CHEMISTRY

For the reaction $aA + bB \square \square cC + dD$, the products will be formed when 1. (A) Qc > Kc(B) Qc < Kc(C) Qc = Kc(D) Qc = 1/Kc2. The number of isomers possible for a disubstituted benzene is (A) 2 (B) 6 (C) 4 (D) 3 3. The most abundant isotope of oxygen is (A) O¹⁶ (B) O¹⁷ (C) O¹⁸ (D) O^{32} 4. The oxidation state of Boron in Boric Acid is (A) +1 (B) +2 (C) +3 (D) +4 $CH_2 = CHCN$ is a monomer of 5. (A) Terylene (B) Teflon (D) Glyptal (C) Orlon 6. The boiling point of a solvent containing dissolved solid substance (B) is elevated (A) is depressed (C) remains constant (D) keeps changing Which one of the following can be used in Friedel Crafts acylation reaction? 7. (B) CH₃CH₂Cl (A) $CH_{3}COCH_{3}$ (D) CH₃CH₂COCl (C) CH_3COOCH_3 Chemistry (SET-A) **P.T.O.** [1]

Which of the following is not a metallurgical operation?				
(A)	Purification	(B)	Refilling	
(C)	Benefaction	(D)	Crushing	
CH ₃	$CN + CH_3MgBr \xrightarrow{ether} X \xrightarrow{H_3O^+}$	\rightarrow Y.		
The	product Y in the above reaction is			
(A)	Acetaldehyde	(B)	Acetone	
(C)	Acetic acid	(D)	Methyl amine	
Whi	ch of the following compounds is addee	l to re	ctified spirit to make it unfit for	
drin	king purposes ?			
(A)	Ethanoic acid	(B)	Chlorobenzene	
(C)	Ethanol and pyridine	(D)	Methanol and pyridine	
The	oxide that gives H_2O_2 on treatment with	dil. H	H ₂ SO ₄ is	
(A)	Fe ₂ O ₃	(B)	PbO ₂	
(C)	K ₂ O	(D)	Na ₂ O ₂	
Whi	ch of the following is not an essential an	mino	acid ?	
(A)	Phenylalanine	(B)	Methionine	
(C)	Lysine	(D)	Alanine	
Read	ction of acetone with zinc amalgam and	l conc	e. HCl forms	
(A)	Ethanal	(B)	Ethane	
(C)	Propanal	(D)	Propane	
The	structure given below represents			
	CH ₂ OH			
	Whi (A) (C) CH ₃ The (A) (C) Whi (A) (C) The (A) (C) Whi (A) (C) Read (A) (C) The	Which of the following is not a metallurgica (A) Purification (C) Benefaction $CH_3CN + CH_3MgBr \xrightarrow{ether} X \xrightarrow{H_3O^+}$ The product Y in the above reaction is (A) Acetaldehyde (C) Acetic acid Which of the following compounds is addec drinking purposes ? (A) Ethanoic acid (C) Ethanol and pyridine The oxide that gives H_2O_2 on treatment with (A) Fe_2O_3 (C) K_2O Which of the following is not an essential at (A) Phenylalanine (C) Lysine Reaction of acetone with zinc amalgam and (A) Ethanal (C) Propanal The structure given below represents CH_2OH	Which of the following is not a metallurgical oper(A) Purification(B)(C) Benefaction(D) $CH_3CN + CH_3MgBr \xrightarrow{ether} X \xrightarrow{H_3O^+} Y$.The product Y in the above reaction is(A)(A) Acetaldehyde(B)(C) Acetic acid(D)Which of the following compounds is added to redrinking purposes ?(A) Ethanoic acid(B)(C) Ethanol and pyridine(D)The oxide that gives H_2O_2 on treatment with dil. H(A) Fe $_2O_3$ (B)(C) K_2O (D)Which of the following is not an essential amino(A) Phenylalanine(B)(C) Lysine(D)Reaction of acetone with zinc amalgam and concord(A) Ethanal(B)(C) Propanal(D)The structure given below represents CH_2OH	

(A) α – D – Glucose (B) β -D-Glucose

[2]

(C) α – D – Fructose

Chemistry (SET-A)

