ELECTROMAGNETICS TEST 2

Number of Questions: 35

Directions for questions 1 to 35: Select the correct alternative from the given choices.

- 1. Laplacian of a scalar is
 - (A) the gradient of the divergence
 - (B) the divergence of the gradient
 - (C) only divergence
 - (D) only gradient
- 2. Laplace equation in spherical co-ordinates is given by

$$(A) \quad \nabla^{2} V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^{2}} \frac{\partial^{2} V}{\partial \varphi^{2}} + \frac{\partial^{2} V}{\partial Z^{2}}$$

$$(B) \quad \nabla^{2} V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} V}{\partial \varphi^{2}}$$

$$(C) \quad \nabla^{2} V = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial V}{\partial r} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} V}{\partial \varphi^{2}}$$

$$(D) \quad \nabla^{2} V = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial V}{\partial r} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} V}{\partial \varphi^{2}}$$

$$(D) \quad \nabla^{2} V = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial V}{\partial r} \right) + \frac{1}{r \sin^{2} \theta} \frac{\partial^{2} V}{\partial \varphi^{2}}$$

- 3. Find \overline{D} at P(5, 7, 0) caused by a uniform surface charge density $\rho_{e} = 41.7 \mu C/m^{2}$ on the plane at x = 7.
 - (A) $-20.85\hat{a}_x\mu C/m^2$ (B) $41.7\hat{a}_z\mu C/m^2$
 - (C) Zero (D) $20.85\hat{a}_{\nu}\mu C/m^2$
- 4. The electric and magnetic field in a medium whose $\varepsilon_{\mu} = 5$.

$$E = \frac{70}{\rho} \sin\left(10^4 t + \rho z\right) \hat{a}_{\phi} \text{V/m}$$
$$H = \frac{H_0}{\rho} \sin\left(10^4 t + \beta z\right) \hat{a}_{\rho} \text{ A/m}$$
Then find H_0 .
(A) 14 (B) 75.4

(A)	14	(\mathbf{D})	/3.4
(C)	-0.415	(D)	8.3×10^{-3}

5. A uniform plane wave in free space with $H = 2\sin(\omega t - 3x - 4z)\hat{a}_y$ A/m is incident on a dielectric slab then find angle of incidence. (A) 53.13° (B) 36.86° (C) 40.89° (D) 49°

- **6.** For a given range of frequency, which one of the following system is best for transmission line load matching?
 - (A) Single stub
 - (B) Double stub
 - (C) Single stub with adjustable position
 - (D) Quarter wave transformer
- 7. A 50 Ω lossless transmission line, transmits a signal of 500KHz to a load of 150 Ω . First V_{\min} occurs at
 - (A) 600m from the load
 - (B) 150m from the source
 - (C) 150m from the load
 - (D) 600m from the source
- 8. A uniform plane wave has power density $1.7W/m^2$ has medium constants $\mu_r = 1$, $\varepsilon_r = 4$, then find maximum value of *H*.
 - (A) 134.3 mA/m
 (B) 250.3mA/m
 (C) 253.4 mA/m
 (D) 145.2 mA/m
 - (C) 255.4 IIA/III (D) 145.2 IIA/
- 9. Cavity is a
 - (A) High pass filter(B) band stop filter(C) low pass filter(D) band pass filter
- 10. A TEM wave impinges obliquely on a dielectric dielectric boundary with $\varepsilon_{r1} = 2$, $\varepsilon_{r2} = 1$. The angle of incidence for total reflection is (A) 54.7° (B) 45°

(A)
$$54.7^{\circ}$$
 (B) 45°
(C) 35.26° (D) does not exist

- **11.** Method of images is applicable to
 - (A) Both electrostatic fields and electrodynamic fields
 - (B) Neither electrostatic fields nor electrodynamics fields
 - (C) Electrodynamics fields only
 - (D) Electrostatic fields only
- 12. For no reflection condition a vertically polarized wave should be incident at the interface between two dielectric having $\varepsilon_1 = 1$ and $\varepsilon_2 = 4$, with an incident angle of

(A)
$$\tan^{-1}\left(\frac{4}{1}\right)$$
 (B) $\sin^{-1}(2)$
(C) $\tan^{-1}(2)$ (D) $\sin^{-1}(1/2)$
An alliptically polarized wave travelling in

