
Chapter 4
Power Systems Stability

After reading this chapter, you will be able to understand:

 • Steady state stability

 • The swing equation

 • Multi-machine systems

 • Steady state stability analysis

 • Transient stability analysis

 • Equal area criterion

 • Principal type of transient disturbances

 • Sudden change in mechanical input

 • Switching operation

 • 3-phase 

LEARNING OBJECTIVES

introduction
The stability of a system refers to the ability of a system to return 
back to its steady state when subjected to a disturbance. Power is 
generated by synchronous generators that operate in synchronism 
with the rest of the system. A generator is synchronized with a 
bus when both of them have same frequency, voltage and phase 
sequence. So, the stability is also defi ned as the ability of the power 
system to return to steady state without losing synchronism. The 
power system stability is categorized as follows:

 1. Steady-state stability
 2. Transient stability
 3. Dynamic stability

Steady-state Stability
Steady-state stability is restricted to small and gradual changes in 
the system operating conditions. This stability basically concen-
trates on restricting the bus voltage close to their nominal values. 
Steady-state stability ensures that phase angle between two buses 
are not too large and check for the overloading of the power equip-
ment and transmission lines.

Transient Stability
Transient stability involves study of the power system following a 
major disturbance. Following a large disturbance the synchronous 
alternator power angle changes due to sudden acceleration of the 
rotor shaft.

Dynamic Stability
The ability of a power system to maintain stability under continu-
ous small disturbances is investigate under the name of dynamic 
stability. It is also known as small signal stability.

Power-angle Relationship
Consider the single machine infi nite bus system shown in the 
 fi gure. In this the reactance ‘X’ includes the reactance of the trans-
mission line and the synchronous reactance or the transient reac-
tance of the generator. The sending end voltage is then the internal 
emf of the generator. Let the sending end and receiving end volt-
ages be given by
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Figure 1 An SMIB system
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The sending end real power and reactive power are given by
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Since the line is lossless, the real power dispatched from the 
sending end is equal to the real power received at the receiv-
ing end. We can therefore write.

P P P
V V

Xe s R= = = 1 2 sinδ = P
max

 sinδ

where P
V V

Xmax =
1 2 is the maximum power that can be trans-

mitted over the transmission line. The power angle curve is 
shown in figure below
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From the figure, we can see that for a given power ‘P
0
’ there 

are two possible values of the angle δ → δ
0
 and δ

max
.

The angles are given by
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The Swing Equation
Figure shows the torque, speed and flow of mechanical and 
electrical powers in a synchronous machine. It is assumed 
that the windage, friction and iron-loss are neglected. The 
differential equation governing the rotor dynamics can be 
written as

J
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2
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where θ
m
 = Angle in rad (mechanical)

 T
m
 = Turbine torque in Nm

 T
e
 = Electromagnetic torque developed in Nm

Generator
Motor

Pe

TsWs

Tm

Te

Tm Pm

Pe

Figure 2  Flow of mechanical and electrical power in a 
synchronous machine
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If the angular position of the rotor is with respect to the 
synchronous rotating reference frame
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The above equation is called the swing equation.

Multi-machine Systems
In a stability study of a power system with many synchro-
nous machines only one MVA base common to all parts of 
the system can be chosen. This is accomplished by convert-
ing ‘H ’ for each machine based on its own individual rating 
to a value determined by the system base

H H
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Ssystem mech
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= .

Consider a power plant with two generators connected to 
the same bus which is electrically remote from the network 
disturbances. The swing equations on the common base are
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If both the machines swing together, adding the two equa-
tions and denoting δ

1
 and δ

2
 by ‘δ	’
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For any pair of non-coherent machines in a system, the 
resultant two machine swing equation can be written as
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Steady-State Stability analySiS
Assumptions made in steady-state stability analysis:

 1. The study considers small amplitude, long duration 
disturbances.

 2. The damping term in the characteristic equation is 
absent, because of assumption of a loss less system 
and neglecting the effect of damper windings.

 3. Non linearities are ignored, and hence the linearized 
form of the swing equation can be used.

 4. The response of the governor and the exciter are 
 ignored. This results in the mechanical power and 
electrical power to be constant throughout the tran-
sient period.

In a single machine infinite bus system, dynamics of a 
 synchronous machine are described by the swing equation.
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Let the system be operating initially at equilibrium. Then the 
steady-state power transfer P Pe m0

= with losses neglected 
and a rotor angle of δ

0
. Assume a small increment ∆P in the 

electric power output with the mechanical input P
m
 as fixed. 

This change causes the torque angle to change to (δ
0
 + ∆δ).

From the small disturbance, linearized equation can be 
 written as
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Swing equation can be written as
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Characteristic equation is given by
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Roots of the characteristic equation are
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When
∂
∂

Pe

δ
is positive, the roots of the characteristic equa-

tion lie on the j′w	′(imaginary) axis, and the system rotor 
angle behaviour is oscillating about ‘δ

0
’. The line resistance 

and damper winding of machine which have been ignored 
in the above modelling cause the system oscillations to 
decrease. The system is therefore be stable for a small incre-
ment in electrical power.

If 
∂
∂

Pe

δ 	
is negative, the roots be real with one of them 

being positive and other negative but of equal magnitude 
which is ‘unstable and causes rotor angle to increase with-
out bound upon occurrence of a small power increment.

0
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is known as ‘synchronizing power 

 coefficient’. This is also called stiffness of the synchronous 
machine.

The system is unstable if
∂
∂

<
Pe

δ
0 which implies δ > 90°, 

so the system is unstable if δ > 90°. The maximum power 
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that can be transferred without loss of stability (steady state) 
occurs for δ = 90° and it is given by

P
EV

Xmax =
12

P
max

 is known as steady-state stability limit.

