OAMPLE

()UESTION

Time Allowed : 3 hours

(PAPER

BLUE PRINT

Maximum Marks : 80

5. No. Chapter VSA(/fams;:r::)a e 2 rsn/:rlks) 3 Snf\;:(s) 5 nl;grks) Total
1. Relations and Functions 2(2) 1(3) - 3(5)
2. Inverse Trigonometric Functions 1(1) 1(2) - - 2(3)
3. Matrices 2(2) 1(2) - - 3(4)
4. Determinants 1(1)* - - 1(5)* 2(6)
5. Continuity and Differentiability - 1(2) 2(6)* - 3(8)
6. Application of Derivatives 1(4) 1(2) 1(3) - 3(9)
7. Integrals 1(1)* 1(2)* 13)* - 3(6)
8. | Application of Integrals (1) 1(2) 1(3) - 3(6)
9. Differential Equations 1(1)* 1(2)* 103) - 3(6)
10. | Vector Algebra 3(3) 102)* - - 4(5)
11. | Three Dimensional Geometry 4(4) - - 1(5)* 5(9)
12. | Linear Programming - - 1(5)* 1(5)
13. | Probability 1(4) 2(4) - - 3(8)

Total 18(24) 10(20) 7(21) 3(15) 38(80)

*Itis a choice based question.
#0ut of the two or more questions, one/two question(s) is/are choice based.




Subject Code : 041

MATHEMATICS

Time allowed : 3 hours Maximum marks : 80

General Instructions :

1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B
carries 56 marks.

2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.

3. Both Part-A and Part-B have internal choices.

Part-A:
1. It consists of two Sections-I and II.
2. Section-I comprises of 16 very short answer type questions.

3. Section-II contains 2 case study-based questions.

Part-B:
It consists of three Sections-1I1, IV and V.

~

Section-I1I comprises of 10 questions of 2 marks each.
Section-IV comprises of 7 questions of 3 marks each.

Section-V comprises of 3 questions of 5 marks each.

ok L

Internal choice is provided in 3 questions of Section-111I, 2 questions of Section-IV and 3 questions of Section-V.
You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I
3 2 6
1. Write the cofactor of the element a,; inA=(5 0 7|.
3 8 5

OR
If A is a square matrix of order 3 and |2A| = k|A|, then find the value of k.

_ 11
2. Evaluate: tan 1[2cos(2sin 15)]

-24x
3. Find the integrating factor of the differential equation {e +L}d—x =1(x #0).
RN

OR
Py (& d
Find order and degree of the equation _%; + ay +_y +4y=sinx-

202 Class 12



10.

11.

12.

13.

14.

15.

16.

2 3
Iff(x) = x* - 4x + 1, find f (A), whereAz[l 2:|-

Find the unit vector in the direction of vector @ =21+ 3f+ 4k .

OR

Find the projection of the vector 77 + j — 4k on 21 +6] + 3k .
Check whether the function f(x) = x> - 3x? - x is one-one or not?

3
Evaluate : '[(x —1)(x—2)(x—3)dx
1

OR

T
Evaluate : j x'%sin’x dx

-7
Check whether the lines having direction ratios (\/5 -1,- \/5 —1,4) and (—\/5 +1, \/5 +1, —4) are perpendicular
to each other.

If the vectors 3i+2j—k and 6;—4x ]+ yk are parallel, then the values of x and y.

OR

Find the point which divides the line segment joining the points (-2, 3, 5) and (1, 2, 3) in the ratio 2 : 3
externally.

Find vector equation of the plane which is at a distance of % from the origin and its normal vector from
A A oA 29
the origin is 2i —3j+ 4k.

Let A = {1, 2, 3, 4}. Show that f={(1, 2), (2, 3), (3, 4), (4, 1)} is a bijection from A to A?

If  and b are unit vectors enclosing an angle 0 and |a+5l <1, find the value of 0.

Find the area of the region bounded between the line x = 2 and the parabola y* = 8x.

Find equation of a line which passes through the point (1, 2, 3) and is parallel to the vector 3i+ 2}' —2k.
2 2 6 2

IfA=|-3 1|,B=|1 3|, suchthatA + B+ Cis a zero matrix, then find the matrix C.
4 0 0 4

If the line joining (2, 3, -1) and (3, 5, -3) is perpendicular to the line joining (1, 2, 3) and (3, 5, A), then find
the value of A.