- **13.** An elliptically polarized wave travelling in positive Z direction in air has X and Y components $E_x = 2\cos(\omega t \beta z)$ V/m and $E_y = 4\cos(\omega t \beta z + 80^\circ)$ V/m. Then find average power.
 - $\begin{array}{rll} (A) & 26.52 \ mW/m^2 & (B) & 30 \ mW/m^2 \\ (C) & 35 \ mW/m^2 & (D) & 47.7 \ mW/m^2 \end{array}$
- 14. The intrinsic impedance of copper at 4GHz, will be (Assume that $\mu = \mu_0$, $\varepsilon = \varepsilon_0$, $\sigma = 6.8 \times 10^5$ Mho/m) (A) $377e^{j\pi/4}$ (B) $120\pi e^{j2\pi}$ (C) $0.215e^{j\pi/4}$ (D) $50e^{j2\pi}$

Time: 60 min.

3.242 | Electromagnetics Test 2

- **15.** The terminating load of an *HF* transmission line with Z = 50Ω working at 250MHz is $(50 + j30) \Omega$. Calculate the position of voltage minima nearest of the load.
 - (A) 1.68m (B) 0.42m
 - (C) 1.2m (D) 0.6m
- **16.** If $A = \rho \sin \phi \ \hat{a}_{\rho} + \cos \phi \ \hat{a}_{\phi}$ evaluate $\oint A \ d \ \ell$ around the path shown below figure.

it can be said that \vec{A} is

(A)	Solenoidal	(B)	Rotational
(C)	Harmonic	(D)	Conservative

18. A charge of 2 coulomb is placed near conducting ground plate, at a distance of 1m. Then force between two charges is

(A)
$$\frac{1}{2\pi\varepsilon_0}$$
 (B) $\frac{1}{\pi\varepsilon_0}$
(C) $\frac{2}{\pi\varepsilon_0}$ (D) $\frac{1}{4\pi\varepsilon_0}$

19. A wire of diameter 1mm and conductivity 4.8×10^{6} S/m has 10^{27} free electrons per cube meter when an electric field of 8mV/m then what is the drift velocity of electrons?

(A) 38.4 mm/sec ((B) 2	2.4 µm/sec
-------------------	-------	------------

- (C) $38.4 \,\mu\text{m/sec}$ (D) $61.44 \,\text{mm/sec}$
- **20.** In a non magnetic medium $E = 5 \cos(2\pi \times 10^8 t 8x) \hat{a}_z$

V/m, then the total power crossing 50 cm^2 of plane 3x + y = 2.

(A)	417.36 mW	(B)	542.5 μW
(C)	600 μW	(D)	743.µW

21. 50 V peak signal is incident on a 80Ω transmission line and line is transmitted by 250Ω load. The peak value of incident and reflected currents respectively are

(A)	0.357A, 0.625A	(B)	0.625A, 0.321A
(C)	0.625A, 0.13A	(D)	0.52A, 0.23A

22. A square wave guide operated at 4*G*Hz. If the group velocity is 2×10^8 m/sec and wave guide is filled with oil having $\varepsilon = 3.5\varepsilon_0$. Then find largest dimension of the wave guide.

(A) 4.02 cm	(B)	2.15 cm
-------------	-----	---------

(C) 3.04 cm (D) 2.7 cm

- **23.** An antenna has a gain of 50 dB. Assuming that the main beam of antenna is circular in cross section, the beam width will be
 - (A) 29°(B) 50°(C) 140°(D) 1.1°
- 24. Consider a region defined by |x|, |y|, |z| < 1. Let $\varepsilon = 4\varepsilon_0$, $\mu = 3\mu_0$ and $\sigma = 0$, the displacement current density J_d is equals to 10 sin $(10^8t - bx)$ \hat{a}_y mA/m². Assume no DC fields are present. Then the magnetic field intensity is given by
 - (A) $-2.82 \cos(10^8 t bx) \hat{a}_v \text{A/m}$
 - (B) 2.82 $b \sin(10^8 bx) \hat{a}_z$ Am
 - (C) $-0.74b \cos(10^8 t bx) \hat{a}_x \text{A/m}$
 - (D) $0.74\cos(10^8t bx) \hat{a}_y \text{A/m}$

25. Uniform plane wave in a lossy magnetic media has the electric field strength as $E_s = (3\hat{a}_x + 5\hat{a}_y)e^{-\gamma z}$ where $\gamma = (0.6 + j5)\text{m}^{-1}$. Calculate magnitude of the wave at z = 3m and $t = \frac{T}{10}$

26. For an electric field $E = E_0 \cos \omega t$ V/m, what is the phase difference between the conduction current and displacement current?

