
Energy Bands 

NEARLY FREE ELECTRON MODEL 
Origin of the energy gap 
Magnitude of the energy gap 

BLOCH FUNCTIONS 

KRONIG-PENNEY MODEL 

WAVE EQUATION OF ELECTRON IN A PERIODIC POTENTIAL 
Restatement of the Bloch theorem 
Crystal momentum of an electron 
Solution of the central equation 
Kronig-Penney model in reciprocal space 
Empty lattice approximation 
Approximate solution near a zone boundary 

NUMBER OF ORBITALS IN A BAND 
Metals and insulators 

SUMMARY 

PROBLEMS 
1. Square lattice, free electron energies 
2. Free electron energies in reduced zone 
3. Kronig-Penney model 
4. Potential energy in the diamond structure 
5. Complex wavevectors in the energy gap 
6. Square lattice 



Energy 

Insulator Metal Semimetal Sem~conductor Sem~conductor 

Figure 1 Schematic electron occupancy of allowed energy bands for an insulator, metal, semi- 
metal, and semiconductor. The vertical extent of the boxes indicates the allowed energy regions; 
the shaded areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one 
band is almost filled and another band is nearly empty at absolute zero, but a pure semiconduc- 
tor (such as silicon) becomes an insulator at absolute zero. The left of the two semiconductors 
shown is at a finite temperature, with carriers excited thermally. The other semiconductor is 
electron-deficient because of impurities. 



CHAPTER 7: ENERGY BANDS 

When I started to think about it, I felt that the 
main problem was to explain how the electrons 
could meak b y  all the ions in a metal.. . . By 
straight Fourier analysis I found to my delight 
that the wave differed from the plane wave of 
free electrons only by a periodic modulation. 

F. Bloch 

The free electron model of metals gives us good insight into the heat 
capacity, thermal conductivity, electrical conductivity, magnetic susceptibility, 
and e l e c t r o ~ a m i c s  of mctals. But the model fails to hclp 11s with other large 
questions: the distinction between metals, semimetals, semiconductors, and 
insulators; the occnrrence of positive values of the Hall coefficient; the rela- 
tion of conduction electrons in the metal to the valence electrons of free 
atoms; and many transport properties, partic~llarly magnetotransport. We need 
a less nayve theory, and fortullately it tnms out that alniost any simple attempt 
to improve upon the free electron model is enormously profitable. 

The difference between a good conductor and a good insulator is striking. 
The electrical resistivity of a pure metal may be as low as 10-lo ohm-cm at a 
temperature of 1 K, apart from the possibility of superconductivity. The resis- 
tivity of a good insnlator may be as high as 10" ohm-cm. This range of lo3' 
may be the widest of any comrrloll physical property of solids. 

Evcry solid contains electrons. Thr important question for electrical con- 
ductibity is how the electrons respond to an applied electric field. We shall see 
that electrons in crystals are arranged in energy bands (Fig. 1 )  separated by 
regions in energy for which no wavelike electron orbitals exist. Such forbidden 
regions are called energy gaps or band gaps, and resnlt from the interaction 
of the co~lduction electron waves with the ion cores of the crystal. 

The crystal behaves as an insulator if the allowed energy bands are either 
filled or cmpty, for then no electrons can move in an electric field. The crystal 
behaves as a metal if one or more bands are partly filled, say between 10 and 
90 percent filled. The crystal is a semiconductor or  a semimetal if one or two 
bands are slightly filled or slightly empty. 

To understand thc difference between insulators and conductors, we rnust 
extend the free clectron model to take account of the periodic lattice of the solid. 
The possibility of a band gap is the most important new property that emerges. 

\'c shall encounter other quite remarkable properties of electrons in crys- 
tals. For example, they respond to applied electric or  magnetic fields as if the 
electrons were endowed with an effective mass m*, which may be larger or 
smaller than the frec clectron mass, or may even bc negative. Electrons in 



crystals respond to applied fields as if endowed with negative or positive 
charges, -e or +e ,  and herein lies the explanation of the negative and positive 
values of the Hall coefficient. 

NEARLY FREE ELECTRON MODEL 

On the free electron model the allowed energy values are distributed es- 
sentially continuously from zero to infinity. We saw in Chapter 6 that 

where, for periodic boundary conditions over a cube of side L, 

The free electron wavefunctions are of the form 

they represent running waves and carry momentum p = fik. 
The band structure of a crystal can often be explained by the nearly free 

electron model for which the band electrons are treated as perturbed only 
weakly by the periodic potential of the ion cores. This model answers almost 
all the qualitative questions about the behavior of electrons in metals. 

