Arithmetic Progressions

Exercise 2.1

I. Very Short Answer Type Questions

- 1. Multiple Choice Questions (MCQs) Choose the correct answer from the given options:
 - (1) If $a_n = 5n 4$ is a sequence, then a_{12} is (a) 48 (b) 52 (c) 56 (d) 62 (2) If $a_n = 3n - 2$, then the value of $a_7 + a_8$ is (a) 39 (b) 41 (c) 47 (d) 53

[1 Mark]

(3) The second term of the sequence defined by $a_n = 3n + 2$ is (*a*) 2 (b) 4 (c) 6

2. Assertion-Reason Type Questions

In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

(d) 8

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- (1) Assertion (A): The arrangement of numbers, *i.e.*, -4, 16, -64, 256, -1024, 4096, ... form a sequence. Reason (R): An arrangement of numbers which are arranged in a definite order according to some rule, is called a sequence.
- (2) Assertion (A): Sequence 1, 5, 9, 13, 17, 21, ... is a finite sequence.

Reason (R): A sequence with finite number of terms or numbers is called a finite sequence.

3. Answer the following:

(1) Write down the first six terms of each of the following sequences, whose general terms are:

(a) $a_n = 5n - 3$ (b) $a_n = (-1)^n \cdot 2^{2n}$ (c) $a_n = \frac{2n+1}{n+2}$ (d) $a_n = (-1)^{n-1} \cdot n^2$

- (2) Find the 10th term of the sequence defined by $a_n = (-1)^{2n-1} \cdot 5^n$.
- (3) Find the difference between the 12th term and 10th term of the sequence whose general term is given by $a_n = 5n 1$.

Answers

 (1) (3) (1) (2) 	 (c) 56 (1) (2) (b) 41 (d) 8 (1) (a) Both assertion (A) and reason (R) are reason (R) is the correct explanation of a (A). (d) Assertion (A) is false but reason (R) is transformed as a second second	(1) rrue and ssertion (1) ue. (1)	3. (1) (a) 2, 7, 12, 17, 22, 27 (b) -4, 16, -64, 256, -1024, 4096 (c) 1, $\frac{5}{4}$, $\frac{7}{5}$, $\frac{3}{2}$, $\frac{11}{7}$, $\frac{13}{8}$ (d) 1, -4, 9, -16, 25, -36 (2) -9765625 (3) 10	(1) (1) (1)
--	--	---	--	-------------------

Exercise 2.2

I. Very Short Answer Type Questions

1. Multiple Choice Questions (MCQs)

- Choose the correct answer from the given options:
- (1) In an AP, if d = -4, n = 7, $a_n = 4$, then *a* is *(b)* 7 (*a*) 6 (c) 20 (d) 28
- (2) The n^{th} term of the AP: $a, 3a, 5a, \dots$ is (*b*) (2n-1)a(c) (2n+1)a(d) 2na (a) na
- (3) The first term of an AP is p and the common difference is q, then its 10^{th} term is (d) 2p + 9p(b) p - 9q(*a*) q + 9p(c) p + 9q

(4) If $\frac{4}{5}$, a, 2 are three consecutive terms of an AP, then the value of a is

(a)
$$\frac{5}{2}$$
 (b) $\frac{2}{7}$ (c) $\frac{5}{7}$ (d) $\frac{7}{5}$

2. Assertion-Reason Type Questions

In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- (1) Assertion (A): Common difference of the AP: -5, -1, 3, 7, ... is 4. **Reason (R):** Common difference of the AP : a, a + d, a + 2d, ... is given by $d = 2^{nd}$ term -1^{st} term. (2) Assertion (A): If n^{th} term of an AP is 7 - 4n, then its common difference is -4.
- **Reason (R):** Common difference of an AP is given by $d = a_{n+1} a_n$.
- (3) Assertion (A): Common difference of an AP in which $a_{21} a_7 = 84$ is 14. **Reason (R):** n^{th} term of an AP is given by $a_n = a + (n-1)d$.

[1 Mark]

3. Answer the following:

(1) Write first four terms of the AP, whose first term and the common difference are given as follows: a = 10, d = 10

(2) Find the 10 th term of the AP: 2, 7, 12,	[NCERT] [Imp.]
(3) In the given AP, find the missing terms:, 13,, 3.	[NCERT]
(4) Find the 6^{th} term from the end of the AP: 17, 14, 11,, -40.	[Imp.]
(5) Which term of the AP: 21, 18, 15, is zero?	[Delhi 2008 (C)] [Imp.]
(6) Write the next term of the AP: $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$,	[AI 2008]
(7) Find a , b , and c such that the numbers a , 7, b , 23, c are in AP.	[NCERT Exemplar]
(8) Find the 9 th term from the end (towards the first term) of the AP: 5, 9, 13,,	, 185. [Delhi 2016]
(9) For what value of k will $k + 9$, $2k - 1$ and $2k + 7$ are the consecutive terms of	f an AP? [Delhi 2016]
(10) For what value of k will the consecutive terms $2k + 1$, $3k + 3$ and $5k - 1$ form	m an AP? [Foreign 2016]
(11) Find the eleventh term from the last term of the AP: $27, 23, 19,, -65$.	[CBSE Sample Paper 2018]
(12) If the first three terms of an AP are b , c and $2b$, then find the ratio of b and c .	[CBSE Standard SP 2019-20]
(13) Find the value of x so that -6 , x, 8 are in AP.	
(14) Find the 11^{ur} term of the AP: -27, -22, -17, -12,	
(15) The n^{th} term of an AP is $(7 - 4n)$, then what is its common difference?	
(16) Find the common difference of the AP whose first term is 12 and fifth term i	is 0.
II. Short Answer Type Questions - I	[2 Marks]
4. Find how many integers between 200 and 500 are divisible by 8.	[AI 2017]
5. Which term of the progression 20, 19 $\frac{1}{4}$, 18 $\frac{1}{2}$, 17 $\frac{3}{4}$, is the first negative term?	[AI 2017]
6. Is –150 a term of the AP: 17, 12, 7, 2,?	[Delhi 2011]
7. Find the number of two-digit numbers which are divisible by 6.	[AI 2011]
8. Which term of the AP: 3, 14, 25, 36, will be 99 more than its 25 th term?	[AI 2011]
9. Which term of the AP: 3, 15, 27, 39, will be 120 more than its 21 st term?	[Delhi 2019]
10. How many natural numbers are there between 200 and 500, which are divisible b	ov 7? [AI 2011]
11. How many two-digit numbers are divisible by 7?	[Foreign 2011]
12. How many two digits numbers are divisible by 3?	[Delhi 2019]
13. If $\frac{1}{x+2}$, $\frac{1}{x+3}$ and $\frac{1}{x+5}$ are in AP, find the value of x.	[Foreign 2011]
14. How many three digit numbers are divisible by 11?	[AI 2012]
15. In an AP, the first term is 12 and the common difference is 6. If the last term of	of the AP is 252, find its middle term.
	[Foreign 2017]
16. Find the number of natural numbers between 101 and 999 which are divisible by	both 2 and 5. [AI 2014]
17. The 4^{th} term of an AP is zero. Prove that the 25^{th} term of the AP is three times its	[AI 2016] [AI 2016]
18. Find the middle term of the AP: 6, 13, 20,, 216.	[Delhi 2015]
19. The n^{th} term of an AP is $6n + 2$. Find its common difference.	[Delhi 2008]
20. Find the 10 th term from end of the AP: 4, 9, 14,, 254.	[Imp.]
21. Determine k so that $k^2 + 4k + 8$, $2k^2 + 3k + 6$, $3k^2 + 4k + 4$ are three consecutive t	terms of an AP. [NCERT Exemplar]
22. Find the number of natural numbers between 102 and 998 which are divisible by 2	and 5 both.
	[CBSE Standard SP 2019-20]
III. Short Answer Type Questions - II	[3 Marks]
23. Which term of the AP: 115, 110, 105, is its first negative term?	
24. If the 9^{th} term of an AP is zero, prove that its 29^{th} term is double of its 19^{th} term.	[NCERT Exemplar]
25. The angles of a triangle are in AP. The greatest angle is twice the least. Find all t	he angles of the triangle.
the second se	[NCERT Exemplar]
26. For what value of <i>n</i> , the n^{th} term of two APs: 63, 65, 67, and 3, 10, 17, are equivalent to the second s	qual. [NCERT]
27. The 8 th term of an AP is 37 and its 12 th term is 57. Find the AP.	[Imp.]
28. The p , q and r terms of an AP are a, b and c respectively. Show that $a(q-r)$	+ b(r-p) + c(p-q) = 0.

