) $x^2 + y^2 = -4$
17.	If the centre of a circle is $(2, 3)$ and a tangent is $x + y = 1$, then the	equation of this circle is	[Rajasthan PET 1985, 1989]
	(a) $(x-2)^2 + (y-3)^2 = 8$ (b) $(x-2)^2 + (y-3)^2 = 3$	(c) $(x+2)^2 + (y+3)^2 = 2\sqrt{2}$	(d) $(x-2)^2 + (y-3)^2 = 2\sqrt{2}$
18.	$ax^{2} + 2y^{2} + 2bxy + 2x - y + c = 0$ represents a circle through the	origin, if	[MP PET 1984]
	(a) $a = 0, b = 0, c = 2$ (b) $a = 1, b = 0, c = 0$	(c) $a = 2, b = 2, c = 0$	(d) $a = 2, b = 0, c = 0$
19.	If the equation $\frac{K(x+1)^2}{3} + \frac{(y+2)^2}{4} = 1$ represents a circle, then A	K =	[MP PET 1994]
	(a) 3/4 (b) 1	(c) 4/3	(d) 12
20.	A circle has radius 3 units and its centre lies on the line $y = x - 1$.	Then the equation of this circle if it	passes through point (7, 3), is [Roorkee 1988]
	(a) $x^2 + y^2 - 8x - 6y + 16 = 0$	(b) $x^2 + y^2 + 8x + 6y + 16 = 0$)
	(c) $x^2 + y^2 - 8x - 6y - 16 = 0$	(d) None of these	
21.	The equation of circle whose diameter is the line joining the points ((-4, 3) and (12, -1) is	AP PET 1984. Roorkee 1969. AMI 1979]
	(a) $x^2 + y^2 + 8x + 2y + 51 = 0$	(b) $x^2 + y^2 + 8x - 2y - 51 = 0$)
	(c) $x^2 + y^2 + 8x + 2y - 51 = 0$	(d) $x^2 + y^2 - 8x - 2y - 51 = 0$)
22.	The equation of the circle which passes through the points $(3, -2)$ a	nd $(-2, 0)$ and centre lies on the lin	e $2x - y = 3$, is
			[Roorkee 1971]
	(a) $x^2 + y^2 - 3x - 12y + 2 = 0$	(b) $x^2 + y^2 - 3x + 12y + 2 = 0$	
	(c) $x^2 + y^2 + 3x + 12y + 2 = 0$	(d) None of these	
23.	For $ax^2 + 2hxy + 3y^2 + 4x + 8y - 6 = 0$ to represent a circle, one	e must have	
24	(a) $a = 3, h = 0$ (b) $a = 1, h = 0$	(c) $a = h = 3$	(d) $a = h = 0$
24.	The equation of the circle in the first quadrant which touches each at (a) $x^2 + y^2 + 5x + 5y + 25 = 0$	(b) $x^2 + y^2 = 10x = 10y + 25$	[MP PET 1997]
	(a) $x + y + 5x + 5y + 25 = 0$ (c) $x^2 + x^2 - 5x - 5y + 25 = 0$	(d) $x^2 + y^2 - 10x - 10y + 25$	= 0
25	(c) $x + y - 5x - 5y + 25 = 0$ If (α, β) is the centre of a circle passing through the origin then its	(d) $x + y + 10x + 10y + 23$	= 0 [MP PFT 1999]
20.	(a) $x^2 + y^2 - \alpha x - \beta y = 0$ (b) $x^2 + y^2 + 2\alpha x + 2\beta y = 0$	(c) $r^2 + y^2 - 2ar - 2by = 0$	(d) $r^2 + v^2 + cr + \beta v = 0$
26.	(a) $x + y - ax - by = 0$ (b) $x + y + 2ax + 2by = 0$ The equation of the circle whose diameter lies on $2x + 3y = 3$ and	(c) $x + y = 2\alpha x - 2\beta y = 0$ 16 $x - y = 4$ and which passes three	(d) $x + y + ax + py = 0$ ough (4, 6) is
20.	The equation of the encie whose diameter ness on 2x + 5y = 5 and	10 y 1 and which pusses the	[Kurukshetra CEE 1998]
	(a) $5(x^2 + y^2) - 3x - 8y = 200$	(b) $x^2 + y^2 - 4x - 8y = 200$	
	(c) $5(x^2 + y^2) - 4x = 200$	(d) $x^2 + y^2 = 40$	
27.	The equation of the circle of radius 5 and touching the coordinate ax	tes in third quadrant is	[EAMCET 2002]

116 Circle and System of Circles (a) $(x-5)^2 + (y+5)^2 = 25$ (b) $(x+4)^2 + (y+4)^2 = 25$ (c) $(x+6)^2 + (y+6)^2 = 25$ (d) $(x+5)^2 + (y+5)^2 = 25$ 28. The centre of a circle is (2, -3) and the circumference is 10π . Then the equation of the circle is [Kerala (Engg.) 2002] (a) $x^2 + y^2 + 4x + 6y + 12 = 0$ (b) $x^2 + y^2 - 4x + 6y + 12 = 0$ (c) $x^2 + y^2 - 4x + 6y - 12 = 0$ (d) $x^2 + y^2 - 4x - 6y - 12 = 0$ 29. The circle described on the line joining the points (0, 1), (a, b) as diameter cuts the x-axis in points whose abscissae are roots of the equation (b) $x^2 - ax + b = 0$ (d) $x^2 - ax - b = 0$. (c) $x^2 + ax - b = 0$ (a) $x^2 + ax + b = 0$ Four distinct points (2k, 3k), (1, 0), (0, 1) and (0, 0) lie on a circle for 30. (a) All integral values of k (b) 0 < k < 1(c) k < 0(d) For two values of k31. The equations of the circles which touch both the axes and the line x = a are (a) $x^2 + y^2 \pm ax \pm ay + \frac{a^2}{4} = 0$ (b) $x^2 + y^2 + ax \pm ay + \frac{a^2}{4} = 0$ (c) $x^2 + y^2 - ax \pm ay + \frac{a^2}{4} = 0$ (d) None of these. The equation of the unit circle concentric with $x^2 + y^2 + 8x + 4y - 8 = 0$ is 32. **[EAMCET 1991]** (a) $x^2 + y^2 - 8x + 4y - 8 = 0$ (b) $x^2 + y^2 - 8x + 4y + 8 = 0$ (c) $x^2 + y^2 - 8x + 4y - 28 = 0$ (d) $x^2 + y^2 - 8x + 4y + 19 = 0$ 33. A circle of radius 2 touches the coordinate axes in the first quadrant. If the circle makes a complete rotation on the x-axis along the positive direction of the x-axis then the equation of the circle in the new position is (a) $x^{2} + y^{2} - 4(x + y) - 8\pi x + (2 + 4\pi)^{2} = 0$ (b) $x^{2} + y^{2} - 4x - 4y + (2 + 4\pi)^{2} = 0$ (c) $x^{2} + y^{2} - 8\pi x - 4y + (2 + 4\pi)^{2} = 0$ (d) None of these A circle which touches the axes and whose centre is at distance $2\sqrt{2}$ from the origin, has the equation 34. (b) $x^2 + y^2 + 4x - 4y + 4 = 0$ (a) $x^2 + y^2 - 4x + 4y + 4 = 0$ (c) $x^{2} + y^{2} + 4x + 4y + 4 = 0$ (d) None of these If (-1, 4) and (3, -2) are end points of a diameter of a circle, then the equation of this circle is 35. [Rajasthan PET 1987, 89] (a) $(x-1)^2 + (y-1)^2 = 13$ (b) $(x+1)^2 + (y+1)^2 = 13$ (c) $(x-1)^2 + (y+1)^2 = 13$ (d) $(x+1)^2 + (y-1)^2 = 13$ The equation of the circle concentric with the circle $x^2 + y^2 - 3x + 4y - c = 0$ and passing through the point (-1, -2) is 36. [Rajasthan PET 1984, 92] (a) $x^2 + y^2 - 3x + 4y - 1 = 0$ (b) $x^2 + y^2 - 3x + 4y = 0$ (c) $x^2 + y^2 - 3x + 4y + 2 = 0$ (d) None of these If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with $x^2 + y^2 + 6x + 8y - 5 = 0$, then c is equal to 37. [Rajasthan PET 1986] (a) – 11 (c) -24(b) 11 (d) 24 Equation $x^2 + y^2 + 4x + 6y + 13 = 0$ represents 38. [Roorkee 1990] (a) A circle (b) A pair of two different lines (c) A pair of coincident lines (d) A point 39. If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is [AIEEE 2004] (a) $x^2 + y^2 + 2x - 2y - 23 = 0$ (b) $x^2 + y^2 - 2x - 2y - 23 = 0$ (c) $x^{2} + y^{2} + 2x + 2y - 23 = 0$ (d) $x^2 + y^2 - 2x + 2y - 23 = 0$ Advance Level

40.	y = mx is a chord of a circle of radius <i>a</i> and the diameter of the the circle described on this chord as diameter is	circle lies along x-axis and one end of this chord is or	gin. The equation of [MP PET 1990]
	(a) $(1+m^2)(x^2+y^2)-2ax=0$	(b) $(1+m^2)(x^2+y^2)-2a(x+my)=0$	
	(c) $(1+m^2)(x^2+y^2)+2a(x+my)=0$	(d) $(1+m^2)(x^2+y^2)-2a(x-my)=0$	
41.	If $y = 2x$ is a chord of the circle $x^2 + y^2 - 10x = 0$, then the exact $x^2 + y^2 - 10x = 0$.	quation of the circle of which this chord is a diameter, is	
			[Rajasthan PET 1988]
	(a) $x^{2} + y^{2} - 2x + 4y = 0$ (b) $x^{2} + y^{2} + 2x + 4y = 0$	(c) $x^2 + y^2 + 2x - 4y = 0$ (d) $x^2 + y^2 - 4y = 0$	2x - 4y = 0
42.	The circle on the chord $x \cos \alpha + y \sin \alpha = p$ of the circle $x^2 + y$	$a^2 = a^2$ as diameter has the equation [Roorkee	e 1967; MP PET 1993]
	(a) $x^{2} + y^{2} - a^{2} - 2p(x \cos \alpha + y \sin \alpha - p) = 0$	(b) $x^{2} + y^{2} + a^{2} + 2p(x \cos \alpha - y \sin \alpha + p) = 0$	
	(c) $x^{2} + y^{2} - a^{2} + 2p(x \cos \alpha + y \sin \alpha + p) = 0$	(d) $x^2 + y^2 - a^2 - 2p(x \cos \alpha - y \sin \alpha - p) = 0$	
43.	The equation of circle which touches the axes of coordinates	and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in	the first quadrant is
	$x^{2} + y^{2} - 2cx - 2cy + c^{2} = 0$, where c is	[Ranchi BIT 1986; Ku	urukshetra CEE 1996]
	(a) 1 (b) 2	(c) 3 (d) 6	
44.	The equation of a circle which touches both axes and the line $3x$	-4y + 8 = 0 and lies in the third quadrant is	[MP PET 1986]
	(a) $x^2 + y^2 - 4x + 4y - 4 = 0$	(b) $x^2 + y^2 - 4x + 4y + 4 = 0$	
	(c) $x^2 + y^2 + 4x + 4y + 4 = 0$	(d) $x^2 + y^2 - 4x - 4y - 4 = 0$	
45.	Equation of the circle which touches the lines $x = 0$, $y = 0$ and $z = 0$.	3x + 4y = 4 is	[MP PET 1991]
	(a) $x^2 - 4x + y^2 + 4y + 4 = 0$	(b) $x^2 - 4x + y^2 - 4y + 4 = 0$	
	(c) $x^2 + 4x + y^2 + 4y + 4 = 0$	(d) $x^2 + 4x + y^2 - 4y + 4 = 0$	
46.	The equation of the circumcircle of the triangle formed by the line	es $y + \sqrt{3}x = 6$, $y - \sqrt{3}x = 6$ and $y = 0$, is	[EAMCET 1982]
	(a) $x^2 + y^2 - 4y = 0$ (b) $x^2 + y^2 + 4x = 0$	(c) $x^2 + y^2 - 4y = 12$ (d) $x^2 + y^2 + 4y = 12$	4x = 12
47.	A variable circle passes through the fixed point $A(p, q)$ and touc	hes x-axis. The locus of the other end of the diameter th	rough A is
			[AIEEE 2004]
	(a) $(y-q)^2 = 4px$ (b) $(x-q)^2 = 4py$	(c) $(y-p)^2 = 4qx$ (d) $(x-p)^2 =$	4qy
48.	If a circle passes through the points of intersection of the coordin	ate axes with the lines $\lambda x - y + 1 = 0$ and $x - 2y + 3$	B = 0, then the value
	or λ is (b) 2	(c) 3 (d) 4	[111 1991]
49.	Equation to the circles which touch the lines $3x - 4y + 1 = 0$, 4	x + 3y - 7 = 0 and pass through (2, 3) are	[EAMCET 1989]
	(a) $(x-2)^2 + (y-8)^2 = 25$	(b) $5x^2 + 5y^2 - 12x - 24y + 31 = 0$	
	(c) Both (a) and (b)	(d) None of these	
50.	The equation of the circle which passes through $(1, 0)$ and $(0, 1)$ a	nd has its radius as small as possible, is	
	(a) $x^2 + y^2 - 2x - 2y + 1 = 0$	(b) $x^2 + y^2 - x - y = 0$	
	(c) $2x^2 + 2y^2 - 3x - 3y + 1 = 0$	(d) $x^2 + y^2 - 3x - 3y + 2 = 0$	
51.	The centres of a set of circles, each of radius 3, lie on the circle x	$y^{2} + y^{2} = 25$. The locus of any point in the set is	[AIEEE 2002]
	(a) $4 \le x^2 + y^2 \le 64$ (b) $x^2 + y^2 \le 25$	(c) $x^2 + y^2 \ge 25$ (d) $3 \le x^2 + y$	² ≤ 9
52.	The equation of the circle which touches both the axes and the stra	aight line $4x + 3y = 6$ in the first quadrant and lies bel	ow it is
			[Roorkee 1992]
	(a) $4x^{2} + 4y^{2} - 4x - 4y + 1 = 0$	(b) $x^{-} + y^{-} - 6x - 6y + 9 = 0$	

	Basic	c Level
		Centre and Radius of a Circle
	(a) $x^2 + y^2 + x + 2y - 5 = 0$ (b) $x^2 + y^2 + 2x + 2y - 6 = 0$	(c) $x^{2} + y^{2} + 4x - 6y = 0$ (d) None of these
63.	Equation of a circle $S(x, y) = 0$, $S(2, 3) = 16$, which touches the	line $3x + 4y - 7 = 0$ at (1, 1) is given by
	(a) $x^{2} + y^{2} + 3ax + a^{2} = 0$ (b) $x^{2} + y^{2} - 3ax - a^{2} = 0$	(c) $x^{2} + y^{2} - 3ax + 2a^{2} = 0$ (d) $x^{2} + y^{2} + 3ax - a^{2} = 0$
62.	The circumcircle of the quadrilateral formed by the lines $x = a$, x	$= 2a, y = -a, y = \sqrt{2}a$ is
	(c) $x^2 + y^2 - 8x + 8y = 24$	(d) None of these
	(a) $x^2 + y^2 - 8x - 8y + 24 = 0$	(b) $x^2 + y^2 = 8$
61.	The equation of the circle of radius $2\sqrt{2}$ whose centre lies on the coordinates satisfy the inequality $x + y > 4$ is	e line $x - y = 0$ and which touches the line $x + y = 4$, and whose centre's
	(c) $4(x^2 + y^2) + 8gx + 8fy = g^2 + f^2$	(d) None of these
	(a) $4(x^2 + y^2) = g^2 + f^2$	(b) $4(x^2 + y^2) + 8gx + 8fy = (1 - g)(1 + 3g) + (1 - f)(1 + 3f)$
60.	The equation of the circumcircle of an equilateral triangle is $x^2 + \frac{1}{2}$ of incircle of the triangle is	$y^2 + 2gx + 2fy + c = 0$ and one vertex of the triangle is (1, 1). The equation
	(c) $x^2 + y^2 + 4x + 2y - 15 = 0$	(d) None of these
	(a) $x^2 + y^2 + 2x + 4y - 15 = 0$	(b) $x^2 + y^2 - 4x - 2y - 15 = 0$
	abscissae are the roots of the equation $y^2 + 4y - 12 = 0$, is	
59.	The equation of the circle whose one diameter is <i>PO</i> , where the	ordinates of P, Q are the roots of the equation $x^2 + 2x - 3 = 0$ and the
	(c) $x^2 + y^2 + 2x + 2y - 3 = 0$	(d) None of these
	(a) $x^2 + y^2 - 2x - 2y - 3 = 0$	(b) $x^2 + y^2 + 2x - 2y - 3 = 0$
58.	(c) $x + y - 5x - 5y - 6 = 0$ If the centroid of an equilateral triangle is (1, 1) and its one vertex	is $(-1, 2)$ then the equation of its circumcircle is
	(a) $x + y - 5x - 5y + 6 = 0$ (c) $x^2 + y^2 - 3x - 5y - 8 = 0$	(b) $x + y - 5x - 5y + 6 = 0$ (d) None of these
51.	(a) $r^2 + y^2 - 5r - 3y + 8 = 0$	(b) $x^2 + y^2 - 3x - 5y + 8 = 0$
57	(a) $x + y = 1$ (b) $\sqrt{3}(x^2 + y^2) + 2y - \sqrt{3} = 0$ A triangle is formed by the lines whose combined equation is given	(c) $\sqrt{5}(x + y) - 2y - \sqrt{5} = 0$ (d) None of these n by $(x + y - 4)(xy - 2x - y + 2) = 0$. The equation of its circumcircle is
	triangle is (a) $x^2 + x^2 = 1$ (b) $\sqrt{2}(x^2 + x^2) + 2x = \sqrt{2} = 0$	(a) $\sqrt{2}(x^2 + x^2) = 2x + \sqrt{2} = 0$ (d) None of these
56.	Two vertices of an equilateral triangle are $(-1, 0)$ and $(1, 0)$ and i	ts third vertex lies above the x-axis. The equation of the circumcircle of the
	(c) $9(x^2 + y^2) - 6x + 2y + 1 = 0$	(d) None of these
	(a) $9(x^2 + y^2) + 6x + 24y + 1 = 0$	(b) $9(x^2 + y^2) - 6x - 24y + 1 = 0$
55.	The equation of a circle which touches x-axis and the line $4x$	-3y + 4 = 0, its centre lying in the third quadrant and lies on the line
	(c) $x^2 + y^2 - 2x + 4y + 4 = 0$	(d) None of these
	(a) $x^2 + y^2 - 2x - 4y + 4 = 0$	(b) $x^2 + y^2 + 2x + 4y - 4 = 0$
54.	The equation of the circle passing through the point $(1, 1)$ and have	ing two diameters along the pair of lines $x^2 - y^2 - 2x + 4y - 3 = 0$ is
	(c) Both (a) and (b) hold together	(d) None of these
	(a) $\lambda(m_2 + m_3) + \mu(m_3 + m_1) + \nu(m_1 + m_2) = 0$	(b) $\lambda(m_2m_3 - 1) + \mu(m_3m_1 - 1) + \nu(m_1m_2 - 1) = 0$
	$\lambda \neq 0, \ \mu \neq 0, \ v \neq 0$, is the equation of the circumcircle of the tri	angle, if
53.	Three sides of a triangle have the equations $L_r \equiv y - $	$m_r x - c_r = 0; r = 1, 2, 3.$ Then $\lambda L_2 L_3 + \mu L_3 L_1 + \nu L_1 L_2 = 0$, where
	(c) $x^2 + y^2 - 6x - y + 9 = 0$	(d) $4(x^2 + y^2 - x - 6y) + 1 = 0$