- (D) $\beta D Fructose$

15.	Which of the following ores will be most suitable for treatment with 'Roasting' process ?					
	(A)	Zinc blende (ZnS)	(B)	Haematite (Fe ₂ O ₃)		
	(C)	Pyrolusite (MnO ₂)	(D)	Bauxite $(Al_2O_3.2H_2O)$		
16.	The	intermolecular forces in polyesters are	;			
	(A)	Van der Waal's forces	(B)	Dipole – dipole interactions		
	(C)	Hydrogen bonding	(D)	Ionic bonds		
17.	The	chemical formula of Limestone is				
	(A)	CaCO ₃	(B)	Ca(OH) ₂		
	(C)	$(CaSO_4)_2.H_2O$	(D)	CaO		
18.	In th	ne process of aluminium extraction,		is added to increase the		
	elect	trical conductivity of the reaction mixtu	are ins	side the Hall-cell.		
	(A)	fluorspar	(B)	alumina		

(C) coke	(D)	cryolite
----------	-----	----------

19. The clean water should have a BOD value of

- (A) less than 17 ppm (B) more than 5 ppm
- (C) less than 5 ppm (D) more than 17 ppm

20. The standard reduction emf for the cell

 $Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$ is 1.1 V at 25° C. The emf of the cell reaction when 0.01M Cu²⁺ and 0.01M Zn²⁺ solutions are used at 25° C is

- (A) 0.10 V (B) 1.10 V
- (C) -1.10 V (D) -0.110 V

Chemistry (SET-A)[3]P.T.O.

21. Lucas reagent is

(A)	Anhydrous $ZnCl_2 + Conc. HCl$	(B)	$FeSO_4 + H_2O_2$
(C)	$2[Ag(NH_3)_2]OH$	(D)	$2Cu(OH)_2 + 2NaOH$

22. Atoms of the same element which have different atomic masses but same atomic numbers are called

(A)	Isotone	(B)	Isotopes
(C)	Radicals	(D)	Isobars

23. Which of the following compounds cannot be prepared by Rosenmund reduction?

(A)	Benzaldehyde	(B)	Formaldehyde
-----	--------------	-----	--------------

- (C) Acetaldehyde (D) Propanal
- 24. The species undergoing reduction in the following reaction is

Cr -	$- 2H_2O + ClO^- \longrightarrow Cr^{3+} + 3Cl^- + cl^{3+}$	6OH ⁻	
(A)	Cl	(B)	ClO
(C)	H ₂ O	(D)	Cr

25. ZnS has a tetrahedral structure with co-ordination number 4. The radius ratio must be between

(A)	0.225 - 0.414	(B)	0.414 - 0.732
(C)	0.732 - 1.0	(D)	1.0 - 1.155

- 26. Triglyceride undergoes hydrolysis to give
 - (A) one molecule of glycerol and three molecules of fatty acids
 - (B) three molecules of glycerol and one molecule of fatty acid
 - (C) three molecules of glycerol and three molecules of fatty acids
 - (D) one molecule of glycerol and one molecule of fatty acid

Chemistry (SET-A)

- 27. The normality of 0.1M solution of H_2SO_4 is
 - (A) 2.5 N (B) 0.5 N
 - (C) 0.2 N (D) 1.5 N

28. Bromoethane is formed by refluxing silver propionate with Br_2 in CCl_4 . The name of this reaction is

- (A) Borodine Hunsdiecker reaction (B) Finkelstein reaction
- (C) Hoffmann bromamide reaction (D) Haloform reaction

30. Hydrocarbon which is liquid at room temperature is

- (A) Ethane (B) Propane
- (C) Butane (D) Pentane
- 31. The reagent used in the formation of fluorobenzene from benzene diazonium chloride is
 - (A) H_3BO_3 (B) HF
 - (C) HBF_4 (D) BF_3
- Chemistry (SET-A)[5]P.T.O.