[Foreign 2016]

29. If the n^{th} terms of two APs: 23, 25, 27, ... and 5, 8, 11, 14, ... are equal, then find the value of n.

IV. Long Answer Type Questions

[5 Marks]

[AI 2013]

- **30.** If *m* times the m^{th} term of an Arithmetic Progression is equal to *n* times its n^{th} term and $m \neq n$, show that the $(m + n)^{\text{th}}$ term of the AP is zero. [AI2019]
- **31.** The 19th term of an AP is equal to three times its sixth term. If its 9th term is 19, find the AP.
- **32.** The sum of the 4th and 8th terms of an AP is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the AP.
- **33.** The eighth term of an AP is half its second term and the eleventh term exceeds one-third of its fourth term by 1. Find the 15th term.
- **34.** If 4 times the 4^{th} term of an AP is equal to 18 times the 18^{th} term, then find the 22^{nd} term.

Case Study Based Questions

I. Your friend Veer wants to participate in a 200 m race. Presently, he can run 200 m in 51 seconds and during each day practice it takes him 2 seconds less. He wants to do in 31 seconds.

- 1. Which of the following terms are in AP for the given situation?
- (a) 51, 53, 55, ...
 (b) 51, 49, 47, ...
 (c) -51, -53, -55, ...
 (d) 51, 55, 59, ...
 2. What is the minimum number of days he needs to practice till his goal is achieved?
- (a) 10(b) 12(c) 11(d) 9**3.** Which of the following term is not in the AP of the above given situation?
(a) 41(b) 30(c) 37(d) 39
- 4. If n^{th} term of an AP is given by $a_n = 2n + 3$ then common difference of an AP is (a) 2 (b) 3 (c) 5 (d) 1
- 5. The value of x, for which 2x, x + 10, 3x + 2 are three consecutive terms of an AP is (a) 6 (b) -6 (c) 18 (d) -18
- **II.** India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in 9th year.

1. The production du	oduction during first year is					
(a) 3000 TV sets	(b) 5000 TV sets	(c) 7000 TV sets	(d) 10000 TV sets			
2. The production du	ring 8 th year is					
(a) 10500	(<i>b</i>) 11900	(c) 12500	(<i>d</i>) 20400			