64.	The area of the circle whose	e centre is at (1, 2) and which pas	sses through the point (4, 6) is	
	(-) 5-	(h) 10-	[MNR 1982; IIT 1980; Karnata	ka CET 1999; MP PET 2002; DCE 2000
~=	(a) 5π	(b) 10π	(c) 25π	(d) None of these
)5.	The centres of the circles x	$y^{-} + y^{-} = 1, x^{-} + y^{-} + 6x - 2y =$	$= 1$ and $x^2 + y^2 - 12x + 4y = 1$ are	[MP PET 1986
~~	(a) Same	(b) Collinear a point $(0, 0)$ $(a, 0)$ $(0, b)$ then	(c) Non-collinear	(d) None of these
<i>.</i>	n a circle passes unough un	e point $(0, 0), (a, 0), (0, b),$ then	$\left(\begin{array}{c} a \\ b \end{array} \right)$	(h a)
	(a) (<i>a</i> , <i>b</i>)	(b) (<i>b</i> , <i>a</i>)	(c) $\left(\frac{a}{2}, \frac{b}{2}\right)$	(d) $\left(\frac{b}{2}, -\frac{a}{2}\right)$
7.	If the radius of the circle x^2	$x^{2} + y^{2} - 18x + 12y + k = 0$ be	11, then $k =$	[MP PET 1987
	(a) 347	(b) 4	(c) – 4	(d) 49
8.	The centre and radius of the	e circle $2x^2 + 2y^2 - x = 0$ are		[MP PET 1984, 8 ⁴
	(a) $\left(\frac{1}{4}, 0\right)$ and $\frac{1}{4}$	(b) $\left(-\frac{1}{2}, 0\right)$ and $\frac{1}{2}$	(c) $\left(\frac{1}{2}, 0\right)$ and $\frac{1}{2}$	(d) $\left(0, -\frac{1}{4}\right)$ and $\frac{1}{4}$
9.	Centre of the circle $(x - 3)^2$	$(y-4)^2 = 5$ is		[MP PET 198
	(a) (3, 4)	(b) $(-3, -4)$	(c) (4, 3)	(d) $(-4, -3)$
0.	A circle has its equation in	the form $x^2 + y^2 + 2x + 4y + 1$	l = 0. Choose the correct coordinates	of its centre and the right value of its radiu
	from the following			[MP PET 1982
	(a) Centre $(-1, -2)$, radius	s = 2 (b)	Centre $(2, 1)$, radius = 1	_
	(c) Centre $(1, 2)$, radius =	3	(d) Centre $(-1, 2)$, radius =	= 2
•	A circle touches the axes at (3) $(3 - 3)$	the points $(3, 0)$ and $(0, -3)$. In (b) $(0, 0)$	e centre of the circle is (c) $(-3, 0)$	[MP PET 199.
,	(a) $(3, -3)$ Radius of the circle $r^2 + y$	$^{2} + 2x \cos \theta + 2y \sin \theta - 8 = 0$	(C) (- 5, 0)	(u) (0, - 0)
2.	Radius of the effect $x + y$	$+2x\cos \theta + 2y\sin \theta - \theta = 0,$		
	(a) 1	(b) 3	(c) $2\sqrt{3}$	(d) √10
5.	The area of a circle whose c	centre is (h, k) and radius <i>a</i> is	2	[MP PET 1994
	(a) $\pi (h^2 + k^2 - a^2)$	(b) $\pi a^2 h k$	(c) πa^2	(d) None of these
I.	If the coordinates of one end	d of the diameter of the circle x^2	$x^{2} + y^{2} - 8x - 4y + c = 0$ are (-3, 2),	then the coordinates of other end are [Roon
	(a) (5, 3)	(b) (6, 2)	(c) $(1, -8)$	(d) (11, 2)
5.	The centre of the circle $x =$	$= -1 + 2\cos\theta, \ y = 3 + 2\sin\theta, \ i$	S	[MP PET 1995
	(a) $(1, -3)$	(b) (-1, 3)	(c) (1, 3)	(d) None of these
ó .	If $g^2 + f^2 = c$, then the equation $g^2 + f^2 = c$.	$y^2 + y^2 + 2gx + 2fy + c$	e = 0 will represent	[MP PET 200.
	(a) A circle of radius g	(b) A circle of radius f	(c) A circle of diameter \sqrt{a}	(d) A circle of radius 0
7.	The centre of circle inscribe	ed in square formed by the lines	$x^{2} - 8x + 12 = 0$ and $y^{2} - 14y + 45$	= 0, is [IIT Screening 200
	(a) (4,7)	(b) (7, 4)	(c) (9, 4)	(d) (4,9)
3.	The equation $x^2 + y^2 + 2g$	ax + 2fy + c = 0 will represent a	real circle if	
	(a) $g^2 + f^2 - c < 0$	(b) $g^2 + f^2 - c \ge 0$	(c) Always	(d) None of these
).	One of the diameters of the	circle $x^2 + y^2 - 12x + 4y + 6 =$	= 0 is given by	
	(a) $x + y = 0$	(b) $x + 3y = 0$	(c) $x = y$	(d) $3x + 2y = 0$
).	The radius of the circle pass	sing through the point (6, 2) two	of whose diameters are $x + y = 6$ and	1 x + 2y = 4 is [BIT Ranchi 1993]
	(a) 10	(b) $2\sqrt{5}$	(c) 6	(d) 4
1.	If the equation of a circle is	$ax^{2} + (2a - 3)y^{2} - 4x - 1 = 0$	then its centre is	
-	(a) (2,0)	(b) $(2/3, 0)$	(c) $(-2/3, 0)$	(d) None of these
_	(-, (-, 0))	(0) (-,0,0)		

120	Circle and System of Circle	S		
	(a) <i>R</i>	(b) $(0, +\infty)$	(c) (-∞, 0)	(d) None of these
83.	The locus of the centres of the	circles for which one end of a diamet	er is $(1, 1)$ while the other end is on	the line $x + y = 3$ is
	(a) $x + y = 1$	(b) $2(x - y) = 5$	(c) $2x + 2y = 5$	(d) None of these
84.	If A and B are two points on the	he circle $x^2 + y^2 - 4x + 6y - 3 = 0$	which are farthest and nearest respe	ectively from the point $(7, 2)$ then
	(a) $A = (2 - 2\sqrt{2}, -3 - 2\sqrt{2})$	2)	(b) $B = (2 + 2\sqrt{2}, -3 + 2\sqrt{2})$	
	(c) $A = (2 + 2\sqrt{2}, -3 + 2\sqrt{2})$	2)	(d) $B = (2 - 2\sqrt{2}, -3 + 2\sqrt{2})$	
85.	The radius of the circle passing	g through the point (5, 4) and concentration	ric to the circle $x^2 + y^2 - 8x - 12$	y + 15 = 0 is
	(a) 5	(b) $\sqrt{5}$	(c) 10	(d) $\sqrt{10}$
86.	The length of the radius of the	circle $x^{2} + y^{2} + 4x - 6y = 0$ is		[Rajasthan PET 1995]
	(a) $\sqrt{11}$	(b) 12	(c) $\sqrt{13}$	(d) $\sqrt{14}$
87.	(2, y) is the centre of a circle.	If $(x, 3)$ and $(3, 5)$ are end points of a	diameter of this circle, then	[Roorkee 1986]
	(a) $x = 1, y = 4$	(b) $x = 4, y = 1$	(c) $x = 8, y = 2$	(d) None of these
88.	The greatest distance of the po	bint P (10, 7) from the circle $x^2 + y^2$ -	-4x - 2y - 20 = 0 is	
	(a) 5	(b) 15	(c) 10	(d) None of these
89.	If one end of a diameter of the	circle $x^2 + y^2 - 4x - 6y + 11 = 0$ t	be $(3, 4)$, then the other end is	[MP PET 1986; BIT Ranchi 1991]
	(a) (0, 0)	(b) (1, 1)	(c) (1, 2)	(d) (2, 1)
		Advanc	ce Level	
90.	If $2x - 4y = 9$ and $6x - 12y$	+7 = 0 are the tangents of same circ	ele, then its radius will be	[Roorkee 1995]
	(a) $\frac{\sqrt{3}}{5}$	(b) $\frac{17}{6\sqrt{5}}$	(c) $\frac{2\sqrt{5}}{3}$	(d) $\frac{17}{3\sqrt{5}}$
91.	If $5x - 12y + 10 = 0$ and $12y$	y - 5x + 16 = 0 are two tangents to a	circle, then the radius of the circle	is [EAMCET 2003]
	(a) 1	(b) 2	(c) 4	(d) 6
92.	If $2x^2 + \lambda xy + 2y^2 + (\lambda - 4)$.	x + 6y - 5 = 0 is the equation of a circle of a circle of the equation of a circle of the equation of a circle of the equation of the equat	rcle then its radius is	
	(a) $3\sqrt{2}$	(b) $2\sqrt{3}$	(c) $2\sqrt{2}$	(d) None of these
93.	C_1 is a circle of radius 1 touch Then the radius of C_2 is	hing the x-axis and the y-axis. C_2 is a	another circle of radius >1 and tou	ching the axes as well as the circle C_1 .
	(a) $3 - 2\sqrt{2}$	(b) $3 + 2\sqrt{2}$	(c) $3 + 2\sqrt{3}$	(d) None of these
94.	If p and q be the longest distant is $x^2 + y^2 - 10x - 14y - 51$	the and the shortest distance respective $= 0$ then <i>GM</i> of <i>p</i> and <i>q</i> is equal to	ely of the point $(-7, 2)$ from any po	bint (α, β) on the curve whose equation
	(a) $2\sqrt{11}$	(b) $5\sqrt{5}$	(c) 13	(d) None of these
95.	The equation of a circle is x^2	$+y^2 = 4$. The centre of the smallest	circle touching this circle and the li	ne $x + y = 5\sqrt{2}$ has the coordinates
	(a) $\left(\frac{7}{2\sqrt{2}}, \frac{7}{2\sqrt{2}}\right)$	(b) $\left(\frac{3}{2},\frac{3}{2}\right)$	(c) $\left(-\frac{7}{2\sqrt{2}},-\frac{7}{2\sqrt{2}}\right)$	(d) None of these
96.	A circle touches the line $2x - $	y - 1 = 0 at the point (3, 5). If its cer	the https://doi.org/10.1011/10.100000000	the centre of that circle is
	(a) (3, 2)	(b) (-3,8)	(c) (4, 1)	[Rajasthan PET 1992] (d) (8, - 3)

The locus of the centre of the circle $(x \cos \theta + y \sin \theta - a)^2 + (x \sin \theta - y \cos \theta + a)^2 = a^2$ is 97. (b) $x^2 + y^2 = 2a^2$ (c) $x^2 + y^2 = 4a^2$ (d) $x^2 + y^2 - 2ax - 2ay + a^2 = 0$ (a) $x^2 + y^2 = a^2$ If a circle S(x, y) = 0 touches at the point (2, 3) of the line x + y = 5 and S(1, 2) = 0, then radius of such circle 98. (d) $\frac{1}{\sqrt{2}}$ units (c) $\frac{1}{2}$ units (a) 2 units (b) 4 units Intersection of a Line and a Circle **Basic Level** 99. A circle touches the y-axis at the point (0, 4) and cuts the x-axis in a chord of length 6 units. The radius of the circle is [MP PET 1992] (a) 3 (b) 4 (c) 5 (d) 6 100. The radius of a circle which touches y-axis at (0, 3) and cuts intercept of 8 units with x-axis, is [IIT 1972] (b) 2 (d) 8 (a) 3 (c) 5 101. The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle with AB as a diameter is [IIT 1996] (a) $x^{2} + y^{2} - x - y = 0$ (b) $x^{2} + y^{2} - 2x - y = 0$ (c) $x^{2} + y^{2} - x + y = 0$ (d) $x^{2} + y^{2} + x - y = 0$ The circle $x^2 + y^2 - 3x - 4y + 2 = 0$ cuts x-axis at 102. [Karnataka CET 2001] (a) (2, 0), (-3, 0)(b) (3, 0), (4, 0) (c) (1, 0), (-1, 0)(d) (1, 0), (2, 0)If the line y = x + 3 meets the circle $x^2 + y^2 = a^2$ at A and B, then the equation of the circle having AB as a diameter will be 103. [Rajasthan PET 1988] (a) $x^2 + y^2 + 3x - 3y - a^2 + 9 = 0$ (b) $x^2 + y^2 - 3x + 3y - a^2 + 9 = 0$ (c) $x^{2} + y^{2} + 3x + 3y - a^{2} + 9 = 0$ (d) None of these If the circle $x^2 + y^2 + 2ax + 8y + 16 = 0$ touches x-axis, then the value of a is 104. [Rajasthan PET 1994] (a) ±16 (b) ±4 (c) ±8 (d) ±1 The length of the intercept made by the circle $x^2 + y^2 = 1$ on the line x + y = 1 is 105. (b) $\sqrt{2}$ (c) $1/\sqrt{2}$ (d) $2\sqrt{2}$ (a) 2 The AM of the abscissae of points of intersection of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ with x-axis is 106. (b) -g(d) -f(a) g (c) fThe straight line (x - 2) + (y + 3) = 0 cuts the circle $(x - 2)^2 + (y - 3)^2 = 11$ at 107. [MNR 1975] (a) No points (b) One point (c) Two points (d) None of these The equation of a circle whose centre is (3, -1) and which cuts off a chord of length 6 on the line 2x - 5y + 18 = 0108. [Roorkee 1977] (a) $(x-3)^2 + (y+1)^2 = 38$ (b) $(x+3)^2 + (y-1)^2 = 38$ (c) $(x-3)^2 + (y+1)^2 = \sqrt{38}$ (d) None of these The points of intersection of the line 4x - 3y - 10 = 0 and the circle $x^2 + y^2 - 2x + 4y - 20 = 0$ are 109. [IIT 1983] (b) (2, 6), (-4, -2)(a) (-2, -6), (4, 2)(c) (-2, 6), (-4, 2)(d) None of these The line y = mx + c intersects the circle $x^2 + y^2 = r^2$ at two real distinct points, if 110. (d) $-c\sqrt{1-m^2} < r$ (a) $-r\sqrt{1+m^2} < c \le 0$ (b) $0 \le c < r\sqrt{1+m^2}$ (c) (a) and (b) both 111. A line through (0, 0) cuts the circle $x^2 + y^2 - 2ax = 0$ at A and B, then locus of the centre of the circle drawn AB as diameter is [Rajasthan PET 2002] (a) $x^2 + y^2 - 2ay = 0$ (b) $x^2 + y^2 + ay = 0$ (c) $x^2 + y^2 + ax = 0$ (d) $x^2 + y^2 - ax = 0$

112. If the line y-1 = m(x-1) cuts the circle $x^2 + y^2 = 4$ at two real points then the number of possible values of m is

122	Circle and System of Circ	eles		
	(a) 1	(b) 2	(c) Infinite	(d) None of these
113.	The GM of the abscissae of	the points of intersection of th	he circle $x^2 + y^2 - 4x - 6y + 7 = 0$ at	nd the line $y = 1$ is
	(a) $\sqrt{7}$	(b) $\sqrt{2}$	(c) $\sqrt{14}$	(d) 1
114.	The equation(s) of the tange	ent at the point (0, 0) to the cir	cle, making intercepts of length 2a and	2b units on the coordinate axes, is (are)
	(a) $ax + by = 0$	(b) $ax - by = 0$	(c) $x = y$	(d) None of these
			Advance Level	
115.	A circle which passes throu	gh origin and cuts intercepts of	on axes a and b , the equation of circle is	[Rajasthan PET 1991]
	(a) $x^2 + y^2 - ax - by = 0$	0 (b) $x^2 + y^2 + ax + by$	= 0 (c) $x^2 + y^2 - ax + by =$	0 (d) $x^2 + y^2 + ax - by = 0$
116.	Let L_1 be a straight line $x^2 + y^2 - x + 3y = 0$ on L_1	passing through the origin L_1 and L_2 are equal, then which	and L_2 be the straight line $x + y$ n of the following equations can represe	= 1. If the intercepts made by the circle ent L_1 [IIT 1999]
	(a) $x + y = 0$	(b) $x - y = 0$	(c) $x + 7y = 0$	(d) x - 7y = 0
117.	The two lines through $(2, 3)$) from which the circle $x^2 + y$	$v^2 = 25$ intercepts chords of length 8 u	units have equations
	(a) $2x + 3y = 13$, $x + 5y$	= 17	(b) $y = 3$, $12x + 5y = 39$	9
	(c) $x = 2, 9x - 11y = 51$		(d) None of these	
118.	Circles are drawn through t equation is	he point (2, 0) to cut intercep	ots of length 5 units on the x-axis. If the	eir centres lie in the first quadrant, then their [Roorkee 1992]
	(a) $x^2 + y^2 - 9x + 2ky + 2$	-14 = 0	(b) $3x^2 + 3y^2 + 27x - 3x^2 + 3y^2 + 27x - 3x^2 + 3x^2 $	2ky + 42 = 0
	(c) $x^2 + y^2 - 9x - 2ky + $	-14 = 0	(d) $x^2 + y^2 - 2kx - 9y$	+14 = 0
119.	A circle touches the <i>y</i> -axis a	at $(0, 2)$ and has an intercept of	f 4 units on the positive side of the <i>x</i> -ax	tis. Then the equation of the circle is
	$(-)$ $2 \cdot 2 \cdot 4 \cdot \sqrt{2} \cdot 2$. 4 . 0	(b) $2 \cdot 2 \cdot 4 \cdot \sqrt{2}$	[111 1995]
	(a) $x + y - 4(\sqrt{2x} + y)$	+4 = 0	(b) $x + y - 4(x + \sqrt{2y})$)+4=0
	(c) $x^2 + y^2 - 2(\sqrt{2x} + y) + y^2 + y^2 - 2(\sqrt{2x} + y) + y^2 + y^2$	+4 = 0	(d) None of these	
120.	Circles are drawn through the of their centres is	he point (3, 0) to cut an interco	ept of length 6 units on the negative dir	ection of the <i>x</i> -axis. The equation of the locus
	(a) The <i>x</i> -axis	(b) $x - y = 0$	(c) The <i>y</i> -axis	(d) $x + y = 0$
121.	Circles $x^2 + y^2 = 1$ and x	$x^2 + y^2 - 8x + 11 = 0$ cut off	f equal intercepts on a line through the p	point $\left(-2, \frac{1}{2}\right)$. The slope of the line is
	(a) $\frac{-1+\sqrt{29}}{14}$	(b) $\frac{1+\sqrt{7}}{4}$	(c) $\frac{-1-\sqrt{29}}{14}$	(d) None of these
122.	If $2l$ be the length of the inte	ercept made by the circle x^2	$+y^2 = a^2$ on the line $y = mx + c$, the	$cn c^2$ is equal to
	(a) $(1+m^2)(a^2+l^2)$	(b) $(1+m^2)(a^2-l^2)$	(c) $(1-m^2)(a^2+l^2)$	(d) $(1-m^2)(a^2-l^2)$
123.	For the circle $x^2 + y^2 + 4x$	x - 7y + 12 = 0 the following	statement is true	
	(a) The length of tangent f	from (1, 2) is 7	(b) Intercept on y-axis is	2
	(c) Intercept on <i>x</i> -axis is 2	$2 - \sqrt{2}$	(d) None of these	
124.	The length of the chord join	ing the points in which the str	aight line $\frac{x}{3} + \frac{y}{4} = 1$ cuts the circle x	$x^{2} + y^{2} = \frac{10y}{25}$ is [Orissa JEE 2003]
	(a) 1	(b) 2	(c) 4	(d) 8
125.	A line is drawn through a fi	xed point $P(\alpha, \beta)$ to cut the c	ircle $x^2 + y^2 = r^2$ at A and B. Then P	PA. PB is equal to
	(a) $(\alpha + \beta)^2 - r^2$	(b) $\alpha^2 + \beta^2 - r^2$	(c) $(\alpha - \beta)^2 + r^2$	(d) None of these