We know that Bragg reflection is a characteristic feature of wave propaga- 
tion in crystals. Bragg reflection of electron waves in crystals is the cause of 
energy gaps. (At Bragg reflection wavelike solutions of the Schrodinger equa- 
tion do not exist, as in Fig. 2 . )  These energy gaps are of decisive significance in 
determining whether a solid is an insulator or a conductor. 

We explain physically the origin of energy gaps in the simple problem of a 
linear solid of lattice constant a. The low energy portions of the band structure 
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Figure 2 (a) Plot of energy E versus wavevector k for a free electron. (b) Plot of energy versus 
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap E, 
shown is associated with the first Bragg reflection at k = ? d a ;  other gaps are found at higher 
energies at k n d a ,  for integral values of n. 
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are shown qualitatively in Fig. 2, in (a) for entirely free electrons and in (h) for 
electrons that are nearly free, but with an energy gap at k = f n/a. The Bragg 
condition ( k  + G)' = kZ for diffraction of a wave of wavevector k becomes in 
one dirrrension 

where C = 2xn/u is a reciprocal lattice vector and n is an integer. The first re- 
flections and the first energy gap occur at k = + d u .  The region in k space be- 
tween -ria and n/a is the first Brillouin zone of this lattice. Other energy 
gaps occur for other values of the integer n .  

The wavefimctions at k = ?n/a are not thc traveling waves exp(i~x1a) or 
exp(-i~x/a) of free electrons. At these special values of k the wavefunctions 
are made up of equal parts of waves traveling to the right and to the left. UThen 
the Bragg reflection condition k = +n/a is satisfied by the wavevector, a wave 
traveling to the right is Bragg-reflected to travel to the left, and vice versa. 
Each subsequent Bragg reflection will reverse the direction of travel of the 
wave. A wave that travels neither to the right nor to the left is a standing wave: 
it doesn't go anjwhere. 

Thc time-independent state is represented by standing waves. We can form 
two different standing waves from the two traveling waves 

so that the standing waves are 

+(+) = exp(inx/a) + exp(-inx/a) = 2 cos (nx/a) ; 

+(- ) = exp(i~x/u) - exp(-inx/a) = 2i sin (nxla) . ( 5 )  

The standing waves are labeled (+) or (-) according to whether or not they 
change sign when -x is substituted for x. Both standing waves are composed 
of equal parts of right- and left-directed traveling waves. 

Origin of the Energy Gap 

The two standing waves $(+) and +(-) pile up electrons at different 
regions, and therefore the two waves have different values of the potential 
energy in the field of the ions of the lattice. This is the origin of the energy 
gap. The probability density p of a particle is $*+ = I+12. For a pure traveling 
wave exp(ikx), we have p = exp(-ikx) exp(ikx) = 1, so that the charge density 
is constant. The charge density is not constant for linear combinations of plane 
waves. Consider the standing wave $(+) in (5);  for this we have 

This function piles up electrons (negative charge) on the positive ions centered 
at x = 0, a, ea, . . . in Fig. 3, where the potential energy is lowest. 



U, potential energy 

I 

p, probability density 

eling wave 

x 

Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores 
of a linear lattice. (b) Distribution of probability density p in the lattice for I$(-)I2 a sinZ m l a ;  

I$(+)I2 = cosZ m l a ;  and for a traveling wave. The wavefunction $(+) piles up electronic charge 
on the cores of the positive ions, thereby lowering the potential energy in comparison with the 
average potential energy seen by a traveling wave. The wavefnnction $(-) piles up charge in 
the region between the ions, thereby raising the potential energy in comparison with that seen by 
a traveling wave. This figure is the key to understanding the origin of the energy gap. 

Figure 3a pictures the variation of the electrostatic potential energy of a 
conduction electron in the field of the positive ion cores. The ion cores bear a 
net positive charge because the atoms are ionized in the metal, with the va- 
lence electrons taken off to form the conduction band. The potential energy of 
an electron in the field of a positive ion is negative, so that the force between 
them is attractive. 

For the other standing wave $(- ) the probability density is 

which concentrates electrons away from the ion cores. In Fig. 3b we show 
the electron concentration for the standing waves $(+), $(-), and for a travel- 
ing wave. 

When we calculate the average or expectation values of the potential 
energy over these three charge distributions, we find that the potential energy 
of p ( + )  is lower than that of the traveling wave, whereas the potential energy of 
p ( - )  is higher than the traveling wave. We have an energy gap of width E,  if 
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the energies of p ( - )  and p ( + )  differ by Eg. Just below the energy gap at 
points A in Fig. 2 the w-avefunction is +(+), and just above the gap at points B 
the wavefunction is $(-). 