3. The production during first 3 years is (c) 21600 (d) 25200(a) 12800 (b) 19300 4. In which year, the production is 29,200? (b) 12^{th} year (c) 15^{th} year (d) 18^{th} year (a) 10^{th} year 5. The difference of the production during 7^{th} year and 4^{th} year is (c) 5400 (a) 6600 (*b*) 6800 (d) 7200 **Answers and Hints 1.** (1) (*d*) 28 (1) (2) (*b*) (2n-1)a4. AP formed is 208, 216, 224,, 496 (1)(1) (4) (a) = $\frac{7}{5}$ $a_n = 496$ (1) (3) (c) p + 9q $\Rightarrow 208 + (n-1) \times 8 = 496$ 2. (1) (a) Both assertion (A) and reason (R) are true and \Rightarrow *n* = 37 reason (R) is the correct explanation of assertion 5. Here $d = \frac{-3}{4}$ (A). (1)(2) (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion Let the n^{th} term be first negative term. (A). (1) $\therefore 20 + (n-1)\left(\frac{-3}{4}\right) < 0 \quad \Rightarrow \quad 3n > 83$ (3) (d) Assertion (A) is false but reason (R) is true. (1)**3.** (1) 10, 20, 30, 40 (1) (2) 47 (1) $n > 27 \frac{2}{3}$ \Rightarrow (3) 18,8 (1) (4) -25 (1)(1) (6) $\sqrt{50}$ or $5\sqrt{2}$ Hence, 28th term is first negative term. (5) 8 (1) (7) a = -1, b = 15, c = 31(1)6. Let $a_n = -150$ a + (n-1)d = -150(8) Reversing the given AP, we get 185, 181, 174, ..., 9, 5 17 + (n-1)(-5) = -150 \Rightarrow Ninth term $a_9 = a + (9 - 1)d$ (n-1)(-5) = -167 \Rightarrow $= 185 + 8 \times (-4)$ $n = \frac{167+5}{5} = \frac{172}{5} = 34\frac{2}{5}$ = 185 - 32 \Rightarrow =153(1)Here, *n* is not a natural number. (9) Given that k + 9, 2k - 1 and 2k + 7 are in AP \therefore -150 is not a term of the given AP. Then, 7. Two-digit numbers which are divisible by 6 are 12, 18, 24, (2k-1) - (k+9) = (2k+7) - (2k-1)..., 96 k - 10 = 8 \Rightarrow \therefore Last term, \Rightarrow k = 18(1) $a_n = 96$ (10) Given that 2k + 1, 3k + 3 and 5k - 1 are in AP. 12 + (n-1)6 = 96So, (3k+3) - (2k+1) = (5k-1) - (3k+3) \Rightarrow (n-1)6 = 96 - 12 = 84 \Rightarrow k + 2 = 2k - 4 \Rightarrow *n* = 15 2k - k = 2 + 4 \Rightarrow \Rightarrow \therefore There are 15 two-digit numbers divisible by 6. k = 6(1) \Rightarrow 8. Let a_n be the term which is 99 more than 25^{th} term of given (11) $a_{11} = -25$ (1)AP. (12) b, c and 2b are in AP ATO. $a_n = a_{25} + 99$ $c = \frac{3b}{2}$ \Rightarrow a + (n-1)d = a + 24d + 99 \Rightarrow $11(n-1) = 24 \times 11 + 99$ \Rightarrow b: c = 2:3*.*.. (1)n = 34 \Rightarrow (13) 1 (1)Hence, 34th is the required term. (14) 23 (1)**9.** AP: 3, 15, 27, 39, ... (15) $a_n = 7 - 4n$ a = 3, d = 15 - 3 = 12 $a_1 = 7 - 4 \times 1 = 3$ \Rightarrow $a_{21} = a + 20d = 3 + 20 \times 12$ $a_2 = 7 - 4 \times 2 = 7 - 8 = -1$ \Rightarrow = 3 + 240 = 243 $a_3 = 7 - 4 \times 3 = 7 - 12 = -5$ 120 more than $a_{21} = 243 + 120 = 363$ $a_2 - a_1 = -1 - 3 = -4$ Now, Let 363 be n^{th} term. $a_3 - a_2 = -5 - (-1)$ So, 363 = 3 + (n-1) 12= -5 + 1 = -4 \Rightarrow 360 = 12(n-1)So, the common difference of AP is -4. (1) $30 = n - 1 \implies n = 31$ $A_5 = a_1 + 4d = 0$ (16)Thus, 31st term of the given AP is 120 more than its 21st 12 + 4d = 0term. d = -3(1)

(1)

(1)

 $(\frac{1}{2})$

(1)

 $(\frac{1}{2})$

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

by 7 are as 203, 210, 217, ..., 497 Let above are *n* numbers and $a_n = 497$ a + (n-1)d = 497(1)203 + 7(n-1) = 497 \Rightarrow *n* = 43 \Rightarrow ... There are 43 natural numbers between 200 and 500 divisible by 7. (1)11. Two-digit numbers which are divisible by 7 are 14, 21, 28, ..., 98. Let $a_n = 98$ \Rightarrow a + (n-1)d = 98(1)14 + 7(n-1) = 98 \Rightarrow *n* = 13 Hence, there are 13 two-digit numbers which are divisible by 7. (1)**12.** 2-digit numbers divisible by 3 are 12, 15, 18, ..., 99 which is in AP. So, $a_n = 99, d = 15 - 12 = 3$ $a_n = a + (n-1) d$ (1)Now, 99 = 12 + (n - 1) 3 \Rightarrow 87 = 3(n-1) \Rightarrow 29 = n - 1 \Rightarrow n = 30 \Rightarrow Thus, 30, 2-digit numbers are divisible by 3. (1)**13.** Given term are in AP $\frac{2}{x+3} = \frac{1}{x+2} + \frac{1}{x+5}$ So, $\frac{2}{x+3} = \frac{(x+5) + (x+2)}{(x+2)(x+5)}$ (1) \Rightarrow $\Rightarrow 2x^2 + 14x + 20 = 2x^2 + 13x + 21$ x = 1(1)14. Three-digit numbers which are divisible by 11 are 110, 121, 132, ..., 990 Let $a_n = 990$ (1) \Rightarrow a + (n-1)d = 990 \Rightarrow 110 + 11(*n* - 1) = 990 *.*.. *n* = 81 Hence, there are 81 three-digit numbers which are divisible by 11. (1)15. Let $a_n = 252 = \text{last term}$ a + (n-1)d = 252 \Rightarrow 12 + (n-1)6 = 252 \Rightarrow \Rightarrow *n* = 41 (1): Since number of terms is odd, so only one middle term Now,middle term = $\left(\frac{41+1}{2}\right)$ $= 21^{st}$ term $\therefore 21^{\text{st}}$ term, $a_{21} = a + 20d$ $= 12 + 20 \times 6$ = 132= middle term value. (1)

10. Natural numbers between 200 and 500 which are divisible by 7 are as 203, 210, 217, ..., 497
 16. Numbers between 101 and 999 which are divisible by both 2 and 5 (*i.e.*, by 10) are 110, 120, 130, ... 990.

Now,
$$a_n = a + (n-1)d$$
 (1)
 $\Rightarrow \qquad 990 = 110 + (n-1)10$
 $\Rightarrow \qquad n = 89$

 $\therefore \text{ Natural numbers which are divisible by 2 and 5 both are 89.}$ (1)

 $a_4 = a + (4 - 1)d$

0 = a + 3d

th

17.

 \Rightarrow

Now

 $a_{25} = a + (25 - 1)d = a + 24d$ = -3d + 24d = 21d = 3 × 7d

a = -3d [:: Given, $a_4 = 0$] (1)

Hence, $a_{25} = 3 \times a_{11}$ [:: Since $a_{11} = a + (11 - 1)d = -3d + 10d = 7d$] (1) **18.** Given AP is 6, 13, 20, ..., 216

$$n^{\text{in term}}, a_n = 216$$

$$\Rightarrow \quad a + (n-1)d = 216$$

$$\Rightarrow \quad 6 + 7(n-1) = 216$$

$$\Rightarrow \quad 7n = 217$$

$$\Rightarrow \qquad n = 31 \tag{1}$$

Since, the number of terms in AP are 31, so, the middle most term is 16^{th} term.

$$\begin{bmatrix} \because \text{ middle term} = \frac{(31+1)}{2} = 16^{\text{th}} \text{ term} \end{bmatrix}$$

$$\therefore 16^{\text{th}} \text{ term}, a_{16} = a + 15d = 6 + 15 \times 7 = 111. \quad (1)$$