126.	The range of values of <i>m</i> for which the line $y = mx + 2$ c	the circle x^2	$x^{2} + y^{2} = 1$ at di	stinct or coinciden	t points is
	(a) $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, +\infty)$ (b) $[-\sqrt{3}, \sqrt{3}]$	(c)	$[\sqrt{3}, +\infty)$	(d)	None of these
				Posi	tion of a point w.r.t. a Circle
		Basic Level			
127.	A point inside the circle $x^2 + y^2 + 3x - 3y + 2 = 0$ is				[MP PET 1988
	(a) (-1, 3) (b) (-2, 1)	(c)	(2, 1)	(d)	(-3, 2)
128.	Position of the point (1, 1) with respect to the circle x^2 +	$y^2 - x + y - 1 =$	= 0 is		[MP PET 1986, 1990
	(a) Outside the circle (b) Upon the circle	(c)	Inside the circle	e (d)	None of these
129.	The number of tangents that can be drawn from $(0, 0)$ to the	he circle $x^2 + y$	$x^{2} + 2x + 6y - 1$	5 = 0 is	[MP PET 1992
	(a) None (b) One	(c)	Two	(d)	Infinite
130.	The number of tangents which can be drawn from the point	nt $(-1, 2)$ to the	circle $x^2 + y^2$	+2x-4y+4=0	is [BIT Ranchi 1991
	(a) 1 (b) 2	(c)	3	(d)	0
131.	The point (0.1, 3.1) with respect to the circle $x^2 + y^2 - 2x$	x - 4y + 3 = 0, i	S		[MNR 1980
	(a) At the centre of the circle	(b)	Inside the circle	e but not at the cer	ntre
	(c) On the circle	(d)	Outside the circ	cle	
132.	The number of the tangents that can be drawn from $(1, 2)$	to $x^2 + y^2 = 5$	is		
	(a) 1 (b) 2	(c)	3	(d)	0
133.	The number of points on the circle $2x^2 + 2y^2 - 3x = 0$	which are at a di	stance 2 from th	e point (- 2, 1) is	
	(a) 2 (b) 0	(c)	1	(d)	None of these
134.	If $x^{2} + y^{2} - 6x + 8y - 11 = 0$ is a given circle and $(0, 0)$), (1, 8) are two j	points, then		
	(a) Both the points are inside the circle	(b)	Both the points	are outside the cir	ccle
	(c) One point is on the circle another is outside the circle	e (d)	One point is ins	side and another is	outside the circle
		Advance Leve	el		
135.	A region in the <i>x</i> - <i>y</i> plane is bounded by the curve $y = $ then	$\overline{25-x^2}$ and the	e line $y = 0$. If t	he point $(a, a+1)$	lies in the interior of the region
	(a) $a \in (-4, 3)$ (b) $a \in (-\infty, -1) \cup (3, +$	∞) (c)	$a \in (-1, 3)$	(d)	None of these
136.	If (2, 4) is a point interior to the circle $x^2 + y^2 - 6x - 1$ interval	$0y + \lambda = 0$ and	the circle does	not cut the axes at	any point , then $\boldsymbol{\lambda}$ belongs to th
	(a) (25, 32) (b) (9, 32)	(c)	(32, +∞)	(d)	None of these
137.	The range of values of $\theta \in [0, 2\pi]$ for which $(1 + \cos \theta,$	$\sin \theta$) is an inter	rior point of the	circle $x^2 + y^2 = 1$	lis
	(a) $(\pi/6, 5\pi/6)$ (b) $(2\pi/3, 5\pi/3)$	(c)	$(\pi/6, 7\pi/6)$	(d)	$(2\pi/3, 4\pi/3)$
138.	The range of values of <i>r</i> for which the point $\left(-5 + \frac{r}{\sqrt{2}}\right)$,	$-3+\frac{r}{\sqrt{2}}$ is an	interior point of	f the major segmen	nt of the circle $x^2 + y^2 = 16$, cu
	off by the line $x + y = 2$ is				
	(a) $(-\infty, 5\sqrt{2})$ (b) $(4\sqrt{2} - \sqrt{14}, 5\sqrt{2})$	(c)	$(4\sqrt{2}-\sqrt{14}, 4)$	$4\sqrt{2} + \sqrt{14}$) (d)	None of these
139.	If <i>P</i> (2, 8) is an interior point of a circle $x^2 + y^2 - 2x + 4$	4y - p = 0 whice	ch neither touche	es nor intersects the	e axes, then set for <i>p</i> is
	(a) $p < -1$ (b) $p < -4$	(c)	<i>p</i> > 96	(d)	ϕ
		Equation of T	Tangent, Cond	ition for Tangen	icy and the points of Contact
<u> </u>			U y i i i	0	
		Basic Level			

140.	The equation of the tangent to	the circle $x^2 + y^2 = r^2$ at (a, b) is	$ax + by - \lambda = 0$, where λ is		
	(a) a^2	(b) b^2	(c) r^2	(d)	None of these
141.	$x = 7$ touches the circle x^2	$+y^2 - 4x - 6y - 12 = 0$, then the co	oordinates of the point of contact are		[MP PET 1996]
	(a) (7, 3)	(b) (7, 4)	(c) (7, 8)	(d)	(7, 2)
142.	A circle with centre (a, b) pas	sses through the origin. The equation	of the tangent to the circle at the orig	in is	[Rajasthan PET 2000]
	(a) $ax - by = 0$	(b) $ax + by = 0$	(c) $bx - ay = 0$	(d)	bx + ay = 0
143.	If the tangent at a point $P(x,$	y) of a curve is perpendicular to the	line that joins origin with the point <i>F</i>	, ther	the curve is
	(a) Circle	(b) Parabola	(c) Ellipse	(d)	[MP PET 1998] Straight line
144.	The circle $x^2 + y^2 - 8x + 4$	v + 4 = 0 touches	(c) Empse	(u)	[Karnataka CET 1999]
	(a) x-axis only	(b) v-axis only	(c) Both x and y -axis	(d)	Does not touch any axis
145.	The condition that the line x	$\cos \alpha + y \sin \alpha = p$ may touch the ci	rcle $x^2 + y^2 = a^2$ is		[AMU 1999]
	(a) $p = a \cos \alpha$	(b) $n = a \tan \alpha$	(c) $n^2 = a^2$	(d)	$n\sin\alpha - a$
146	(d) $p = a \cos a$ The equation of circle with c	(b) $p = u \tan u$	(c) $p = u$	(u)	р зній – й [MD DET 2001]
140.	The equation of circle with ce	entre (1, 2) and tangent $x + y = 5 = 0$	(1) (1)		
	(a) $x + y + 2x - 4y + 6$	= 0	(b) $x + y - 2x - 4y + 3 = 0$		
	(c) $x^2 + y^2 - 2x + 4y + 8$	= 0	(d) $x^2 + y^2 - 2x - 4y + 8 = 0$		
147.	The equation of tangent to the	e circle $x^2 + y^2 = a^2$ parallel to $y =$	=mx+c is		[Rajasthan PET 2001]
	(a) $y = mx \pm \sqrt{1 + m^2}$	(b) $y = mx \pm a\sqrt{1 + m^2}$	(c) $x = my \pm a\sqrt{1+m^2}$	(d)	None of these
148.	The line $3x - 2y = k$ meets	the circle $x^2 + y^2 = 4r^2$ at only one	e point, if $k^2 =$		[Karnataka CET 2003]
	(a) $20r^2$	(b) $52r^2$	(c) $\frac{52}{9}r^2$	(d)	$\frac{20}{9}r^2$
149.	The line $lx + my + n = 0$ will	Il be a tangent to the circle $x^2 + y^2 =$	$=a^2$ if		[MNR 1974; AMU 1981]
	(a) $n^2(l^2 + m^2) = a^2$	(b) $a^2(l^2+m^2)=n^2$	(c) $n(l+m) = a$	(d)	a(l+m) = n
150.	The circle $x^2 + y^2 + 4x - 4$	v + 4 = 0 touches			[MP PET 1988]
	(a) x -axis	(b) y-axis	(c) <i>x</i> -axis and <i>y</i> -axis	(d)	None of these
151.	If the line $lx + my = 1$ be a t	angent to the circle $x^2 + y^2 = a^2$, the table of the circle $x^2 + y^2 = a^2$.	hen the locus of the point (l, m) is		[MNR 1978; Rajasthan PET 1997]
	(a) A straight line	(b) A circle	(c) A parabola	(d)	An ellipse
152.	The straight line $x - y - 3 =$	0 touches the circle $x^2 + y^2 - 4x + y^2 + y^2 - 4x + y^2 +$	+ 6y + 11 = 0 at the point whose coo	rdina	tes are [MP PET 1993]
	(a) $(1, -2)$	(b) (1, 2)	(c) (-1, 2)	(d)	(-1, -2)
153.	If the straight line $y = mx + c$	c touches the circle $x^2 + y^2 - 4y =$	0, then the value of c will be		[Rajasthan PET 1988]
	(a) $1 + \sqrt{1 + m^2}$	(b) $1 - \sqrt{m^2 + 1}$	(c) $2(1+\sqrt{1+m^2})$	(d)	$2 + \sqrt{1 + m^2}$
154.	At which point on y-axis the	line $x = 0$ is a tangent to circle $x^2 + y$	$y^2 - 2x - 6y + 9 = 0$		[Rajasthan PET 1984]
	(a) (0, 1)	(b) (0, 2)	(c) $(0, 3)$	(d)	(0, 4)
155.	At which point the line $y = x$	$x + \sqrt{2}a$ touches to the circle $x^2 + y$	$a^{2} = a^{2}$		
	or				
	Line $y = x + a\sqrt{2}$ is a tangent	nt to the circle $x^2 + y^2 = a^2$ at		[F	Rajasthan PET 1991; MP PET 1999]
	(a) $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$	(b) $\left(-\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$	(c) $\left(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$	(d)	$\left(-\frac{a}{\sqrt{2}},\frac{a}{\sqrt{2}}\right)$
156.	If the line $3x + 4y - 1 = 0$ to	ouches the circle $(x - 1)^{2} + (y - 2)^{2} =$	$= r^2$, then the value of <i>r</i> will be		[Rajasthan PET 1986]

(c) $\frac{12}{5}$ (a) 2 (b) 5 (d) 157. If the centre of a circle is (-6, 8) and it passes through the origin, then equation to its tangent at the origin, is [MNR 1976] (a) 2y = x(b) 4y = 3x(c) 3y = 4x(d) 3x + 4y = 0If the line $3x - 4y = \lambda$ touches the circle $x^2 + y^2 - 4x - 8y - 5 = 0$, then λ is equal to 158. [Roorkee 1972; Kurukshetra CEE 1996] (b) - 35, 15 (a) -35.-15(c) 35.15 (d) 35. – 15 The tangent to $x^2 + y^2 = 9$ which is parallel to y-axis and does not lie in the third quadrant touches the circle at the point 159. (a) (3, 0)(b) (-3,0) (c) (0, 3) (d) (0, -3)The points of contact of tangents to the circle $x^2 + y^2 = 25$ which are inclined at an angle of 30° to the x-axis are 160. (b) $\left(\pm\frac{1}{2},\pm\frac{5}{2}\right)$ (a) $\left(\pm \frac{5}{2}, \pm \frac{1}{2}\right)$ (c) $\left(\mp \frac{5}{2}, \mp \frac{1}{2}\right)$ (d) None of these. If the line hx + ky = 1 touches $x^2 + y^2 = a^2$, then the locus of the point (h, k) is a circle of radius 161. (d) $\frac{1}{\sqrt{a}}$ (b) $\frac{1}{-}$ (c) \sqrt{a} (a) *a* The slope of the tangent at the point (*h*, *h*) of the circle $x^2 + y^2 = a^2$ is 162. [Roorkee 1993] (b) 1 (c) -1(d) Depends on *h*. The line $v = mx + \sqrt{4 + 4m^2}$, $m \in R$, is a tangent to the circle 163. (b) $x^2 + y^2 = 4$ (a) $x^2 + y^2 = 2$ (c) $x^2 + y^2 = 1$ (d) None of these The point of contact of a tangent from the point (1, 2) to the circle $x^2 + y^2 = 1$ has the coordinates 164. (a) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$ (b) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$ (c) $\left(\frac{1+2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$ (d) $\left(\frac{1+2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$ 165. If the line x + y = 1 is a tangent to a circle with centre (2, 3), then its equation will be [Rajasthan PET 1985, 89] (b) $x^2 + y^2 - 4x - 6y + 5 = 0$ (a) $x^2 + y^2 - 4x - 6y + 4 = 0$ (c) $x^2 + y^2 - 4x - 6y - 5 = 0$ (d) None of these A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B. The locus of the mid point of AB is 166. (c) $\frac{1}{r^2} + \frac{1}{v^2} = 4a^2$ (d) $\frac{1}{r^2} + \frac{1}{v^2} = \frac{a^2}{4}$ (a) $\frac{1}{r^2} + \frac{1}{v^2} = \frac{1}{a^2}$ (b) $\frac{1}{r^2} + \frac{1}{v^2} = \frac{4}{a^2}$ If the tangent to the circle $x^2 + y^2 = 5$ at point (1, -2) touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is 167. [IIT 1989] (b) (3, -1)(a) (-1, -3)(c) (-2, 1)(d) (5,0) The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be 168. (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these If y = c is a tangent to the circle $x^2 + y^2 = 4$, then 169. (b) |c| < 2(c) |c| = 2(a) |c| > 2(d) |c| = 0Advance Level If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point (1, 2), then the possible location of the points (h, k) are 170. given by [AMU 2000] (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ (a) hk = 5/2(b) h + 2k = 5If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line 5x - 2y + 6 = 0 at a point Q on the y-axis, then the 171. length of PQ is [IIT Screening 2002] (b) $2\sqrt{5}$ (a) 4 (c) 5 (d) $3\sqrt{5}$