Methods for Improving Steady-state 
Stability Limit
 1. Reduce the reactance of the transmission 

lines.
  –  By adding parallel lines which also increases the 

reliability of the system.
  –  Series capacitors which also provides better 

 voltage regulation.
 2. Increasing either or both |E| and |V| by means of 

 excitation control.

Solved Examples

Example 1: A sending end bus transfer power P
0
 through 

a transmission line of p.u. impedance 0.1 If the steady-state 
stability margin is 40% and the bus voltages at both the ends 
is 1.0 p.u. The operating power angle and magnitude of P

0
 

are
(A) 36.87°, 6 p.u. (B) 36.87°, 4 p.u.
(C) 23.57°, 0.6 p.u. (D) 23.57°, 0.4 p.u.

Solution: (A)
Steady-state stability margin
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 δ = sin–1(0.6) = 36.87° 

Magnitude of P
V V

X0
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0= sinδ
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60.
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Example 2: The sending end and receiving end voltages 
of a transmission line at 100 MW load are equal at 230 kV, 
per phase line impedance is (4 + j8) Ω. Steady-state stability 
limit of the system is
(A) 1090 MW/ph (B) 363.3 MW/ph
(C) 3,269.8 MW/ph (D) 1,887.8 MW/ph

Solution: (A)
When the line resistance is considered
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R V
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 = 1971.74 – 881.8 

 = 1089.948 ≅ 1090 MW/Ph 

Example 3: A 500 MVA, 11 kV, 50 Hz, 4-pole 
 turbo-generator has an inertia constant of H = 7.5 MJ/MVA. 
If the mechanical power input is 552 MW and the electrical 
power output of 400 MW and stator copper loss is assumed 
to be negligible, then the angular acceleration is
(A) 182.4 rpm/s2

(B) 364.8 rpm/s2

(C) 25.33 rpm/s2

(D) 50.66 rpm/s2

Solution: (C)
From the swing equation
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For a four pole machine
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182 4
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	 = 25 33. rpm/s2 

Example 4: An alternator having a reactance of 1.3 p.u. is 
connected to an infinite bus as shown in the figure. It deliv-
ers 1.0 p.u. current at 0.8 p.f. lagging at V = 1.0 p.u. The 
steady-state stability limit of the system is
(A) 0.58  (B) 1.584
(C) 1.3  (D) 1.7

Solution: (B)
System configuration given in the problem is given by

X
V∠0

E ∠ d

For the given power factor of 0.8, current delivered from the 
source is I = (0.8 – j0.6) = 1∠−36.86

Sending end voltage E = V + jIX
d

 = 1.0 + j(0.8 – j0.6) × 1.3 

 = 2.06 ∠30.3 
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Steady-state stability limit P
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Xmax
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.
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 = 1.584 p.u. 

Example 5: A 250 MVA synchronous generator having 
inertia constant 5 MJ/MVA is connected in parallel with a 
200 MVA generator having inertia constant of 4 MJ/MVA. 
Both the generators are swinging coherently. The equivalent 
inertia constant of the machine on a base of 100 MVA is
(A) 20.5 MJ/MVA (B) 12.5 MJ/MVA
(C) 8 MJ/MVA (D) 9 MJ/MVA

Solution: (A)
Both the inertia constants are to be represented with same 
base

 H
H

P
Pp.u.

p.u.

base
base

old

new

new
= ×

	

 Hp.u. MJ/MVA= × =5 250

100
12 5.

	

 H2

4 200

100
8

p.u.
MJ/MVA= × =

	
 H H Heq p.u. p.u.

= + = +1 2 12 5 8.
	

 = 20.5 MJ/MVA 

Example 6: A synchronous generator is connected to a 
11 kV infinite bus through a transmission line. The reac-
tances of the generator and transmission line are 1.1 Ω and 
0.7 Ω, respectively. The terminal voltage of the synchronous 
generator is 15 kV. If the generator delivers 75 MW power 
to the infinitely bus, the load angle (δ) for stable operation is
(A) 55°  (B) 125°
(C) Both A and B (D) 63.4°

Solution: (A)
Power angle equation is given by

 P
E V

Xe =
12

sinδ
	

 75
11 15

1 1 0 7
= ×

+( ). .
sinδ

	
 δ = 55° 

tranSient Stability analySiS
If the disturbance is large, changes in angular difference 
may be well enough to cause the loss of synchronism of the 
machines. The types of disturbances are mostly the faults, 
sudden. Large load changes may also cause instability of 
the machines. This type of instability is known as ‘transient 
instability’.

Assumptions in Transient Stability 
Analysis
 1. Resistance of the transmission lines and synchronous 

machine are neglected.
 2. Synchronous machine damper winding is ignored 

which contributes damping term.
 3. Rotor speed is assumed to be synchronous even 

though it varies insignificantly during the stability 
transients.

 4. Mechanical input to machine is assumed to remain 
constant the transients.

 5. Voltage behind transient reactance is assumed to 
 remain constant.

 6. Shunt capacitors ignored in stability study which 
does not cause any significant error.

 7. Loads are modelled as constant admittances.

Equal Area Criterion
To examine the stability of a two machine system without 
solving the swing equation, a direct approach is given as 
follows.

Consider a swing equation.

H
d

dt
P P P

2

2

δ = = =m e a Accelerating power−

If the system is stable, δ(t) performs oscillations, whose 
aptitude decreases in actual practice because of damping 
terms (Which are neglected in the swing equation) on the 
other hand, if the system is unstable ‘δ’ continues to increase 
indefinitely with time and the machine loses synchronism. 
So when the system is stable, then δ(t) will go to maximum 
and start to reduce. This fact can be stated as stability crite-
rion, that the system is stable if at some time

d

dt

δ =0

and system is unstable if

∂
∂

>
δ
t

0 for sufficiently long time.