19. 6 (2) 20. 209 (2) 21. $k = 0$ (2)
22. 110, 120, 130, ..., 990
 $a_n = 990$
 $\Rightarrow 110 + (n-1) \times 10 = 990$
 $\therefore \qquad n = 89$ (2)
23. 25th term (3) 25. 40°, 60°, 80° (3)
26. 13 (3) 27. 2, 7, 12, 17, 22, ... (3)
28. Let A and d be the first term and common difference of
the given AP then

$$a_p = \mathbf{A} + (p-1)d = a \qquad \dots(i)$$

$$a_q = \mathbf{A} + (q-1)d = b \qquad \dots (ii)$$

$$a_r = \mathbf{A} + (r-1)d = c \qquad \dots (iii)$$

Now, subtracting (i) and (ii), we get

$$(p-q)d = a - b$$
$$p-q = \frac{a}{d} - \frac{b}{d}$$
(1)

Multiplying by 'c' on both sides,

$$c(p-q) = \frac{ca}{d} - \frac{cb}{d} \qquad \dots (iv)$$

Now, (ii) – (iii), we get

$$(q-r)d = b - c$$

 $q-r = \frac{b}{d} - \frac{c}{d}$

Multiplying by 'a' on both sides,

$$a(q-r) = \frac{ab}{d} - \frac{ac}{d} \qquad \dots (v)(1)$$

Now,
$$(iii) - (i)$$
, we get
 $(r-p)d = c - a$
 $(r-p) = \frac{c}{d} - \frac{a}{d}$
Multiplying by 'b' on both sides,

$$(r-p)b = \frac{bc}{d} - \frac{ba}{d} \qquad \dots (vi)$$

Adding (*iv*), (*v*) and (*vi*), we get

$$a(q-r) + b(r-p) + c(p-q) = \frac{ab}{d} - \frac{ac}{d} + \frac{bc}{d} - \frac{ba}{d} + \frac{ca}{d} - \frac{cb}{d} = 0$$
(1)

$$AP_{1} = 23, 25, 27, ...$$
Here $a_{1} = 23$

29.

Here,

$$a_{1} = 23$$

$$d_{1} = 25 - 23 = 27 - 25 = 2$$

$$\therefore \qquad n^{\text{th}} \text{ term} = a_{1} + (n - 1)d_{1}$$

$$= 23 + (n - 1)2$$

$$AP_{2} = 5, 8, 11, 14, \dots \qquad (1)$$
Here,

$$a_{2} = 5$$

Here,

$$d_2 = 8 - 5 = 11 - 8 = 3$$

$$\therefore \qquad n^{\text{th}} \text{ term} = a_2 + (n - 1)d_2$$

$$= 5 + (n - 1)3 \qquad (1)$$

Now
$$23 + (n - 1)2 = 5 + (n - 1)3$$

$$\Rightarrow 23 + 2n - 2 = 5 + 3n - 3$$
$$\Rightarrow 3n - 2n = 23 - 2 - 5 + 3$$

$$\Rightarrow$$
 $n = 26 - 7 = 19$

30. We know that
$$a_n = a + (n-1)d$$

From the given conditions,
 $m[a + (m-1)d] = n[a + (n-1)d]$

$$\Rightarrow m[a + (m-1)a] = n[a + (n-1)a]$$

$$\Rightarrow am + m^{2}d - md = an + n^{2}d - nd$$
(1)

$$\Rightarrow am - an + m^{2}d - n^{2}d - md + nd = 0$$

$$\Rightarrow a(m - n) + d(m^{2} - n^{2}) - d(m - n) = 0$$

$$\Rightarrow a(m - n) + (m + n)(m - n)d - (m - n)d = 0$$
(1)

$$\Rightarrow (m - n) [a + (m + n) d - d] = 0$$

$$\Rightarrow a + md + nd - d = 0$$
(1)

$$a + md + nd - d = 0$$
 (1)
 $a + (m + n - 1)d = 0$

Since, $m \neq n$, it is clear that $(m + n)^{\text{th}}$ term of the AP is zero.

- (1)
- (5) **31.** 3, 5, 7, 9, ... (5) **32.** -13, -8, -3 **33.** 3 (5)

34. Let $a_1, a_2, a_3, \dots a_n, \dots$ be the AP with its first term a and common difference *d*.

It is given that

 \Rightarrow

 \Rightarrow

 \Rightarrow

_

(1)

(1)

$$4a_{4} = 18a_{18}$$
(1)

$$4(a+3d) = 18(a+17d)$$
(1)

$$4a+12d = 18a+306d$$
(1)

$$14a+294d = 0 \implies 14(a+21d) = 0$$
(1)

$$\Rightarrow \qquad a+21d = 0 \qquad \Rightarrow \qquad a+(22-1)d = 0$$

$$\Rightarrow \qquad a_{22} = 0$$

Thus, 22nd term is 0. (1)

Case Study Based Questions

I. 1. (*b*) 51, 49, 47.... **2.** (*c*) 11 **3.** (*b*) 30 **4.** (*a*) 2 **5.** (*a*) 6 **II.1.** (*b*) 5000 TV sets **2.** (*d*) 20400 **4.** (b) 12^{th} year **3.** (*c*) 21600 **5.** (*a*) 6600