172.	The tangents to $x^2 + y^2 = a^2$ h	aving inclinations α and β i	ntersect at <i>P</i> . If $\cot \alpha + \cot \beta = 0$, the	en the locus of <i>P</i> is	
	$(a) x+y=0 \qquad \qquad$	(b) x - y = 0	(c) $xy = 0$	(d) None of the	se
173.	If the points $A(1, 4)$ and B are sy	mmetrical about the tangent t	o the circle $x^2 + y^2 - x + y = 0$ at the	e origin then coordina	ates of <i>B</i> are
	(a) (1, 2)	(b) $(\sqrt{2}, 1)$	(c) (4, 1)	(d) None of the	se
174.	A line parallel to the line $x - 3y$	= 2 touches the circle x^2 +	$y^2 - 4x + 2y - 5 = 0$ at the point		
	(a) $(1, -4)$	(b) (1, 2)	(c) $(3, -4)$	(d) (3, 2)	
175.	The possible values of p for which	the line $x \cos \alpha + y \sin \alpha =$	p is a tangent to the circle $x^2 + y^2$ -	$-2qx\cos\alpha - 2qy\sin\alpha$	$\alpha = 0$ is/are
	(a) 0 and a	(b) a and $2a$	(c) 0 and $2a$	(d) a	[SCRA, 1999]
176.	A circle passes through $(0, 0)$ and	(1, 0) and touches to the circ	the $x^2 + y^2 = 9$, then the centre of cir	cle is	[IIT 1992]
	(31)	$(1 \ 3)$	(1 1)	$(1, \sqrt{2})$	
	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(b) $\left(\frac{1}{2},\frac{1}{2}\right)$	(c) $\left(\frac{\overline{2}}{2}, \frac{\overline{2}}{2}\right)$	(d) $\left(\frac{1}{2}, \pm \sqrt{2}\right)$	
				Le	ngth of Tangent
		В	Casic Level		
177	The length of tangent from the po	pint (5, 1) to the circle $r^2 + r^2$	$y^2 + 6x - 4y - 3 = 0$ is		[MNR 1981]
1//.	(a) 81	(b) 29	(c) 7	(d) 21	
178.	Length of the tangent from $(x_1,,,,,,,, .$	y_1) to the circle $x^2 + y^2 + 2$	gx + 2fy + c = 0, is		[EAMCET 1980]
	(a) $(x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + e^{-2gx_1})$	$(2)^{1/2}$	(b) $(x_1^2 + y_1^2)^{1/2}$		
	(c) $[(x_1 + g)^2 + (y_1 + f)^2]^{1/2}$		(d) None of these		
179.	The length of the tangent from th	he point (4, 5) to the circle x^2	$+y^{2} + 2x - 6y = 6$ is		[DCE 1999]
	(a) $\sqrt{13}$ (b)	(b) $\sqrt{38}$	(c) $2\sqrt{2}$	(d) $2\sqrt{13}$	
180.	The square of the length of the ta	ngent from $(3, -4)$ on the circ	cle $x^2 + y^2 - 4x - 6y + 3 = 0$ is		[MP PET 2000]
	(a) 20 (a)	(b) 30	(c) 40	(d) 50	
181.	The length of the tangent from (0	0, 0) to the circle $2(x^2 + y^2)$	+x - y + 5 = 0 is		[EAMCET 1994]
	(a) $\sqrt{5}$	$\sqrt{5}$	(a) $\sqrt{2}$	(\mathbf{d}) 5	
	$(a) \mathbf{v} \\ \mathbf$	$\frac{1}{2}$	(\mathbf{C}) $\sqrt{2}$	(u) $\sqrt{\frac{1}{2}}$	
182.	The length of the tangent to the c	incle $x^2 + y^2 - 2x - y - 7 =$	0 from $(-1, -3)$ is	[]	Karnataka CET 1994]
	(a) 2	(b) $2\sqrt{2}$	(c) 4	(d) 8	
183.	A tangent is drawn to the circle	$2(x^2 + y^2) - 3x + 4y = 0 \text{ an}$	nd it touches the circle at point A. The	tangent passes throug	gh the point $P(2, 1)$.
	Then PA is equal to		—		
	(a) 4	(b) 2	(c) $2\sqrt{2}$	(d) None of the	se
184.	Lines are drawn through the point	It $P(-2, -3)$ to meet the circ	le $x^2 + y^2 - 2x - 10y + 1 = 0$. The l	ength of the line segn	nent PA, A being the
	(a) 16	The end of the circle at concident (b) $4\sqrt{2}$	points, is $(a) = \frac{48}{2}$	(d) None of the	20
	(a) 10	$(0) 4\sqrt{3}$	(C) 48	(d) None of the	
		Adu	vance Level		
185.	The coordinates of the poin	t from where the tangent	ts are drawn to the circles r^2	$+ y^2 = 1$, $r^2 + y^2$	+8x + 15 = 0 and
	$x^{2} + y^{2} + 10y + 24 = 0$ are of	same length, are		, ., j	[Roorkee 1982]

(a)
$$\left(2, \frac{5}{2}\right)$$
 (b) $\left(-2, -\frac{5}{2}\right)$ (c) $\left(-2, \frac{5}{2}\right)$ (d) $\left(2, -\frac{5}{2}\right)$

186. Length of the tangent drawn from any point on the circle $x^2 + y^2 + 2gx + 2fy + c_1 = 0$ to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is

				Circle and System of Circles 127
				[Kerala (Engg.) 2002]
	(a) $\sqrt{c_1 - c}$	(b) $\sqrt{c - c_1}$	(c) $\sqrt{c_1 + c}$	(d) None of these
87.	If <i>P</i> is a point such that the	ratio of the squares of the lengths of	of the tangents from P to the cire	cles $x^{2} + y^{2} + 2x - 4y - 20 = 0$ and
	$x^2 + y^2 - 4x + 2y - 44 =$	= 0 is $2:3$, then the locus of <i>P</i> is a	circle with centre	[EAMCET 2003]
	(a) $(7, -8)$	(b) (-7,8)	(c) (7, 8)	(d) $(-7, -8)$
88.	The lengths of the	tangents from any point	on the circle $15x^2 + 15$	$y^2 - 48x + 64y = 0$ to the two circles
	$5x^2 + 5y^2 - 24x + 32y + 32$	$-75 = 0, \ 5x^2 + 5y^2 - 48x + 64y$	+300 = 0 are in the ratio	
	(a) 1:2	(b) 2:3	(c) $3:4$	(d) None of these $2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 $
59.	If the squares of the leng	ths of the tangents from a point P	to the circles $x^2 + y^2 = a^2$,	$x^{2} + y^{2} = b^{2}$ and $x^{2} + y^{2} = c^{2}$ are in A. P.,
	(a) a, b, c are in $G.P$.	(b) <i>a, b, c</i> are in <i>A</i> . <i>P</i> .	(c) a^2, b^2, c^2 are in .	A.P. (d) a^2, b^2, c^2 are in <i>G.P</i> .
				Pair of Tangents to a Circle
		В	easic Level	
90.	A pair of tangents are draw	on from the origin to the circle x^2 +	$+y^{2} + 20(x + y) + 20 = 0$. The	e equation of the pair of tangents is
				[MP PET 1990]
	(a) $x^2 + y^2 + 10xy = 0$	(b) $x^2 + y^2 + 5xy = 0$	(c) $2x^2 + 2y^2 + 5xy$	$= 0 \qquad (d) 2x^2 + 2y^2 - 5xy = 0$
1.	The equations of the tangent	nts drawn from the origin to the circ	cle $x^2 + y^2 - 2rx - 2hy + h^2 =$	= 0 are
				[Roorkee 1989; IIT 1988; Rajasthan PET 1996]
	(a) $x = 0, y = 0$	(b) $(h^2 - r^2)x - 2rhy = 0$,	x = 0 (c) $y = 0, x = 4$	(d) $(h^2 - r^2)x + 2rhy = 0, x = 0$
2.	The equations of the tangent	nts drawn from the point (0, 1) to th	he circle $x^2 + y^2 - 2x + 4y = 0$) are [Roorkee 1979]
	(a) $2x - y + 1 = 0, x + 2$	2y-2=0	(b) $2x - y + 1 = 0, x$	+2y+2=0
	(c) $2x - y - 1 = 0, x + 2$	y - 2 = 0	(d) $2x - y - 1 = 0, x$	+2y+2=0
3.	The two tangents to a circle	e from an external point are always		[MP PET 1986]
	(a) Equal	(b) Perpendicular to each oth	her (c) Parallel to each oth	her (d) None of these
4.	The equation of pair of tan	gents to the circle $x^2 + y^2 - 2x + y^2$	4y + 3 = 0 from (6, -5), is	[AMU 1980]
	(a) $7x^2 + 23y^2 + 30xy$	+66x + 50y - 73 = 0	(b) $7x^2 + 23y^2 + 30$	xy - 66x - 50y - 73 = 0
	(c) $7x^2 + 23y^2 - 30xy$	-66x - 50y + 73 = 0	(d) None of these	
5.	Tangents drawn from origi	n to the circle $x^2 + y^2 - 2ax - 2by$	$y + b^2 = 0$ are perpendicular to	each other, if [MP PET 1995]
	(a) $a - b = 1$	(b) $a+b=1$	(c) $a^2 = b^2$	(d) $a^2 + b^2 = 1$
6.	The equation to the tangen	ts to the circle $x^2 + y^2 = 4$, which	are parallel to $x + 2y + 3 = 0$,	are [MP PET 2003]
	(a) $x - 2y = 2$	(b) $x + 2y = \pm 2\sqrt{3}$	(c) $x + 2y = \pm 2\sqrt{5}$	(d) $x - 2y = \pm 2\sqrt{5}$
7.	If $3x + y = 0$ is a tangent	to the circle with centre at the point	(2, -1), then the equation of th	e other tangent to the circle from the origin is [MN]
	(a) $x - 3y = 0$	(b) $x + 3y = 0$	(c) $3x - y = 0$	(d) 2x + y = 0
8.	The equation of a tangent t	o the circle $x^2 + y^2 = 25$ passing	through $(-2, 11)$ is	
	(a) $4x + 3y = 25$	(b) $3x + 4y = 38$	(c) $24x - 7y + 125 =$	0 (d) $7x + 24y = 230$
9.	Tangents drawn from the p	point (4, 3) to the circle $x^2 + y^2 - 2$	2x - 4y = 0 are inclined at an a	angle
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{2}$
	6	4	3	2
0.	The angle between the pair	of tangents from the point $(1, 1/2)$	to the circle $x^2 + y^2 + 4x + 2y$	v - 4 = 0 is
	4	4	2	

201.	The equation of the pair of t	tangents drawn from the poir	th (0, 1) to the circle $x^2 + y^2 = 1/4$ is	[Rajasthan PET 1998]
	(a) $x^2 - 3y^2 + y + 1 = 0$	(b) $x^2 - 3y^2 - y - 1 =$	= 0 (c) $3x^2 - y^2 + 2y + 1 =$	= 0 (d) $3x^2 - y^2 + 2y - 1 = 0$
			Advance Level	
202.	The angle between the two	tangents from the origin to th	ne circle $(x-7)^2 + (y+1)^2 = 25$ is	
				[MNR 1990; Rajasthan PET 1997; DCE 2000]
	(a) 0	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{2}$
203.	Tangents are drawn from the of contact is	the point $(4, 3)$ to the circle x	$y^2 + y^2 = 9$. The area of the triangle fo	rmed by them and the line joining their points [MP PET 1991; IIT 1981, 1987]
	(a) $\frac{24}{25}$	(b) $\frac{64}{25}$	(c) $\frac{192}{25}$	(d) $\frac{192}{5}$
204.	An infinite number of tange	ents can be drawn from (1, 2)	to the circle $x^2 + y^2 - 2x - 4y + \lambda =$	0, then $\lambda =$ [MP PET 1989]
	(a) – 20	(b) 0	(c) 5	(d) Cannot be determined
205.	The area of the triangle form	ned by the tangents from the	points (<i>h</i> , <i>k</i>) to the circle $x^2 + y^2 = a^2$	and the line joining their points of contact is [M
	(a) $a \frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$	(b) $a \frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$	(c) $\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$	(d) $\frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$
206.	Two tangents <i>PQ</i> and <i>PR</i> d of quadrilateral <i>PQCR</i> will	rawn to the circle $x^2 + y^2$ - be	-2x - 4y - 20 = 0 from point <i>P</i> (16, 7)	7). If the centre of the circle is <i>C</i> then the area [IIT 1981; MP PET 1994]
	(a) 75 sq. units	(b) 150 sq. units	(c) 15 sq. units	(d) None of these
207.	The tangents are drawn fro and radii, is	m the point (4, 5) to the circ	cle $x^2 + y^2 - 4x - 2y - 11 = 0$. The a	area of quadrilateral formed by these tangents [IIT 1985]
	(a) 15 sq. units	(b) 75 sq. units	(c) 8 sq. units	(d) 4 sq. units
208.	Tangents are drawn to the Possible coordinates of 'P' s	circle $x^2 + y^2 = 50$ from a so that area of triangle PP_1P_2	a point 'P' lying on the x-axis. These ta is minimum, is /are	ngents meet the y-axis at points P_1' and P_2' .
	(a) (10, 0)	(b) $(10\sqrt{2}, 0)$	(c) (-10, 0)	(d) $(-10\sqrt{2}, 0)$
209.	The angle between the tang	ents from α , β to the circle λ	$x^{2} + y^{2} = a^{2}$ is, (where $S_{1} = \alpha^{2} + \beta^{2}$	$(a^2 - a^2)$
	(a) $\tan^{-1}\left(\frac{a}{\sqrt{S_1}}\right)$	(b) $2 \tan^{-1} \left(\frac{a}{\sqrt{S_1}} \right)$	(c) $2 \tan^{-1} \left(\frac{\sqrt{S_1}}{a} \right)$	(d) None of these
				Normal and Condition of Normality
			Basic Level	
210.	The normal to the circle x^2	$x + y^2 - 3x - 6y - 10 = 0$ at	t the point $(-3, 4)$, is	[Rajasthan PET 1986, 89]
	(a) $2x + 9y - 30 = 0$	(b) $9x - 2y + 35 = 0$	(c) $2x - 9y + 30 = 0$	(d) $2x - 9y - 30 = 0$
211.	The equation of normal to the	he circle $2x^2 + 2y^2 - 2x - $	5y + 3 = 0 at (1, 1) is	[MP PET 2001]
	(a) $2x + y = 3$	(b) $x - 2y = 3$	(c) $x + 2y = 3$	(d) None of these
212.	The normal at the point $(3, 4)$	4) on a circle cuts the circle a	at the point $(-1, -2)$. Then the equation	of the circle is [Orissa JEE 2002]
	(a) $x^2 + y^2 + 2x - 2y - 1$	13 = 0	(b) $x^2 + y^2 - 2x - 2y - 2y - 2y - 2y - 2y - 2y - 2$	-11 = 0
	(c) $x^2 + y^2 - 2x + 2y + 1$	2 = 0	(d) $x^2 + y^2 - 2x - 2y + y^2 - 2x $	+14 = 0
213.	The line $\lambda x + \mu y = 1$ is a 1	normal to the circle $2x^2 + 2$	$y^2 - 5x + 6y - 1 = 0$ if	

				Circle and System of Ci	ircles 129
	(a) $5\lambda - 6\mu = 2$	(b) $4+5\mu=6\lambda$	(c) $4+6\mu=5\lambda$	(d) None of these	
214.	The equation of a normal to	the circle $x^2 + y^2 + 6x + 8y$	+1 = 0 passing through (0, 0) is	[Rajasth	an PET 1986]
	(a) $3x + 4y = 0$	(b) 3x - 4y = 0	(c) $4x - 3y = 0$	(d) 4x + 3y = 0	
215.	The equation of the normal	at the point $(4, -1)$ of the circle	$x^{2} + y^{2} - 40x + 10y = 153$ is	[Rajasth	an PET 1989]
	(a) $x + 4y = 0$	(b) $x - 4y = 0$	(c) $4x + y = 3$	(d) 4x - y = 0	
216.	The equation of the normal	to the circle $x^2 + y^2 - 4x + 6y$	y = 0 at (0, 0) is	[Rajasth	an PET 1992]
	(a) $3x - 2y = 0$	(b) 2x - 3y = 0	(c) 3x + 2y = 0	(d) 2x + 3y = 0	
			Advance Level		
217.	The area of triangle formed	by the tangent, normal drawn a	t $(1,\sqrt{3})$ to the circle $x^2 + y^2 = 4$ and IIIT 1989: Bais	positive x-axis, is	ra CFF 1998]
	(a) $2\sqrt{3}$	(b) $\sqrt{3}$	(c) $4\sqrt{3}$	(d) None of these	
218.	y - x + 3 = 0 is the equation	on of normal at $\left(3 + \frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$	to which of the following circles	[1	Roorkee 1990]
	(a) $\left(x-3-\frac{3}{\sqrt{2}}\right)^2 + \left(y-\frac{3}{\sqrt{2}}\right)^2$	$-\frac{\sqrt{3}}{2}\bigg)^2 = 9$	(b) $\left(x-3-\frac{3}{\sqrt{2}}\right)^2 + y^2 =$	6	
	(c) $(x-3)^2 + y^2 = 9$		(d) $(x-3)^2 + (y-3)^2 = 9$		
219.	The line $ax + by + c = 0$ is	s normal to the circle $x^2 + y^2 =$	$=r^2$. The portion of the line $ax + by + a$	c = 0 intercepted by this circle	is of length
	(a) <i>r</i>	(b) r^2	(c) 2 <i>r</i>	(d) \sqrt{r}	
220.	If the straight line $ax + by$ <i>a</i> and <i>b</i> are respectively	= 2; $a, b \neq 0$ touches the circle	$x^2 + y^2 - 2x = 3$ and is normal to the	circle $x^2 + y^2 - 4y = 6$ then	the values of Roorkee 2000]
	(a) 1, – 1	(b) 1, 2	(c) $-\frac{4}{3}$, 1	(d) 2, 1	
221.	The number of feet of norm	als from the point $(7, -4)$ to the	e circle $x^2 + y^2 = 5$ is		

(a) 1 (b) 2 (c) 3 (d) 4

Equation of the Chord **Basic Level 222.** If (a, b) is a point on the chord AB of the circle, where the ends of the chord are A = (2, -3) and B = (3, 2) then (a) $a \in [-3, 2], b \in [2, 3]$ (b) $a \in [2, 3], b \in [-3, 2]$ (c) $a \in [-2, 2], b \in [-3, 3]$ (d) None of these **223.** The equation of the circle with the chord y = 2x of the circle $x^2 + y^2 - 10x = 0$ as its diameter is (a) $x^2 + y^2 - 2x - 4y - 5 = 0$ (b) $x^2 + y^2 = 2x + 4y$ (c) $x^2 + y^2 = 4x + 2y$ (d) None of these 224. The radius of the circle, having centre at (2, 1), whose one of the chord is a diameter of the circle $x^{2} + y^{2} - 2x - 6y + 6 = 0$ [IIT Screening 2004] (d) $\sqrt{3}$ (a) 1 (b) 2 (c) 3 Advance Level **225.** The equation of the chord of the circle $x^2 + y^2 = 25$ of length 8 that passes through the point $(2\sqrt{3}, 2)$ and makes an acute angle with the positive direction of the *x*-axis is (b) $(4\sqrt{3} + 3\sqrt{7})x - 3y = 18 + 6\sqrt{21}$ (a) $(4\sqrt{3} - 3\sqrt{7})x + 3y = 18 - 6\sqrt{21}$ (c) $(4\sqrt{3} + 3\sqrt{7})x - 3y + 18 + 6\sqrt{21} = 0$ (d) None of these **226.** $P(\sqrt{2}, \sqrt{2})$ is a point on the circle $x^2 + y^2 = 4$ and Q is another point on the circle such that arc $PQ = \frac{1}{4} \times \text{circumference.}$ The coordinates of Q are (c) $(-\sqrt{2}, \sqrt{2})$ (b) $(\sqrt{2}, -\sqrt{2})$ (a) $(-\sqrt{2}, -\sqrt{2})$ (d) None of these **227.** If a line passing through the point $(-\sqrt{8}, \sqrt{8})$ and making an angle 135° with x-axis cuts the circle $x = 5 \cos \theta$, $y = 5 \sin \theta$ at points *A* and *B*, then length of the chord *AB* is [Bihar CEE 1999] (a) 10 (d) $2\sqrt{5}$ (b) 20 (c) 5 **228.** Equation of chord *AB* of circle $x^2 + y^2 = 2$ passing through *P* (2, 2) such that *PB/PA* = 3, is given by (c) $y-2 = \sqrt{3} (x-2)$ (a) x = 3y(d) None of these (b) x = y**229.** If a chord of the circle $x^2 + y^2 = 8$ makes equal intercepts of length *a* on the coordinate axes, then (b) $|a| < 4\sqrt{2}$ (a) | *a* | < 8 (c) |a| < 4(d) |a| > 4**Chord of Contact Basic Level**