Magnitude of the Energy Gap 

The wavefunctions at the Brillouin zone boundar). k = ?r/a are fi cos m / a  

and ~ sin mla,  normalized over unit length or line. Let 11s suppose that the 
potential energ). of an electron in the crystal at point x is 

U(x) = U cos 2 d a  . 

The first-order enerD difference between the two standing wave states is 

We see that the gap is equal to the Fourier component of the crystal potential. 

BLOCH FUNCTIONS 

F. Bloch proved the important theorem that the solutioris of the 
Schrochnger equation for a periodic potential must be of a special form: 

where uk(r) ha5 the period of the crystal lattice with uk(r) = llk(' + T). Here T 
is a translation vector of the lattice. The result ( 7 )  expresses the Bloch theorerri: 

The eigenfunctions of the wave equation for a periodic potential are 
the prodr~ct of a plane wave exp(ik . r )  times a function uk(r)  with the 
periodicity of the crystal lattice. 

A one-electron wavefunction of the for~n (7 )  is called a Rloch function and 
can be decomposed into a sum of traveling waves, as we see later. Bloch func- 
tions can he assembled into wave packets to represent electrons that propa- 
gate freely through the potential field of the ion cores. 

We give now a restricted proof of the Bloch theorem, valid \vlren +k is 
nondegenerate; that is, when there is no other wavefunction with the samc 
energy and wavevector as &. The general case will be treated later. \?7c con- 
sider N identical lattice points on a ring of le~lgth Nu.  The potcntial energy is 
periodic in a, with U(x) = U(x + sa), where s is an integer. 

Let us be guided by tlie symmetry of the ring to look for solutions of the 
wave equation such that 



where C is a constant. Then, on going once around the ring, 

+(x + Nu) = + ( x )  = C" + ( x )  , 

because $ ( x )  must be single-valued. It follows that C is one of the N roots o l  
unity, or 

C = exp(i2nslN) ; s = 0, 1,2, . . . , N - I . (9) 

We use (9) to see that 

satisfies (8), provided that uL(x) has the periodicity a,  so that uk(x) = uk(x + a ) .  
This is the Bloch result (7). 

KRONIG-PENNEY MODEL 

A periodic for which the wave equation can he solved in terms of 
elementary functions is the square-well array of Fig. 4. The wave equation is 

where U(x) is the potential energy and is the energy eigenvalue. 
In the region 0 < x < a in which U = 0, the eigenfunction is a linear 

combination, 

of plane waves traveling to the right and to the left, with energy 

E = h2P/2rn . (13)  

In the region -b < x < 0 within the barrier the solution is of the form 

fi = CeQ" + ~ e - ~ "  , (14) 

with 

U ,  - G = h2Q2/2m . ( 1 s )  

Figure 4 Square-well periodic potential as 
introduced by Kronig and Penney. i a + b )  41 0 a a c b  x- 
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\'t: want the complcte solution to have the Bloch form (7). Thus the solu- 
tion in the region n < x < a + b must be related to the solution (14) in the 
region - b  < r < 0 by the Bloch theorem: 

wl~ich serves to dcfine the wavevector k used as an index to label the 
solution. 

The constants A, B, C, D are chosen so that $ and d+idx are continuous at 
x = O and x = a. These are the usual quantum mechanical boundary condi- 
tions in problems that involve squarc potential wells. At x = 0, 

with Q lrom (14). At x = a, with the use of (16) for $(a) under the barrier in 
terms of $(-h),  

~ ~ i f i  + = (ce-Q" + neQb) eik(a+b) ; (19) 

i~ (& ' f i  - B~- '&)  = Q ( c ~ - Q ~  - neQb) e'kt"+b) , (20) 

The lour cqnations (17) to (20) have a solution only if the determinant of 
the coefficients ofA, B, C, D vanishes, yielding 

[(Q" K~)/ZQK] sinl~ Qb sin Ka + cosh Qb cos Ka = cos k(a + b )  . (214 

It is rather tedious to obtain this equation. 
The result is simplified if we represent the potential by the periodic delta 

function obtained when we pass to the limit b = 0 and Uo = m in such a way 
that Qzba12 = Y, a finite quantity. In this limit Q & K and Qb 4 1. Then (21a) 
reduces to 

(P/Ka)sin Ka + cos Ka = cos ka . (2lb) 

The ranges of K for which this equation has solutio~ls are plotted in Fig. 5, 
for the case P = 3 d 2 .  The corresponhng values of the energy are plotted in 
Fig. 6. Note thc cnergy gaps at the zone boundaries. The wavevector k of the 
Bloch function is the important index, uot the K in (12), which is related to the 
cnergy by (13). A treatment of this problem in wavevector space is given later 
in this chapter. 