The stability criterion stated above can be converted into 
a simple and easily applicable form for a single machine 
infinite bus system.

d

t

dmax

Unstable > 0
∂t
∂δ

= 0
∂t
∂δ

Stable
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Multiply both sides of swing equation by 2.
d

dt

δ⎛
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⎞
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where ‘δ

0
’ is the initial rotor angle before it begins to swing 

due to disturbance.
The condition for stability can be written as

	

2
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δ
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The condition for stability is stated as:

 • The system is stable if the area under accelerating power 
(P

a
) – δ curve reduces to zero at some value of δ.

 (or)
 • Positive area under P

a
 – δ curve must equal the negative 

area and hence the name ‘equal area’ criterion of stability.

Principal Type of  Transient Disturbances
For transient stability studies we have to consider the 
effect of

 1. Sudden change in mechanical input
 2. Switching operations
 3. Fault with subsequent circuit isolation of the system

Sudden Change in Mechanical Input
Let us consider a synchronous machine connected to  infinite 
bus as shown in the following figure.

Xe

Pe

|E| ∠d
Pm

|V | 0°

Electric power transmitted is given by

 Pe
E V

X
P

e

= =sin sinmaxδ δ 	

Under steady operating conditions

 P
m
 = P

eo
 = P

max
 sinδ

0
.
 

Let the mechanical input to the rotor be suddenly increased 
to P

m1
 by increasing steam input. The accelerating power 

P
a
 = P

m1
 – P

e
 causes the rotor speed to increase and so does 

the rotor angle. At angle δ
1
, P

m1
 – P

e
 = P

a
 = 0 (At point b). 

but the rotor angle continues to increase as w > w
s
. P

a
 now 

becomes negative, the rotor speed begins to reduce but the 
angle continues to increase till at angle δ

2
, w = w

s
 once again 

(at point ‘c’), the decelerating area A
2
 equals the accelerat-

ing area A
2
 i.e., P da δ

δ

δ

=∫ 0
0

2

.

d

c

b

a

d0 d1 d2

ws w>ws
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Pm0

Pe

As the oscillation decay out because of damping, the system 
settles to the new steady state when

P
m1

 = P
e
 = P

max
 sinδ

1
,

From the power angle diagram, the expression for A
1
 and A

2
 

can be written as.

 A
1
 = P P dm e1

−( )∫ δ
δ

δ

0

1

	

 A
2
 = P P de m1

−( )∫ δ
δ

δ

1

2

	

For the system to be stable, it should be possible to find ‘δ
2
’ 

such that A
1
 = A

2
. As P

m1
 increases, a limiting condition is 

finally reached when A
1
 equals the area above the P

m1
 line as 

shown in the figure below.
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d0 d1 d2
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A1

Pm1

Pm0
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Under these conditions, δ
2
 acquired the maximum value 

such that

δ
2
 = δ

max
 = π – δ

1
 = π – sin–1

P

P
m1

max

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Switching Operation
Consider a single machine connected to infinite bus through 
two parallel lines as shown in the figure.
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Xd
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Infinite bus

(2)X2

|E|∠d
Pm

|V | 0°

For stability analysis, consider the case when one of the 
lines is suddenly switched off with the system operating at 
a steady load. Before switching off the line, power transfer 
expression is given by

 P
E V

X X X
Pe

d 1
1 //
=

+( ) =
2

. sin sin .maxδ δ  

Immediately after the line ‘2’ is switched off

 P
E V

X X
Pe

d
2 2

1

=
+

=sin sin .maxδ δ  

Since (X
d
 + X

1
) > (X

d
 + (X

1
//X

2
), the relation between the 

maximum powers in two cases becomes P
max2

 < P
max1

. The 
system is operating initially with a steady power transfer 
P

e
 = P

m
 at a torque angle δ

0
 on curve I.

d

ca

b

d0 d1 d2

A2

A1

Pm

Pe

O

d

Pe1 (with two lines)

Pe2 (only one line)

p

Immediately after switching off line 2, operating point on 
curve 1 shifts to curve 2 (From point ‘a’ to point ‘b’) there-
after, operation of the system will be exactly same as sud-
den change in mechanical input case.

When an area A
2
 corresponding to the decelerating 

energy is equal to an area A
1
 corresponding to accelerating 

area, the system will be stable and finally operates at ‘C’ 
corresponding to a new rotor angle δ

1
 > δ

0
. This is because 

a single line after larger reactance and larger rotor angle is 
needed to transfer the same steady power.

For the limiting case of stability, δ
1
 has a maximum value 

given by

δ
1
 = δ

max
 = π – δ

c

Three-phase Fault on Radial Line
Consider a system operating in steady state and configured 
as shown in figure below.

Xd X1

P

F

|E| ∠d

Pm

V 0°

If the fault is at point ‘p’ on the radial line, the electrical 
output of the generator (power transferred to the load) will 
reduce to zero. (state point is ‘b’) The rotor angle of the 
system starts increasing with the accelerating area and state 
point moves along path BC. If the fault is cleared by opening 
circuit breakers at time t

c
 corresponding to angle δ

c
. Value 

of t
c
 and δ

c
 are known as clearing time and clearing angle, 

respectively. The system once again becomes healthy and 
transmits P

0
 = P

max
 sinδ. The rotor now decelerates along 

de. If an angle δ
1
 can be found such that A

1
 = A

2
, the system 

is found to be stable. The system finally settles down to the 
steady operating point ‘a’ in an oscillatory manner because 
of inherent damping.

dp

e
d

b c

a

d0 dc d2

A1

Pm

Pmax

Pe

A2

dc = Clearing angle

As the clearing of the fault line is delayed, A
1
 increases 

and does δ
1
 to find A

2
 = A

1
 till δ

1
 = δ

max
 as shown in figure 

below. For a clearing time larger than this value, the system 
would be unstable as A

2
 < A

1
 the maximum allowable value 

of clearing time angle for the system to remain stable are, 
respectively, known as critical clearing time and angle.

dpd0 dcr dmax
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Pm

Pmax
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A2

From the above figure δ
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 = π – δ
0

For a system to be stable A
1
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2
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⇒	 δ π δ δ δcr
1

0 02 cos= ( )⎡⎣ ⎤⎦cos sin− − −0
	

where δ
cr
 = critical clearing angle.