230. The distance between the chords of contact of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (*g*, *f*) is

(a)
$$g^2 + f^2$$
 (b) $\frac{1}{2}(g^2 + f^2 + c)$ (c) $\frac{1}{2} \cdot \frac{g^2 + f^2 + c}{\sqrt{g^2 + f^2}}$ (d) $\frac{1}{2} \cdot \frac{g^2 + f^2 - c}{\sqrt{g^2 + f^2}}$

231. If the straight line x - 2y + 1 = 0 intersects the circle $x^2 + y^2 = 25$ in points *P* and *Q*, then the coordinates of the point of intersection of tangents drawn at *P* and *Q* to the circle $x^2 + y^2 = 25$ are (a) (25, 50) (b) (-25, -50) (c) (-25, 50) (d) (25, -50)

244.	The locus of the middle is	points of chords of the circle	$x^2 + y^2 - 2x - 6y - 10 = 0 \text{wl}$	hich passes through the origin, [Roorkee 1989]
	(a) $x^2 + y^2 + x + 3y = 0$	(b) $x^2 + y^2 - x + 3y = 0$	(c) $x^2 + y^2 + x - 3y = 0$	(d) $x^2 + y^2 - x - 3y = 0$
245.	The locus of mid-point of is	the chords of the circle $x^2 + y^2$	$x^{2} - 2x - 2y - 2 = 0$ which mak	es an angle of 120° at the centre [MNR 1994]
	(a) $x^2 + y^2 - 2x - 2y + 1 =$	0	(b) $x^2 + y^2 + x + y - 1 = 0$	
	(c) $x^2 + y^2 - 2x - 2y - 1 =$	0	(d) None of these	
246.	If the equation of a g 3x + 4y - 15 = 0 is	iven circle is $x^2 + y^2 = 36$, t	hen the length of the cho	ord which lies along the line
	(a) $3\sqrt{6}$	(b) $2\sqrt{3}$	(c) $6\sqrt{3}$	(d) None of these
247.	The locus of the mid-poi	nts of a chord of the circle x^2	$+y^2 = 4$ which subtends a r	right angle at the origin is
	(a) $x + y = 2$	(b) $x^2 + y^2 = 1$	(c) $x^2 + y^2 = 2$	(d) $x + y = 1$
248.	The equation of the locu	s of the middle point of a cho	rd of the circle $x^2 + y^2 = 2(x)$	(x + y) such that the pair of lines
	joining the origin to the	point of intersection of the ch	ord and the circle are equa	lly inclined to the <i>x</i> -axis is
	(a) $x + y = 2$	(b) $x - y = 2$	(c) $2x - y = 1$	(d) None of these
249.	The locus of the mid-poi	nt of chords of length 2 <i>l</i> of the	e circle $x^2 + y^2 = a^2$ is	[Rajasthan PET 1998]
	(a) $x^2 + y^2 = l^2 - a^2$	(b) $x^2 + y^2 = l^2 + a^2$	(c) $x^2 + y^2 = a^2 - 2l^2$	(d) $x^2 + y^2 = a^2 - l^2$
			Diameter of a	Circle and Director Circle
		Basic	Level	
250.	The equation of the dire	ctor circle of the circle $x^2 + y^2$	$2^{2} = 16$ is	
250.	The equation of the dire (a) $x^2 + y^2 = 8$	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$	(d) $x^2 + y^2 = 4$
250. 251.	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ r of the circle $2(x^2 + y^2) + 3x + 3x^2$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of	(d) $x^2 + y^2 = 4$ k is
250. 251.	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$	ctor circle of the circle $x^{2} + y^{2}$ (b) $x^{2} + y^{2} = 32$ r of the circle $2(x^{2} + y^{2}) + 3x + (b) - 1/2$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1	(d) $x^{2} + y^{2} = 4$ <i>k</i> is (d) - 1
250. 251. 252.	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diam	ctor circle of the circle $x^{2} + y^{2}$ (b) $x^{2} + y^{2} = 32$ or of the circle $2(x^{2} + y^{2}) + 3x + (b) - 1/2$ neter of the circle $x^{2} + y^{2} - 2x + (b) - 1/2$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the	(d) $x^{2} + y^{2} = 4$ <i>k</i> is (d) - 1 origin is [Rajasthan PET 1991] (d) 2x = 0
250. 251. 252.	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diam (a) $x + 2y = 0$ The locus of the point of	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ meter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$	(d) $x^{2} + y^{2} = 4$ <i>k</i> is (d) - 1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^{2} = a^{2}$ is [MNP 1087]
250. 251. 252. 253.	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diam (a) $x + 2y = 0$ The locus of the point of (a) A circle passing three	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ meter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$ intersection of perpendicular rugh origin	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$ trangents to the circle $x^{2} + (b)$	(d) $x^{2} + y^{2} = 4$ <i>i k</i> is (d) - 1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^{2} = a^{2}$ is [MNR 1987] A circle of radius 2 <i>a</i>
250. 251. 252. 253.	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diam (a) $x + 2y = 0$ The locus of the point of (a) A circle passing three (c) A concentric circle of	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ neter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$ Tintersection of perpendicular hugh origin f radius $\sqrt{2} a$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$ trangents to the circle $x^{2} + (b)$ (d) None of these	(d) $x^{2} + y^{2} = 4$ <i>k</i> is (d) - 1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^{2} = a^{2}$ is [MNR 1987] A circle of radius 2a
 250. 251. 252. 253. 254. 	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diam (a) $x + 2y = 0$ The locus of the point of (a) A circle passing thread (c) A concentric circle of The equation of director	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ neter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$ Tintersection of perpendicular bugh origin f radius $\sqrt{2} a$ circle of the circle $x^2 + y^2 = a$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$ tangents to the circle $x^{2} + (b)$ (d) None of these x^{2} , is	(d) $x^{2} + y^{2} = 4$ (d) - 1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^{2} = a^{2}$ is [MNR 1987] A circle of radius 2a [Ranchi BIT 1990]
250. 251. 252. 253. 253.	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diam (a) $x + 2y = 0$ The locus of the point of (a) A circle passing three (c) A concentric circle of The equation of director (a) $x^2 + y^2 = 4a^2$	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ neter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$ Tintersection of perpendicular hugh origin f radius $\sqrt{2} a$ circle of the circle $x^2 + y^2 = a$ (b) $x^2 + y^2 = \sqrt{2} a^2$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$ trangents to the circle $x^{2} + (b)$ (d) None of these x^{2} , is (c) $x^{2} + y^{2} - 2a^{2} = 0$	(d) $x^{2} + y^{2} = 4$ <i>k</i> is (d) - 1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^{2} = a^{2}$ is [MNR 1987] A circle of radius 2a [Ranchi BIT 1990] (d) None of these
250. 251. 252. 253. 254.	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diam (a) $x + 2y = 0$ The locus of the point of (a) A circle passing three (c) A concentric circle of The equation of director (a) $x^2 + y^2 = 4a^2$	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ neter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$ intersection of perpendicular ough origin of radius $\sqrt{2}a$ circle of the circle $x^2 + y^2 = a$ (b) $x^2 + y^2 = \sqrt{2}a^2$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$ trangents to the circle $x^{2} + (b)$ (d) None of these x^{2} , is (c) $x^{2} + y^{2} - 2a^{2} = 0$ e Level	(d) $x^{2} + y^{2} = 4$ (d) -1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^{2} = a^{2}$ is [MNR 1987] A circle of radius 2a [Ranchi BIT 1990] (d) None of these
 250. 251. 252. 253. 254. 255. 	The equation of the direction $(a) x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diameter (a) $x + 2y = 0$ The locus of the point of (a) A circle passing thread (c) A concentric circle of The equation of director (a) $x^2 + y^2 = 4a^2$ The equation of the director (b) $2x + 3y = 12$ is	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ meter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$ F intersection of perpendicular ough origin of radius $\sqrt{2} a$ circle of the circle $x^2 + y^2 = a$ (b) $x^2 + y^2 = \sqrt{2} a^2$ Advance iameter of the circle $3(x^2 - a)$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$ trangents to the circle $x^{2} + (b)$ (d) None of these x^{2} , is (c) $x^{2} + y^{2} - 2a^{2} = 0$ e Level $+y^{2}) - 2x + 6y - 9 = 0$ which	(d) $x^2 + y^2 = 4$ <i>i k</i> is (d) - 1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^2 = a^2$ is [MNR 1987] A circle of radius 2 <i>a</i> [Ranchi BIT 1990] (d) None of these is perpendicular to the line
 250. 251. 252. 253. 254. 255. 	The equation of the dire (a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diam (a) $x + 2y = 0$ The locus of the point of (a) A circle passing three (c) A concentric circle of The equation of director (a) $x^2 + y^2 = 4a^2$ The equation of the director (a) $3x - 2y = 3$	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ neter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$ F intersection of perpendicular ough origin of radius $\sqrt{2} a$ circle of the circle $x^2 + y^2 = a$ (b) $x^2 + y^2 = \sqrt{2} a^2$ Advance iameter of the circle $3(x^2 - (b) - 3x - 2y + 1) = 0$	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$ tangents to the circle $x^{2} + (b)$ (d) None of these x^{2} , is (c) $x^{2} + y^{2} - 2a^{2} = 0$ e Level $+y^{2}) - 2x + 6y - 9 = 0$ which (c) $3x - 2y = 9$	(d) $x^2 + y^2 = 4$ <i>i k</i> is (d) - 1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^2 = a^2$ is [MNR 1987] A circle of radius 2 <i>a</i> [Ranchi BIT 1990] (d) None of these is perpendicular to the line (d) None of these
 250. 251. 252. 253. 254. 255. 255. 256. 	The equation of the direction $(a) x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$ The equation of the diameter (a) $x + 2y = 0$ The locus of the point of (a) A circle passing three (c) A concentric circle of The equation of director (a) $x^2 + y^2 = 4a^2$ The equation of the director (a) $3x - 2y = 3$ A point on the line $x = 3$	ctor circle of the circle $x^2 + y^2$ (b) $x^2 + y^2 = 32$ er of the circle $2(x^2 + y^2) + 3x + (b) - 1/2$ neter of the circle $x^2 + y^2 - 2x + (b) x - 2y = 0$ Fintersection of perpendicular ough origin of radius $\sqrt{2} a$ circle of the circle $x^2 + y^2 = a$ (b) $x^2 + y^2 = \sqrt{2} a^2$ Hiameter of the circle $3(x^2 - (b) 3x - 2y + 1) = 0$ from which the tangents draw	$x^{2} = 16$ is (c) $x^{2} + y^{2} = 64$ 4y - 1 = 0, then the value of (c) 1 -4y = 0 passing through the (c) $2x + y = 0$ tangents to the circle $x^{2} + (b)$ (d) None of these x^{2} , is (c) $x^{2} + y^{2} - 2a^{2} = 0$ e Level $+y^{2}) - 2x + 6y - 9 = 0$ which (c) $3x - 2y = 9$ wn to the circle $x^{2} + y^{2} = 8$	(d) $x^2 + y^2 = 4$ <i>k</i> is (d) - 1 origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $y^2 = a^2$ is [MNR 1987] A circle of radius 2a [Ranchi BIT 1990] (d) None of these is perpendicular to the line (d) None of these are at right angles is

				Pole and Polar w.r.t. a Circle
		В	asic Level	
257.	The coordinates of po	ble of line $lx + my + n = 0$ wit	h respect to circle $x^2 + y^2 =$	l, is [Rajasthan PET 1987]
	(a) $\left(\frac{l}{n}, \frac{m}{n}\right)$	(b) $\left(-\frac{l}{n},-\frac{m}{n}\right)$	(c) $\left(\frac{l}{n},-\frac{m}{n}\right)$	(d) $\left(-\frac{l}{n},\frac{m}{n}\right)$
258.	The equation of pola	of the point (1, 2) with res	spect to the circle $x^2 + y^2 = 7$	7, is [MNR 1973; Rajasthan PET 1983, 84]
	(a) $x - 2y - 7 = 0$	(b) $x + 2y - 7 = 0$	(c) $x - 2y = 0$	(d) $x + 2y = 0$
59 .	If polar of a circle x^2	$+y^2 = a^2$ with respect to (x	x', y') is $Ax + By + C = 0$, then	n its pole will be[Rajasthan PET 1984, 95]
	(a) $\left(\frac{a^2A}{-C}, \frac{a^2B}{-C}\right)$	(b) $\left(\frac{a^2A}{C}, \frac{a^2B}{C}\right)$	(c) $\left(\frac{a^2C}{A}, \frac{a^2C}{B}\right)$	(d) $\left(\frac{a^2C}{-A}, \frac{a^2C}{-B}\right)$
60.	Polar of origin (0, 0)	with respect to the circle <i>x</i>	$x^2 + y^2 + 2\lambda x + 2\mu y + c = 0$ touc	thes circle $x^2 + y^2 = r^2$ if [Rajasthan PET 1
	(a) $c = r(\lambda^2 + \mu^2)$	(b) $r = c(\lambda^2 + \mu^2)$	(c) $c^2 = r^2 (\lambda^2 + \mu^2)$	(d) $r^2 = c^2 (\lambda^2 + \mu^2)$
61.	The polar of the poin	t (5. $-1/2$) w.r.t. circle (x - 2)	$(2)^2 + v^2 = 4$ is	[Raiasthan PET 1996]
	(a) $5x - 10y + 2 = 0$	(b) $6x - y - 20 = 0$	(c) $10x - y - 10 = 0$	(d) $x - 10y - 2 = 0$
62.	The pole of the line 2	$2x + 3y = 4$ w.r.t. circle $x^2 + 3y = 4$	$v^2 = 64$ is	[Raiasthan PET 1996]
	(a) (32, 48)	(b) (48, 32)	(c) (- 32, 48)	(d) (48, - 32)
63.	The pole of the straig	the $x + 2y = 1$ with respectively.	ect to the circle $x^2 + y^2 = 5$	is [Rajasthan PET 2000, 01]
	(a) (5, 5)	(b) (5, 10)	(c) (10, 5)	(d) (10, 10)
64.	The polars drawn fro	m (- 1, 2) to the circles S_1 =	$\equiv x^2 + y^2 + 6y + 7 = 0$ and S_2	$y_2 \equiv x^2 + y^2 + 6x + 1 = 0$, are[Rajasthan PET]
	(a) Parallel	(b) Equal	(c) Perpendicular	(d) Intersect at a point
65.	Let the equation of a	circle be $x^{2} + y^{2} = a^{2}$. If h^{2}	$+k^2-a^2<0$ then the line <i>h</i> .	$x + ky = a^2$ is the
	(a) Polar line of the	point (<i>h, k</i>) with respect to	the circle (b)	Real chord of contact of the
ange	ents from (h, k) to the	circle		
66	(c) Equation of a tan	gent to the circle from the	point (n, κ)	(d) None of these
00.	The pole of the line $\frac{1}{2}$	(x + 3y = 50) with respect to $(x + 3y) = (x + 3y)$	(2) (12, 16)	$\begin{bmatrix} \text{Rajastnan PEI 1993} \end{bmatrix}$
67	(a) $(10, 12)$	(0) (-10, 12)	(c) (12, 10) respect to the circle $(r = 1)^2$	$(u) (-10, -12)^2$
07.	(a) $3r + 2v = 7$	(b) $3r + 2v + 8 = 0$	(c) $3x - 2y = 8$	(d) 7x + 5y = 8
68.	The chord of contact	and polar of a circle with re	espect to a point are coincid	lent iff[MP PET 1084: BIT Ranchi 1000]
	(a) The point is insid	le the circle	(b)	The point is outside the
ircle	2			
	(c) The point is not i	nside the circle	(d) Never	
69.	The pole of the line 9	0x + 4y = 28 with respect to t	the circle $x^2 + y^2 = 16$ is	[Rajasthan PET 1994]
	(a) (36/7, 9/7)	(b) (36/7, 16/7)	(c) (16/7, 36/7)	(d) None of these
70.	The polar of the poin	t (- 2, 3) w.r.t. the circle x^2	$x^2 + y^2 - 4x - 6y + 5 = 0$ is	[Rajasthan PET 1996; EAMCET 1996]
	(a) $x = 0$	(D) $y = 0$	(c) $x = 1$	(a) $y = 1$
471.	It the pole of a line w	<i>x.r.t.</i> the circle $x^2 + y^2 = c^2$	lies on the circle $x^2 + y^2 = 9$	c^2 , then that line will touch[Rajasthan P
	(a) $x^2 + y^2 = 4c^2$	(b) $x^2 + y^2 = c^2/9$	(c) $x^2 + y^2 = c^2/4$	(d) $x^2 + y^2 = 2c^2$

272. If the polar of a point (*p*, *q*) with respect to the circle $x^2 + y^2 = a^2$ touches the circle $(x - c)^2 + (y - d)^2 = b^2$, then

(b) $b^2 (p^2 + q^2) = (a^2 - cq - dp)^2$

System of Cricles

- (a) $b^2 (p^2 + q^2) = (a^2 cp qd)^2$
- (c) $a^2 (p^2 + q^2) = (b^2 cp dq)^2$ (d) None of these

273. The equation of a circle is $x^2 + y^2 - 4x + 2y - 4 = 0$. With respect to the circle

- (a) The pole of the line x 2y + 5 = 0 is (1, 1)
- (b) The chord of contact of real tangents from (1, 1) is the line x 2y + 5 = 0
- (c) The polar of the point (1, 1) is x 2y + 5 = 0
- (d) None of these