Section - I1

Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part

carries 1 mark.

17.

A teacher arranged a surprise game for students of a classroom having 5 students, namely Amit, Aruna,
Eklavya, Yash and Samina. He took a bag containing tickets numbered 1 to 11 and told each student to draw
two tickets without replacement.
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18.

204

(i) Probability that both ticket drawn by Amit shows even number, is
(a) 1/11 (b) 2/11 (c) 3/11 (d) 4/11

(i) Probability that both tickets drawn by Aruna shows odd number, is
(a) 1/11 (b) 2/11 (c) 3/11 (d) 4/11

(iii) When tickets are drawn by Eklavya, find the probability that number on one ticket is a multiple of 4 and
on other ticket is a multiple 5.
(a) 4/55 (b) 6/55 (c) 7/55 (d) None of these

(iv) When tickets are drawn by Yash, find the probability that number on one ticket is a prime number and
on other ticket is a multiple of 4 .
(a) 3/11 (b) 5/11 (c) 6/11 (d) 2/11

(v) When tickets are drawn by Samina, find the probability that first ticket drawn shows an even number
and second ticket drawn shows an odd number.
(a) 2/11 (b) 3/11 (c) 5/11 (d) 8/11

An open water tank of aluminium sheet of negligible thickness, with a square base and vertical sides, is to be
constructed in a farm for irrigation. It should hold 4000 [ of water, that comes out from a tube well.

Based on above information, answer the following questions.

(i) Ifthe length, width and height of the open tank be x, x and y m respectively, then surface area of tank is
given by

(@) S=x%+ 2xy (b) S=2x2+ 4xy (c) S=2x%+ 2xy (d) S=2x2+ 8xy
(ii) The relation between x and y is
(a) x2y =4 (b) xy2 =4 (c) x2y2 =4 (d) xy =4

(iii) The outer surface area of tank will be minimum when depth of tank is equal to
th rd
() halfofitswidth  (b) its width () G) of its width ~ (d) (l) of its width
3
(iv) The cost of material will be least when width of tank is equal to

1 th
(a) half of its depth (b) twice of its depth (c) (Z) ofitsdepth  (d) thrice of its depth
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19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

(v) If cost of aluminium sheet is ¥ 360/m?, then the minimum cost for the construction of tank will be
(a) 2320 (b) 3320 (c) ¥4320 (d) 5320

PART - B
Section - III
Find the equations of the tangent and the normal to the curve y = x> at the point P(1, 1).

-n
Express tan! [ﬂ), X € [T , 377:) in the simplest form.

1+ sinx

Find the area of region bounded by the curve y* = x(1 - x)?, shown in following figure.
Y

X" X
O
Y/
Suppose 5 men out of 100 and 25 women out of 1000 are good orator. If an orator is chosen at random, find
the probability that a male person is selected. Assume that there are equal number of men and women.

1
Evaluate : I ﬁ dx
—sinx

OR
dx

Evaluate: | —————
II—ZSinxcosx

5a —b
If A =|: 3 :| and A adj A = AAT, then find the value of 5a + b .

Find the projection of the vector 2i— 3}'—612 on vector joining the points (5, 6, - 3) and (3, 4, - 2).
OR
If G=4i+3]+2kandb =37 +2k, find |bx2d]|.

Suppose that two cards are drawn at random from a deck of 52 cards. Let X be the number of aces obtained.
Then, find the probability distribution of X.

2
If y = sin"lx, then show that (1 —xz)d—y - xd—y =0.

dx? dx
d 1+
Find the solution of the differential equation 2 M .
dx  x(y-1)
OR

Find the particular solution of the differential equation log (Z—y)= 3x+4y;y=0,x=0.
x

Section - IV

Show that the curve for which the normal at every point passes through a fixed point is a circle.

Find the point on the parabola y? = 2x which is closed to the point (1, 4).

B ax* N bx LSy dy
Ify_(x—a)(x—b)(x—c) (x=b)(x—c) x-c ’thenﬁnd%.
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32.

33.

34.

35.

36.

37.

38.

206

OR

2x2+x+1. /4x_1
Differentiate w.r.t. x.
(x2 —1)?

