(2) (0.5,-0.5, 1) =(0.5)(1, —1, 2),
Here £k =05 >0
The vectors have the same direction.
(3) If possible, let (0, 1, —1) = &(1, —1, 0), where £k € R — {0}.
0=k 1l=—k—-1=0
k=0, k=—1 and —1 = 0 which is not possible.
Thus there is no such k. Hence the vectors have different directions.
4 (3,6,—9)=-3(—1,-2,3). Here k= -3 <0
The vectors have opposite directions.
(5) As we did in (3) above, for no k € R,
(1, 0, 0) = k(0, 1, 0)
The vectors have different directions.
(6) If possible, suppose, for some £ € R — {0}.
(2,5, 7) = k(—=2, 5, =7) then
2 =2k 5=5k 7=-T7k
k=-1, k=1 k=-1
This is not possible as, the first equation is satisfied for £ = —1, but second one is not satisfied.
Thus, the vectors have different directions.

Note : (1) Suppose x and Y are non-zero vectors and x, 20,y,#0 (G =1, 2, 3)

If % = i—; = i—j = k then according to k > 0 or k < 0, ¥ and ¥ have the same direction or

= or 2 * 2y * 3;—1, then their directions are different.

opposite directions. If i—i % TN T X3

(2) If x; =0 =y, and i—i = i—z =k > 0, then X and ¥ have the same direction and if k < 0

then X and Y have opposite directions.

»

% 7 i—j, then their direction are different. Similar results are true, if x, = 0 =y, or x; = 0 = y;.

(3) Finally, if x, = x, = y, = y, = 0, then for i—; > 0, the directions are same and for i}_j <0

the directions are opposite.

We note again that 0 = (0, 0, 0) has no direction.

Example 6 : Find unit vector along the vector u = (6, —7, 6).

Solution : Here |u | = ‘/62+(—7)2+62 = J121 =11

. . . . —_ u —
The unit vector in the direction of u is, T (%,]—?,]—61).
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Example 7 : Find the unit vector in the direction opposite to the direction of X — 2, given that,

X=4,7-2,Y =(,2,2).
Solution : X —2Y = (4,7, =2) — 2(1, 2, 2) = (2, 3, —6) = 7 (say)
Now |Z | = {22 +32 4+ (-6)> =449 =7
The unit vector in the direction opposite to direction of z is,
i - (-2.-3.9)
1z 1 7 7777
Example 8 : For the pairs of points A, B given below find vector AB .
(1) AL, =1), B(, 2) (2) A(l, =1, 1), B(1, 1, =1)
(3) A(1> 2: 3)5 B(4: 59 6) (4) A(1> _25 1)> B(_1> 19 1)
%
Solution : AB = Position vector of B — Position vector of A
%
(1) AB =(1,2) =1, =1)=(0, 3)
%
@ AB =(. 1, =)=, -1 1) =(0,2,-2)
%
(3) AB =(4,5,6)—(1,2,3)=(,3,3)

“ A_]>3 =L 1, 1DH—-(,-21)=(2,3,0)

Exercise 9.3

1. For the following pairs of vectors, determine whether the two vectors have the same or opposite

directions or different directions :

(1) (@,-5,3),(0.4,—1,0.6) 2) (1,2,4),(3,4,6)

3) (2,4,-6),(—1,-2,3) 4) (1,0, 1), (0,1, 1)
2. Find the unit vector in the direction of the following vectors :

I ¥=0G, -4 2) ¥ = (3,4
@ ¥ =(14.9) (5) ¥ =(1,0,0)

3. If ¥ =(x, xy and ¥ = 01, 2) + B2, 1), find o, P.

*

9.10 Distance Formula

=|
I

3) (1,3,5)

6) ¥ = (=5, 12)

Let 7| and 7, be the position vectors of points A and B respectively and let 7| = (x, y;, z;)

and ) = (xy, ¥y z,). We know that,
AB = Position vector of B — Position vector of A
= (xp ¥p 2p) = (¥ ¥y 7))

=y =X, ) Ty 2 Tz

%
AB = | AB | = i —x)? + (- 2+ (=)
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This is called distance formula, it gives distance between two points A(x;, y; z;) and
B(xy, ¥y 25) in R3.