(A)	45°	(B)	90°
(C)	0°	(D)	60°

- 27. A line has 75Ω characteristic impedance and it is terminated by *j*75 ohms. The VSWR on the line is
 (A) *j*(B) 1
 - (C) ∞ (D) Does not exist
- **28.** A 12 cm long vertical dipole radiates into air at 50 MHz with a peak input current of 80mA. Find its efficiency if its loss resistance is 0.2Ω .
 - (A) 31.6% (B) 61.2%
 - (C) 16.3% (D) 21.6%
- **29.** In a eighty turn coil, if the flux through each turn is $(4t^3 2t)$ m wb. The magnitude of the induced emf in the coil at a time of 3sec is
 - (A) 4.8mV (B) 8.48V (C) 8.16V (D) 6V
- **30.** A plane wave of 8 *G*Hz is incident normally on a dielectric plate of 4mm thickness. If a phase shift on transmission through the sheet is 90°, then dielectric constant is _____

(A)	4.68	(B)	8
(C)	25	(D)	5.5

31. A dipole antenna with a length of 8cm and carrying a current of 1.5A at a frequency of 10^8 Hz, radiates into free space. Find the electric field intensity at a distance of 8 *km* from the antenna.

Electromagnetics Test 2 | 3.243

(A)	0.842mV/m	(B)	1.88V/m		Statemen	t for Linked	answer Q	uestions 34 a	nd 35:
(C)	0.97V/m	(D)	1.37mV/	m	Civon the	notontial V-	$-\frac{8}{2}$ sin 20 s	aad	
Commo	Common data for Questions 32 and 33:			Given the potential $v = \sin 2\theta \cos \varphi$					
A transr	mission line has R	$= 20\Omega/km,$	inductan	ce per Kilo-	34. The electric flux density D at $(3, \pi/4, 0)$ is				
meter is 80mH, conductance is zero, capacitance per kilo-			(A)	$8/3 \ \hat{a}_r$	(B) $-8/9 \hat{a}_{\phi}$			
meter is	$15\mu F$ at $\omega = 2 \times 1$	0^3 rad/sec.				-8		8	
32. The	characteristic imp	bedance of t	the line is		(C)	$\frac{3}{3} \epsilon_0 \hat{a}_{\theta}$	((D) $\frac{\sigma}{q} \varepsilon_0 \hat{a}_r$	
(A)	50Ω	(B)	73.3 ∠-7	7.13°Ω					0
(C)	73.3 ∠–3.56°Ω	(D)	51.8 ∠7°	Ω	35. Find	the work don	e in moving	$g = 9\mu C$ charg	e from point
33. Fin	d the propagation of	constant.			A(1,	$15^{\circ}, 120^{\circ}$) to	$B(3, 45^{\circ}, 6)$	0°).	
(A)	2.2∠86°	(B)	0.153∠0	0	(A)	6 μJ	(B) 30 µJ	
(C)	2.19∠0°	(D)	2.19∠17	2°	(C)	6 <i>m</i> J	(D) 30 mJ	
	Answer Keys								
1. B	2. C	3. A	4. C	5. B	6. B	7. C	8. A	9. D	10. B
11. D	12. C 13	3. A 1	14. C	15. B	16. B	17. B	18. D	19. B	20. C

HINTS AND EXPLANATIONS

26. B

25. C

35. B

1. Laplacian of a scalar field is the divergence of the gradient Choice (B)

23. D

33. A

24. C

34. D

2. Choice (C)

21. B

31. D

3. $\overline{D} = \varepsilon_0 \overline{E} = \varepsilon_0 \frac{\rho_s}{2\varepsilon_0} \overline{a}_{_N} = \frac{41.7}{2} \overline{a_{_X}}$