Let f: A — B be a function defined as f(x)=

2x+3
o 3 where A = R — {3} and B = R — {2}. Is the function

fone-one and onto?

Find the area of the region bounded by the curve y = x? + x, the x-axis and the lines x = 2, x = 5.
1

Evaluate : J. tan™! x dx
0 OR
2 dx
Evaluate : J TN
x(1+x7)
If f(x) is continuous at x = 0, where
SImx +cosx, forx>0
x
= , then fi .
fx) 41— (—l—x) then find f(0)
—~ forx<0
x
Section-V

Find the vector and cartesian equation of the line through the point it } —3k and perpendicular to the lines
r=2i—3j+M2i+j—3k) and r=3i—-5j+p(i+j+k).
OR

The four points A(3, 2, -5), B(-1, 4, -3), C(-3, 8, -5) and D(-3, 2, 1) are coplanar. Find the equation of the
plane containing them.

Find the minimum value of Z = 3x + 4y + 270 subject to the constraints
x+y< 60
x+y=30
x<40,y<40
x20,y20
OR
Find the point for which the maximum value of Z = x + y subject to the constraints 2x + 5y < 100,
LRI 0,y 20 is obtained.
25 50
2 3 7
If A=|3 -2 -1/, find A~. Using A~! solve the following system of equations :
1 1 2
2x+3y+7z=12
3x-2y-2z=0
x+y+2z=4
OR
1 -2 1
IfA={-2 3 1| find(adjA™").
1 1 5
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< SOLUTIONS >

3 2 6
1. Wehave,A=|5 0 7
3 8 5

3+12 6
0o 7

Cofactor of a,, = C5; =(-1) =14

OR
Given, A is a square matrix of order 3
|2A| = 2°|A| = 8|A| =k|A| (Given)
= k=38

2. We have, tan”! {2 cos (2 sin”! (% ))}
-1 { ( T )} [ 1 11::|
= tan 2cos|2xX— osin T —=—
6 2 6

_ i _ 1 _ T
= tan 1{2cos§}=tan 1|:2><5]=tan 11=—

4
dy 1 2V
3. Wehave, =—— y=—+—
a Jx 7Tk
. dy -1
This is of the form ——+Py=Q, where P=—
dx Jx
e_Z\/;
and Q=

\/} .
-1
I.F.= ejpdx = ejﬁdx = e_Z\/;.
OR
3

d
Highest order derivative is (—z ] So, its order is 3

dx
and degree is 4.

4. Wehave, flix) =x* - 4x + 1 = flA) =A% 4A+1
2 3 5 |2 3ff2 3 7 12
= SO A= =
1 2 1 2|1 2 4 7
(A) = 12 4 2 3 1 0
+
f 4 7 1 2 0 1
7 12 8 12 1 0 0 0
4 7 4 8 0 1 0 0
5. Theunitvectorinthedirectionofavector d isgiven

bya_i Now, |d |=~/2)* +(3)* +(4)* =29

Mathematics

21+3]+4k 2 Ay

Therefore, 4 = 3 [ 44
’ NN TR TR T

OR
Leta=7f +] — 4k and b= 27 + 6] + 3k.

JA A

Then, 3-b = (71 + | — 4k)-(2F + 6] + 3k)
=14+6-12=8

Also, | b |=4/22 + 6% + 32 =7

Projection of G on b = T :

6. We have f(x) = -3 -«
Clearly, (1) =1-3-1=-3
andf(-1)=-1-3+1=-3

S

8
7

S

= Distinct elements have same image, therefore f is

not one-one.

3
7. Let I=I(x—1)(x—2)(x—3)dx
1

: xtoex® 11x?
=J.x —6x? +11x—6)dx =| 22X 22X 6y
4 3 2
1
162 1 11
[__L % _1s- (__9+__6)]:0
4 3 2
OR
T
Let I = j x'%sin” xdx
—TT

Also, let flx) = x! Osin’x
Then, f(-x) = (- )10 [sin(-x)]” = —x10%in’x =
= f(x) is an odd function.
I= j x'%in” xdx =0
-7
8. Here, a, =\/§+1, b, =—\/§+1, ¢, =4 and

a,=—\3+1, by=\3+1, c, =—4

a b c
Since, +=-1, +=-land L=-

) ) )
4 _b_q
a b o

= Direction ratios of lines are proportional.