				Exercis	e 2.3 =			
I. Ve	ry S	hort Answer Type (Questions					[1 Mark]
1.	Mu	ltiple Choice Questio	ons (MCQs)					
	Choose the correct answer from the given options:							
	(1)	The sum of first five	terms of the AP: 3,	7, 11, 15,	is:			
		(<i>a</i>) 44	<i>(b)</i> 55	(c)	22	(<i>d</i>)	11	
	(2)	If the first term of an	AP is 1 and the con	mmon differe	nce is 2, then $\sqrt{2}$	the sum of	first 20	6 terms is
	(2)	(<i>a</i>) 484	(b) $5/6$	(<i>C</i>)	6/6	(<i>d</i>)	625	
	(3)	If the sum to <i>n</i> terms (a) 7	of an AP is $3n + 4$	n, then the co		ence of the	AP 1S	
	(A)	(a) / If a b c are in AP th	(b) S en $ab + bc =$	(C)	0	<i>(a)</i>	0	
	(ד)				2		1	
		(<i>a</i>) <i>b</i>	(b) b^2	(c)	$2b^2$	(d)	$\frac{1}{b}$	
	(5)	The sum of all natura	I numbers which an	re less than 10	00 and divisit	ble by 6 is		
2	Ass	(a) 412 Sertion-Reason Type	(b) 510 Questions	(c)	672	(d)	816	
2.	Int	the following question	Questions	assertion (A)	is followed b	ov a statem	ent of 1	reason (R). Mark the correct
	cho	bice as:	is, a statement of t		15 10110 11 Cu k	sy a statem		
	<i>(a)</i>	Both assertion (A) an	d reason (R) are tru	ue and reason	(R) is the co	rrect explar	nation o	f assertion (A).
	<i>(b)</i>	Both assertion (A) an	id reason (R) are tru	ue but reason	(R) is not the	e correct exp	olanatic	on ofassertion (A).
	(c) Assertion (A) is true but reason (R) is false.							
	(d) Assertion (A) is false but reason (R) is true.							
	(1)	Assertion (A): Sum	of the first 10 terms	s of the arithn	netic progress	sion –0.5, –	1.0, -1.	5, 18 27.5.
		Reason (R): Sum of	first <i>n</i> terms of an	AP is given	as $S_n = \frac{n}{2} [2$	a + (n - 1)	d] when	the $a =$ first term, $d =$ common
		difference.			2	2		a
	(2)	Assertion (A): The s	um of the first <i>n</i> ter	rms of an AP	is given by S	$S_n = 3n^2 - 4n^2$	<i>i</i> . Then	its n^{th} term, $a_n = 6n - 7$.
	(2)	Reason (R): n^{m} term	of an AP, whose s	um of <i>n</i> terms	S IS S_n , IS give	en by $a_n = S$	$S_n - S_{n-1}$	ŀ
	(3)	Assertion (A): Sum	51 mist numbred eve	in natural nur	n n	ie by 5 is 50	0.	
3	Δn	Reason (R): Sum of swer the following:	the first <i>n</i> terms of	an AP is give	en by $S_n = \frac{\pi}{2}$	[a+l] whe	ere $l = 1$	ast term.
5.	(1)	Find the sum of first	10 terms of the AP	· 2 7 12				[NCERT] [[mn,]
	(1) (2)	If the sum of first <i>m</i> t	erms of an AP is 2	$m^2 + 3m$ the	n what is its s	second term	9	[Foreign 2010]
	(-)	Find the sum of first	10 multiples of 6				•	[1 of of gill 2010]
	(4)	What is the sum of fi	ve positive integers	s divisible by	6?			[CBSE Sample Paper 2012]
	(5)	If the sum of the first	<i>a</i> terms of an AP i	$s 2a + 3a^2$ w	o. hat is its com	mon differe	ence?	[ODSE Sumple Puper 2012] [AI 2010]
	(6)	If n^{th} term of an AP is	(2n+1) what is t	the sum of its	first three ter	rms?		[CBSE SP 2018-19]
	(0) (7)	Find the sum of first	100 natural number	rs	mst thee ter	1113 :		[CBSE Standard 2020]
11 64								[ODSE Smillard 2020]
II. 31								
4.	Fin	id the sum of first 8 mu	litiples of 3.	40 (1.)		-10		[CBSE 2018]
5.	Fin	a the number of terms	of the AP: 54, 51, 4	$48, \dots$ so that	their sum is :	· 170	P' 1'	[Imp.]
6.	In a	an AP, the first term is	-4, the last term is	29 and the su	im of all its te	erms 1s 150.	F1nd 1	s common difference.
7	Б :••	d the sum of all three	digit notural number	ra which are	multiplacef	11		[Foreign 2016]
/.	гій ть	a first and the last terms	s of on AD or of or	d 65 roopooti-	muniples of	11. fallitatorr	na ia 72	[Define 2012]
ð.	1 116	e mist and the last term	s of all AP are 8 and	u ob respectiv	ciy. 11 Sum 0	an its tern	15 15 / 3	, find its common difference.

- 9. The sum of the first *n* terms of an AP is $4n^2 + 2n$. Find the *n*th term of this AP. [Foreign 2013]
- 10. How many terms of the AP: 18, 16, 14, ... be taken so that their sum is zero? [Delhi 2016]
- 11. In an AP, if $S_5 + S_7 = 167$ and $S_{10} = 235$, then find the AP, where S_n denotes the sum of its first *n* terms. [AI 2015]
- 12. The sum of first *n* terms of an AP is given by $S_n = 2n^2 + 3n$. Find the sixteenth term of the AP.

III. Short Answer Type Questions - II

- 13. How many multiples of 4 lie between 10 and 250? Also find their sum.
- 14. Find the sum of first *n* terms of an AP whose n^{th} term is 5n 1. Hence find the sum of first 20 terms. [AI 2011]
- 15. The sum of first six terms of an AP is 42. The ratio of its 10^{th} term to its 30^{th} term is 1 : 3. Calculate the first and the thirteenth terms of the AP. [AI 2009]
- **16.** Find the sum of all multiples of 7 lying between 500 and 900.
- **17.** If M, N and T are in AP, prove that (M + 2N T)(2N + T M)(T + M N) = 4MNT.
- **18.** In an AP, if the 6th and 13th terms are 35 and 70 respectively, find the sum of its first 20 terms. [Foreign 2011]
- **19.** The sum of the 2^{nd} and the 7^{th} terms of an AP is 30. If its 15^{th} term is 1 less than twice its 8^{th} term, find the AP.
- **20.** If the ratio of the sum of first *n* terms of two AP's is (7n + 1): (4n + 27), find the ratio of their *m*th terms. [AI 2016]
- The digits of a positive number of three digits are in AP and their sum is 15. The number obtained by reversing the digits is 594 less than the original number. Find the number. [AI 2016]
- 22. The sums of first *n* terms of three A.Ps' are S_1 , S_2 and S_3 . The first term of each AP is 5 and their common differences are 2, 4 and 6 respectively. Prove that $S_1 + S_3 = 2S_2$. [Imp]

23. Find the sum of *n* terms of the series $\left(4 - \frac{1}{n}\right) + \left(4 - \frac{2}{n}\right) + \left(4 - \frac{3}{n}\right) + \dots$ [Delhi 2017]

24. Solve the equation: 1 + 4 + 7 + 10 + ... + x = 287.

IV. Long Answer Type Questions

- 25. The sum of the first three numbers in an arithmetic progression is 18. If the product of the first and the third terms is 5 times the common difference, find the three numbers. [Al 2019]
- 26. If *m* times the m^{th} term of an arithmetic progression is equal to *n* times its n^{th} term and $m \neq n$, show that the $(m + n)^{\text{th}}$ term of the AP is zero. [Al 2019]
- 27. The first and the last term of an AP are 8 and 350 respectively. If its common difference is 9, how many terms are there and what is their sum? [AI 2011]
- 28. Show that the sum of an AP whose first term is a, the second term b and the last term c, is equal to $\frac{(a+c)(b+c-2a)}{2(b-a)}$