22. C

32. C

[negative sign due to co - ordinate of x is less than Sur face charge density plane. Choice (A)

4.
$$\frac{E_{\varphi}}{H_{\rho}} = -\eta$$

$$\Rightarrow \frac{-70\sqrt{\varepsilon}_{r}}{120\pi\sqrt{\mu}_{r}} = H_{0}$$

$$\Rightarrow \frac{-70\sqrt{5}}{120\pi} = -0.415$$
Choice (C)

5. The propagation vectors $\tan \theta_I = \frac{3}{4}$

$$\theta_1 = \tan^{-1}(3/4) = 36.86^{\circ}$$
 Choice (B)

- **6.** Single stub is used for a fixed frequency only and double stub is used for a range of frequencies.
- 7. Given that $Z_0 = 50\Omega$ $Z_L = 150\Omega$ $\Rightarrow ZL > Z_0$, first V_{max} is located at the load & first V_{min} is located at $\frac{\lambda}{4}$ $\lambda = \frac{C}{f} = \frac{3 \times 10^8}{5 \times 10^5} = 600 \text{ m}$
 - $\Rightarrow V_{\min}$ occurs at 150 m from the load. Choice (C)

8. From pointing vector we know that

27. C

$$\left|\vec{P}\right| = \frac{1}{2} E_m H_m = \frac{\eta}{2} H_m^2$$

$$\eta = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{\mu_0}{4\epsilon_0}} = \frac{377}{2} = 188.5\Omega$$

$$\Rightarrow H_m = \sqrt{\frac{2|\vec{P}|}{\eta}} = \sqrt{\frac{2 \times 1.7}{188.5}}$$

$$= 134.3 \text{ mA/m}$$
 Choice (A)

28. B

29. B

30. D

Choice (C)

9. Choice (D)

1

Choice (B)

0.
$$\frac{\sin \theta_i}{\sin \theta_r} = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}}$$
$$\Rightarrow \quad \sin \theta_i = \frac{1}{\sqrt{2}}$$
$$\Rightarrow \quad \theta_1 = 45^\circ$$
Choice (B)

12.
$$\tan \theta_I = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$$

 $\tan \theta_I = 2 \Longrightarrow \theta_1 = \tan^{-1}(2)$

13.
$$E = E_x + E_y = E_x \hat{a}_x + E_y \hat{a}_y$$

 $|E| = \sqrt{E_x^2 + E_y^2} = \sqrt{16 + 4} = \sqrt{20}$
 $\Rightarrow P = \frac{|E|^2}{2\eta} = 26.52 \text{ mW/m}^2$ Choice (A)

3.244 | Electromagnetics Test 2

14. Intrensic impedance
$$(\eta) = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$

and $\omega\varepsilon = 4 \times 10^9 \times 2 \times \pi \times \frac{1}{36\pi} \times 10^{-9} = 0.2 << \sigma$
So $\eta = \sqrt{\frac{j\omega\mu}{\sigma}} = \sqrt{\frac{\omega\mu}{\sigma}} e^{j\pi/4}$
 $= \sqrt{\frac{2\pi \times 4 \times 10^9 \times 4\pi \times 10^{-7}}{6.8 \times 10^5}} e^{j\pi/4}$ Choice (C)
15. $Z_0 = 50\Omega$
 $Z_L = 50 + j30$
 $\int = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{j30}{100 + j30} = \frac{30}{104.4} \angle 90^\circ - 16.69$
 $= 0.29 \angle 73.31^\circ$
Position of voltage minima nearest to load $= \frac{\varphi + \pi}{2\beta}$
 $[\because \phi = 73.31^\circ = 0.4\pi]$
 $= \frac{0.4\pi + \pi}{2(2\pi/\lambda)} \left[\because \lambda = \frac{c}{f} = \frac{3 \times 10^8}{25 \times 10^7} = \frac{6}{5} = 1.2m \right]$
 $= \frac{(1.4)(1.2)}{4} = 0.42m$ from the load
Choice (B)
16. $\oint A. dl = \int_{s}^{(\nabla \times A)} ds$
 $\Rightarrow \nabla \times A = \frac{1}{\rho} \left[\frac{\hat{a}_\rho}{\partial \rho} \quad \frac{\partial}{\partial \varphi} \quad \frac{\partial}{\partial Z} \\ \rho \sin \phi \rho \cos \phi \quad 0 \right]$
 $= \frac{\cos\varphi}{\rho} [1 - \rho]$
 $\oint A. dl = \int_{s}^{\frac{60}{3}} \frac{5}{2} \frac{\cos\varphi}{\rho} (1 - \rho) \rho d\rho d\varphi$
 $s = (2 - 8) [Sin60^\circ - Sin45^\circ)$
 $= -6 \left[\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \right] = -0.95$ Choice (B)
17. $\nabla \times A = \left[\frac{\hat{a}_x \quad \hat{a}_y \quad \hat{a}_z \\ \frac{d}{dx} \quad \frac{d}{dy} \quad \frac{d}{dz} \\ 3x^2yz \quad x^2z \quad x^2y - 2z \right]$
 $= -\hat{a}_y [2x - 3x^2y] + \hat{a}_z [2xz - 3x^2y] \neq 0$
So A is said to be rotational Choice (B)