Hence, the lines are parallel to each other.
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9. Leta=3;+23'—fcandl;:6§—4x}+yic
Since, 4 and b are parallel
d = mb, for some m € R
= 3i+2j—k=m(6i—4xj+ yk)
= 3=6m = m=l

-4
Also,—4xm=227x=22x=—l

and ym=-1 = %z—l = y=-2

OR
Let C(x, y, z) divides the line segment joining
the points A(-2, 3, 5) and B(1, 2, 3) in the ratio
2: 3 externally.

. 2b-3d
Now, ¢ = a

, where d, band¢ are position

vectors of 4, B and C respectively.
=—1[2(i +2j+3k) - 3(=2i +3j +5h) |
=—1(8i—5j—9k)=—8i+5]+9%k

So, co-ordiantes of C= (-8, 5, 9)

10. Let 7 =2i—3j+ 4k. Then,

i 2i-3j+4k  2i-3j+4k

n=—= =
|| 4+9+16 V29

Hence, the required equation of the plane is

?(2?_3¢+4]2)_6

NN RN N

11. Here f(1) =2,f(2) =3,f(3) =4, f(4) =1

Since no two elements have the same image. So f is
one-one. Also, every elements has atleast one pre-

image. So, f is onto.
Thus fis bijective.

12. la+bl<1= |a+13|2 <1
P +l5 4235 <1 = 1414235 <1

.1 - 1
=db<——=ldl |b|cose<——
2 2

1 1

= 1><1><c059<—5 = c056<—5
1 2
:>—1£c056<—5:> 1t29>?n

13. We have, y2 =8xandx=2

Required area = Area of shaded region

2 2 5p [ 32
=2. J\/ 8xdx= 4\/5[5 x3/2:| = ?sq. units.
0 0

208

x=2
14. Let a=1+2j+3k and b =3i+2j-2k.
We know that the line which passes through point d
and parallel to b is given by 7 =ad +Ab , where A is a
constant.
F=1+2j+3k+A(3i+2j-2k) is the required
equation of the line.

15. Wehave, A+ B+ C=0 = C=-[A + B]

2 2] [6 2 8 4] [-8 —4
=C=(-DJ|-3 1|+|1 3|l=(-D|-—=2 4|=|2 —4
4 0| [0 4 4 4| |-4 -4

16. D.Rs of the two lines are 1, 2, -2 and 2, 3, A - 3.
Since, lines are perpendicular

a,a,+bb,+c;c,=0
= 1x2+2x3-2(A-3)=0=A=7

17. (i) (b) : Total number of tickets = 11
Let the event A = First ticket shows even number
and B = Second ticket shows even number
Now, P(Both ticket shows even number) = P(A)-P(B|A)
_>.4_2
11 10 11
(ii) (c) : Let the event A = First ticket shows odd number
and B = Second ticket shows odd number
P(Both ticket shows odd number)
6 5 3
= X—=—
11 10 11
(iii) (a) : Required probability = P(one number is a
multiple 4 and other is a multiple 5)
= P(multiple of 5 on first ticket and multiple of 4 on
second ticket) + P(multiple of 4 on first ticket and
multiple of 5 on second ticket)
2 2 2 2
== X
11 10 11 10
4 4 8 4
=t —=—=—
110 110 110 55

(iv)(d) : Required probability = P(one ticket with
prime number and other ticket with a multiple of 4)

5 2 2

5 10 10 2
e

10 110

110 11

11 10 11
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(v) (b) : Let the event A = First ticket shows even
number and B = Second ticket shows odd number
Now, P(First ticket shows an even number and second
ticket shows an odd number) = P(A) - P(B|A)

5 6 30 3
= X—=—=—

11 10 110 11
18. (i) (d) : Since the tank is open from the top,

therefore the total surface area is
=2(x x x +2 (xy + yx)) = 2(x? + 2(2xy)) = 2x% + 8xy

6‘/

/'ﬁ

“—xXxm—>p
(ii) (a) : Since, volume of tank should be 4000 L
x*y m®=40001=4m? [~ 1 litre = 0.001 m?]
So, x%y =4
(iii) (a) : Let S be the outer surface area of tank.
Then, S=x%+ 4xy