Note : In XY-plane z-coordinates of a point is zero. Hence setting z; = z, = 0 in the distance
formula we get the distance formula in plane which was studied in std. 10.

Example 9 : Find the distance between points (1, —1, 2) and (=2, 1, 8).
Solution : Taking P(1, —1, 2) and Q(=2, 1, 8) we have

PQ = J(l—(—2))2+(—1—1)2+(2—8)2 = J32+(—2)2 +(=6)2 = V49 =7
Thus the distance between two given points is 7.
Example 10 : Using distance formula, show that the points P(4, =3, —1), Q(5, =7, 6) and R(3, 1, —8)

are collinear.
Solution : We have,

PQ = J(4—5)2+(—3+7)2+(—1—6)2 = Ji+16+49 = J66
QR = J(5-32 + (-7 -1 +(6+8)> = J4+64+19 =266
PR = J(4-3)2 4 (3-1)2+(-1+8)> = {T+16+49 = {66

Thus, PQ + PR = QR and hence Q—P—R.
The given points are collinear.
Example 11 : If A(1, 2, 4), B(1, 2, 0) and C(1, 5, 0), show that AABC is a right angled triangle.
Solution : AB2=(1—1)2+2—-2%2+ (4 —0)2=16. So AB=4
BC2=(1-124+Q2-52+0—-02=9. SoBC=3
ACZ=(1—-12+G—-22+(0—-4)2=25SAC=35
A, B, C are non-collinear and form a triangle.

Also AC2? = AB2 + BC? and hence AABC is a right angled triangle with right angle at B.

Example 12 : Find coordinates of points on X-axis at distance 343 from the point A2, —1, 1).

Solution : A point on X-axis is P(x, 0, 0). Now AP = 3\/5

Jx=22 0+ D2 +(0-1)2 =343
X —dx+4+14+1=27
X2 —4x+4=25

(x—22=5
x—2=15
x=7 or x=-3

Thus, there are two such points namely P(7, 0, 0) and P(=3, 0, 0).

Example 13 : Find the equation of the set of points which are equidistant from the points (2, —1, 1)
and (1, 3, 1).
Solution : Let (x, ), z) be the coordinates of the points equidistant from the given points (2, —1, 1)

and (1, 3, 1).
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=22+ 0+ 1P+ 1P =x—-1P+@ -3+ 1)
X —dx+4+y2+2p+ 1 +22 -2+ 1
=x2—2x+1+4+yP—6y+9+22—-22+1
—4x+2y+5=-2x—6y+ 10
2x—8 +5=0
This is the equation of the required set.

Note : In the plane this type of set is called the perpendicular bisector line of the given
segment. In space this is called the perpendicular bisector plane of the given segment. It is a plane
perpendicular to the segment and passes through the mid-point of the segment.

Exercise 9.4

1. Find the distance between the following pairs of points :
1 a1,-1,3), (1, -1, 3) 2) (1,2,3),(3,4,5)
(3) (2,-3,18), (0, 1, 14) @ (1,J2,-1),3.342, 1)
(5) (1,-2,5014), (4,2,5014)  (6) (1,1,0),(0,1,0)
2. Using distance formula, determine whether the following points are collinear or not :
(1) P, 3,2), Q01,2 1),R(2,3,1) (2) A(0, 1, 0), B(0, —1, 0), C(0, 2, 0)
3) L1, 2,3), M(—3,—1, 1), A(-3,2,7) (4 V(1,2,3),AQ2,3,1),H@3, 1,2
3. Given that A(0, 7, 10), B(—1, 6, 6), C(—4, 9, 6), determine the type of AABC.
4. Find the points on Z-axis which are at a distance x/ﬁ from the point (=2, 1, 3).
5. Find the equation of the set of points P such that PAZ + PB2 = 2k2, where A and B are the
points (3, 4, 5) and (—1, 2, 7) respectively, £ € R.
6. Show that O(0, 0, 0), A(2, =3, 6), B(0, —7, 0) are vertices of an isosceles triangle.
%

9.11 Section Formula

We have studied section formula for a line segment joining two points in RZ. Now using vectors
we will derive section formula for a line segment joining two points in R3.