From the swing equation

	
d

dt

f

H
P P

2

2
0

δ π= =[ ]m e 	

Integrating twice, we get

	 δ π δcr m cr
= +f

H
P t

2
2

0 	

t
H

fPcr
cr

m

=
( )2 0δ δ
π

−
,

t
cr
 = Critical clearing time

Fault at One End of Parallel Lines
If fault occurs at one of the parallel lines connected between 
synchronous machine and infinite bus.

Xd

X1

X2

Fault

E∠d

Pm

V 0°

Before occurrence of a fault, power transfer expression is 
given by

P
E V

X X X
Pe

d
1

sin sin=
+( ) =

1 2
1||

. maxδ δ

During the period of fault, Pe2
= 0

After fault is cleared,

P
E V

X X
Pe

d
3
=

+
=

1
3sin sin .maxδ δ

Since [X
d
 + (X

1
//X

2
)] < [X

d
 + X

1
,] the relation between the 

maximum power transfer in both the cases is related as 
P Pmax max3 1

<

dd0

dx

dc

Pm

Pe

Pe1
, pre fault (2 lines)

p

Pe3
, post fault (1 line)

A1

d2 dmax

Pmax3

Pez

A2

For stable operation

	 δ
max

 = π – δ
x
 = π – sin–1

P

P
m

max3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	

 A
1
 = A

2 

	 P d P Pm m0
C

− −( ) = ( )∫ ∫δ δ δ
δ

δ

δ

δ

0

2

3

2

max sin sin 	

For stable operation of the system, clearing time must be 
less than critical clearing time at which δ

2
 is equal to δ

max
.

Fault Away From One of the Parallel Lines
When the fault occurs away from line end, there is some 
power flow during the fault though considerably reduces, as 
different from previous case, where P

e
 = 0. Circuit model of 

the system during fault is shown below.

Xd

X1

X2/2 X2/2

F

E∠d
V 0°

Power angle curve before fault

P
E V

X X Xe
d

1 /
=

+( )1 2

sinδ

Power angle curve during fault

P
E V

Xe
F

2
= sinδ .

If the fault is cleared by removing faulted line after fault is 
cleared,

P
E V

X Xe
d

3
=

+ 1

sinδ

dd0 dc

Pm

Pe

p

Post fault (Pe3
)

A1

d2 dmax

Pre fault (Pe1
)

A2

During fault (Pe2
)

Critical clearing angle

cos
cos cosmax max max

max

δ

π δ δ δ δ
cr

m 0 max

max

2

2
P

=
( ) +

180 0 3

3

P P P

P

− −

−



3.964 | Power Systems

Design methods for improving transient stability

 1. Improved steady-state stability; achieved by:
  (a) Higher system voltage
  (b) Additional transmission lines
  (c)  Smaller reactances in transmission lines and 

transformers
  (d) Series capacitive compensation
  (e) Using FACTS
 2. High-speed fault clearing
 3. High-speed reclosure of circuit breakers
 4. Larger machine inertia
 5. Fast valving

Example 7: For single-line diagram of three-phase  power 
system given below, the generator is delivering 1.0 p.u. 
power to infinite bus. The pre fault power angle equation is 
P

e
 = 2.1 sinδ.

~

1

3

2

4

5 P

Open
Infinite bus

Calculate the critical clearing angle and critical clearing 
time when the system is subjected to a 3-F fault at point 
‘P’. The fault is cleared by breaker 5. The inertia constant 
H = 50 MJ/MVA.

Solution: Before the fault occurrence

 P
e
 = P

max
 sinδ = 2.1 sinδ	

Power transferred P
e
 = P

m
 = 1 = 2.1 sinδ	

 δ
0
 = 28.43° 

∴ δ
max

 = π – δ
0
 = 151.56° 

When the fault occurs, power angle curve is as shown in 
the figure.

dd0

Pm – Pe1

Pe

dcr
dmax p

A2

A1

For the system to be stable at critical clearing angle,

 A
1
 = A

2 

⇒ P d P P d
o

m m

cr

cr

. sinmax

max

δ δ δ
δ

δ

δ

δ

∫ ∫= ( )−
	

 P d P d
o

m m

cr

cr

. . sin
max

δ δ δ
δ

δ

δ

δ

∫ ∫= −( )2 1 	

 P
m
(δ

cr
 – δ

0
) = 2.1(cosδ

cr
 – cosδ

max
) – P

m
(δ

max
 – δ

cr
) 

⇒ cosδ
cr
 = 0.144 

Critical clearing δ
cr
 = 81.72°

 t
H

f Pcr
cr

m

=
( )⎡

⎣
⎢

⎤

⎦
⎥

2 0

1

4δ δ
π

−
 t

cr
 = 0.243 sec 

Example 8: The transient stability of the power system can 
be effectively improved by
(A) Excitation improved
(B) Phase-shifting transformer
(C) Single-pole switching of circuit breakers
(D) Increase the turbine value opening

Solution: (C)

Example 9: A loss less single machine infinite bus power 
systems is shown below.

1.0∠δ p.u.

1 p.u.

1.0∠0 p.u.