WAVE EQUATlON OF ELECTRON IN A PERIODIC POTENTIAL 

We considered in Fig. 3 the approximate fonu we expect for the sohltion 
of the Schrodinger equation if the wavevector is at a zone houndq ,  as at 
k = 2min. We treat in detail the wave equation for a general potential, at general 
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t (PI&) sin Ka + cos Ka 

Figure 5 Plot of the function (PIKa) sin Ka + cos Ka, for P  = 3 ~ 1 2 ,  The allowed values of the 
energy e are given by those ranges of Ka = ( 2 r n ~ f f i ' ) ~ a  for which the function lies between 51 .  
For'other values of the energy there are no traveling wave or Bloch-like solutions to the wave 
equation, so that forbidden gaps in the energy spectrum are formed. 

Figure 6 Plot of energyvs. wavenumber for the 
Kronig-Penney potential, with P = 3 ~ 1 2 .  Notice 
the energy gaps at ka = W ,  ZW,  377. . . . 

values of k. Let U(x) denote the potential energy of an electron in a linear lattice 
of lattice constant a. We know that the potential energy is invariant under a crys- 
tal lattice translation: U(x) = U(x + a). A function invariant under a crystal lattice 
translation may be expanded as a Fourier series in the reciprocal lattice vectors 
G. We write the Fourier series for the potential energy as 

The values of the coefficients UG for actual crystal potentials tend to decrease 
rapidly with increasing magnitude of G. For a bare coulomb potential U, 
decreases as 1/G2. 



We want the poteutial energy U(x)  to be a real function: 

U(x) = 2 UG(eiG" + e-'") = 2 IIc cos Gx 
G>O G>O 

7 Energy Bands 

For convenience we have assumed that the crystal is symmetric about x = 0 
and that UO = 0. 

The wave equation of an electron in the crystal is X* = e+, where X is the 
hamiltonian and is the energy eigenvahe. The solutions + are called eigen- 
functions or orbitals or Bloch functions. Explicitly, the wave equation is 

Equation (24) is written in the one-electron approximation in which the 
orbital $(x) describes the motion of one electron in the potential of the ion 
cores and in the averagc potential of the other conduction electrons. 

The wavefunction $(x)  may be expressed as a Fouricr series summed over 
all values of the wavevector permitted by the boundary conditions, so that 

where k is real. (We could equally well write the index k as a subscript on C, as 
in Ck. ) 

The set of values of k has the form 2 ~ n l L ,  because these vallles satisfy 
periodic boundary conditions over length L. Here n is any integer, positive or 
negative. We do not assume, nor is it generally tnic, that * ( x )  itself is periodic 
in the fundamental lattice translation a. Thc translational properties of * ( x )  
are determined by the Bloch theorem (7). 

Not all wavevectors of the sct 2 m / L  enter the Fourier expansion of 
any one Bloch function. I f  one particular wavevector k is contained in a @, 
then all other wavevectors in the Fourier expansion of this @ will have the 
form k + G, where G is any reciprocal lattice vector. V7e prove this result in 
(29) below. 

Wc can label a wavefunction t,b that contains a component k as 4k or, 
eqnally well, as &+,, because if k enters the Fourier expansion then k + G 
may enter. The wavevectors k + C rnnning over G are a restricted subsct of 
the set ZmlL,  as shown in Fig. 7. 

We shall usually choose as a label for the Bloch function that k which lies 
within the first Brillouin zone. When other conventions are used, we shall say 
so. This situation differs from the phonon problcrn for a monatomic lattice 
where there are no comporle~lts of the ion motion outside the first zone. The 
electron problen~ is like the x-ray diffraction problem because like the electron 
wavefunctior~ the electromagnetic field exists everywhere within the crystal 
and not o111y at the ions. 



Figure 7 The lower points represent values of the wavevector k = 2 m / L  allowed by the periodic 
houndary condition on thc wavefunction over a ring of circumfcrcnce L  composed of 20 primitive 
cells. The allowed valiies continue to i m. The uppcr points represent the first few wavevcctors 
which may enter into the Fourier expansiorl of a wavefunction *(XI, starting from a palt ic~~lar 
wavevector k = k, = - 8 (2~r /L ) .  Thc: shortest reciprocal lattice vector is 2wIa = 20(2~7/L). 