Let 71 = (x;, ¥}, z;) and 75 = (x,, ¥, z,) be the position vectors of two points A and B in the
—
space respectively. Suppose P € AB (P # A, P # B). As the points A, B and P are on the same line,

the directions of AP and PB are same or opposite. Thus, we have

-
AP = kPB, where k # 0 @)
— —
| AP | = |k| |PB| or AP =| k| PB B
AP _ P
o~ |l

A-P-B

Let the position vector of P be ¥ = (x, ), 2).

— A )
Now let P divide AB from the side of A in the ratio A. Figure 9.8
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(i If A > 0 and A—P-B and % = A, we say that P
divides AB internally from the side of A in the ratio A.
(figure 9.8)

&: =
o5 = |kl A

%
Further, as A?’ and PB have the same direction, £ > 0
So, | k| = k.
Since, |k| =\, k= A

— —
AP = A PB. (using (i)
(i) If A <0 and P~A—B or A—B—P and % = —\, we say

P divides AB externally from the side of A in the
ratio A. As shown in the figures 9.9 and 9.10, it is

clear that AP and PB have opposite directions, so £ < 0.

k| = —k

AP _ - _ AP _ _
S5 = | k| = —k and o¢ A
Hence k = A

— —

AP = A PB

— —
Thus, in each case AP = A PB

=)

— 7 =Mr - T)
—71=7w’2—7uF
(I+AF=AR + 7

=)

Note that by the definition of division, A # —1.
- 1 - -
r = %+1 (7\”2 + 1)

@ 3 2) =TT My ¥y 29) + (pe vp. 21)

|
= My +xp, Ay +yp, Azy + 2))

A, +x; Ay, + 7‘12+Z1)

(x’y’z):( A+1 0 A+ e+l

B
A PB
P-A-B
Figure 9.9
AP P
B
A-B-P
Figure 9.10
—> —>
(AP = k PB)

This is called section formula. It gives coordinates of the point which divides line segment AB

in the ratio A from the side of point A(xy, vy 29)-

If the ratio A is m : n, then above formula gives,

1
24
n

7:

mx, + nX; My, +ny, mz, +ng
¥ 2= Tmrn Tmtn  mtn

m= , =\ _ 1 - —\-
(77‘24'7‘1) = Tm+n (mr2+nr1)a m+n 0
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9.12 Some Applications of Section Formula
If P is the mid-point of AB, then AP = PB and A—P—B.

(i) Coordinates of mid-points :

~. Let position vector of P be r.
If ri = (x|, ¥, z;) and 72 = (x5, ¥, 2,) and 7 = (x, y, z), then section formula gives

@ % 2) =3 (e ¥y 2) + (6 ¥y 2) A =1

(Mt oty L t5n
- 2 ’ 2 ’ 2

.. . . —_ . NtTXH Nty 3+
The position vector of the mid-point of AB is given by T 5 T .
(ii) Centroid of a Triangle : Let ABC be a triangle in R3. Suppose position vectors of A, B and

Care 11 = (X, ¥y, 2)» 72 = (X5, ¥, 2p) and 73 = (x5, 3, z3) respectively.

As shown in the figure 9.11, D is mid-point of BC. AGy. vy 2y)
Hence its position vector is M
Let G be the point dividing AD in the ratio 2 : 1 from
the side of A. The position vector of G is
1 S S SN G
S (2-5(@ +R) + rl) =1+ 7 + 7
Symmetry of this result shows that G is on all the  B(xp, ¥, 7)) D C(x3, 3, 23)
Figure 9.11

three medians. Thus, the medians of a triangle are

concurrent in G.
Thus, G is the centroid of AABC and its position vector is %(71 + 75 + 13). So the coordinates of

XptX+ Xy Yty ty; 4 t3 23
G are 3 , .