[NCERT Exemplar][CBSE Standard 2020]

29. If the p^{th} term of an AP is $\frac{1}{q}$ and q^{th} term is $\frac{1}{p}$, prove that the sum of the pq terms is $\frac{1}{2}(pq+1)$. [CBSE 2012]

- 30. The ratio of the 11th term to the 18th term of an AP is 2 : 3. Find the ratio of the 5th term to the 21st term, and also the ratio of the sum of the first five terms to the sum of the first 21 terms. [NCERT Exemplar]
- 31. The sum of the first five terms of an AP is 55 and sum of the first ten terms of this AP is 235, find the sum of its first 20 terms.
 [Imp.]
- **32.** The sums of *n* terms of two APs are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 25th terms. [Imp.]
- 33. Find the middle term of the sequence formed by all three-digit numbers which leave a remainder 3, when divided by 4. Also, find the sum of all numbers on both sides of the middle terms separately. [Foreign 2015]
- 34. If the ratio of the sum of the first *n* terms of two APs is (7n + 1): (4n + 27), then find the ratio of their 9th terms.
- 35. If the sum of first 14 terms of an AP is 1050 and its first term is 10, find the 20th term.
- 36. The first term of an AP is 5, the last term is 45 and sum is 400. Find the number of terms and the common difference.
- **37.** How many terms of the AP: 24, 21, 18, ... must be taken so that their sum is 78?

. 2011

[AI 2010]

[3 Marks]

[AI 2011]

[AI 2014]

[5 Marks]

Case Study Based Questions

I. Pollution—A Major Problem: One of the major serious problems that the world is facing today is the environmental pollution. Common types of pollution include light, noise, water and air pollution.

In a school, students thoughts of planting trees in and around the school to reduce noise pollution and air pollution. **Condition I:** It was decided that the number of trees that each section of each class will plant be the same as the class in which they are studying, *e.g.* a section of class I will plant 1 tree a section of class II will plant 2 trees and so on a section of class XII will plant 12 trees.

Condition II: It was decided that the number of trees that each section of each class will plant be the double of the class in which they are studying, *e.g.* a section of class I will plant 2 trees, a section of class II will plant 4 trees and so on a section of class XII will plant 24 trees.

Refer to Condition I

- 1. The AP formed by sequence *i.e.* number of plants by students is
- (a) 0, 1, 2, 3, ..., 12 (b) 1, 2, 3, 4, ..., 12 (c) 0, 1, 2, 3, ..., 15 (d) 1, 2, 3, 4, ..., 15
- 2. If there are two sections of each class, how many trees will be planted by the students?
- (a) 126
 (b) 152
 (c) 156
 (d) 184
 3. If there are three sections of each class, how many trees will be planted by the students?

Refer to Condition II

- 4. If there are two sections of each class, how many trees will be planted by the students? (a) 422 (b) 312 (c) 360 (d) 540
- 5. If there are three sections of each class, how many trees will be planted by the students?
 - (a) 468 (b) 590 (c) 710 (d) 620
- II. Your elder brother wants to buy a car and plans to take loan from a bank for his car. He repays his total loan of ₹ 1,18,000 by paying every month starting with the first instalment of ₹ 1000. If he increases the instalment by ₹ 100 every month , answer the following:

1.	The amount paid b	y him in 30 th installmen	t is				
	<i>(a)</i> ₹ 3900	<i>(b)</i> ₹ 3500	<i>(c)</i> ₹ 3700	<i>(d)</i> ₹ 3600			
2.	The total amount p	baid by him upto 30 insta	allments is				
	<i>(a)</i> ₹ 37000	<i>(b)</i> ₹ 73500	<i>(c)</i> ₹ 75300	(<i>d</i>) ₹ 75000			
3.	What amount does	s he still have to pay after	r 30 th installment?				
	(<i>a</i>) ₹ 45500	<i>(b)</i> ₹ 49000	<i>(c)</i> ₹ 44500	<i>(d)</i> ₹ 54000			
4.	f total installments are 40, then amount paid in the last installment is						
	(<i>a</i>) ₹ 4900	<i>(b)</i> ₹ 3900	<i>(c)</i> ₹ 5900	<i>(d)</i> ₹ 9400			
5.	The ratio of the 1 st	e ratio of the 1 st installment to the last installment is					
	(<i>a</i>) 1 : 49	(<i>b</i>) 10:49	(c) 10:39	(<i>d</i>) 39 : 10			

Answers and Hints

....

(1)

(1)

- **1.** (1) (b) 55 (1) (2) (c) 676
 - (3) (d) 6 (1) (4) (c) $2b^2$
 - (5) (d) 816 (1)
- 2. (1) (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
 (1)
 - (2) (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).(1)
 - (3) (d) Assertion (A) is false but reason (R) is true. (1)

3. (1) 245 (1) (2) 9 (1)

(3) First 10 multiples of 6 are 6, 12, 18,, 60. This is an AP in which a = 6, n = 10 and d = 6.

$$\therefore$$
 Sum of first 10 multiples of 6 = S₁₀ (¹/₂)

$$\Rightarrow S_{10} = \frac{n}{2} [2a + (n-1)d]$$

= $\frac{10}{2} [2 \times 6 + (10-1)6]$
= $5 (12 + 54)$
= $5 \times 66 = 330$ (¹/₂)
90 (1)

(4) 90

(5) Given that, $S_q = 2q + 3q^2$ $S_1 = 2 + 3 = 5 = T_1 = \text{First term} \quad [\text{put } q = 1]$ $S_2 = 4 + 3(4) = 16 \qquad [\text{put } q = 2]$ $S_3 = 6 + 3(9) = 33 \qquad [\text{put } q = 3](\frac{1}{2})$ $\therefore 2^{\text{nd}} \text{ term},$ $T_2 = S_2 - S_1 = 16 - 5 = 11$ $\therefore 3^{\text{rd}} \text{ term},$ $T_3 = S_3 - S_2 = 33 - 16 = 17$ Common difference $= T_3 - T_2 = 17 - 11 = 6 \qquad (\frac{1}{2})$

(6)
$$a_1 = 3, a_3 = 7, S_3 = \frac{3}{2}(3+7) = 15$$
 $[\frac{1}{2}+\frac{1}{2}]$