To solve the wave equation, substitute (25) in (24) to obtain a set of linear 
algebraic cquations for the Fourier coefficients. The kinetic energy term is 

and the potential energy term is 

The wave eqi~ation is obtained as the sum: 

Each Fourier component must have the same coefficient on both sides of the 
equation. Thus we have the central equation 

with the notation 

Equation (27) is a useful form of the wave equation in a periodic lattice, 
although unfamiliar because a set of algebraic equations has taken the place of 
the usual differential equation (24). The set appears unpleasant and formida- 
ble because there are, in principle, an infinite number of C(k - G) to be de- 
termined. In practice a small number will often suffice, pcrhaps two or four. It 
takes some experience to appreciate the practical advantages of the algebraic 
approach. 
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Rentatement of the Bloch Theorem 

Once we determine the C's from (27), the wavcfiinction (25) is given as 

+bk(x) = 2 C(k - G) e i (k  '" , 
C 

which may he rearranged as 

with the definition 

uk(x) = 2 C(k - G) e-ic7 
G 

Because uk(x) is a Fourier series over the reciprocal latticc vectors, it is in- 
variant under a crystal lattice translati011 T, so that uk(x) = uk(x + T). We verify 
this directly by evaluating uk(x + T): 

Because exp(-iGT) = 1 by (2.17), it follows that uL(x + T) = uk(x), thereby 
establishing the periodicity of uk. This is an alternate and exact proof of the 
Bloch theorem and is valid even when the $rk are degenerate. 

Crystal Momentum of an Electron 

What is the significance of the wavevector k used to label the Bloch func- 
tion? It has several properties: 

Under a crystal lattice translation which carries r to r + T we have 

because uk(r  + T) = uk(r). Thus exp(ik T) is the phase factor by which a 
Bloch function is multiplied when we make a crystal lattice translation T. 
If the lattice potential vanishes, the central equation (27) reduces to 
(Ak - c)C(k) = 0, so that all C(k - G) are zero exccpt C(k), and thus uk(r) 
is constant. We have I J ~ ( ~ )  = eik.r, just as for a free electron. (This assumes 
we have had the foresight to pick the "right" k as the label. For many pur- 
poses other choices of k, differing by a reciprocal lattice vector, will be more 
convenient.) 
The quantity k enters in the conservation laws that govern collision processes 
in crystals. (The conservation laws are really selection rules for transitions.) 
Thus fik is called the crystal momentum of an electron. If an electron k 
absorbs in a collision a phonon of wavevector q, the selection rule is k + q = 

k' + G.  In this process the electron is scattered from a state k to a state k t ,  
with G a reciprocal lattice vector. Any arbitrariness in labeling the Bloch func- 
tions can be absorbed in the G without changing the physics of the process. 



Solution of the Central Equation 

The central equation (27), 

represents a set of simultaneous linear equations that connect the coefficients 
C(k - G) for all reciprocal lattice vectors G. I t  is a set because there are as 
many cquations as there are coefficients C. These equations are consistent if 
the determinant of the coefficients vanishes. 

Let us write out the eqnations for an explicit problem. \Ve let g denote the 
shortest G. We suppose that the potential energy U(x) contains only a single 
Fourier component Up = K g ,  denoted by U .  Then a hlock of the determinant 
of the coefficients is given by: 

To see this, write out five successive equations of the set (31). The determi- 
nant in principle is infinite in extent, but it will often be sufficient to set equal 
to zero the portion we have shown. 

At a given k, each root E or ek lies on a different energy band, except in 
case of coincidence. The solntion of the determinant (32)  gives a set of energy 
eigenvalues enk, where n is an index for ordering the energies and k is the 
wavevector that labels Ck. 

Most often k will be taken in the first zone, to reduce possible confusion in 
the labeling. If we chose a k different from the original by some reciprocal 
lattice vector, we would have obtained the same set of equations in a different 
order-but having the same energy spectrum. 

Kronig-Penney Mock1 in Reciprocal Space 

As an example of the use of the central equation (31) for a problem that is 
exactly solvable, we use the Kronig-Penney model of a periodic delta-filnction 
potential: 

U(z) = 2 UG cos Gx = AGE 6(x - sa) , 
G>O 

where A is a constant and a the lattice spacing. The sum is over all integers s 
between 0 and l la.  The boundary conditions are periodic over a ring of unit 
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length, which lrieans over l / o  atoms. Thus the Fourier coefficients of the 
potential are 

U ,  = 1 dx WGI)  cos Gx = dr S ( x  - so) cos GGI 
(34)  

All U ,  are equal for the delta-function potential. 
We write the central equation with k as the Bloch index. Thus (31)  

becomes 

where Ar = fi2k'/2m and the sum is over all integers n.  We want to solve (35) 
for ~ ( k ) .  