- (A) Chlorine and carbon dioxide (B) Chlorine and carbon monoxide (C) Chlorine and sulphur dioxide (D) Chlorine and sulphur monoxide Among the following haloalkanes, which one has the highest dipole moment? 33. (B) CHCl₂ (A) CCl_{A} (C) CH₂Cl₂ (D) CH₂Cl H₃C The IUPAC name of NH₂ is 34. H₂C (A) 4,4 – Dimethylbenzenamine (B) 1,1–Dimethylcyclohexanamine (C) 4,4 – Dimethylcyclohexanamine (D) 1,1 – Dimethylhexanamine The number of moles in 8g of O_2 is the same as that in 35. (A) 11 g of CO_2 (B) 7g of CO (D) 13g of NO₂ (C) $3g \text{ of } N_2$ The IUPAC name of succinic acid is 36. (A) Butane -1,4 – dioic acid (B) Ethane -1,2 – dioic acid (C) Butanoic acid (D) Ethanoic acid 37. Which of the following statement about alkali metals is not true? They have the largest atomic and ionic radii in their respective periods. (A) They have the highest ionisation enthalpy in each period. **(B)** (C) They are soft and have low melting points.
 - (D) They are strongly electropostive in nature.

Chemistry (SET-A)

32.

Phosgene is formed by the reaction of

- 38. Arrange the following isoelectric ions in order of their increasing size
 - (A) $N^{3-} < Na^{+} < O^{2-} < F^{-}$ (B) $N^{3-} < O^{2-} < Na^{+} < F^{-}$ (C) $N^{3-} < O^{2-} < F^{-} < Na^{+}$ (D) $Na^{+} < F^{-} < O^{2-} < N^{3-}$

39. The S.I. unit of viscosity coefficient (η) is

- (A) Pascal (B) Nm⁻²s
- (C) $Km^{-2}s$ (D) Nm^{-2}

40. Which of the following statement about lyophobic colloid is true ?

- (A) They show Tyndall Effect.
- (B) They are very stable.
- (C) They are reversible in nature.
- (D) They can be formed by direct mixing.
- 41. In a galvanic cell or electrochemical cell
 - (A) the anode is given a negative charge
 - (B) oxidation takes place at the anode
 - (C) the anode is always represented on the left hand side
 - (D) All of the above

42. In the reaction, $H_2(g) + I_2(g) \square \square 2HI(g)$

- (A) $K_p = K_c$ (B) $K_c = K_p(RT)$ (C) $K_p = K_c(RT)^2$ (D) $K_c = K_p(RT)^3$
- 43. Which of the following is not a heterocyclic compound ?

Chemistry (SET-A)

P.T.O.

4 4		1 1	•	•	•	. 1	
	Tha	hud	ronill	m_{10n}	10 10	nracantad	20
44.		IIVU	uomu		1810	DIESCHIEU	as

(A)	⁻ OH		(B) H^+

(C)
$$H_3O^+$$
 (D) HSO_4^-

45. In the periodic table, Sodium belongs to

(A) d-block	(B)	f-block
-------------	-----	---------

(C) p-block (D) s-block

46. The reducing property of alkali metals follows the order

- (A) Li < Na < K < Rb < Cs(B) Na < K < Rb < Cs < Li(C) Rb < Cs < K < Na < Li(D) Li < Cs < Na < K < Rb
- 47. Non stick utensils are made of
 - (A) Polytetrafluoroethylene (B) Polystyrene
 - (C) Polyvinylchloride (D) Polyethylene

48. The element showing inert pair effect is

- (A) Al (B) Si
- (C) Ga (D) Pb

49. Which of the following cannot be formed ?

(A) $[PbCl_6]^{2-}$ (B) $[GeF_6]^{2-}$

(C)
$$[SiF_6]^{2-}$$
 (D) $[CF_6]^{2-}$

50. The reaction $C_6H_6 + Cl_2 \xrightarrow{Anhy AlCl_3} C_6H_5Cl + HCl$ is(A) Electrophilic substitution(B) Nucleophilic substitution(C) Elimination reaction(D) Rearrangement reaction

Chemistry (SET-A) [8]

51.	The purest form of amorphous carbon is				
	(A)	Lamp black	(B)	Wood charcoal	
	(C)	Animal charcoal	(D)	Sugar charcoal	
52.	The	compound showing sp ³ d ² hybridisation	is		
	(A)	XeF ₂	(B)	XeOF ₄	
	(C)	XeF ₆	(D)	XeOF ₂	
53.	Amo	ong the following compounds, the stron	gest a	icid is	
				COOH	
	(A)	CH ₃ COOH	(B)		
				\sim	