Basic Level 274. If *d* is the distance between the centres of two circles, r_1 , r_2 are their radii and $d = r_1 + r_2$, then [MP PET 1986] (a) The circles touch each other externally (b) The circles touch each other internally (c) The circles cut each other (d) The circles are disjoint **275.** The points of intersection of the circles $x^2 + y^2 = 25$ and $x^2 + y^2 - 8x + 7 = 0$ are [MP PET 1988] (a) (4, 3) and (4, -3) (b) (4, -3) and (-4, -3)(c) (-4, 3) and (4, 3) (d) (4, 3) and (3, 4) **276.** Circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$ [MP PET 1990] (a) Touch internally (b) Touch externally (c) Intersect each other at two distinct points (d) Do not intersect each other at any point **277.** For the given circles $x^2 + y^2 - 6x - 2y + 1 = 0$ and $x^2 + y^2 + 2x - 8y + 13 = 0$, which of the following is true[MP PET 1989] (a) One circle lies inside the other One circle lies completely (b) outside the other (c) Two circle intersect in two points (d) They touch each other **278.** The two circles $x^2 + y^2 - 4y = 0$ and $x^2 + y^2 - 8y = 0$ [Ranchi BIT 1985] (a) Touch each other internally Touch each other externally (b) (c) Do not touch each other None of these (d) **279.** Circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$ [IIT 1973] (a) Touch each other internally Touch each other externally (b) (c) Cuts each other at two points (d) None of these **280.** A tangent to the circle $x^2 + y^2 = 5$ at the point (1, - 2) to the circle $x^2 + y^2 - 8x + 6y + 20 = 0$ [IIT 1975] (b) Cuts at real points (c) Cuts at imaginary points (d) (a) Touches None of these **281.** If the circles $x^{2} + y^{2} - 9 = 0$ and $x^{2} + y^{2} + 2ax + 2y + 1 = 0$ touch each other, then a = [Roorkee 1998] (a) - 4/3 (b) 0 (c) 1 (d) 4/3 **282.** The equation of the circle through the point of intersection of the circles $x^2 + y^2 - 8x - 2y + 7 = 0$, $x^{2} + y^{2} - 4x + 10y + 8 = 0$ and (3, - 3) is [AI CBSE 1981] (a) $23x^2 + 23y^2 - 156x + 38y + 168 = 0$ (b) $23x^2 + 23y^2 + 156x + 38y + 168 = 0$ (c) $x^2 + y^2 + 156x + 38y + 168 = 0$ (d) None of these

283.	The locus of the centre of the u avia is given by the	of a circle which touches extended	ernally the circle $x^2 + y^2 - 6$	6x - 6y + 14 = 0 and also touches
	(a) $r^2 = 6r = 10v + 14 = 0$	(b) $r^2 = 10r = 6r + 14 = 0$	(c) $v^2 - 6r - 10v + 14 = 0$	(d) $v^2 = 10r = 6v + 14 = 0$
284	(a) $x^{2} + y^{2} + 2ax + 2bx$	$-0 \text{ and } x^2 + y^2 + 2x^2 x + 2x^2 y = 0$	(c) y 0x 10y + 14 = 0	$(\mathbf{u}) \mathbf{y} 10 \mathbf{x} 0 \mathbf{y} + 14 = 0$
204.	(a) $f'a = a'f$	= 0 and $x' + y' + 2g' x + 2j' y = 0$ (b) $fa - f'a'$	(c) $f'a' + fa = 0$	(d) $f'a + a'f = 0$
285	(a) $\int g = g f$ The circle passing through	(b) $\int g = \int g$	(c) $\int g + Jg = 0$	(u) jg + gj = 0
205.	(a) $S + \lambda P = 0$	(b) $S - \lambda P = 0$	(c) $\lambda S + P = 0$	(d) $P - \lambda S = 0$
286.	The two circles $x^2 + y^2 - $	$2x - 3 = 0$ and $x^2 + y^2 - 4x - 6y$	y-8=0 are such that	[MNR 1995]
	(a) They touch each othe	er (b)	They intersect each other	(c) One lies inside the other(d)
287.	Consider the circles x^2 +	$(y-1)^2 = 9, (x-1)^2 + y^2 = 25.$ T	hey are such that	[EAMCET 1994]
	(a) These circles touch e	each other	(b) One of these circles lie	es entirely inside the other
	(c) Each of these circles	lies outside the other	(d) They intersect in two	points
288.	Find the equation of the circle $x^2 + y^2 - 2x - 6y + 6y$	circle passing through the point $5 = 0$ and the line $3x + 2y - 5 = 0$	oint (– 2, 4) and through t 0	he points of intersection of the [Raiasthan PET 1996]
	(a) $r^2 + v^2 + 2r - 4v - 4 =$	- 0	(b) $x^2 + y^2 + 4x - 2y - 4 = 0$	
	(c) $x^2 + y^2 - 3x - 4y = 0$	•	(d) $x^2 + y^2 - 4x - 2y = 0$	
- 0 -	(c) $x + y = 3x - 4y = 0$	$x^{2} + x^{2} = 10x + 1 = 0$ to the end	(u) $x + y = 4x - 2y = 0$	
289.	If the circles $x + y = 4$,	$x + y - 10x + \lambda = 0$ touch extended	ernally, then λ is equal to	[AMU 1999]
	(a) - 16	(b) 9 (c) $2^{2} + (-+)^{2} + 2^{2} + \frac{1}{2}$	(C) 16	(d) 25
290.	The condition that the ci	rcle $(x-3)^2 + (y-4)^2 = r^2$ files e	entirely within the circle x^2	$+y^2 = R^2$, 1S [AMU 1999]
	(a) $R + r \le 7$	(b) $R^2 + r^2 < 49$	(c) $R^2 - r^2 < 25$	(d) $R - r > 5$
291.	If the centre of a circle	which passing through the p	oints of intersection of the	e circles $x^2 + y^2 - 6x + 2y + 4 = 0$
	and $x^2 + y^2 + 2x - 4y - 6 =$	= 0 is on the line $y = x$, then the theorem is the set of the	ne equation of the circle is [Rajasthan PET 1991; Roorkee 1989]
	(a) $7x^2 + 7y^2 - 10x + 10y - 10x + 10y - 10y $	-11 = 0	(b) $7x^2 + 7y^2 + 10x - 10y $	2 = 0
	(c) $7x^2 + 7y^2 - 10x - 10y $	-12 = 0	(d) $7x^2 + 7y^2 - 10x - 12 = 0$	
292.	The equation of a circ	cle passing through points	of intersection of the cir	cles $x^2 + y^2 + 13x - 3y = 0$ and
	$2x^2 + 2y^2 + 4x - 7y - 25 = 0$	0 and point (1, 1), is	[1	lajasthan PET 1988, 89; IIT 1983]
	(a) $4x^2 + 4y^2 - 30x - 10y$	-25 = 0	(b) $4x^2 + 4y^2 + 30x - 13y - $	25 = 0
	(c) $4x^2 + 4y^2 - 17x - 10y$	+25 = 0	(d) None of these	
293.	The equation of circle pa	usses through the points of int	tersection of circles $x^2 + y^2$	$-6x + 8 = 0$ and $x^2 + y^2 = 6$ and
	point (1, 1) is		[Rajasthan P	FT 1088. HT 1080. MP PFT 2002]
	(a) $x^2 + y^2 - 6x + 4 = 0$	(b) $x^2 + y^2 - 3x + 1 = 0$	(c) $x^2 + y^2 - 4y + 2 = 0$	(d) None of these
294.	The equation of the ci	rcle having its centre on th	the line $x + 2y - 3 = 0$ and $y = 0$	passing through the points of
	intersection of the circle	es $x^2 + y^2 - 2x - 4y + 1 = 0$ and .	$x^{2} + y^{2} - 4x - 2y + 4 = 0$, is	[MNR 1992]
	(a) $x^2 + y^2 - 6x + 7 = 0$	(b) $x^2 + y^2 - 3y + 4 = 0$	(c) $x^2 + y^2 - 2x - 2y + 1 = 0$	(d) $x^2 + y^2 + 2x - 4y + 4 = 0$
295.	A circle of radius 5 touch	hes another circle $x^2 + y^2 - 2x$	-4y-20 = 0 at (5, 5), then	its equation is [IIT 1979]
	(a) $x^2 + y^2 + 18x + 16y + 1$	20 = 0	(b) $x^2 + y^2 - 18x - 16y + 120$	=0
	(c) $x^2 + y^2 - 18x + 16y + 12$	20 = 0	(d) None of these	

296.	The points of intersection of circles $x^2 + y^2 = 2ax$ and	$x^2 + y^2 = 2by$ are	[AMU 2000]
	(a) (0, 0), (a, b) (b) (0, 0), $\left(\frac{2ab^2}{a^2+b^2}, \frac{2ba^2}{a^2+b^2}\right)$)(c) (0, 0), $\left(\frac{a^2+b^2}{a^2}, \frac{a^2+b^2}{b^2}\right)$	$\left(d \right)$ None of these
297.	The equation of the circle which passes the $2x^2 + 2y^2 + 4x - 7y - 25 = 0$ and whose centre lies on 13	rough the intersection $x + 30y = 0$	of $x^2 + y^2 + 13x - 3y = 0$ and [DCE 2001]
	(a) $x^2 + y^2 + 30x - 13y - 25 = 0$	(b) $4x^2 + 4y^2 + 30x - 13y - 2$	5 = 0
	(c) $2x^2 + 2y^2 + 30x - 13y - 25 = 0$	(d) $x^2 + y^2 + 30x - 13y + 25 =$	= 0
298.	The two circles $x^2 + y^2 - 2x + 6y + 6 = 0$ and $x^2 + y^2 - 5x$	+6y + 15 = 0	[Karnataka CET 2001]
299.	(a) Intersect (b) Are concentric The equation of the circle passing through (1, $x^{2} + y^{2} - 6x + 8y - 16 = 0$, $x^{2} + y^{2} + 4x - 2y - 8 = 0$ is	(c) Touch internally - 3) and the points c	(d) Touch externally common to the two circles
	(a) $x^2 + y^2 - 4x + 6y + 24 = 0$	(b) $2x^2 + 2y^2 + 3x + y - 20 =$	0
	(c) $3x^2 + 3y^2 - 5x - 7y - 19 = 0$	(d) None of these	
300.	The circles whose equations are $x^2 + y^2 + c^2 = 2ax$ and	$x^2 + y^2 + c^2 = 2by$ will touch	one another externally if
	(a) $\frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a^2}$ (b) $\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{b^2}$	(c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$	(d) None of these
301.	The equation of the circle and its chord are respective	ely $x^2 + y^2 = a^2$ and $x \cos \alpha + $	$y \sin \alpha = p$. The equation of the
	circle of which this chord is a diameter is		
	(a) $x^2 + y^2 - 2px \cos \alpha - 2py \sin \alpha + 2p^2 - a^2 = 0$	(b) $x^2 + y^2 - 2px \cos \alpha - 2py$	$y\sin\alpha + p^2 - a^2 = 0$
	(c) $x^2 + y^2 + 2px \cos \alpha + 2py \sin \alpha + 2p^2 - a^2 = 0$	(d) None of these	
302.	The two circles $x^2 + y^2 - 5 = 0$ and $x^2 + y^2 - 2x - 4y - 15$	= 0	
	(a) Touch each other externally	(b)	Touch each other internally
	(c) Cut each other orthogonally	(d)	Do not intersect
303.	The circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and $x^2 + y^2 + 4x + 6$	y + 4 = 0	[EAMCET 1991]
	(a) Touch externally (b) Touch internally $\frac{2}{2}$	(c) Intersect at two points 2^{2}	(d) Do not intersect
304.	The equations of two circles are $x^2 + y^2 - 26y + 25 = 0$ and (a). They touch each other	and $x^2 + y^2 = 25$ then	They gut each other
ortho	gonally	(0)	They cut each other
	(c) One circle is inside the other circle	(d) None of these	
305.	The equation of a circle C_1 is $x^2 + y^2 - 4x - 2y - 11 = 0$.	A circle C_2 of radius 1 rol	lls on the outside of the circle
	$C_1.$ The locus of the centre of $\ C_2$ has the equation		[MP PET 2003]
	(a) $x^2 + y^2 - 4x - 2y - 20 = 0$	(b) $x^2 + y^2 + 4x + 2y - 20 = 0$)
	(c) $x^2 + y^2 - 3x - y - 11 = 0$	(d) None of these	
306.	The locus of the centres of the circles passing the $x^2 + y^2 - 2x + y = 0$ is	hrough the intersection of	f the circles $x^2 + y^2 = 1$ and
	(a) A line whose equation is $x + 2y = 0$	(b) A line whose equation	is $2x - y = 1$
	(c) A circle	(d) A pair of lines	
307.	If circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 8y + c = 0$ touch each	other, then c is equal to	[Rajasthan PET 1994]
	(a) 15 (b) - 15	(c) 16	(d) - 16

[IIT 1993]

- **308.** The locus of the centre of the circle which touches externally the circle $x^2 + y^2 6x 6y + 14 = 0$ and also touches the *y*-axis, is
- (a) $x^2 6x 10y + 14 = 0$ (b) $x^2 10x 6y + 14 = 0$ (c) $y^2 6x 10y + 14 = 0$ (d) $y^2 10x 6y + 14 = 0$ **309.** The circle S_1 with centre $C_1(a_1, b_1)$ and radius r_1 touches externally the circle S_2 with centre $C_2(a_2, b_2)$ and radius r_2 . If the tangent at their common point passes through the origin, then
 - (a) $(a_1^2 + a_2^2) + (b_1^2 + b_2^2) = r_1^2 + r_2^2$ (b) $(a_1^2 - a_2^2) + (b_1^2 - b_2^2) = r_1^2 - r_2^2$ (c) $(a_1^2 - b_2^2) + (a_2^2 + b_2^2) = r_1^2 + r_2^2$ (d) $(a_1^2 - b_1^2) + (a_2^2 + b_2^2) = r_1^2 + r_2^2$

Advance Level

310. The circles $x^2 + y^2 - 10x + 16 = 0$ and $x^2 + y^2 = r^2$ intersect each other in two distinct points if [IIT 1994] (a) r < 2 (b) r > 8 (c) 2 < r < 8 (d) $2 \le r \le 8$

- **311.** The centre of the circle passing through (0, 0) and (1, 0) and touching the circle $x^2 + y^2 = 9$ is [AIEEE 2002]
 - (a) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{1}{2}, -\sqrt{2}\right)$ (c) $\left(\frac{3}{2}, \frac{1}{2}\right)$ (d) $\left(\frac{1}{2}, \frac{3}{2}\right)$
- **312.** The locus of the centre of the circles which touch both the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = 4ax$ externally has the equation
 - (a) $12(x-a)^2 4y^2 = 3a^2$ (b) $9(x-a)^2 5y^2 = 2a^2$ (c) $8x^2 3(y-a)^2 = 9a^2$ (d) None of these
- **313.** Tangents *OP* and *OQ* are drawn from the origin *O* to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$. Then the equation of the circumcircle of the triangle *OPQ* is
 - (a) $x^2 + y^2 + 2gx + 2fy = 0$ (b) $x^2 + y^2 + gx + fy = 0$ (c) $x^2 + y^2 gx fy = 0$ (d) $x^2 + y^2 2gx 2fy = 0$
- **314.** If the circle $x^2 + y^2 + 2x + 3y + 1 = 0$ cuts $x^2 + y^2 + 4x + 3y + 2 = 0$ in *A* and *B*, then the equation of the circle on *AB* as diameter is
 - (a) $x^2 + y^2 + x + 3y + 3 = 0$ (b) $2x^2 + 2y^2 + 2x + 6y + 1 = 0$ (c) $x^2 + y^2 + x + 6y + 1 = 0$ (d) None of these
- **315.** The equation of the smallest circle passing through the intersection of the line x + y = 1 and the circle $x^2 + y^2 = 9$ is
 - (a) $x^2 + y^2 + x + y 8 = 0$ (b) $x^2 + y^2 x y 8 = 0$ (c) $x^2 + y^2 x + y 8 = 0$ (d) None of these
- **316.** $x^2 + y^2 + 2(2k+3)x 2ky + (2k+3)^2 + k^2 r^2 = 0$ represents the family of circles with centres on the line [SCRA 1999] (a) x - 2y - 3 = 0 (b) x + 2y - 3 = 0 (c) x - 2y + 3 = 0 (d) x + 2y + 3 = 0

Common Tangents to Two Circles

(d) x = 3

Basic Level

317.	The number of common	tangents to the circles $x^2 + y^2$	$-4x - 6y - 12 = 0$ and $x^2 + y^2$	$x^2 + 6x + 18y + 26 =$	= 0 is [MP PET 1995]
	(a) 1	(b) 2	(c) 3	(d) 4	
318.	The number of common	tangents to two circles $x^2 + y^2$	$= 4 \text{ and } x^2 + y^2 - 8x + 12 = 0$) is	[EAMCET 1990]
	(a) 1	(b) 2	(c) 3	(d) 4	
319.	The number of common	tangents to the circles $x^2 + y^2$	$-x = 0, x^2 + y^2 + x = 0$ is		[EAMCET 1994]
	(a) 2	(b) 1	(c) 4	(d) 3	
320.	The circles $x^2 + y^2 = 9$ a	nd $x^2 + y^2 - 12y + 27 = 0$ touch e	each other. The equation of	their common t	angent is [MP PET 19