4 16
= Sx) =2 +4x— = x"+— [ X2y = 4]
x
ds_,._16 s _ ) 32
: _——= X—— —_— -
dx x? an dx? x>
For maximum or minimum values of S, consider
ds
-0
dx
16
=>2x=— >x’=8=>x=2m
X
d*s 32

Atx=2, —2=2+—3=2+4:6>0
dx 2

S is minimum when x = 2
Now as x°y = 4, therefore y =1
Thus, x = 2y
(iv) (b) : Since, surface area is minimum when x = 2y,
therefore cost of material will be least when x = 2y.
Thus, cost of material will be least when width is equal
to twice of its depth.
(v) (c) : Since, minimum surface area
=x>+4xy=22+4x2x1=12m?and
cost per m? =X 360
Minimum cost is =3 (12 x 360) = =3 4320

19. The given curve is y = x°.

d—y:3x2

dx J
Slope of tangent at (1, 1) is (—y) =3(1)* =3
dx (1)1)

Equation of tangent at (1, 1) is
y-1=3x-1)=>y-1=3x-3=3x-y=2

Mathematics

Equation of normal at (1, 1) is

-1
)’—1=?(x—1):x+3y:4

cos x
20. We write, tan™} | —————
1+ sinx

cos2 *- sin2 X
1 2 2

= tan
X
cos?| = | + sin? ad + 2sin x cos had
2 2 2 2
X .X X . X
cos— + sin — || cos — — sin —
. ( 2 2 ) ( 2 2)
= tan
2
X .oXx
cos— + sin —
[ X X X
COSs — —sin — 1— tan—
= tan”! 2 2 |- tan”! 2
X . X X
cos — + sin — 1+ tan—
L 2 2 2

-1 T X T X
= tan tan | ———||=—— —
4 2 4 2

21. Given curve is y* = x(1 - x)?
Ify=0,thenx(1-x)?>=0 = x=0,x=1

1
Required area = 2 J&(l— x)dx
0 Y.
1

3/2 5/2
zz[x__x_] .
312 5/2 )

2 2 8 .
:2[5(1)—(5(1))] = E sq. unit

22. Let E;, E, and A denote the events defined as
follows :

E, = person selected is man
E, = person selected is woman
A = person selected is good orator

1
We have, P(E;) = 2’ P(E,) = %

5 25
Now, P(A|E;) = — and P(A|E,) = —

(A1) 100 (4]£) 1000
Required probability is

P(E)) x P(A|E;)

P(E1|A):
P(EI)P(A | E)) + P(EZ)P(A | E,)
1 5
2w w02
L5 ,1,25 75 3
2 100 2 1000
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7+7
4 2

T T X
tan| —+—+—

(4 8 4)
3m x
tan| —+—
8 4

1-sin2x

- 2cosz(n x) %JS‘*G%)

2
- —lo
> g

= \/Elog

+C

+C

OR
Let I= J.

2t
andsin 2x = ——
1+t

Puttanx=t=dx =
1+t

Codt -1
= J.1+t _I(t—l)z_f—lJrC

I= +C
tanx—1

50 -b|l5a 3
AAT =
24. We have, |: 3 9 :||:—b 2]

| 25a* +b* 15a-2b
15a-2b 13

dA-(adif) = 5. =b|l 2 b| [10a+3b 0
and A-@djA)=| ol 3 S 1Sl o a3

A - (adj A)
expressions, we get

25a* +b* 15a—2b| [10a+3b 0
15a—2b 13 B 0 10a+3b
We have, 10a + 3b =13 and 15a-2b=0

On solving, we geta=2/5and b =3
Thus,5a+b=2+3=5

= AAT is known, so equating the two

25. Let 4 =2i—3j—6k,P=(5,6,-3)and Q= (3,4, - 2)
PQ=(3-5)i+(4—6)j +(-2+3)k =—2i—2j+k
Now the projection of d on PQ

_d-PQ _—4+6-6 4
lpqQ  Va+4a+1 3
OR

We have, d=4i+3j+2k and b=3i +2k
2a=8i+6j+4k

210

A

i
Now, b x 24 =|3
8

A A A
=-12i+4j+18k

A O >
=N x>

|bx2d|= \/(—12)2 +42 +(18)* =22

26. Total no. of aces = 4
Also, X can take the values 0, 1, 2

48
P(X=0)= G =@,
2c, 221
4 48 4
C,x™C, 32 G, 1
P(X=1)=—F——=——and P(X=2)=2>=——
“c, 221 2c, 221
The probability distribution of X is as follows:
X 0 1 2
1 2
oo | 18| 32| L
221 221 221
27. We have, y = sin"! x.
dy 1
= 1-x*