54. When there is spontaneous alignment of magnetic domains in the same direction, we get

- (A) Anti-ferromagnetism (B) Ferrimagnetism
- (C) Diamagnetism (D) Ferromagnetism
- 55. Which of the following statement about adsorption is not correct?
 - (A) Adsorption is exothermic.
 - (B) Increase in temperature increases the extent of adsorption of a gas on solid.
 - (C) Increase in pressure increases the extent of adsorption of a gas on solid.
 - (D) Greater the surface area, larger will be the adsorbing capacity.
- 56. The change in internal energy when a system absorbs 490J of heat and 210J of work is done by the system will be
 - (A) 28 kJ (B) 280 J
 - (C) 700 J (D) 70 kJ

Chemistry (SET-A) [9]

P.T.O.

57.	The graph used to distinguish physical and chemical adsorption is			
	(A)	Adsorption isotope	(B)	Adsorption isotherm
	(C)	Adsorption isotone	(D)	Adsorption isobar
58.	. Which of the following molecules have net dipole moment (μ) greater than zero.			moment (μ) greater than zero ?
	(A)	CO ₂	(B)	CH ₄
	(C)	BF ₃	(D)	NH ₃
59.	In which mode of expression, the concentration of a solution remain			ration of a solution remains
	independent of temperature ?			
	(A)	Molarity	(B)	Formality
	(C)	Normality	(D)	Molality
60.). The process of separation of components of an organic mixture betwe			an organic mixture between
	stationary phase and mobile phase is called			
	(A)	Fractional distillation	(B)	Chromatography
	(C)	Differential extraction	(D)	Steam distillation
61.	. In S_N^2 reaction, order of reactivity for alkyl halides is			es is
	(A)	RF > RCl > RBr > RI	(B)	RF > RBr > RCl > RI
	(C)	RCl > RBr > RF > RI	(D)	RI > RBr > RCl > RF
62.	The	doping of Si with traces of P give	es rise to	
	(A)	n-type semiconductor	(B)	p-type semiconductor
	(C)	a diode	(D)	an insulator
63.	PCl ₅	₅ contains		
	(A)	two equatorial and three axial be	onds	
	(B)	two axial and three equatorial be	onds	
	(C) one axial and four equatorial bonds			
	(D)	one equatorial and four axial bo	nds	
Cher	nistry	(SET-A)	[10]	Contd.

64. Which of the following ion has the highest magnetic moment?

(A)
$$Sc^{3+}$$
 (B) Ti^{3+}

$$(C) Mn2+ (D) Fe2$$

65. In the following reaction how is the rate of appearance of the underlined product related to the rate of disappearance of the underlined reactant ?

$$BrO_{3}^{-} + \underline{5Br^{-}(aq)} + 6H^{+} \longrightarrow \underline{3Br_{2}(l)} + 3H_{2}O(l)$$

$$(A) \quad \frac{d[Br_{2}]}{dt} = -\frac{d[Br^{-}]}{dt} \qquad (B) \quad \frac{d[Br_{2}]}{dt} = \frac{5}{3}\frac{d[Br^{-}]}{dt}$$

$$(C) \quad \frac{d[Br_{2}]}{dt} = -\frac{3}{5}\frac{d[Br^{-}]}{dt} \qquad (D) \quad \frac{d[Br_{2}]}{dt} = \frac{d[Br^{-}]^{5/3}}{dt}$$

66. Which of the following is an artificial sweetener usually added to sugarfree gums ?

(A)	chloramphenicol	(B)	fructose
(C)	xylitol	(D)	ofloxacin

67. Mercury melts at

(A)
$$0^{\circ}$$
C (B) -38° C

(C)
$$-27^{\circ}$$
C (D) 32° C

68. Which of the following gives carbylamine reaction?

- (A) Aniline (B) N-Ethylaniline
- (C) N-Methylaniline (D) N,N-Dimethylaniline

69. The vapour pressure of a solution mixture AB will show negative deviations from Raoult's law when

- (A) A–B interaction is stronger than A–A interaction
- (B) A–B interaction is weaker than A–A interaction
- (C) A-B interaction is equal to A-A interaction
- (D) All of the above

Chemistry (SET-A) [11] P.T.O.