’ 3 3
Find the coordinates of the point which divides the segment joining the points

Example 14 :
A(2, 3, —1) and B(1, =3, 5) from A in the ratio (i) 3 : 5 internally, (ii) 3 : 5 externally.

Solution : (i) Let P(x, y, z) divides AB from A in the ratio 3 : 5 internally. Thus m = 3, n = 5.
Now by section formula,

3 +52)  3+10 _ 13

T IS 8 8

_ 3D+ 9+15 _ 6 _ 3
8 4

345 8
35 +5=) 15-5 19 _ 5
T35 Ty T8

) divides E in the ratio 3 : 5 internally from A.

EN ()

Thus, the point (ﬁ,;,
84
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(i) Here the division is external. Thus m = 3, n = —5. Hence the coordinates of required point are
31)=52) _ 3-10

_ _ =7 _ 17
YTT3Ss T T T2 T 22

C3(3)—53)  -9-15
y=—m—s—=—— =12

35 =51 15+5
r=TH—— = 5= =10

Thus, the coordinates of the point which divides AB from A in the ratio 3:5 externally are
z _
(Z.12,-10).

Example 15 : Use section formula to examine collinearity of the points (1, =3, 3), (3, 7, 1), (1, 1, 1).

Solution : If A(1, =3, 3), B(3, 7, 1) and C(1, 1, 1) are collinear, then one of them divides
the line segment joining the other two in some ratio say k: 1. Suppose B divides AC in some
ratio k.

k) +1 k+1

TR T
This is not true. Hence the points are not collinear.

Example 16 : Show that the triangle with vertices (—1, 6, 6), (—4, 9, 6) and (0, 7, 10) is a right angled
triangle. Further verify that the mid-point of its hypotenuse is equidistant from all vertices.

Solution : Let A(—1, 6, 6), B(—4, 9, 6) and C(0, 7, 10).

Now, AB2=(—4+ 12+ 9 —-62+(6—-6>=9+9=18
BC?=0+4)2+(7—-92+(10—-62=16+4+16=36
ACC=(0+ 1Y+ (7 —-6>+(10—-62=1+1+16=18

AB? + AC? = BC?
Thus, AABC is a right angled triangle and BC is its hypotenuse.
Let M(x, , z) be the mid-point of BC. Then

0—4 749 10+6
x, v z)= R ) = (-2, 8§, 8).

Now as, M is the mid-point of B_C and BC = V36 =6
BM =CM =3

Further AM = \/(—2+1)2 +(8-6)2+(8-6)2 = l+4+4 =3
Thus, AM = BM = CM, i.e. M is equidistant from all the vertices of AABC.

Miscellaneous Problems :

In a plane if four points are given, then they form a quadrilateral provided any three of them
are non-collinear. Using distance formula and section formula, the type of the quadrilateral can be
determined. In the case of four points in the space, they may form a quadrilateral if all these points are
coplanar. Thus, before determining the type of a quadrilateral, we must make sure that the points are
coplanar. Following examples are based on this.

Example 17 : Determine whether the points A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), D(0, 0, 1) are vertices of

a quadrilateral or not. If they form a quadrilateral, then determine its type.
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—. —>
Solution : AC =(0, 1, 0), BD = (=1, 0, 1).

— —> 2
AC and BD have different directions. Thus, AC {t BD.

Now let us examine if they intersect in a point.

If they intersect in a point, it may happen the point
of intersection is A or B or C or D.

Rj =(0, 1, 0), A?) =(0,0, 1) (i)
A?j and A?) have different directions.

A, C, D cannot be collinear.
B_C)=(—1,1,0),l;))=(—1,0, 1) (ii)

B, C and D cannot be collinear.