E_ l—x
N By PR
dx dx

- Fdx dx '%(H)ZO

X
N sy &y 2
dx* dx o []_ 42
d’y dy
= (1-x)—2-—x2<=
( x)dx2 X

28. We have, & = YU+%)
dx x(y -1)

=>(y7_1}dy —(lix)dx
- j(l—i)dyz J.(i+l)dx+C1

= y-log|y|=log|x| +x+ C,=x-y+log|xy| =C
where C = -C,

OR
d_y — 63x+4y

dy
Given, lo (—)=3x+4 =
iven, log| =~ y=-
= d—yzesxe4y:>'[e_4ydy='[e3xdx
dx
—4y 3x
¢ =% 4

-
-4 3 -1 1 -7
Atx=0,y=0,then —=—+C=>C=—
4 3 12
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—4y 3x

e e 7
== 4e3x
—4 3 12

the required solution.

134 _7-90 , which is

29. Let P(x, y) be an arbitrary point on the given
curve. The equation of the normal to the given curve at

. 1
6y isy—y=——o(X-
Y y éz( X)
dx
Itis given that the normal at every point passes through
a fixed point (a., B) (say).

d
Therefore, B—y = ——x(OC—x)
dy

= (x-a)dx+(y-B)dy=0
Integrating both sides, we get

Je—aydx+ [(y-B)dy =

2 2
(x-0)” =B _ .
2 2
= (x-a)’+(y-B)?=r* where ? =2C
Clearly, this equation represents a circle, having centre
at (o, B) and radius r.

30. Let A (x, y) be the required point which is closest
to the point B(1, 4). Then, the distance AB should be
minimum and therefore AB? should be minimum.

2
2
Now, AB* =(x—1)* +(y—4)> :(y?_ } +(y—4)?

_(y*-32y+68)
4

4
Let f(},):w

4

, 4y’ —32 ,
Then, f/(y)=~—=" =y’ ~8and f"(y)=3y"

Now, f'(y)=0=>y>-8=0= y=2

Also, f7(2)=3%x4=12>0
So, y = 2 is a point of minima.

2
4
Now, yzZ:xzy—ZEZZ
So, the required point is (2, 2).
31. We have,
ax? bx c
y= + + +1

(x—a)(x—b)(x—c) (x—b)(x—c)

x—c
ax? +bx(x—a)+c(x—a)(x—b)
+(x—a)(x—-b)(x—c)
(x—a)(x—=b)(x—c)

= y=

Mathematics

x3

(x—a)(x=b)(x—c)

= y=

o }
(x—a)(x=b)(x—c)
{log(x — a) + log(x - b) + log(x - ¢)}
On differentiating w.r.t. x, we get

Ldy _ { 1 1 1 }
—— + +
ydx X lx—a x-b x—c
e ) e S
= =Nl + == +=-
X x-—a x x-b X x-—c
{ (=b) (=¢) }
=y +
x(x— a) x(x b) x(x—c)

d_yz{a C}
xaxbx—x

OR

2
2x +x+1 /4x_1

(x2 =12

2
2x +x+1 /4x_1]

(x2 =12

= logy= log{

= logy = 3logx -

Let y=

= logyzlog[

= (x2 +x+1)log2+%log(4x— 1)—%10g(x2 -1)

Differentiating both sides w.r.t. x, we get

1 dy—logZ —(x +x+1)+— ! Xi(4x—1)
y dx dx 2 4x—-1 dx
_é.;.i(xZ_l)
2 x2_q1 dx
3
=2x+1)log2+ 4—
S TP S T

dy 2 3x
—=y|(2x+1log2+ -
= dx y[( x+Dlog 4x -1 x2—1:|
32. Let y = flx) = 2x+3

x—3

Let x;, x, € A = R - {3} such that
f(xl) =f(x2)
2x+3  2x,+3
X —3 Xy —3
(2%, +3)(x, - 3) = (2x, + 3)(x; - 3)
2%,%5 — 6x; + 3%, — 9 = 2x,X, — 6x, + 3x;, - 9
-6x, + 3x, = -6x, + 3x,
9%, =9x, = x,=x,
Now, flx,) = flx,) = x; = x,
So f(x) is one-one.