Cher	nistry	(SET-A)	[12]	Contd.
	(C)	0.231 min	(D)	0.363 min
	(A)	0.346 min	(B)	0.163 min
	is 3	min ⁻¹		
76.	Calc	culate the half life of a first ord	ler reaction v	where the specific rate constant
	(C)	+ 46.100 kJ	(D)	– 46.100 kJ
	(A)	+ 46100 kJ	(B)	– 4.6100 kJ
	$3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$ when $\Delta H = -92200$ J is			
75.	The enthalpy of formation of ammonia for the reaction			action
	(C)	Zn	(D)	Pb
	(A)	Mg	(B)	Al
74.	The	substance that will reduce Ag ⁺	to Ag but will	not reduce Ni ²⁺ to Ni is
	(C)	$261.5 \text{ cm}^2 \text{mol}^{-1}$	(D)	561.5 cm^2mol^{-1}
	(A)	$391.5 \text{ cm}^2 \text{mol}^{-1}$	(B)	$612.5 \text{ cm}^2 \text{mol}^{-1}$
	at in	finite dilution is	5	5
15.	91.5. 426 and 126 cm ² mol ⁻¹ respectively. The molar conductance of CH ₂ COOH			blar conductance of CH_3COOH
73	(C) The	molar conductance of CH CO	ONa HCl an	d NaCl at infinite dilutions are
	$(\mathbf{\Lambda})$	Amphoteric	(D)	Neutral
12.	(Λ)	Basic	$g_{1} = \frac{1}{2} g_{2}$	
70	(C)	C_2H_6		$C_5 H_{12}$
	(A)	C ₃ H ₈	(B)	
/1.	whi	ch of the following can be prepa	ared by wurtz	CIL
71	(C)	HPO ₃	(D)	H_3PO_2
	(A)	H ₃ PO ₅	(B)	H ₃ PO ₃
70.	Whi	ch one of the following is tribas	sic?	

77. What is the general electronic configuration of the coinage metals ?

(A) ns^2np^6 (B) $(n-1)d^5ns^1$

(C)
$$(n-1)d^{10}ns^1$$
 (D) $(n-1)d^4ns^4$

78. From the given equation $\log k = \log A - \frac{E_a}{2.303 \text{ RT}}$

- (A) E_a and k are independent
- (B) when E_a increases, k decreases
- (C) when E_a increases, k first increases and then decreases
- (D) when Ea increases, k also increases
- 79. The bond order in the species O_2 , O_2^+ and O_2^{2-} follows
 - (A) $O_2 > O_2^+ > O_2^{2-}$ (B) $O_2^+ > O_2 > O_2^{2-}$ (C) $O_2^{2-} > O_2 > O_2^+$ (D) $O_2^+ > O_2^{2-} > O_2$

80. Which of the following compounds exhibit both geometrical and optical isomerism ?

- (A) $[Pt(NH_3)Cl_3]$ (B) $[Pt(NH_3)_2Cl_3]$
- (C) $[Pt(en)_2Cl_2]$ (D) $[Pt(en)_3]^{2+}$
- 81. The oxidation state of phosphorus in magnesium pyrophosphate $(Mg_2P_2O_7)$ is
 - (A) -3 (B) +5
 - (C) +2 (D) +3
- 82. According to Crystal Field Theory, strong ligands such as CN⁻
 - (A) usually produce high spin complexes and small crystal field splittings
 - (B) usually produce low spin complexes and small crystal field splittings
 - (C) usually produce low spin complexes and high crystal field splittings
 - (D) usually produce high spin complexes and low crystal field splittings

Chemistry (SET-A)

P.T.O.