So A is said to be rotational

18. Given that charge is placed near a ground plane so we have to consider method image charge. So total distance is 2m.

$$F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2} = \frac{4}{16\pi\varepsilon_0^4} = 1/4\pi\varepsilon_0$$

Choice (D)

19. drift velocity =
$$\frac{J}{\rho_v} = \frac{\sigma E}{\rho_v}$$

= $\frac{4.8 \times 10^6 \times 8 \times 10^{-3}}{10^{27} \times 1.6 \times 10^{-19}} = 2.4 \mu \text{m/sec}$ Choice (B)
20. On plane $3x + y = 2$
 $\hat{a}_n = \frac{3\hat{a}_x + \hat{a}_y}{\sqrt{10}}$
 $P_{\text{total}} = P_{\text{avg}} \times \text{area}$

$$P_{\text{total}} = P_{\text{avg}} \times \operatorname{area}$$

$$\Rightarrow P_{\text{avg}} = \frac{E_0^{-2}}{2\eta}$$

$$\eta = \frac{120\pi}{\sqrt{\varepsilon_r}}$$

$$\beta = \omega \sqrt{\mu \varepsilon_0 \varepsilon_r}$$

$$\Rightarrow \frac{\beta C}{\omega} = \sqrt{\varepsilon_r} = \frac{8 \times 3 \times 10^8}{2\pi \times 10^8} = \frac{12}{\pi}$$

$$\Rightarrow P_{\text{avg}} = \frac{25 \times 12}{2 \times 120\pi \times \pi}$$

$$\Rightarrow P_{\text{total}} = \left[0.126 \times 50 \times 10^{-4}\right] \times \hat{a}_x \left[\frac{3\hat{a}_x + \hat{a}_y}{\sqrt{10}}\right]$$

$$= 600 \times 10^{-6} \text{W} = 600 \ \mu\text{W} \qquad \text{Choice (C)}$$

21.
$$I_{\text{incident}} = \frac{50V}{80\Omega} = 0.625A$$
$$I_{\text{reflected}} = \frac{V_r}{Z_0} = \frac{\left[V_i\right]}{Z_0} \qquad \left[\because \Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}\right]$$
$$\Gamma = 0.51$$
$$I_{\text{reflect}} = \frac{0.51 \times 50}{80} = 0.321 \text{ A} \qquad \text{Choice (B)}$$

22. We know that
$$V_P V_g = C^2$$

 $V_P = \frac{(3 \times 10^8)^2}{2 \times 10^8}$
 $= 4.5 \times 10^8 \text{m/sec}$

$$\Rightarrow V_p = \frac{C}{\sqrt{\varepsilon_r} \sqrt{1 - \left(\frac{f_c}{f_0}\right)^2}}$$
$$\Rightarrow 4.5 \times 10^8 = \frac{3 \times 10^8}{\sqrt{3.5} \sqrt{1 - \left(\frac{f_c}{4}\right)^2}}$$