(1)

=
=
=
=

2x+3
For onto, let yzx—3 = xy-3y=2x+3
x—
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= xy-2x=3y+3 = x(y-2)=
_30+D (i)
(y=2
Equation (ii) is defined for all real values of y except 2
which is same as given set B = R - {2}.
3(y+1)
y=2

3(y+1)

Thus, for every y € B, there exist x = € Asuch

that f(x) = y
Hence, function fis onto.

33. Given curveis y = x> + x.
Clearly, required area = Area of shaded region

5 x3 xz 5 YA

=J.(x2+x)dx= —t+—
2 3 2 2 1Sy
+

125 25 (8 %
=—+——[=+2 4
3 2 \3 »

_[250+75 14} :

(5, 30)

6 3

325 14 325 28 297
:?sq units

6 3 6

1 1
34, LetI= J‘tan_1 xdx = j‘tan_l x-ldx

1
0 1 2x T 1 .
= (——0)——J 2dx=——511 (1)

2
Consider I; :J a
01+x

Putl+x*=t=2xdx=dt
Whenx=0,t=1andwhenx=1,¢t=2
2
1
R J; dt = [logt]f =log2—logl=log2 ..(ii)
1

= Izg—log\/i

2dx

[From (i) and (ii)]

, OR
LetI: ILZ
L x(1+x7)
1 A Bx+C
Consider, —— = >
x1+x%) x 1+x

= 1=A(1+x")+(Bx+C)-x

= 1=x*(A+B)+Cx+A

On equating the coefficient of x?, x and the constant
term from both sides, weget A=1,B=-1and C=0

I= f dx+j
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2
:[logx]1 _‘!1+ dx =log2— J.1+x

Putl+x’=t = 2xdx=dt
Whenx=1,t=2and whenx=2,t=5

x dx

131, 1 5
I= 1og2—5£;dt—10g2 S [logt],

=log2—%[log5—log2]

1 5 1 8
—log2—~1log |2 |==1log| 2
log2 5 log (2) 5 og (5)

35. Since, f(x) is continuous at x = 0, therefore
f0)= lim f(x)= hm f(x) ...(1)

x—0" x—0"

lim f(x)= lim (4(1% “1"‘))

x—0" x—0

1-1-x) Y _ .. 1-1+x
_431c—>0(x(1+x/1 x)) 4?55(;:(1%/1—@)

Y (O S N
_4((1+1)J_2_

From (i), we get f (0) =

36. Here we need to find, the equation of the line
through the point (1, 1, -3) and perpendicular to the
lines
x—=2 y+3 z-0
2 1 -3
x—3:y+5:z—0 (i)
1 1 1
Let the direction ratios of required line are a, b, c.
Then equations of this line is given by
_y-l_z+3 (i)
a b c
Direction ratios of line (i) are 2, 1, -3 and line is
perpendicular to line (iii) having direction ratios a, b, ¢

...(1)

and

2a+b-3¢c=0 ...(iv)
Similarlya+b+¢=0 ...(v)
Solving equation (iv) and (v), we get
a_ -b ¢
4 5 1

From equation (iii), required equation of the line
.ox—1_y-1 z+3
is = = .

4 -5 1
Its vector equation is 7 = (; + } - 3IA<) + 7»(4; - 5}' + I;)

OR

The equation of the plane passing through the point
A(3, 2, -5) is given by

a(x-3)+b(y-2)+c(z+5)=0 ..(1)
If it passes through B(-1, 4, -3) and C(-3, 8, -5),

Class 12



we get
a(-1-3)+b(4-2)+c(-3+5)=0
= -4a+2b+2c=0

= 2a-b-¢c=0 ..(ii)
Alsoa(-3-3)+b(8-2) +c(-5+5)=0

= -6a+6b+0c=0

= a-b-0c=0 .(iii)

Solving (ii) and (iii) by cross multiplication method,

we get
a b
0-1) (-1-0) (=241
a b ¢
—_——_m—_—=—_-= k = = =
"1 1 (say) > a=k, b=k, c=k.