(7) Natural numbers are 1, 2, 3, 4, ...The sum of first 100 natural numbers is given by

 $S_8 = 3 + 6 + 9 + 12 + \dots + 24$

$$S_n = \frac{n(n+1)}{2} = \frac{100 \times (100+1)}{2}$$
(¹/₂)
100 × 101

$$= \frac{1}{2}$$
$$= 50 \times 101 = 5050$$

4.

$$= 3(1+2+3+...+8)$$
(1)
$$= 2 \times \frac{8 \times 9}{100} = 108$$
(1)

$$= 3 \times \frac{3}{2} = 108$$
 (1) (2)

5. 18 or 19

6.
$$150 = \frac{n}{2}(-4+29)$$
 $\left| \because S_n = \frac{n}{2}(a+l) \right|$

$$\Rightarrow \quad 300 = 25n \Rightarrow n = 12 \tag{1}$$

$$\therefore \quad \text{Then,} \quad l = a_{12} = 29 = -4 + 11d$$

$$\Rightarrow \quad 11d = 33 \Rightarrow d = 3 \tag{1}$$

7. 3-digit natural numbers which are multiples of 11 are 110, 121 132 990

$$n^{\text{th}} \text{ term, } 990 = 110 + (n-1)11$$

$$\Rightarrow \quad n = 81 \quad (1)$$

$$\therefore \quad \text{Sum of 'n' terms,}$$

$$S_n = \frac{n}{2}[a+l]$$

$$= \frac{81}{2}[110+990] = 44550$$

Sum of all three-digit natural numbers, which are

multiples of 11 is 44550. (1) $S_n = \frac{n}{2}(a + a_n)$ 8. $730 = \frac{n}{2}(8+65) \implies \frac{73n}{2} = 730$ *n* = 20 (1) \Rightarrow \therefore Given $a_{20} = 65$, where $a_n = a + (n-1)d$ $a + 19d = 65 \implies 8 + 19d = 65$ \Rightarrow 19d = 57 \Rightarrow Hence, common differences = d = 3. (1) $S_n = 4n^2 + 2n$ 9. Given. $S_{n-1}^{n} = 4(n-1)^{2} + 2(n-1)$ So, $= 4(n^2 - 2n + 1) + 2n - 2$ $=4n^2-8n+4+2n-2$ $=4n^2-6n+2$ (1) $a_n = S_n - S_{n-1} = n^{\text{th}} \text{ term}$ = $(4n^2 + 2n) - (4n^2 - 6n + 2)$ $=4n^{2}+2n-4n^{2}+6n-2$ = 8n - 2(1)

10. Let the number of terms taken for sum to be zero be *n*. Then, sum of *n* terms

 $(S_{-}) = 0$

=

 $(\frac{1}{2})$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
(1)

(Given)

$$\Rightarrow \qquad 0 = \frac{n}{2} [2 \times 18 + (n-1)(-2)]$$
$$\Rightarrow \qquad n = 19$$

Hence, sum of 19 terms is 0. (1)
$$S + S = 167$$

11.
$$S_{5} + S_{7} = 167$$

$$\Rightarrow \frac{5}{2}(2a+4d) + \frac{7}{2}(2a+6d) = 167$$

$$\left\{ \because S_{n} = \frac{n}{2}[2a+(n-1)d] \right\}$$

$$\Rightarrow 5a+10d+7a+21d = 167$$

$$\Rightarrow 12a+31d = 167 \dots(i)$$
Also, $S_{10} = 235$

$$\Rightarrow \frac{10}{2}(2a+9d) = 235$$

$$\Rightarrow 2a+9d = 47 \qquad \dots(ii)(1)$$

Multiplying eq. (ii) by 6, we get

 $6(2a+9d)=6\times47$

20 l, a' and d, d' be first terms and common differences of two APs. Then

$$\frac{S_n}{S'_n} = \frac{\frac{n}{2}[2a+(n-1)d]}{\frac{n}{2}[2a'+(n-1)d']}$$
$$= \frac{a+\left(\frac{n-1}{2}\right)d}{a'+\left(\frac{n-1}{2}\right)d'} = \frac{7n+1}{4n+27} \qquad \dots (i)(1)$$

Since
$$\frac{t_m}{t'_m} = \frac{a + (m-1)d}{a' + (m-1)d'}$$

[:: Let t_m , t'_m be m^{th} terms of two APs]

So, replacing
$$\frac{n-1}{2}$$
 by $m-1$, *i.e.*, $n = 2m-1$ in (*i*)

$$\frac{t_m}{t'_m} = \frac{a + (m-1)d}{a' + (m-1)d'} \tag{1}$$

$$= \frac{7(2m-1)+1}{4(2m-1)+27} = \frac{14m-6}{8m+23}$$

Thus, the ratio of their
$$m^{th}$$
 terms is
 $14m - 6: 8m + 23.$ (1)
21. Let the required numbers in AP are $a - d$, a , $a + d$
respectively.
Now, $a - d + a + a + d = 15$ [\because Sum of digits = 15]
 \Rightarrow $3a = 15 \Rightarrow a = 5$ (1)
According to question, number is
 $100(a - d) + 10a + a + d$, *i.e.* $111a - 99d$
Number on reversing the digits is
 $100(a + d) + 10a + a - d$, *i.e.* $111a + 99d$
Now, as per given condition in question,
 $(111a - 99d) - (111a + 99d) = 594$ (1)
 \Rightarrow $d = -3$
 \therefore Digits of number are $[5 - (-3), 5, (5 + (-3))]$
 $= 8, 5, 2.$

:. Required number is
$$111 \times (5) - 99(-3)$$

= 555 + 297 = 852. (1)