 $\Rightarrow f_c = 3.73 \text{ GHz}$ For a square wave guide a = b and dominant mode is TM_{11}

$$\Rightarrow f_c = \frac{C}{2\sqrt{\varepsilon_r}} \sqrt{\frac{1}{a^2 + \frac{1}{a^2}}}; f_c = \frac{C}{2\sqrt{\varepsilon_r}} \frac{\sqrt{2}}{a}$$
$$\Rightarrow a = \frac{C}{f_c \sqrt{2\varepsilon_r}} = \frac{3 \times 10^{10}}{3.73 \times 10^9 \sqrt{7}}$$
$$= 3.04 \text{ cm} \qquad \text{Choice (C)}$$

23. $10\log G = 50$ $\Rightarrow G = 10^5$

G = 10^5 Gain of antema which is circular in cross section

is
$$6\left(\frac{D}{\lambda}\right)^2 = 10^5$$

 $\frac{D}{\lambda} = 129$
 \Rightarrow Beam width = $140\frac{\lambda}{D} = 1.08$
 $\approx 1.1^\circ$ Choice (D)

24. $J_d = \frac{dD}{dt} \Rightarrow D = \int J_d t + C_1$

[
$$: C_1$$
 is zero because no dc fields is present]

$$D = \frac{-10 \times 10^{-3}}{10^8} \cos(10^8 t - bx) \hat{a}_y$$

$$E = \frac{D}{\varepsilon} = \frac{-10^{-10}}{\varepsilon} \cos(10^8 t - bx) \hat{a}_y$$

$$= -2.82 \cos(10^8 t - bx) \hat{a}_y$$

$$\Rightarrow \nabla \times E = \frac{\partial E_y}{\partial_x} \hat{a}_z = \frac{-\partial B}{\partial t}$$

$$-2.82 b \sin(10^8 t - bx) = -\frac{\partial B}{\partial t}$$
Integrating both sides
$$\frac{-2.82b}{10^8} \cos(10^8 t - bx) = B = \mu H$$

$$\Rightarrow H = \frac{-2.82b}{10^8 \mu} \cos(10^8 t - bx) \hat{a}_z A/m$$
Choice (C)

25.
$$E_s = (3\hat{a}_x + 5\hat{a}_y)e^{-(0.6+j5)2}$$

But $E = R_e [E_s e^{j\omega t}]$
 $E = \operatorname{Re}[(3\hat{a}_x + 5\hat{a}_y)e^{-(0.6+j5)z}e^{j(\omega t - \beta z)}]$
 $\Rightarrow E = (3\hat{a}_x + 5\hat{a}_y)e^{-0.6z}\cos(\omega t - \beta z)$
 $|E| = \sqrt{9 + 25}e^{-0.6\times 3}\cos\left(\frac{2\pi}{T} \times \frac{t}{10} - 15\right)$
 $= 5.8 e^{-1.8}\cos(21) = 0.89$ Choice (C)
26. $J = \sigma E + \varepsilon \frac{\partial E}{2}$

$$J = \sigma E + \varepsilon \frac{\partial E}{\partial t}$$

= $\sigma E_0 \cos \omega t - \varepsilon E_0 \omega \sin \omega t$
= $\sigma E_0 \cos \omega t + \varepsilon E_0 \omega \cos(\omega t + 90^\circ)$

 \Rightarrow 90° phase difference between conduction current and displacement current. Choice (B)

27.
$$[= \frac{Z_L - Z_0}{Z_L + Z_0}]$$

$$= \frac{j-1}{j+1} \Rightarrow |\Gamma| = 1$$

$$VSWR = \frac{1+|\Gamma|}{1-|\Gamma|} = \frac{1+1}{1-1} = \infty$$

$$Choice (C)$$
28.
$$R_{rad} = 80\pi^2 \left(\frac{d\ell}{\lambda}\right)^2$$

$$\Rightarrow \lambda = \frac{C}{f} = \frac{3 \times 10^{10}}{50 \times 10^6} = 600 \text{ cm}$$

$$R_{rad} = 80\pi^2 \left(\frac{12}{600}\right)^2 = 0.316$$

$$\eta = \frac{R_{rad}}{R_{rad} + R_{loss}} \times 100$$

$$= \frac{0.316}{0.316 + 0.2} \times 100 = 61.2\%$$

$$Choice (B)$$
29.
$$E_{ind} = \frac{-Nd\varphi}{l_e}$$

29.
$$E_{ind} = \frac{-Na\psi}{dt}$$

= $-80 \frac{d(4t^3 - 2t) \times 10^{-3}}{dt}$
= $-80[12t^2 - 2] \times 10^{-3}$ at 3sec.
= -8.48 V Choice (B)