\Ve define 

f (k )  = Z c ( k  - 2 m / a )  , (36) 

so that (35)  becomes 

Because the suru (36)  is over all coefficients C, we have, for any n; 

f (k) = f  (k - 2 m / a )  . (38)  

This relation lets us write 

C(k - 2m/cr) = - (2mA/ri2) f(k)[(k - 2 n ~ r / a ) ~  - 2fn</ri2)]-' . (39) 

We sum but11 sides over all n to obtain, using (36) and cancelling f (k)  from 
both sides, 

( f i 2 / 2 m ~ )  = -Z [ ( k  - 2rmla)" ( 2 d h 2 ) ] - '  . (40)  

The sum can be carried out with the help of the standard relation 

After trigonometric manipulations in which we use relations for the difference 
of two cotangents and the of two sines, the sum in (40)  bccomes 

a2 sin Ka 
4Ka(cos ka - cos Ka) 

' 

where we write: l? = 2me/7i2 as in (13) .  



The final result for (40) is 

( m ~ n ~ / 2 f i ' ) ( K a ) -  ' sin Ku + cos Ka = cos ka  , (43) 

which agrees with the Kronig-Penney result (21b) with P written for m ~ a ~ / 2 i i ' .  

Empty Lattice Approximation 

Actual band structures are usually exhibited as plots of energy versus 
wavevector in the first Brillo~~in zonc. When wavevectors happen to be given 
outside the first zone, they are carried hack into the first zone by subtracting a 
suitable reciprocal lattice vector. Such a translation can always be found. The 
operation is helpful in visualization. 

When band energies are approximated fairly well by free electron ener- 
gies et = fi212/2m, it is advisable to start a calculation by carrying the free elec- 
tron energies hack into thc first zone. The procedure is simple enough once 
one gets the hang of it. We look for a G such that a k' in the first zone satisfies 

where k is unrestricted and is the true free electron wavevector in the empty 
lattice. (Once the plane wave is niodulated by the lattice, there is no single 
"true" wavevector for the state I//.) 

If we drop the prime on k' as unnecessary baggage, the free electron 
energy can always be written as 

with k in the first zone and G allowed to run over the appropriate reciprocal 
lattice points. 

We consider as an example the low-lying free electron bands of a simple 
cubic lattice. Sl~ppose we want to exhibit the energy as a function of k in the 
[loo] direction. For convenience, choosc units such that 6212m = 1. We sllow 
several low-lying bands in this empty lattice approximation with their energies 
~ ( 0 0 0 )  at k = 0 and e(k,OO) along the k, axis in the first zonc: 

- -- 

Band 

1 000 0 k," 
2,3 100,100 (k,  2 2v/a)" 
4,5,6,7 010,0i0,001,00i ( Z ~ / U ) ~  + ( 2 ~ 1 ~ ) ~  
8,9,10,11 - ~ l o , l o l , l T o , l o i  2(2rr/a)' (k ,  + ~ T / < I ) ~  + ( ~ T / < L ) ~  

12,13,14,15 110 ,~0 l , f i 0 , i 0 i  2(27r/n)' (k, - ~ T / ( L ) ~  + (2da) '  
16,17,18,19 0 1 1 , ~ ~ 1 , 0 1 ~ , 0 i i  2(2rrl[~)' kz + 2(2~/a) '  
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Figure 8 Low-lying free electron energy bands 
of the empty sc lattice, as tra~isfornied to the first 
Brillouin zone and plotted vs. (k ,OO).  The free 
electron energy is fi2(k + G)'/Zrn, where the G's 
are given in the second coli~mn of the table. Thc 
bold curvcs are in the first Urillouin zone, with 
w i n  5 k, 5 mlu. Energy bands drawn in this 
way are said to be in the rednced wne  sche~ne. 

These free electron bands are plotted in Fig. 8. It is a good exercise to plot the 
same bands for k parallel to the [ I l l ]  direction of wwevector space. 

Approximate Solution Near a Zone Boundary 

\Vc suppose that the Fourier components LrG of the potential energy are 
small in comparison with the kinetic energy of a free electron at the zone 
boundary. We first consider a wavevector exactly at the zone boundary at :G, 
that is, at T/U.  Here 

so that at the zone boundary the kinetic energy of the two component waves 
k = ?$G are equal. 

If c($G) is an important coefficient in the orbital (29) at the zone boundary, 
then c(-;G) is also an important coefficient. This result also follows from the 
discussion of (5) .  We retain only those equations in thc central equation that 
contain both coefficients c ( ~ G )  and C(-:G), and neglect all other coefficients. 