83.	The compound having highest melting point and lowest boiling point is			
	(A)	2, 2 - Dimethylpropane	(B)	2 - Methylbutane
	(C)	n - Hexane	(D)	n - Pentane
84.	Whi	ch of the following is most acid	ic ?	
	(A)	But-1-ene	(B)	But-1-yne
	(C)	Butane	(D)	But-2-yne
85.	The correct order of acidic strength among <i>p</i> -nitrophenol, <i>p</i> -methylphenol and <i>p</i> -methoxyphenol is			
	(A) <i>p</i> -nitrophenol < <i>p</i> -methoxyphenol < <i>p</i> -methylphenol			
	(B) p -methylphenol $< p$ -nitrophenol $< p$ -methoxyphenol			noxyphenol
	(C) <i>p</i> -nitrophenol < <i>p</i> -methylphenol < <i>p</i> -methoxyphenol			
	(D)	<i>p</i> -methoxyphenol < <i>p</i> -methylp	henol < <i>p</i> -ni	trophenol
86.	Whi	ch of these is added to soap to in	mpart antisep	otic properties ?
	(A)	Boric acid	(B)	Bithional
	(C)	Thiol	(D)	Beryllia
87.	Lanthanoid contraction is due to increase in			
	(A)	effective nuclear charge	(B)	shielding of 4f-electrons
	(C)	size of 4f-orbital	(D)	atomic number
88.	Pick	the odd one out		
	(A)	bithional	(B)	iodine
	(C)	aspartame	(D)	iodoform
89.	The total number of possible values of the magnetic quantum number (m_s) for			
	l = 2	2 is		
	(A)	3	(B)	4
	(C)	5	(D)	7
Cher	nıstry	(SET-A)	[14]	Contd.

00	A 1+		
90	(r''	10n	contains
<i>J</i> U .		IOII	contains

- (A) 3 unpaired electrons (B) 2 unpaired electrons
- (C) 4 unpaired electrons (D) no unpaired electrons

91. Which of the following expressions gives the de Broglie relationship?

(A)
$$p = \frac{h}{mv}$$

(B) $\lambda = \frac{h}{mv}$
(C) $\lambda = \frac{h}{m\rho}$
(D) $\lambda m = \frac{v}{\rho}$

- 92. The correct order of basicity of the following Lewis bases is
 - (A) $NH_3 > PH_3 > AsH_3 > SbH_3$ (B) $SbH_3 > PH_3 > NH_3 > AsH_3$
 - (C) $PH_3 > AsH_3 > SbH_3 > NH_3$ (D) $NH_3 > PH_3 > SbH_3 > AsH_3$

93. A molecule obtained by sp^3d^2 hybridisation has a geometry of

- (A) trigonal bipyramidal (B) square plannar
- (C) octahedral (D) Pentagonal bipyramidal

94. The rate of the reaction remains unchanged when the concentration of the reactant is doubled. The order of the reaction is

- 95. Real gases shows ideal behaviour at
 - (A) low presure and low temperature
 - (B) high presure and low temperature
 - (C) low presure and high temperature
 - (D) high presure and high temperature

96. The reaction will not be spontaneous if

- (A) $T\Delta S > \Delta H$ and $\Delta H = -ve$, $T\Delta S = +ve$
- (B) $T \Delta S > \Delta H$ and $\Delta H = +ve$, $T \Delta S = +ve$
- (C) $T\Delta S < \Delta H$ and $\Delta H = +ve$, $T\Delta S = +ve$
- (D) $T\Delta S < \Delta H$ and $\Delta H = -ve$, $T\Delta S = -ve$

P.T.O.

Chemistry (SET-A)

[15]

- 97. Select the correct IUPAC name for $[FeF_4(OH_2)_2]^{-1}$
 - (A) diaquatetrafluoroiron(II)ion
 - (B) diaquatetrafluoroferrate(III)ion
 - (C) diaquatetraflouroferrate(I)ion
 - (D) diaquatetrafluoroiron(IV)ion
- 98. The reaction C H O+ CO $\xrightarrow{AlCl_3}_{HCl}$

is known as

- (A) Kolbe's reaction (B) Riemer Tiemann reaction
- (C) Gattermann Koch reaction (D) Perkin's reaction
- 99. Green chemistry means such reactions which
 - (A) reduce the use and production of hazardous chemicals
 - (B) produce colour during reactions
 - (C) are related to the depletion of ozone layer
 - (D) study the reactions in plants

100. The number of neutrons in tritium is

- (A) 2 (B) 3
- (C) 1 (D) 0

Chemistry (SET-A)