(c) y = -3

(a) 4y = 9

(b) y = 3

321.	The two circles $x^2 + y$ common tangent is	$y^2 - 2x + 6y + 6 = 0$ and $x^2 + y^2$	$x^{2} - 5x + 6y + 15 = 0$ touch eac	h other. The equation of their [KCET 1993: DCE 1999]
	(a) $x = 3$	(b) $y = 6$	(c) $7x - 12y - 21 = 0$	(d) $7x + 12y + 21 = 0$
322.	The number of common	n tangents to the circle $x^2 + y$	$x^{2} + 2x + 8y - 23 = 0$ and $x^{2} + y$	$y^2 - 4x - 10y + 19 = 0$ is
	(a) 1	(b) 2	(c) 3	(d) 4
		Advan	ce Level	
323.	If $a > 2b > 0$ then the p	ositive value of m for which	$y = mx - b\sqrt{1 + m^2}$ is a comm	non tangent to $x^2 + y^2 = b^2$ and
	$(x-a)^2 + y^2 = b^2$, is			[IIT Screening 2002]
	(a) $\frac{2b}{\sqrt{a^2-4b^2}}$	(b) $\frac{\sqrt{a^2 - 4b^2}}{2b}$	(c) $\frac{2b}{a-2b}$	(d) $\frac{b}{a-2b}$
324.	Two circles, each of r	adius 5, have a common tan	gent at (1, 1) whose equati	on is $3x + 4y - 7 = 0$. Then their
	(a) $(4, -5), (-2, 3)$	(b) (4, -3), (-2, 5)	(c) (4, 5), (- 2, - 3)	(d) None of these
325.	The number of commo from each of the axes diameter, is	n tangents to the circles one of and the other circle has th	of which passes through the e line segment joining the	origin and cuts off intercepts 2 origin and the point (1, 1) as a
	(a) 0	(b) 1	(c) 3	(d) 2
326.	The range of values of	λ for which the circles $x^2 + y^2$	$x^{2} = 4$ and $x^{2} + y^{2} - 4\lambda x + 9 = 0$	have two common tangents, is
	(a) $\lambda \in \left[-\frac{13}{8}, \frac{13}{8}\right]$	(b) $\lambda > \frac{13}{8}$ or $\lambda < -\frac{13}{8}$	(c) $1 < \lambda < \frac{13}{8}$	(d) None of these
327.	Two circles with radii common tangents, then	r_1' and r_2' , $r_1 > r_2 \ge 2$, touch	each other externally, if ' θ '	be the angle between the direct
	(a) $\theta = \sin^{-1}\left(\frac{r_1 + r_2}{r_1 - r_2}\right)$	(b) $\theta = 2 \sin^{-1} \left(\frac{r_1 - r_2}{r_1 + r_2} \right)$	(c) $\theta = \sin^{-1}\left(\frac{r_1 - r_2}{r_1 + r_2}\right)$	(d) None of these.
			Co	mmon Chord of Two Circles
		Basi	c Level	
328	The common chord of t	the circle $x^2 + y^2 + 4x + 1 = 0$ a	nd $r^2 + v^2 + 6r + 2v + 3 = 0$ is	[MP PFT 1001]
520.	(a) $x + y + 1 = 0$	(b) $5x + y + 2 = 0$	(c) $2x + 2y + 5 = 0$	(d) $3x + y + 3 = 0$
320	The equation of line	nassing through the points of	of intersection of the circle	$3x^{2} + 3y^{2} - 2x + 12y - 9 = 0 \text{ and}$
5-50	$r^{2} + v^{2} + 6r + 2v - 15 = 0$	is		[11T 1086: IIPSFAT 1000]
	(a) $10x - 3y - 18 = 0$	(b) $10x + 3y - 18 = 0$	(c) $10x + 3y + 18 = 0$	(d) None of these
220	Length of the common	chord of the circles $x^2 + y^2 + 4$	(e) + 10u + 3y + 10 = 0	x + 5y + 0 = 0 is [Kumukshotra CEE 1004
330.	(a) O	(b) 8	(c) 7	(d) 6
331.	The length of the comm	to non chord of the circles $x^2 + y$	$v^{2} + 2r + 3v + 1 = 0$ and $r^{2} + v^{2}$	$x^{2} + 4x + 3y + 2 = 0$ is [MP PET 2000]
55-	(a) 0/2	(b) $2\sqrt{2}$	(c) $3\sqrt{2}$	(d) 2/2
222	(a) $9/2$	$(0) = 2\sqrt{2}$	$\frac{(c)}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	$y^{2} + 2a'x + 2f'y + a' = 0$ then
ა ე⊿.	(a) $2a(a-a')+2f(f-f')$	$z_{x} + 2j_{y} + c = 0$ disects the CIFC	(b) $2a'(a - a') + 2f'(f - f') - 2a'(a - a') + 2f'(f - f')$	y + 2g x + 2j y + c = 0, unen
	(a) $2g(g-g) + 2J(J-J)$	$\dot{r} = c - c$	(d) $2g(g-g)+2f(f-f) =$	- u - u
	(c) 2g (g - g) + 2j (J - J)	j-c-c	$(u) \ 2g(g-g) + 2j(j-j) =$	
333.	If the circle $x^2 + y^2 + 2$ length of the common of	gx + 2fy + c = 0 bisects the circles is	cumference of the circle x^2	$+y^{2}+2g'x+2f'y+c'=0$, then the

Circle and System of Circles 139 (a) $2\sqrt{g^2 + f^2 - c}$ (b) $2\sqrt{g'^2 + f'^2 - c'}$ (c) $2\sqrt{g^2+f^2+c}$ (d) $2\sqrt{g'^2+f'^2+c'}$ **334.** The equation of the circle described on the common chord of the circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 + 2y = 0$ as diameter is [EAMCET 1994] (a) $x^2 + y^2 + x - y = 0$ (b) $x^2 + y^2 - x - y = 0$ (c) $x^2 + y^2 - x + y = 0$ (d) $x^2 + y^2 + x + y = 0$ **335.** The distance of the point (1, 2) from the common chord of circles $x^2 + y^2 - 2x + 3y - 5 = 0$ and $x^{2} + y^{2} + 10x + 8y - 1 = 0$ is [EAMCET 1990] (a) 2 units (b) 3 units (c) 4 units (d) None of these Advance Level **336.** The length of common chord of the circles $(x - a)^2 + y^2 = a^2$ and $x^2 + (y - b)^2 = b^2$ is [MP PET 1989] (a) $2\sqrt{a^2+b^2}$ (b) $\frac{ab}{\sqrt{a^2 + b^2}}$ (c) $\frac{2ab}{\sqrt{a^2 + b^2}}$ (d) None of these **337.** The length of common chord of the circles $x^2 + y^2 = 12$ and $x^2 + y^2 - 4x + 3y - 2 = 0$, is [Rajasthan PET 1990, 99] (a) $4\sqrt{2}$ (b) $5\sqrt{2}$ (c) $2\sqrt{2}$ (d) $6\sqrt{2}$ **338.** The line *L* passes through the points of intersection of the circles $x^2 + y^2 = 25$ and $x^2 + y^2 - 8x + 7 = 0$. The length of perpendicular from centre of second circle onto the line L, is [Bihar CEE 1994] (a) 4 (b) 3 (c) 1 (d) 0 **339.** The common chord of $x^2 + y^2 - 4x - 4y = 0$ and $x^2 + y^2 = 16$ subtends at the origin an angle equal to (c) $\frac{\pi}{2}$ (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$ **340.** The length of the common chord of the circles $(x - a)^2 + (y - b)^2 = c^2$ and $(x - b)^2 + (y - a)^2 = c^2$ is (a) $\sqrt{c^2 - (a-b)^2}$ (b) $\sqrt{4c^2 - 2(a-b)^2}$ (c) $\sqrt{2c^2 - (a-b)^2}$ (d) $\sqrt{4c^2 + (a-b)^2}$ **341.** If the circles $(x - a)^2 + (y - b)^2 = c^2$ and $(x - b)^2 + (y - a)^2 = c^2$ touch each other, then (a) $a = b \pm 2c$ (b) $a = b \pm \sqrt{2c}$ (c) $a = b \pm c$ (d) None of these **342.** If the circle $c_1:x^2 + y^2 = 16$ intersects another circle c_2 of radius 5 in such a manner that the common chord is of maximum length and has a slope equal to 3/4, the coordinates of the centre of c_2 are [IIT 1988] (a) $\left(-\frac{9}{5},\frac{12}{5}\right)$, $\left(\frac{9}{5},-\frac{12}{5}\right)$ (b) $\left(-\frac{9}{5},-\frac{12}{5}\right)$, $\left(\frac{9}{5},\frac{12}{5}\right)$ (c) $\left(\frac{12}{5},-\frac{9}{5}\right)$, $\left(-\frac{12}{5},\frac{9}{5}\right)$ (d) None of these **343.** The common chord of the circle $x^2 + y^2 + 6x + 8y - 7 = 0$ and a circle passing through the origin, and touching the line y = x, always passes through the point (a) (- 1/2, 1/2) (b) (1, 1) (c) (1/2, 1/2) (d) None of these **344.** The equation of the circle drawn on the common chord of circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$ as a diameter is [Rajasthan PET 1998] (a) $x^{2} + y^{2} + \frac{2ab^{2}}{a^{2} + b^{2}}x + \frac{2a^{2}b}{a^{2} + b^{2}}y + c = 0$ (b) $x^{2} + y^{2} + \frac{ab^{2}}{a^{2} + b^{2}}x + \frac{a^{2}b}{a^{2} + b^{2}}y + c = 0$

(d) None of these

(c) $(a^2 + b^2)(x^2 + y^2) + 2ab(bx + ay) + c = 0$

- **345.** The equation of the circle drawn on the common chord of circles $(x a)^2 + y^2 = a^2$ and $x^2 + (y b)^2 = b^2$ as diameter is
 - (a) $(a^2 + b^2)(x^2 + y^2) = 2ab(bx + ay)$
 - (c) $(a^2 b^2)(x^2 + y^2) = 2ab(bx ay)$

(b) $(a^2 + b^2)(x^2 + y^2) = 2ab(ax + by)$ (d) $(a^2 - b^2)(x^2 + y^2) = 2ab(ax - by)$

Angle of Intersection of Two Circles and Orthogonal System of Circles

Basic Level

- **346.** If a circle passes through the point (1, 2) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the equation of the locus of its centre is
 - (a) $x^{2} + y^{2} 3x 8y + 1 = 0$ (b) $x^{2} + y^{2} - 2x - 6y - 7 = 0$ (c) 2x + 4y - 9 = 0(d) 2x + 4y - 1 = 0
- **347.** The locus of centre of a circle passing through (*p*, *q*) and cuts orthogonally to circle $x^2 + y^2 = k^2$, is [IIT 1988]
 - (a) $2px + 2qy (p^2 + q^2 + k^2) = 0$ (b) $2px + 2qy (p^2 q^2 + k^2) = 0$
 - (c) $x^2 + y^2 3px 4qy + (p^2 + q^2 k^2) = 0$ (d) $x^2 + y^2 2px 3qy + (p^2 q^2 k^2) = 0$
- **348.** Two given circles $x^2 + y^2 + ax + by + c = 0$ and $x^2 + y^2 + dx + ey + f = 0$ will intersect each other orthogonally, only when (2) a + b + c = d + c + f (b) ad + bc = c + f (c) ad + bc = 2c + 2f (d) 2ad + 2bc = c + f

(a)
$$a+b+c=d+e+f$$
 (b) $ad+be=c+f$ (c) $ad+be=2c+2f$ (d) $2ad+2be=c+f$

349. Two circles $S_1 = x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $S_2 = x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ cut each other orthogonally, then

[Rajasthan PET 1995]

	(a) $2g_1g_2 + 2f_1f_2 = c_1 + c_2$	(b) $2g_1g_2 - 2f_1f_2 = c_1 + c_2$	(c) $2g_1g_2 + 2f_1f_2 = c_1 - c_2$	(d) $2g_1g_2 - 2f_1f_2 = c_1 - c_2$	
350.	If the circles of same rad	lius a and centres at (2, 3) and	l (5, 6) cut orthogonally, the	en <i>a</i> = [EAMCET 1988]	
	(a) 1	(b) 2	(c) 3	(d) 4	
351.	The circles $x^2 + y^2 + 4x + $	$6y + 3 = 0$ and $2(x^2 + y^2) + 6x + 4$	y + c = 0 will cut orthogona	lly, if c equals [Kurukshetra CEE 199	6]
	(a) 4	(b) 18	(C) 12	(d) 16	
352.	The equation of a circle	that intersects the circle x^2 -	$+y^{2} + 14x + 6y + 2 = 0$ orthog	onally and whose centre is (0,	
	2) is			[MP PET 1998]	
	(a) $x^2 + y^2 - 4y - 6 = 0$	(b) $x^2 + y^2 + 4y - 14 = 0$	(c) $x^2 + y^2 + 4y + 14 = 0$	(d) $x^2 + y^2 - 4y - 14 = 0$	
353.	If the circles $x^2 + y^2 + 2x$	$+2ky+6=0$ and x^2+y^2+2ky	k = 0 intersect orthogonal	ly, then k is [IIT Screening 2000]	
	(a) 2 or $-\frac{3}{2}$	(b) - 2 or $\frac{3}{2}$	(c) 2 or $\frac{3}{2}$	(d) - 2 or $\frac{3}{2}$	
354.	The locus of the centre	e of circle which cuts the c	ircles $x^2 + y^2 + 4x - 6y + 9 =$	0 and $x^2 + y^2 - 4x + 6y + 4 = 0$	
	orthogonally is				
				[UPSEAT 2001]	
	(a) $12x + 8y + 5 = 0$	(b) $8x + 12y + 5 = 0$	(c) $8x - 12y + 5 = 0$	(d) None of these	
355.	If the two circles $2x^2 + 2$	$xy^2 - 3x + 6y + k = 0$ and $x^2 + y^2$	-4x + 10y + 16 = 0 cut ortho	gonally, then the value of <i>k</i> is	
				[Kerala (Engg.) 2002]	

(a) 41 (b) 14 (c) 4 (d) 0 **356.** The circles $x^2 + y^2 + x + y = 0$ and $x^2 + y^2 + x - y = 0$ intersect at an angle of [MNR 1992]

[EAMCET 1989]

(c) $\frac{\pi}{3}$ (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$ **357.** The equation of the circle having its centre on the line x + 2y - 3 = 0 and passing through the point of intersection of the circles $x^{2} + y^{2} - 2x - 4y + 1 = 0$ and $x^{2} + y^{2} - 4x - 2y + 4 = 0$ is [MNR 1992] (c) $x^2 + y^2 - 2x - 2y + 1 = 0$ (d) $x^2 + y^2 + 2x - 4y + 4 = 0$ (a) $x^2 + y^2 - 6x + 7 = 0$ (b) $x^2 + y^2 - 3x + 4 = 0$ **358.** The two circles $x^2 + y^2 - 2x - 2y - 7 = 0$ and $3(x^2 + y^2) - 8x + 29y = 0$ [Karnataka CET 1993] (a) Touch externally (b) Touch internally (c) Cut each other orthogonally (d) Do not cut each other 359. The locus of the centres of circles passing through the origin and intersecting the fixed circle $x^{2} + y^{2} - 5x + 3y - 1 = 0$ orthogonally is (a) A straight line of the slope $\frac{3}{5}$ (b) A circle (c) A pair of straight lines (d) None of these **360.** The angle of intersection of circles $x^2 + y^2 + 8x - 2y - 9 = 0$ and $x^2 + y^2 - 2x + 8y - 7 = 0$ is [EAMCET 1987] (a) 45° (b) 90° (c) 60° (d) 30° **361.** If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the locus of its centre is [AIEEE 2004] (a) $2ax - 2by - (a^2 + b^2 + 4) = 0$ (b) $2ax + 2by - (a^2 + b^2 + 4) = 0$ (d) $2ax + 2by + (a^2 + b^2 + 4) = 0$ (c) $2ax - 2by + (a^2 + b^2 + 4) = 0$ **362.** The value of λ , for which the circle $x^2 + y^2 + 2\lambda x + 6y + 1 = 0$, intersects the circle $x^2 + y^2 + 4x + 2y = 0$ orthogonally is [MP PET 2004] (c) $\frac{-11}{8}$ (d) $\frac{-5}{4}$ (a) $\frac{-5}{2}$ (b) - 1 Advance Level **363.** The equation of a circle which cuts the three circles $x^2 + y^2 - 3x - 6y + 14 = 0$, $x^2 + y^2 - x - 4y + 8 = 0$ and $x^2 + y^2 + 2x - 6y + 9$ orthogonally is (a) $x^2 + y^2 - 2x - 4y + 1 = 0$ (b) $x^2 + y^2 + 2x + 4y + 1 = 0$ (c) $x^2 + y^2 - 2x + 4y + 1 = 0$ (d) $x^2 + y^2 - 2x - 4y - 1 = 0$ **364.** The coordinates of the centre of the circle which intersects circles $x^2 + y^2 + 4x + 7 = 0$, $2x^2 + 2y^2 + 3x + 5y + 9 = 0$ and $x^2 + y^2 + y = 0$ orthogonally are (a) (-2, 1) (b) (-2, -1) (c) (2, -1) (d) (2, 1) **365.** The members of a family of circles are given by the equation $2(x^2 + y^2) + \lambda x - (1 + \lambda^2)y - 10 = 0$. The number of circles belonging to the family that are cut orthogonally by the fixed circle $x^2 + y^2 + 4x + 6y + 3 = 0$ is (d) None of these (a) 2 (b) 1 (c) 0 Radical Axis and Radical Centre **Basic Level**

366. The equation of radical axis of the circles $x^2 + y^2 + x - y + 2 = 0$ and $3x^2 + 3y^2 - 4x - 12 = 0$, is

[Rajasthan PET 1984, 85, 86, 91, 2000] (a) $2x^2 + 2y^2 - 5x + y - 14 = 0$ (b) 7x - 3y + 18 = 0(c) 5x - y + 14 = 0(d) None of these **367.** The radical centre of three circles described on the three sides of a triangle as diameter is [EAMCET 1994] (a) The orthocentre (b) The circumcentre (c) The incentre of the triangle (d) **368.** The locus of centre of the circle which cuts the circles $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $x^{2} + y^{2} + 2g_{2}x + 2f_{2}y + c_{2} = 0$ orthogonally is [Karnataka CET 1991] (a) An ellipse (b) The radical axis of the given circles (c) A conic (d) Another circle **369.** The coordinates of the radical centre of the three circles $x^2 + y^2 - 4x - 2y + 6 = 0$, $x^2 + y^2 - 4x - 2y + 6y = 0$. $x^{2} + y^{2} - 12x + 2y + 30 = 0$ are (b) (0, 6) (a) (6, 30) (c) (3, 0) (d) None of these **370.** The equation of radical axis of the circles $2x^2 + 2y^2 - 7x = 0$ and $x^2 + y^2 - 4y - 7 = 0$ is [Rajasthan PET 1987, 89, 93, 96] (c) 7x - 8y - 14 = 0(b) 7x - 8y + 14 = 0(d) None of these (a) 7x + 8y + 14 = 0**371.** The radical centre of the circles $x^2 + y^2 - 16x + 60 = 0$, $x^2 + y^2 - 12x + 27 = 0$, $x^2 + y^2 - 12y + 8 = 0$ is [Rajasthan PET 2000] (b) (33/4, -13) (d) None of these (a) (13, 33/4)(c) (33/4, 13) 372. The radical axis of two circles and the line joining their centres are [Karnataka CET 2001] (a) Parallel (b) Perpendicular (c) Neither parallel, nor perpendicular (d) Intersecting, but not fully perpendicular **373.** Radical axis of the circles $3x^2 + 3y^2 - 7x + 8y + 11 = 0$ and $x^2 + y^2 - 3x - 4y + 5 = 0$ is [Rajasthan PET 2001] (a) x + 10y + 2 = 0(b) x + 10y - 2 = 0(c) x + 10y + 8 = 0(d) x + 10y - 8 = 0**374.** Two tangents are drawn from a point P on radical axis to the two circles touching at Q and R respectively then triangle formed by joining PQR is [UPSEAT 2002] (c) Right angled (a) Isosceles (b) Equilateral (d) None of these **375.** Equation of radical axis of the circles $x^2 + y^2 - 3x - 4y + 5 = 0$ and $2x^2 + 2y^2 - 10x - 12y + 12 = 0$ is [Rajasthan PET 2003] (d) x + y - 7 = 0(a) 2x + 2y - 1 = 0(b) 2x + 2y + 1 = 0(c) x + y + 7 = 0**376.** If the circle $x^2 + y^2 + 6x - 2y + k = 0$ bisects the circumference of the circle $x^2 + y^2 + 2x - 6y - 15 = 0$, then k =[EAMCET 200 (a) 21 (b) - 21 (c) 23 (d) - 23 **377.** The locus of a point which moves such that the tangents from it to the two circles $x^2 + y^2 - 5x - 3 = 0$ and $3x^{2} + 3y^{2} + 2x + 4y - 6 = 0$ are equal, is given by (a) $2x^2 + 2y^2 + 7x + 4y - 3 = 0$ (b) 17x + 4y + 3 = 0(c) $4x^2 + 4y^2 - 3x + 4y - 9 = 0$ (d) 13x - 4y + 15 = 0378. Two equal circles with their centres on x and y axes will possess the radical axis in the following form (a) $ax - by - \frac{a^2 + b^2}{4} = 0$ (b) $2gx - 2fy + g^2 - f^2 = 0$ (c) $g^2x + f^2y - g^4 - f^4 = 0$ (d) $2g^2x + 2f^2y - g^4 - f^4 = 0$ **379.** The equations of two circles are $x^2 + y^2 + 2\lambda x + 5 = 0$ and $x^2 + y^2 + 2\lambda y + 5 = 0$. *P* is any point on the line x - y = 0. If PA and PB are the lengths of the tangents from P to the two circles and PA = 3 then PB is equal to (a) 1.5 (b) 6 (d) None of these (c) 3 **380.** The locus of a point from which the lengths of the tangents to the circles $x^2 + y^2 = 4$ and $2(x^{2} + y^{2}) - 10x + 3y - 2 = 0$ are equal is