One equation of (31)  becomes, with k = :G and h = fi2(&2)'/2rn, 

Another equation of (31)  becomes. with k  = ;G: 

These two equations have nontrivial solutions for the two coefficients if 
the energy E satisfies 

whence 

The energy has two roots, one lower than the free electron kinetic energy by 
U ,  and one higher by U. Thus the potential energy 2U cos Gx has created an 
energy gap 2U at the zone boundary. 

The ratio of the C's may be found from either (44)  or (45) :  

where the last step uses (47) .  Thus the Fourier expansion of $ ( x )  at the zone 
boundary has the two solutions 

These orbitals are identical to (5). 
One solution gives the wavefunction at the bottom of the encrgy gap; the 

other gives the wavefunction at the top of the gap. Which solution has the 
lower energy depends on the sign of U. 

We now solve for orbitals with wavevcctor k near the zone boundary iG. 
We nse the same two-component approximation, now with a wavefunction of 
the form 

$ ( x )  = C(k)  e"" + C(k - G )  ei(k-Gb . (49)  

As directed by the central eqnation (31) ,  we solve the pair of equations 
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with hk defined as k 2 k 2 m .  These equations have a solution if the energy r 
satisfies 

u - E  = o  U hi-c I Pk - 

whencc 6' - E ( A ~ - ~  + hLj + hk-Ghk-@ = 0 
The energy has two roots: 

and each root describes an energy band, plotted in Fig. 9. It is convenient to 
expand the energy in terms of a quantity K (thc mark over the K is called a 
tilde), which rrieasures the difference k - k - ;G in wavevector between k 
and the zone boundary: 

in the region k2G1(1/2rn < 1U(. Here h = (fi2/2m)(k G)' as beforc. 
Writing the two zone boundary roots of (47) as E ( ? ) ,  we nlay write (51) as 

Figure 9 Solutions of (50) in the periodic zone scheme, in the region near a boundaly of the first 
Brillouin zone. Thc units are such that U = -0.45, G = 2, and fLZ/m = 1. The ficc electron curve is 
drawn for comparison. The coergy gap at the zone houndaryis 0.90. The value of U has deliberately 
heen chosen large for this illi~stration, too large for the hvo-terrn approximation to be accurate. 



/ ~ i r s t  I 
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Figure 10 Ratio of the coefficients i11 *(x) = C(k) exp(ikx) + C(k - 6) exp[ i (k  - G)x] as calcu- 
lated rrzar the boundary of the first Rrillouin zone. One component dominates as we move away 
from the boundary 

These are the roots for the energy when the wavevector is very close to the 
zone boundary at f ~ .  Note the quadratic dependence of the energy on the 
wavevector K. For I! negative, the solution E ( - )  correspondq to the nppcr of 
the two bands, and e(+)  to the lower of the two bands. The two C's are plotted 
in Fig. 10. 

NUMBER OF ORBITALS IN A BAND 

Consider a linear crystal constructed of an even number N of primitive 
cells of lattice constant a. In order to count states we apply periodic boundary 
conditions to the wavefunctions over the length of the crystal. The allowcd 
values of the electron wavevector k in the first Brillouin zone are given by (2): 

We cut the series off at N n / L  = n/a, for this is the zone boundary. The point 
-Nn/L = -nla is not to be counted as an independent point because it is 
connected by a reciprocal lattice vector with nla. The total number of points is 
exactly N, the number of primitive cells. 

Each primitive cell contributes exactly one independent value of k 
to each energy band. This result carries over into three dimensions. With 
account taken of the two independent orientations of the electron spin, there 
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are 2N independent orbitals in each energy band. If there is a single 
atom of valence, one in each primitive cell, the band can be half filled with 
electrons. If each atom contributes two valence electrons to the band, the 
band can be exactly filled. If there are two atoms of valence, one in each prim- 
itive cell, the band can also be exactly filled. 

Metals and Insulators 

If the valence electrons exactly fill one or more bands, leaving others 
empty, the crystal will be an insulator. An external electric field will not cause 
current flow in an insulator. (We suppose that the electric field is not strong 
enough to disrupt the electronic structure.) Provided that a filled band is sepa- 
rated by an energy gap from the next higher band, there is no continuous way 
to change the total momentum of the electrons if every accessible state is 
filled. Nothing changes when the field is applied. This is quite unlike the situa- 
tion for free electrons for which k increases uniformly in a field (Chapter 6). 

A crystal can be an insulator only if the number of valence electrons in a 
primitive cell of the crystal is an even integer. (An exception must be made for 
electrons in tightly bound inner shells which cannot be treated by band 
theory.) If a crystal has an even number of valence electrons per primitive cell, 
it is necessary to consider whether or not the bands overlap in energy. If the 
bands overlap in energy, then instead of one filled band giving an insulator, we 
can have two partly filled bands giving a metal (Fig. 11). 