The synchronous generator transfers 1.0 p.u. of power to the 
infinite bus. The critical clearing time of the circuit breaker 
is 0.4 sec. If another identical generator is connected in par-
allel to the existing generator and each generator is sched-
uled to supply 0.5 p.u. of power, then the critical clearing 
time of the circuit breaker will be
(A) Reduce to 0.2 s
(B) Reduce but will be more than 0.2 s
(C) Remains constant at 0.4 s
(D) Increase beyond 0.4 s

Solution: (D)

Critical clearing time t
H

f Pi

cr
cr=

( )2 0

π
δ δ−

∴ t Hcr ∝ 	

When two identical generators are added in parallel, result-
ant inertia will be 2H. Then critical clearing time will 
increase.

Example 10: A generator with constant 1.0 p.u. terminal 
voltage supplies power through a step-up transformer of 
0.14 p.u. reactance and a double circuit line to an infinite bus 
bar as shown in the figure. The infinite bus voltage is main-
tained at 1.0 p.u. Neglecting the resistance and susceptance 
of the system, the steady-state stability power limit of the 
system is 6.5 p.u. If one of the double-circuit is tripped, then 
resulting steady-state stability power limit in p.u. will be
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1
x

x

2
3

(A) 6.5 p.u.
(B) 3.25 p.u.
(C) 5.96 p.u.
(D) 2.98 p.u.

Solution: (C)

Steady-state stability limit =
V V

X
1 2

12

6 5= .

 
1 0 1 0

0 14
2

6 5
. .

.

.
×

+⎛
⎝⎜

⎞
⎠⎟
=

X
	

 X = ⎛
⎝⎜

⎞
⎠⎟

2
1

6 5
0 14

.
.−

	
⇒ X = 0.0277. 

New steady-state stability limit =
VV

X
1 2

0 14. +

 =
+

1

0 14 0 0277. .
=

1

0 1677.
= 5.96 p.u. 

Example 11: A synchronous generator delivers 0.5 p.u. 
power in the steady state to an infinite bus through a trans-

mission line of reactance 0.5 p.u. The generator no load 
voltage is 1.5 p.u. and infinite bus voltage is 1 p.u. The 
inertial constant of the generator is 5 MW-s/MVA and the 
generator reactance is 1 p.u. The critical clearing angle, in 
degrees, for a 3-Ø dead short-circuit fault at the generator 
terminal is
(A) 79.4° (B) 30°
(C) 150°  (D) 100.6°

Solution: (A)
Power transferred before fault

 P
VV

Xe = =1 2

12

0 5sin .δ p.u. 	

Maximum power can be transferred

 =
VV

X
1 2

12

1 1 5

1 0 5
1=

×
+

=
.

.
p.u. 	

 sin
.

.δ0

0 5

1
0 5= =

	

⇒ δ0 0 5 30= ( )= °sin .−1 	

 δ
max

 = π – 30° = 150°. 

Critical clearing angle (δ
c
) 

 =	 cos
cosmax max−

−
1 e 0 m

m

3

3

P P

P

δ δ δ( )+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	

 = 79.45° 

exerciSeS

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. A 60 MW, 11 kV, 0.85 lag p.f. water wheel genera-
tor has an inertia constant of 4 MJ/MVA. The energy 
stored in the rotor at synchronous speed is

 (A) 36.5 MJ
 (B) 180 kJ
 (C) 282.3 MJ
 (D) 282.3 kJ

 2. Which of the following statement is true
 (A)  Steady-state stability limit can be increased by 

 increasing its reactance
 (B)  Steady-state stability limit is equal to transient 

 stability limit
 (C)  Steady-state stability of a power system is 

 improved by increasing generator inertia
 (D)  Steady-state stability can be improved by using 

double circuit line instead of single circuit line

 3. A generator of equivalent reactance of 0.8 p.u. is con-
nected to an infinite bus through a series reactance 

of 0.4 p.u. The terminal voltage of the generator (E
g
) 

is 1.0 p.u. and voltage of infinite bus is 1.0 p.u. The 
steady-state stability limit is

Infinite bus
Et = 1.0 p.u.

0.4 p.u.

Eg = 1.0 p.u.Eo

0.8 p.u.

 (A) 2.17 p.u. (B) 1.6 p.u.

 (C) 3.98 p.u. (D) 1.0 p.u.

 4. If the mechanical input of a 4-pole, 50 Hz, 20 MVA 
turbo generator is suddenly raised to 75 MW for an 
electrical load of 30 MW, the rotor acceleration is 
(Neglect mechanical and electrical losses and take 
Inertia constant as 6.0 MJ/MVA)

 (A) 4.82 electrical degrees/s2

 (B) 337.5 electrical degrees/s2

 (C) 3375 electrical degrees/s2

 (D) 280 electrical/rad/s2
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 5. A 60 MW, 0.85 lag p.f. synchronous generator oper-
ates on full load at a frequency of 50 Hz. The load is 
suddenly reduced to 30 MW. The steam valve begins to 
close after 0.3 s due to time lag in governor system. The 
change in frequency that occurs in this time is [Given 
H = 4 MJ/MVA]

 (A) 50.79 Hz (B) 0.79 Hz
 (C) 0.69 Hz (D) 0.59 Hz

 6. To an infinite bus operating at a voltage of 1 p.u., a 
50 Hz generator with a synchronous reactance of 
1.2 p.u. is connected. The generator no load voltage is 
1.0 p.u. and the inertia constant is 4 MJ/MVA. The fre-
quency of the resulting natural oscillations of the gen-
erator when it is suddenly loaded to 60 per cent of its 
maximum power limit is

 (A) 1.03 Hz (B) 2.89 Hz
 (C) 60.42 Hz (D) 50 Hz

 7. A 100 MVA synchronous machine has H
1
 = 4.2 MJ/

MVA and a 1200 MVA machine has H
2
 = 3.2 MJ/MVA. 