23.
$$S_n = \left(4 - \frac{1}{n}\right) + \left(4 - \frac{2}{n}\right) + \left(4 - \frac{3}{n}\right) + \dots$$
 upto *n* terms
= $(4 + 4 + \dots + 4) - \frac{1}{n}(1 + 2 + 3 + \dots + n)$ (1)

$$= 4n - \frac{1}{n} \times \frac{n(n+1)}{2} \tag{1}$$

$$=\frac{7n-1}{2}\tag{1}$$

24. Given equation: 1 + 4 + 7 + 10 + ... + x = 287Here, a = 1, d = 4 - 1 = 7 - 4 = 3 $S_n = 287$

Bur,

Bur,

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$287 = \frac{n}{2} [2 \times 1 + (n-1)3]$$

$$\Rightarrow 287 \times 2 = n(2 + 3n - 3)$$

$$\Rightarrow 574 = n(3n - 1) = 3n^{2} - n$$

$$\Rightarrow 3n^{2} - n - 574 = 0$$
(1)
We know that,

$$n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \times 3 \times (-574)}}{2 \times 3}$$

$$= \frac{1 \pm \sqrt{1 + 6888}}{6} = \frac{1 \pm \sqrt{6889}}{6} = \frac{1 \pm 83}{6}$$
(1)
Either $n = \frac{1 \pm 83}{6}$ or $n = \frac{1 - 83}{6}$
 $\Rightarrow n = \frac{84}{6}$ or $n = \frac{-82}{6}$
 $\Rightarrow n = 14$ or $n = \frac{-41}{3}$
 $\therefore n = 14$
Now, $S_{n} = \frac{n}{2}(a + 1) \Rightarrow 287 = \frac{14}{2}(1 + x)$
 $\Rightarrow 287 = 7(1 + x) \Rightarrow 287 = 7 + 7x$
 $\Rightarrow 7x = 280 \Rightarrow x = \frac{280}{7} = 40$ (1)
25. Let the three numbers in AP are $a - d, a, a + d$
Then $a - b + a + a + d = 18$
 $\Rightarrow 3a = 18 \Rightarrow a = 6$ (1)
Given: $(a - d)(a + d) = 5d$
 $\Rightarrow a^{2} - d^{2} = 5d \Rightarrow a^{2} = 5d + d^{2}$
 $\Rightarrow 36 = 5d + d^{2}$ [$\because a = 6$](1)
 $\Rightarrow d^{2} + 9d - 4d - 36 = 0$ (1)
 $\Rightarrow d(d + 9) - 4(d + 9) = 0$
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$
 $\Rightarrow d = 4 \text{ or } d = -9$
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow d = 4 \text{ or } d = -9$ [Reject]
 $\Rightarrow a m - an + m^{2}d - n^{2}d - md + n^{2}d - nd$
 $\Rightarrow am - an + m^{2}d - n^{2}d - md + n^{2}d - nd$
 $\Rightarrow am - an + m^{2}d - n^{2}d - md + n^{2}d - nd$
 $\Rightarrow am - an + m^{2}d - n^{2}d - md + n^{2}d - nd$
 $\Rightarrow a(m - n) + (m + n)(m - n)d - (m - n)d = (1)$
 $\Rightarrow (m - n) (a + (m + n)d - d = 0$
 $\Rightarrow a + md + nd - d = 0$ (1)
 $\Rightarrow (m - n) (a + (m + n)d - d = 0$
 $\Rightarrow a + md + nd - d = 0$ (1)
 $\Rightarrow (m - n) (a + (m + n - 1)d = 0$

27. 39; 6981 (5) **30.** 1:3, 5:49 (5)

33. List of 3-digit number leaving remainder 3 when divided by 4, are 103, 107, 111, ..., 999.

Now,
$$a_n = 999 \implies a + (n-1)d = 999$$

 $103 + (n-1)4 = 999 \implies n = 225$ (1)

Since, number of terms is odd, so there will be only one middle term

Middle term =
$$\frac{225+1}{2} = 113$$
 (1)

$$a_{113} = a + 112d$$

= 103 + 112 × 4 = 551 (1)

There are 112 numbers before 113th term.

...

: Sum of all terms before middle term

$$S_{112} = \frac{112}{2} [2 \times 103 + 111 \times 4]$$

= 36400 (1)

 \therefore Sum of all terms = $S_{225} = 123975$

$$\therefore \text{ Sum of terms after middle term} = S_{225} - (S_{112} + 551) = 87024 \tag{1}$$

34. Let the first terms be *a* and *a'* and *d* and *d'* be their respective common differences.

$$\frac{S_n}{S'_n} = \frac{\frac{n}{2} [2a + (n-1)d]}{\frac{n}{2} [2a' + (n-1)d']}$$
$$= \frac{7n+1}{4n+27}$$
(1)

$$\Rightarrow \frac{a + \left(\frac{n-1}{2}\right)d}{a' + \left(\frac{n-1}{2}\right)d'} = \frac{7n+1}{4n+27} \tag{1}$$

To get ratio of 9th terms, replacing
$$\frac{n-1}{2} = 8$$
 (1)

$$n = 17 \tag{1}$$

Hence,
$$\frac{t_9}{t_9'} = \frac{a+8d}{a'+8d'} = \frac{120}{95} \text{ or } \frac{24}{19}$$
 (1)

35. Let common difference be *d*.

 \Rightarrow

 \Rightarrow

$$\Rightarrow \frac{14}{2} [2(10) + (n-1)d] = 1050$$
 (2)

$$d = 10$$
 (1)
 $a_{20} = a + 19d$

$$= 10 + 19 (10) = 200$$
 (2)

Since, $m \neq n$, it is clear that $(m + n)^{\text{th}}$ term of the AP is zero. (1)

 \Rightarrow

36.
$$a = 5$$

 $a_n = 45$
 $S_n = 400$
 $\Rightarrow \frac{n}{2} (5+45) = 400$ (2)
 $50n = 800$ (1)
 $n = 16$
also $a_n = 45$
 $5+15d = 45$
 $15d = 40$
 $d = \frac{8}{2}$ (2)

37. AP is 24, 21, 18, ... Here, a = 24 and d = 21 - 24 = 18 - 21 = -3Let the sum of *n* terms of the AP be 78.

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$78 = \frac{n}{2} [2 \times 24 + (n-1)d]$$

$$\Rightarrow 78 = \frac{n}{2} [2 \times 24 + (n-1)(-3)]$$

$$\Rightarrow 78 \times 2 = n[48 - 3n + 1]$$

$$\Rightarrow 156 = n(49 - 3n)$$

$$\Rightarrow 156 = 49n - 3n^{2}$$

$$\Rightarrow 3n^{2} - 49n + 156 = 0$$
 (1)
We know that

$$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{49 \pm \sqrt{(49)^2 - 4 \times 3 \times 156}}{2 \times 3}$$

$$= \frac{49 \pm \sqrt{2401 - 1872}}{6}$$

$$= \frac{49 \pm \sqrt{529}}{6}$$

$$= \frac{49 \pm 23}{6} \quad (1)$$
Either $n = \frac{49 + 23}{6}$ or $n = \frac{49 - 23}{6}$
 $n = \frac{72}{6}$ or $n = \frac{26}{6} = \frac{13}{3}$

(2)

$$n = 12 \text{ or } n = 4\frac{1}{3}$$

(1)

$$n = 12$$
.

Thus,