The alkali metals and the noble metals have one valence electron per 
primitive cell, so that they have to be metals. The alkaline earth metals have 
two valence electrons per primitive cell; they could be insulators, but the 
bands overlap in energy to give metals, but not very good metals. Diamond, 
silicon, and germanium each have two atoms of valence four, so that there are 

Figure 11 Occupied states and band structures giving (a) an insulator, (b) a metal or a semimetal 
because of band overlap, and (c) a metal because of electron concentration. In (b) the overlap 
need not occur along the same directions in the Brillouin zone. If the overlap is small, with rela- 
tively few states involved, we speak of a semimetal. 



eight valence electrons per pr i r~~i t ive  cell; the bands do not overlap, and thc 
pure crystals are insulators at absolute zero. 

SUMMARY 

The  solutions of the wave equation in a periodic lattice are of the 
Bloch form i,bk(r) = uk(r) ,  where uk(r)  is invariant under  a cysta l  lattice 
translation. 

There are repons of energy for which no Bloch furictiorl solutions of the 
wave equation exist (see Proble~ri 5). These energies form forbidden regions 
in which the wavefu~ictio~is are damped in space and the values of thc k's are 
complex, as pictured in Fig. 12. The existence of forbiddcn rcgions of energy 
is prerequisite to the existence of insulators. 

Energy bands may often be  approximated by one or  two plane waves: for 
example, I / J ~ ( ? ~ )  = c(k)eikx + C(k - G)c'(~-'" near the zone b o u n d a y  at :G. 

The number of orbitals in a band is 2 N ,  where N is the number of primitive 
cells in the  specimen. 

Problems 

1.  Square lattice, free electron energies. (a) Show for a simple square lattice (two 
dimensions) that the kinetic energy of a free electron at a corner of the first zone is 
higher than that of an clcctron at midpoint of a side face of the zone by a factor of 2. 
(b) What is the cnrresponding factor for a simple cubic lattice (three dimensions)? 
(c) What hearing might the result of (b) have on the conductivity of divalent metals? 

2 .  Free electron energies in reduced zone. Consider the free electron energy bands 
of an fcc crystal lattice in the a~>proxiniatinn of an clnpty lattice, but in the reduced 
zone scheme in which all k' s are transformed to lic in the first Brillouin zone. Plot 
roughly in the [ill] direction the energies of all bands up to six times the lowest 
band energy at the zone boundary at k = i~ . r r /a ) ( ; ,  fr ,  i). Let this be the unit of en- 
ergy This problem shows why band edges need not necessarily be at the zone cen- 
ter. Several of the degeneracies (hand crossings) will he removcd when account is 
taken of the crystal potential. 

3. Kronig-Penney model. (a) For the delta-filnctinn potential and with P + 1, find at 
k = 0 the energy of the lowest energy band. (h)  Fnr the same problem find the band 
gap at k = d a .  

4 .  Potential energy in the diamond structure. (a) Show that for the diamond struc- 
ture the Fourier component U ,  of the cystal pote~ltial seen an electron is cqual 
to zero for G = 2A, where A is a basis vector in  the reciprocal lattice referred to the 
conventional cubic cell. (b) Show that in the usual first-order approximation to 
the solutions of the wave equation in a periodic lattice the energy gap vanishes at 
the zone boundary plane normal to the end of the vector A. 
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Real part of klG 

Figure 12 In the energy gap there exist solutions of the wave equation for complex values of the 
wavevector. At the buu~~dary uf the first zone thc real part of the wavevector is +c. The imaginaly 
part of k in the gap is plotted in the approximation of two plane waves, for U = 0.01 hPG2/2nr. In an 
infinite unbounded crystal the wavevector must be real, or else the amplitude will increase with- 
ol~t limit. But on a surface or at a ~ U I I L ~ ~ U I I  there can exist solutions with complex wavevector. 

'5.  Complex wavevectors in the energy gap. Find an expression for the imaginary 

p a t  of the wavevector in the energy gap at the boundaly of the first Brillouin zone, 

in the approximation that led to Eq. (46). Give the result for the Im(k) at the center 

of the energy gap. The r e s ~ ~ l t  for small Im(k) is 

The fur111 as plotted irr Fig. 12 is of impnrtance in the theory of Zener tunneling 

from one band to another in the presence of a strong electric ficld. 

6. Square lattice. Consider a square lattice in two dimensiom with the crystal potential 

Apply the central equation to find approximately the energy gap at the comer 

point (via, r i a )  of the Brillouin zone. It will suffice to solve a 2 X 2 dctcrminantal 

equation. 

 h his problem is somewhat difficnlt. 