The two machines operate in parallel. The equivalent H 
constant for the two in 200 MVA base is

 (A) 2.4 MJ/MVA (B) 11.6 MJ/MVA
 (C) 21.3 MJ/MVA (D) None of these

 8. A 50 Hz, 4-pole turbo generator is rated 200 MVA, 
2.2 kV and has an inertia constant of 7.5. Assume the 
generator is synchronized with a large power system 
and has a zero accelerating power while delivering a 
power of 450 MW. Suddenly its input power is changed 
to 475 MW. The speed of generator in rpm at the end of 
a period of 10 cycles is

 (A) 1400 pm (B) 1500 rpm
 (C) 1600 rpm (D) 1508.178 rpm

 9. For an HVDC valve, the value of output voltage, when 
the firing angle is 30° and maximum value of line 
 voltage is 200 V is

 (A) 233.83 V (B) 150 V
 (C) 100 V (D) 220 V

 10. The maximum additional load that can be suddenly 
applied on a transmission line inter connector carry-
ing 100 MW if the power angle diagram is given by 
P = 120 sin a

 P → Power transmitted in MW
 a ⇒  Displacement between voltage phasors at the two 

ends
 (A) 4.87 MW (B) 3.87 MW
 (C) 2.87 MW (D) 1.87 MW

 11. It is preferred to transmit bulk power over long dis-
tances using high-voltage DC system. This is due to

 (A) Reduced harmonics
 (B) Protection system being simple
 (C) Low cost of HVDC terminals
 (D) Minimum line power losses

 12. A 250 MVA, 50 Hz 3-f turbo alternator produces power 
at 11 kV. The alternator is Y-connected and the neutral 

is solidly grounded. The sequence reactance are
 X

0
 = 0.05 p.u., X

1
 = 0.2 p.u.

  X
2
 = 0.2 p.u. The system is running on no load at rated 

voltage. The magnitude of positive sequence line cur-
rent for a single line to ground fault at generator termi-
nal would be

 (A) 2.5 p.u. (B) 2.22 p.u.
 (C) 5 p.u. (D) 4.44 p.u.

 13. A 400 kV transmission line has a maximum power 
transfer capability P

max
 at 400 kV. If the line volt-

age is increased to 800 kV, with series reactance 
unchanged, the maximum power transfer capability is 
approximately

 (A) 4 P (B) 2 P (C) P (D) P/4

 14. An alternator with terminal voltage of 1 p.u. supplies 
power through a transformer of 0.10 p.u. reactance and 
a double circuit line to an infinite bus bar. The infinite 
bus voltage is maintained at 1 p.u. Susceptances and 
resistance are neglected. The steady-state stability 
power limit of the system is 8 p.u. If one of the lines 
of the double circuit is tripped, the resulting the steady-
state stability power limit will be

Infinite
bus

 (A) 8 p.u. (B) 3.33 p.u.
 (C) 6.67 p.u. (D) 4 p.u.

 15. A single machine infinite bus power system is as shown

1.0 ∠d 1.0 ∠0

The alternator transfers 1 p.u. of power to infinite bus. The 
critical clearing time of circuit breaker is 0.4 s. If another 
alternator is connected in parallel to the existing alternator 
and each alternator is scheduled to supply 0.5 p.u. of power, 
the critical clearing time of breaker
(A) Reduces to 0.2 s
(B) Reduces but will be greater than 0.2 seconds
(C) Remains at 0.4 s
(D) Increases beyond 0.4 s

Directions for questions 16 to 19: Consists of two state-
ments: one is Assertion (A) and the other is Reason (R). You 
have to examine these two statements and select the answer 
using the code given below.
(A)  Both A and R are individually correct and R is the cor-

rect explanation of A
(B)  Both A and R are individually correct, but R is not the 

correct explanation of A
(C) A is true but R is false
(D) A is false but R is true
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 16. A:  The most extensively used form of differential 
relay is the percentage differential or biased beam 
relay.

 R:  Percentage differential relay is more sensitive in 
comparison to differentially connected over current 
relay.

 17. A:  In comparison to the making capacity of a circuit 
breaker, breaking capacity is normally higher.

 R:  The breaking capacity of a circuit breaker is 

 expressed as 3 	× V × I × 10–6 MVA, where V is 
the rated service.

  Voltage in volts and I is the RMS value of symmetrical 
breaking current in amperes.

 18. A:  Extinction of DC arc is much difficult than that of 
an AC arc.

 R:  In an AC circuit, current wave passes through zero 
point twice during each cycle but in dc circuit full 
current has to be broken.

 19. A:  It is not desirable to operate a high voltage 3-f  system 
of considerable capacitance with an isolated neutral.

 R:  There is no zero-sequence current in an isolated 
neutral power system.

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Swing equation relates
 (A) Power with load angle
 (B) Load angle and time
 (C)  Relative motion of rotor with respect to the stator 

field as a function of time
 (D) Both (B) and (C)

 2. A 4-pole 50 Hz, 40 MVA, 13.2 kV turbo alternator has 
an inertia constant of H = 6 kW sec/kVA. The kinetic 
energy stored in the rotor is

 (A) 240 MJ (B) 380 kJ
 (C) 220 MJ (D) 260 kJ

 3. An alternator is connected to an infinite bus. It delivers 
1.6 p.u. current at 0.9 p.f. lag and a voltage of 1.0 p.u. 
The reactance is 1.1 p.u. Keeping the active power 
fixed, the excitation is reduced. The critical excitation 
emf corresponding to operation at stability limit is

 (A) 1.089 p.u. (B) 2.45 p.u.
 (C) 1 p.u. (D) None of these

 4. The maximum power that can be transferred from the 
generator connected to infinite bus is

 [Given V
c
 = 1.2 p.u.]

G

1 ∠0 p.u.

j 0.2 p.u.

Vt

X = 0.15 p.u. j 0.2 p.u.Pm = 1 p.u. Infinite bus

j 0.1 p.u.

 (A) 1 p.u. (B) 5 p.u.
 (C) 0.5 p.u. (D) 3 p.u.