30. Phase difference
$$=\frac{2\pi}{\lambda}$$
 path difference
 $\pi/2 = \frac{2\pi}{\lambda} \times 4 \times 10^{-3}$
 $\Rightarrow \lambda = 16 \text{ mm}$
 $\Rightarrow V = \frac{C}{\sqrt{\varepsilon_r}} = \lambda f$

31.

32.

$$\frac{3 \times 10^8}{\sqrt{\varepsilon_r}} = 16 \times 10^{-3} \times 8 \times 10^9$$

$$\Rightarrow \varepsilon_r = 5.49 = 5.5$$
Choice (D)
$$length of dipole = dl = 8cm = 0.08m = 8 \times 10^{-2}m$$

$$I = 1.5A$$

$$\lambda = \frac{C}{f} = \frac{3 \times 10^8}{10^8} = 3m$$

$$\lambda_{c} = \frac{C}{f} = \frac{3 \times 10^8}{10^8} = 3m$$

$$P_{rad} = 80\pi^2 \left(\frac{d\ell}{\lambda}\right)^2 \mathbf{1}_{eff}^2$$

$$= 80\pi^2 \left(\frac{8 \times 10^{-2}}{3}\right)^2 \times 1.5^2 = 1.89 \approx 2$$

$$P_{arg} = \frac{|E|^2}{2\eta} \text{ and } P_{arg} \times 4\pi r^2 = P_{rad}$$

$$\Rightarrow |E|^2 = \frac{2\eta}{4\pi r^2} P_{rad} = \frac{2 \times 2 \times 120\pi}{4\pi \times (8 \times 10^{-2})^2}$$

$$= 1.37 \text{ mV/m}$$

$$Z_0 = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}$$

$$= \sqrt{\frac{20 + j160}{(G + j\omega C)}}$$

$$= \sqrt{\frac{20 + j160}{2}}$$

$$= \sqrt{\frac{20 + j160}{2}}$$

$$= \sqrt{20 + j160}$$

$$= 10^2 \sqrt{\frac{1 + j8}{j15}} = 73.3 \angle - 3.565^\circ$$
Choice (C)
$$= 10^2 \sqrt{\frac{1 + j8}{j15}} = 73.3 \angle - 3.565^\circ$$
Choice (C)
$$= 10^2 \sqrt{\frac{1 + j8}{j15}} = 73.3 \angle - 3.565^\circ$$
Choice (C)
$$= 10^2 \sqrt{\frac{1 + j\omega L}{(G + j\omega C)}}$$

$$= \sqrt{(20 + j160)(G + j\omega C)}$$

$$= \sqrt{(20 + j160)(G + j\omega C)}$$

$$= \sqrt{(20 + j160)(G + j\omega C)}$$

$$= \sqrt{2} \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}$$

$$= \sqrt{2} \sqrt{\frac{20 + j160}{3}}$$
Choice (D)
$$= 10^2 \sqrt{\frac{1 + j8}{j15}} = 73.3 \angle - 3.565^\circ$$
Choice (C)
$$= 10^2 \sqrt{\frac{1 + j\omega L}{j0}}$$

$$= \sqrt{(20 + j160)(G + j\omega C)}$$

$$= \sqrt{(20 + j160)(G + j\omega C)}$$

$$= \sqrt{(20 + j160)(G + j\omega C)}$$

$$= \sqrt{2} \sqrt{\frac{1 + j\omega}{2}}$$

$$= 10^2 \sqrt{\frac{1 + j\omega}{2}}$$

$$= 70^2 \sqrt{\frac{1 + j\omega}{2}}$$

$$= 10^2 \sqrt{\frac{1 + j\omega}{2}}$$

$$= 70^2 \sqrt{\frac{1 + j\omega}{2}}$$

$$= 10^2 \sqrt{\frac{1 + j$$