Puttinga =k, b = k and ¢ = k in (i), we get
x-3)+(-2)+(z+5)=0

= x+y+z=0.

Thus, the equation of the plane passing through the
points A(3, 2, -5), B(-1, 4, -3) and C(-3, 8, -5) is
x+y+z=0.

Clearly, the fourth point D(-3, 2, 1) also satisfies
x+y+z=0.

Hence, equation of the plane containing the given
pointsisx+y +z=0.

37. Converting inequations into equations, we get

X+y=60 (i)
x = 40 ...(ii)
y =40 ...(iii)
x+y=30 ..(iv)
x=0 (V)
andy=0 ...(vi)

Let us draw the graph of equations (i) to (vi). The
feasible region is shown in figure.
Y x=40

A
(20, 40)
D

The coordinates of the corner points of the feasible
region are A(30, 0), B(40, 0), C(40, 20), D(20, 40),
E(0, 40) and F(0, 30).

Let us evaluate Z at these points.

D(20, 40) 490
E(0, 40) 430
F(0, 30) 390

Corner points Value of Z = 3x + 4y + 270
A(30,0) 360 < Minimum
B(40, 0) 390
________ 40,20 A0

Mathematics

From the table, the minimum value of Z is 360, which
is attained at the point A(30, 0).

OR
Converting inequations into equations, we get
2x+5y=100,2x+y=50,x=0and y =0
ie., %+2—);=1, %+5—);)=1,x= Oandy=0
Let us draw the graph of above equations.

Clearly, the feasible region is OABCO, which is shaded

in the figure.

Here, B is the point of intersection of lines 2x + 5y = 100
75 25

and 2x + y =50 i.e., B=(—, )
4 2

2
We have corner points A(25, 0), 3(75 5) and

42
C(0, 20).
The values of the objective function Z = x + y at these
points are
Z(A)=25+0=25

75 25
Z(B)=—"+22=31.25
4 2

Z(C)=0+20=20

Z(0)=0+0=0
The maximum value of Z is 31.25, which is attained at

53
4’ 2 )

2 3 7

38. We have, A=(3 -2 -1

1 1 2
2 3 7
co)Al=p 2 -1
1 1 2
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=2(-4+1)-3(6+1)+7(3+2)=-6-21+35 OR

=8%0.S0 A ! exist. Here,
The cofactors of elements of A are 1 21
C,=-3,C,=1C5 =11 A=l-2 3 1
C12 = —7, C22 = _3, C32 = 23 1 1 5
C3=50C;3=1,C5=-13

3 1 11 We know, if A is non-singular matrix,

then (adj A™!) = (adj A)™}, so we will find (adj A)~L.

adjA=|-7 -3 23 The cofactors of elements of A are

5 1 -13 A, =14 A,=11 A;=-5
301 1 A, =11 A,,=4 Ayy=-3
adiA A, =-5 A..=-3 Aa.=-1
and A1=292_1 5 5 03 ! 2 .
|A| 8 14 11 -5] [14 11 -5
5 1 -13 )
B=adjA=|11 4 -3|=|11 4 -3
Given system of equations is -5 -3 -1 -5 -3 —1
2x+3y+7z=12
3x-2y-z=0 | B|=|adjA|=14(-4-9)-11(-11-15) -5(-33 +20)
x+y+2z=4 =-182 + 286+ 65 =169 # 0

which can be written in matrix form as Cofactors of B are

B,,=-13  B,,=26 B, =
23 7x) (12 B, =26 BZ:-39 B;:
3 =2 -Ify|=|0 By, =-13 By, =-1 By, =
11 27 z) 4 13 26 -13] [-13 26 -13
— AX=B—X=A"B - adjB=| 26 -39 -13 [ -39 -13
-3 1 11 Y12 -13 -13 -6 -13 -13 —-65
SN X:% —7 =3 23 | o ~13 -13
> 1 -1BR4 and B = (adj A) ™! =é 26 -39 -13
x -36+0+44) (1 —-13 13 -65
Now, | y =X:l —-84-0+92 |=|1 ) -1 2 -1
z 60+0—52 | (1 =512 3
-1 -1 -5

Comparingwe getx=1,y=1,z=1

©0O0O
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