 5. For a 2-pole 50 Hz, 40 MVA turbo alternator, iner-
tia constant is given by 4 MJ/MVA. The moment of 
inertia is

 (A) 3.24 kg-m2 (B) 0.5095 kg-m2

 (C) 286.5 × 103 kg-m2 (D) 2 × 103 kg/m3

 6. The inertia constants of two groups of machines which 
do not swing together are M

1
 and M

2.
 The equivalent 

inertial constant of the system is:

 (A) M
1

 + M
2 

(B) M
1

 – M
2
 if M

1
 > M

2

 (C) 
M M

M M
1 2

1 2

+
 (D) 

M M

M M
1 2

1 2+

 7. The inertia constant of a 500 MVA alternator is 1 p.u. 
The value corresponding to 1000 MVA is

 (A) 2 p.u. (B) 1 p.u.
 (C) 0.5 p.u. (D) 0.25 p.u.

 8. Two groups of machines swinging together have their 
inertia constants M

1
 and M

2
. The inertia constant of the 

system is

 (A) M
1
 + M

2
 (B) 

M M

M M
1 2

1 2

+

 (C) M
1
 – M

2
, M

1
 > M

2
 (D) 

M M

M M
1 2

1 2+

 9. A high-voltage DC transmission system, reactive 
power is needed for rectifier at sending end and inverter 
at receiving end. During the operation of such a DC 
link,

 (A)  Inverter supplies leading reactive power and recti-
fier receives lagging reactive power.

 (B)  Inverter supplies lagging reactive power and recti-
fier receives leading reactive power.

 (C)  Inverter supplies lagging reactive power and the 
rectifier receives lagging reactive power.

 (D)  Inverter supplies leading reactive power and recti-
fier receives leading reactive power.

Data for Linked Questions
I. Question Nos.: 10 and 11
A 100 km, 3-phase, 50 Hz transmission line has the line 
constants A = D = 0.853∠1.8°, B = 126.5∠50.4, C = 
0.002∠90°. The sending end voltage is 400 kV.

 10. The receiving end voltage when the load is discon-
nected will be

 (A) 2 + j60 kV (B) 210∠90° kV
 (C) 1.51∠0° kV (D) 270.7∠–1.8° kV

 11. The sending end current is
 (A) 541.4 ∠88.2 A (B) 541.4 ∠60 A
 (C) 17.006 + j541.13 A (D) Both (A) and (C)
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II. Question Nos.: 12 and 13
A 50 Hz, 4-pole turbo generator of rating 30 MVA, 13.2 kV 
has inertia constant of 8 kW sec/kVA.

 12. Angular momentum of rotor in MJ-sec/electrical deg is

 (A) 
1

150
 (B) 

4

150
 (C) 

4

6
 (D) 

40

600

 13. If the input rotational losses is 25,100 HP and the elec-
tric power developed is 10 MW, the acceleration devel-
oped will be

 (A) 2.8 rad/s2 (B) 5.72 rad/s2

 (C) 3.4 rad/s2 (D) 4 rad/s2

III. Question Nos.: 14 and 15
A 50 Hz, 4-pole 100 MVA, 11 kV turbo alternator has an 
inertia constant of 4.5 kW s/kVA. The input to the alternator 
is 134102 HP and the electrical power developed is 96 MW.

 14. The angular momentum of the rotor is MJ-s/elect deg is

 (A) 
1

50
 (B) 

1

20
 (C) 

1

32
 (D) 

1

48
 15. The acceleration of the rotor is
 (A) 1.39 rad/s2 (B) 0.39 rad/s2

 (C) 2.39 rad/s2 (D) 3.39 rad/s2

PreviouS yearS’ QueStionS

 1. A generator with constant 1.0 p.u. terminal volt-
age supplies power through a step-up transformer 
of 0.12 p.u. reactance and a double-circuit line to an 
infinite bus bas as shown in Figure. The infinite bus 
voltage is maintained at 1.0 p.u. Neglecting the resist-
ances and susceptances of the system, the steady-state 
stability power limit of the system is 6.25 p.u. If one 
of the double-circuit is tripped, the resulting steady-
state stability power limit in p.u. will be [2005]

1 2 3
X

X

 (A) 12.5 p.u. (B) 3.125 p.u.
 (C) 10.0 p.u. (D) 5.0 p.u.

Common Data for Questions 2 and 3:
A generator feeds power to an infinite bus through a double 
circuit transmission line. A three-phase fault occurs at the 
middle point of one of the lines. The infinite bus voltage 
is 1 p.u., the transient internal voltage of the generator is 
1.1 p.u. and the equivalent transfer admittance during fault 
is 0.8 p.u. The 100 MVA generator has an inertia constant 
of 5 MJ/MVA and it was delivering 1.0 p.u. power prior 
of the fault with rotor power angle of 30°. The  system 
 frequency is 50 Hz.

 2. The initial accelerating power (in p.u.) will be
 [2006]
 (A) 1.0 (B) 0.6 (C) 0.56 (D) 0.4

 3. If the initial accelerating power is X p.u., the initial 
acceleration in elect deg/s2, and the inertia constant in 
MJ-s/elect deg, respectively, will be [2006]

 (A) 31.4X, 18 (B) 1800X, 0.056
 (C) X/1800, 0.056 (D) X/31.4, 18

 4. Consider a synchronous generator connected to an 
infinite bus by two identical parallel transmission 
lines. The transient reactance x of the generator is 0.1 
p.u. and the mechanical power input to it is constant 

at 1.0 p.u. Due to some previous disturbance, the rotor 
angle (d) is undergoing an undamped oscillation, with 
the maximum value of d(t) equal to 130°. One of the 
parallel lines trips due to relay mal-operation at an 
instant when d(t) = 130° as shown in the figure. The 
maximum value of the per unit line reactance, x, such 
that the system does not lose synchronism subsequent 
to this tripping is [2007]

1.0 ∠d

1.0 ∠0

X

X

X` = 0.1 p.u.