393.	Origin is a limiting poin	t of a coaxial system of w	hich $x^2 + y^2 - 6x - 8y + 1$	= 0 is a member. The other limiting point	nt
	is			[EAMCET 1994	4]
	(a) (- 2, - 4)	(b) $\left(\frac{3}{25}, \frac{4}{25}\right)$	(c) $\left(-\frac{3}{25},-\frac{4}{25}\right)$	(d) $\left(\frac{4}{25}, \frac{3}{25}\right)$	
394.	If (3, λ) and (5, 6) are o	conjugate points with res	pect to circle $x^2 + y^2 = 3$	β, then λ equals [Rajasthan PET 1998]	8]
	(a) 2	(b) – 2	(c) 3	(d) 4	
		Ad	lvance Level		
395.	One of the $x^{2} + y^{2} - 6x - 6y + 4 = 0$,	limiting point of $x^{2} + y^{2} - 2x - 4y + 3 = 0$ is	the coaxial	system of circles containin	ıg
	(a) (- 1, 1)	(b) (- 1, 2)	(c) (- 2, 1)	[EAMCET 1987 (d) (- 2, 2)	7]
396.	The co-axial system of	circles given by $x^2 + y^2 + y^2$	2gx + c = 0 for $c < 0$ rep	resents. [Karnataka CET 2004	4]
	(a) Intersecting circles	i	(b) Non intersed	cting circles	
	(c) Touching circles		(d) Touching or	non-intersecting circles	
				Miscellaneous problems	S
		E	Basic Level		
397.	The limit of the perime	ter of the regular <i>n</i> -gons	inscribed in a circle of	radius R as $n \to \infty$ is [MP PET 2003]	3]
397.	The limit of the perime (a) $2\pi R$	ter of the regular <i>n</i> -gons (b) πR	inscribed in a circle of (c) 4 R	radius R as $n \to \infty$ is [MP PET 2003 (d) πR^2	3]
397. 398.	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p	ter of the regular <i>n</i> -gons (b) πR points of intersection with	inscribed in a circle of (c) 4 <i>R</i> h the coordinate axes o	radius R as $n \to \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$	3] b,
397. 398.	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then	ter of the regular <i>n</i> -gons (b) πR points of intersection with	inscribed in a circle of (c) 4 <i>R</i> h the coordinate axes o	radius R as $n \to \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$	3] b,
397. 398.	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic	inscribed in a circle of (c) 4 <i>R</i> h the coordinate axes o (b)	radius R as $n \to \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ A, B, C, D form	3] 6, a
397. 398. paral	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc lelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a rh	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic	inscribed in a circle of (c) 4 <i>R</i> h the coordinate axes o (b) (d)	radius <i>R</i> as $n \to \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form None of these	3] b, a
397. 398. paral	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc lelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a rh	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic nombus	inscribed in a circle of (c) 4 <i>R</i> h the coordinate axes o (b) (d) Ivance Level	radius <i>R</i> as $n \rightarrow \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form None of these	3] b, a
397. 398. paral 399.	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc lelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a rh	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic nombus (Ad 1), (4, 5) and (0, c) are co	inscribed in a circle of (c) 4 <i>R</i> h the coordinate axes o (b) (d) Ivance Level oncyclic, then <i>c</i> is equal	radius R as $n \rightarrow \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ A, B, C, D form None of these to [MNR 1982]	3] b, a
397. 398. paral 399.	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc lelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a rh If the points (2, 0), (0, (a) $-1, -\frac{3}{14}$	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic hombus 1), (4, 5) and (0, c) are conducted (b) $-1, -\frac{14}{3}$	inscribed in a circle of (c) 4 <i>R</i> h the coordinate axes of (b) (d) Ivance Level oncyclic, then <i>c</i> is equal (c) $\frac{14}{3}$, 1	radius R as $n \rightarrow \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ A, B, C, D form None of these to [MNR 1982 (d) None of these	3] b, a 2]
 397. 398. paral 399. 400. 	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc lelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a rh If the points (2, 0), (0, (a) $-1, -\frac{3}{14}$ Line $Ax + By + C = 0$ cu	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic nombus Ad 1), (4, 5) and (0, c) are connected (b) $-1, -\frac{14}{3}$ ts circle $x^2 + y^2 + ax + by$	inscribed in a circle of (c) $4 R$ h the coordinate axes o (b) (d) Ivance Level oncyclic, then c is equal (c) $\frac{14}{3}$, 1 + c = 0 in P and Q and	radius R as $n \rightarrow \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ A, B, C, D form None of these . to [MNR 1982 (d) None of these the line $A'x + B'y + C' = 0$ cuts the circle	3] b, a 2]
 397. 398. paral 399. 400. 	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc lelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a rh If the points (2, 0), (0, (a) $-1, -\frac{3}{14}$ Line $Ax + By + C = 0$ cu $x^2 + y^2 + a'x + b'y + c' = 0$	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic nombus Ad 1), (4, 5) and (0, c) are co (b) $-1, -\frac{14}{3}$ ts circle $x^2 + y^2 + ax + by$ in <i>R</i> and <i>S</i> . If the four point	inscribed in a circle of (c) $4 R$ h the coordinate axes o (b) (d) Ivance Level oncyclic, then c is equal (c) $\frac{14}{3}$, 1 + c = 0 in P and Q and points P, Q, R and S are c	radius R as $n \rightarrow \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ A, B, C, D form None of these . to [MNR 1982 (d) None of these the line $A'x + B'y + C' = 0$ cuts the circle oncyclic, then	3] b, a 2]
 397. 398. paral 399. 400. 	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc lelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a rh If the points (2, 0), (0, (a) $-1, -\frac{3}{14}$ Line $Ax + By + C = 0$ cu $x^2 + y^2 + a'x + b'y + c' = 0$ $D = \begin{vmatrix} a - a' & b - b' & C - C \\ A & B & c \\ A' & B' & c' \end{vmatrix}$	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic nombus Ad 1), (4, 5) and (0, c) are co (b) $-1, -\frac{14}{3}$ ts circle $x^2 + y^2 + ax + by$ in <i>R</i> and <i>S</i> . If the four point ' =	inscribed in a circle of (c) $4 R$ h the coordinate axes o (b) (d) Ivance Level oncyclic, then c is equal (c) $\frac{14}{3}$, 1 + c = 0 in P and Q and oints P, Q, R and S are c	radius R as $n \rightarrow \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ A, B, C, D form None of these i. to [MNR 1982 (d) None of these the line $A'x + B'y + C' = 0$ cuts the circh oncyclic, then [Roorkee 1986]	3] b, a 2] le
 397. 398. paral 399. 400. 401. 	The limit of the perime (a) $2\pi R$ <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the p then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conc lelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a rh If the points (2, 0), (0, (a) $-1, -\frac{3}{14}$ Line $Ax + By + C = 0$ cu $x^2 + y^2 + a'x + b'y + c' = 0$ $D = \begin{vmatrix} a - a' & b - b' & C - C \\ A & B & c \\ A' & B' & c' \end{vmatrix}$ (a) 1 A circle is inscribed in a	ter of the regular <i>n</i> -gons (b) πR points of intersection with yclic nombus (b) $-1, -\frac{14}{3}$ ts circle $x^2 + y^2 + ax + by$ in <i>R</i> and <i>S</i> . If the four point (b) 0 an equilateral triangle of	inscribed in a circle of (c) $4 R$ h the coordinate axes o (b) (d) Ivance Level oncyclic, then c is equal (c) $\frac{14}{3}$, 1 + c = 0 in P and Q and oints P, Q, R and S are c (c) -1 side a, the area of any a	radius R as $n \rightarrow \infty$ is [MP PET 2003 (d) πR^2 f the lines $ax + by = ab$ and $bx + ay = ab$ A, B, C, D form None of these (d) None of these the line $A'x + B'y + C' = 0$ cuts the circh oncyclic, then [Roorkee 1986 (d) None of these square inscribed in the circle is [IIT 1994]	3] b, a 2] le 6]

402.	2. Any circle through the points of intersection of the lines $x + \sqrt{3}y = 1$ and $\sqrt{3}x - y = 2$ if intersects these lines at							
	points P and Q , then the	ne angle subtended by the arc	PQ at its centre is	[MP PET 1998]				
nodiu	(a) 180°	(b) 90°	(c) 120°	(d) Depends on centre of)f			
rauiu	S The even of the twice of	le ferme ed ber isining the suisi		n of the line (5 · 2 · 2 /5 or	4			
403.	The area of the triang.	le formed by joining the origin	n to the points of intersectio	on of the line $x\sqrt{5} + 2y = 3\sqrt{5}$ and	a			
	circle $x^2 + y^2 = 10$ is			[Roorkee 1998	3]			
	(a) 3	(b) 4 $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$	(c) 5	(d) 6				
404.	Let AB be a chord of the	The circle $x^2 + y^2 = r^2$ subtending	ng a right angle at the centre	e. Then the locus of the centrol	a			
	(a) A parabola	(b) A circle	(c) An ellipse	(d) A pair of straight lines	IJ			
405.	A square is inscribed in	the circle $x^2 + y^2 - 2x + 4y - 93 =$	= 0 with its sides parallel to the	e coordinate axes. The coordinate	S			
40J	of its vertices are				.0			
	(a) (- 6, - 9), (- 6, 5),	(8, - 9), (8, 5)	(b) (- 6, 9), (- 6, - 5), (8	, - 9), (8, 5)				
	(c) (-6, -9), (-6, 5),	(8, 9), (8, 5)	(d) (- 6, - 9), (- 6, 5), (8	, - 9), (8, - 5)				
406.	If the lines $a_1x + b_1y + c_1y + c_2y + c$	$c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ cu	it the coordinate axes in cond	cyclic points, then				
	(a) $a_1 a_2 = b_1 b_2$	(b) $a_1b_1 = a_2b_2$	(c) $a_1b_2 = a_2b_1$	(d) None of these				
40 7.	Let P be a point on the	e circle $x^2 + y^2 = 9$, Q a point	on the line $7x + y + 3 = 0$, and	d the perpendicular bisector o	of			
	<i>PQ</i> be the line $x - y + 1$	= 0 . Then the coordinates of H	P are					
	(2) $(2, 0)$	(\mathbf{b}) $(0, \mathbf{z})$	(c) $\begin{pmatrix} 72 & 21 \end{pmatrix}$	(d) $\begin{pmatrix} 72 & 21 \end{pmatrix}$				
	(a) (3, 0)	(0) $(0, 3)$	$\left(\frac{1}{25}, -\frac{1}{25}\right)$	$\left(-\frac{1}{25},\frac{1}{25}\right)$				
408.	A line meets the coord	dinate axes in A and B. A cir	cle is circumscribed about t	he triangle OAB. The distance	s			
	from the end points A,	<i>B</i> of the side <i>AB</i> to the tangent	nt at O are equal to m and n	respectively. Then the diamete	er			
	of the circle is (a) $m(m \pm n)$	(b) $n(m \pm n)$	(c) $m - n$	(d) None of these				
	(a) m(m+n)	(0) n(m+n)						
409.	If the circle $x^2 + y^2 + 2$	gx + 2fy + c = 0 is touched by y	$P = x$ at <i>P</i> such that $OP = 6\sqrt{2}$,	then the value of c is				
410	(a) 30 One of the diameters ((b) 144	(c) 72 e rectangle ABCD is $4y = r + 1$	(d) None of these 7 If 4 and B are the points (-	2			
410.	(4) and $(5, 4)$ respective	rely then the area of the recta	nole is	7. If A and B are the points (-)	ς,			
	(a) 16 sq. units	(b) 24 sq. units	(c) 32 sq. units	(d) None of these				
411.	The maximum number	of points with rational coord	inates on a circle whose cent	tre is $(\sqrt{3}, 0)$ is				
-	(a) One	(b) Two	(c) Four	(d) Infinite				
412.	The locus of co-ordin	ates of the centre of the cir	cumcircle of the regular he	exagon whose two consecutiv	'n			
	vertices have the coord	dinates (-1 , 0) and (1, 0) and	which lies wholly above the $-$	<i>x</i> -axis, are				
	(a) $x^2 + y^2 - 2\sqrt{3}y - 1 =$	0 (b) $x^2 + y^2 - \sqrt{3y} - 1 = 0$	(c) $x^2 + y^2 - 2\sqrt{3}x - 1 = 0$	(d) None of these				
413.	For each $k \in N$, let C	$_{k}$ denote the circle whose equ	uation is $x^2 + y^2 = k^2$. On the	e circle C_k , a particle moves	k			
	units in the anticlocky	vise direction. After completin	ng its motion on C_k , the part	ticle moves to C_{k+1} in the radia	al			
	direction. The motion	of the particle continues in	this manner. The particle	starts at (1, 0). If the partic	e			
	crosses the positive di	rection of the <i>x</i> -axis for the fi	rst time on the circle C_n , the	en n is				
	(a) 7	(b) 6	(c) 2	(d) None of these				
414.	A ray of light incident	at the point $(-2, -1)$ gets re	flected from the tangent at	(0, - 1) to the circle $x^2 + y^2 = 1$	ι.			
	The reflected ray touch	hes the circle. The equation of	the line along which the inc	ident ray moved is				
415	(a) $4x - 3y + 11 = 0$ The point <i>R</i> meyos in t	(b) $4x + 3y + 11 = 0$	(c) $3x + 4y + 11 = 0$	(d) None of these				
415.	vertices of the heyago	n is $6a^2$. If the radius of the c	in such that the sum of the so	r(z, q) then the locus of P is	e			
	(a) A pair of straight l	$\frac{11}{10}$ 11	(b)	An ollingo				
		$\sqrt{\frac{2}{2}}$		An empse				
and -	(c) A circle of radius	$\sqrt{a^2 - r^2}$	(d)	An ellipse of major axis	а			
anu f	The equation of a circ	le is $r^2 + v^2 - 4$ A regular be	exagon is inscribed in the cir	rcle whose one vertex is (2.0	۱			
410.	Then a consecutive year	The is $x \pm y = 4$. A regular lie regular the coordinates	Augon is motribed in the Ch	tere whose one vertex is (2, 0	<i>,</i> .			
	(a) $(\sqrt{2}, 1)$	(b) $(1 \sqrt{2})$	(c) $(\sqrt{2}, 1)$	(d) $(1,\sqrt{3})$				
	(u) $(v_{3}, 1)$	$(0) (1, -\sqrt{3})$	$(v_{3}, -1)$	(\mathbf{u}) $(\mathbf{i}, \mathbf{v}_{\mathbf{j}})$				

- **417.** A point $P(\sqrt{3}, 1)$ moves on the circle $x^2 + y^2 = 4$ and after covering a quarter of the circle leaves it tangentially. The equation of a line along which the point moves after leaving the circle is (d) $y = \sqrt{3}x - 4$ (a) $y = \sqrt{3}x + 4$ (b) $\sqrt{3}y = x + 4$ (c) $\sqrt{3}y = x - 4$
- **418.** If the curves $ax^2 + 4xy + 2y^2 + x + y + 5 = 0$ and $ax^2 + 6xy + 5y^2 + 2x + 3y + 8 = 0$ intersect at four concyclic points then the value of *a* is (b) - 4 (a) 4 (c) 6

(d) – 6

Assignment (Basic and Advance level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	b	a	b	а	b	b	a	b	b	с	с	а	a	a	с	a	d	a	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	с	a	b	с	a	d	с	b	d	с	d	a	a,b, c	a	b	a	d	d	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	a	d	с	b	с	d	b	с	b	a	a	с	a	a	с	b	a	с	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	с	a	с	b	с	с	a	a	a	a	b	с	d	b	d	a	b	b	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	a	с	b	b	с	a	b	с	b	a	d	b	a	a	b	b	d	с	с
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
а	d	a	b	b	b	a	а	а	с	d	с	b	b	a	b,c	b	с	a	с
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
a,c	b	d	b	b	а	b	а	а	d	d	a	b	d	с	a	d	b	d	с
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
а	b	а	b	с	b	b	b	b	с	b	а	с	с	d	а	b	b	a	а
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	с	b	a,d	b	b	b	а	с	b	с	с	с	b,c	с	d	с	a	a	с
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	b	b	b	b	b	b	а	с	с	b	a	а	а	с	с	a	a,c	d	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
d	d	с	с	а	а	с	a,c	b	a	с	b	с	с	a	с	a	с	с	с
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
b	b	b	с	b	b,c	a	b	с	d	с	d	b	с	a	c,d	с	с	с	а
	146	Circle	and	System	of	Circles													
--	-----	--------	-----	--------	----	---------													
--	-----	--------	-----	--------	----	---------													

241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	d	а	d	a	с	с	а	d	b	a	с	с	с	a	a,c	b	b	a	с
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
b	a	b	d	a	a	а	с	b	a	b	a	a,c	a	а	a	d	a	a	а
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
a,d	a	d	a	a,b,c d	b	b	b	a	d	с	b	b	a	b	a	b	с	b	с
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	b	с	b	a	a	a	d	b	с	b	a	b	b	b	d	с	с	d	b
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
b	с	a	с	b	b	b	a	a	d	b	с	b	d	a	с	а	d	d	b
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
b	a	с	a	a	с	a	с	a	с	b	d	a	с	с	d	a	с	d	b
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
b	d	a	b	a	b	с	b	d	с	d	b	b	a	a	d	b	b	с	d
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
a	b	с	b	b	d	b	a	a	с	b	b	b	b	a	a	a	a	с	b
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418		
с	а	с	b	a	а	a,d	d	с	с	b	a	a	b	с	b	b	b		