130°

One line trips

t

d

 (A) 0.87 (B) 0.74 (C) 0.67 (D) 0.54

 5. An isolated 50 Hz synchronous generator is rated at 
15 MW which is also the maximum continuous power 
limit of its prime mover. It is equipped with a speed 
governor with 5% droop. Initially, the generator is 
feeding three loads of 4 MW each at 50 Hz. One of 
these loads is programmed to trip permanently if the 
frequency falls below 48 Hz. If an additional load of 
3.5 MW is connected then the frequency will settle 
down to [2007]

 (A) 49.417 Hz (B) 49.917 Hz
 (C) 50.083 Hz (D) 50.583 Hz

 6. A lossless single machine infinite bus power system is 
shown below
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1.0∠d p.u.

1.0 p.u.

1.0∠0 p.u.

   The synchronous generator transfers 1.0 per unit 
of power to the infinite bus. Critical clearing time of 
circuit breaker is 0.28 s. If another identical synchro-
nous generator is connected in parallel to the existing 
generator and each generator is scheduled to supply 
0.5 per unit of power. Then the critical clearing time 
of the circuit breaker will [2008]

 (A) Reduce to 0.14 s
 (B) Reduce but will be more than 0.14 s
 (C) Remain constant at 0.28 s
 (D) Increase beyond 0.28 s

 7. A cylindrical rotor generator delivers 0.5 p.u. power 
in the steady state to an infinite bus through a trans-
mission line of reactance 0.5 p.u. The generator no-
load voltage is 1.5 p.u. and the infinite bus voltage is 
1 p.u. The inertia constant of the generator is 5 MW-s/
MVA and the generator reactance is 1 p.u. The criti-
cal clearing angle, in degrees, for a three-phase dead 
short-circuit fault at the generator terminal is

 [2012]
 (A) 53.5 (B) 60.2 (C) 70.8 (D) 79.6

 8. The angle δ in the swing equation of a synchronous 
generator is the [2013]

 (A) Angle between stator voltage and current
 (B)  Angular displacement of the rotor with respect to 

the stator.
 (C)  Angular displacement of the stator mmf with 

 respect to a synchronously rotating axis.
 (D)  Angular displacement of an axis fixed to the ro-

tor with respect to a synchronously rotating axis.

 9. A synchronous generator is connected to an infinite 
bus with excitation voltage E

f
 = 1.3 p.u. The generator 

has a synchronous reactance of 1.1 p.u. and is deliver-
ing real power (P) of 0.6 p.u. to the bus. Assume the 
infinite bus voltage to be 1.0 p.u. Neglect stator resist-
ance. The reactive power (Q) in p.u. supplied by the 
generator to the bus under this condition is _______.
 [2014]

 10. There are two generators in a power system. No-load 
frequencies of the generators are 51.5 Hz and 51 
Hz, respectively, and both are having droop constant 
of 1 Hz/MW. Total load in the system is 2.5 MW. 
Assuming that the generators are operating under their 
respective droop characteristics, the frequency of the 
power system in Hz in the steady state is________.
 [2014]

 11. A non-salient pole synchronous generator having 
synchronous reactance of 0.8 p.u. is supplying 1 
p.u. power to a unity power factor load at a terminal 

voltage of 1.1 p.u. Neglecting the armature resistance, 
the angle of the voltage behind the synchronous reac-
tance with respect to the angle of the terminal voltage 
in degrees is ___________. [2014]

 12. The figure shows the single line diagram of a single 
machine infinite bus system.

~

Infinite bus

  The inertia constant of the synchronous generator 
H = 5 MW-s/MVA. Frequency is 50 Hz. Mechanical 
power is 1 p.u. The system is operating at the stable 
equilibrium point with rotor angle δ equal to 30°. 
A three-phase short circuit fault occurs at a certain 
location on one of the circuits of the double-circuit 
transmission line. During fault, electrical power in 
p.u. is P

max
 sinδ. If the values of δ and dδ/dt at the 

instant of fault clearing are 45° and 3.762 radian/s, 
respectively, then P

max
 (in p.u.) is________. [2014]

 13. A 50 Hz generating unit has H-constant of 2 MJ/
MVA. The machine is initially operating in steady 
state at synchronous speed, and producing 1 pu of 
real power. The initial value of the rotor angle δ is 5°, 
when a bolted three phase to ground short circuit fault 
occurs at the terminal of the generator. Assuming the 
input mechanical power to remain at 1 pu, the value of 
δ in degrees, 0.02 second after the fault is _____.

 [2015]

 14. The synchronous generator shown in the figure is sup-
plying active power to an infinite bus via two short, 
lossless transmission lines, and is initially is steady 
state. The mechanical power input to the generator 
and the voltage magnitude E are constant. If one line 
is tripped at time t

1
 by opening the circuit breakers 

at the two ends (although there is no fault), then it is 
seen that the generator undergoes a stable transient. 
Which one of the following waveforms of the rotor 
angle δ shows the transient correctly? [2015]
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 (b) 
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anSwer KeyS

exerciSeS

Practice Problems 1
 1. C 2. D 3. A 4. C 5. B 6. A 7. C 8. D 9. A 10. D 
11. D 12. B 13. A 14. C 15. B 16. C 17. D 18. A 19. B

Practice Problems 2
 1. D 2. A 3. A 4. B 5. A 6. D 7. C 8. A 9. A 10. D 
11. D 12. B 13. B 14. B 15. A

Previous Years’ Questions
 1. D 2. C 3. B 4. C 5. A 6. D 7. D 8. D 9. 0.109 10. 50
 11. 33.61 12. 0.24 13. 5.90 14. D
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