Similarly from (i) and (ii) A, B, C or A, B, D are not collinear.

Now suppose, if possible AB and CD intersect in a point P
other than A or B or C or D.

4

Four distinct points A, B, C, D lie in a plane if either AC

and BD intersect in a point or AC || BD. If possible, suppose
they intersect in a point P(x, y, z). Thus P € AC and

VIR S
P € BD. Let P divide AC from the side of A in the ratio
A and it divide ﬁ from the side of B in the ratio
WA € R—{0,—1}, L € R— {0, —1}). By section formula,

VAR AO)+0
Pe AC=>x=",7 =0
_k(1)+o_ A
Y= h+1 T A+l
_k(0)+0_
=351 0
&~ 0)+1
and P € BD:>x=%=ﬁ
_UO)+0
TS 0
um+0
ST T |

C

Figure 9.12(i)

D

C
Figure 9.12(ii)

A
Figure 9.12(iii)

A
Figure 9.12(iv)

(iii)

(iv)

Thus, from (iii) and (iv) x = 0 = ﬁ which is not possible. Thus, AC and BD neither intersect

nor are parallel. Thus the points A, B, C and D are not coplanar. Hence given points are not vertices

of a quadrilateral.
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Note : Four non-coplanar points in the

space form a geometrical figure called a DO.0.1)
tetrahedron (figure 9.12(v)). A tetrahedron has
four triangular faces and six edges. A(0,0,0)
C(0,1,0)
B(1,0,0)
X

Figure 9.12(v)

Example 18 : Examine coplanarity of the point P(1, 1, 1), Q(—=2, 4, 1), R(—1, 5, 5) and S(2, 2, 5). Also
determine the type of quadrilateral formed by them, if any.

Solution : The mid-point of PR = M(0, 3, 3)
The mid-point of QS = M(0, 3, 3)
1?{ and & intersect in M.

P, Q, R, S are coplanar.

Now, P_Q) =24 1)—({,1,1)=(-3,3,0)
Q?{ =-1,55—-240D=0,1,4
S_l)l =(-1,55—-@2,2,5=(3,3,0)
I?S) =2,2,9—-{,1,H)=(,1,4

Thus, PQ and SR have same directions. QR and PS have same directions.

Further,

PQ = /(32 +(3)2+0 = VI8 = RS

QR = ‘/12+12+42 = J18 = PS

Also as seen above diagonals PR and @ bisect each other and also

P

v
e

PR = \/(1+1)2+(1—5)2+(1—5)2 = J4+16+16 =6

QS = J(-2-2)2 +(4-22 +(1-5? = {J16+4+16 =6 ¥ J

Thus for the parallelogram PQRS, all four
sides are of equal length and diagonals have equal S > R
length. Thus, [_JPQRS is a square. Figure 9.13

So for collinearity for three points was checked using distance formula and also using
section formula. Suppose three distinct points A, B and C are given. Then they are collinear only if

one of the following is true.
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A—B-C A—C-B C—-A-B

A C
Figure 9.14(i) Figure 9.14(ii) Figure 9.14(iii)

In all three cases AB and BC have the same or opposite directions. Hence three points A, B and

C are collinear only if AB and BC have the same or opposite directions. The following examples are

based on this fact.

Example 19 : Using directions examine if following points are collinear :
(1) A0, 2), B(2, 4), C(=2, 0) (2) P, =1,0), Q(=3, 1, 2), R(=1, 0, 1)
(3) A(l, 2,3), PG5, 2,2), 82,3, 1) (4)  L(0, 0), M(l, 0), N(0, 1)
%

Solution : (1) AB =2, 4) — (0, 2) = (2, 2)

%

BC = (_25 0) - (29 4) = (_4: _4)

— —
Obviously BC = (—2)AB
— — o

Hence AB and BC have opposite directions. Thus A, B and C are collinear. (g  BC)
@ PO = (31,2 = (1. -1, 0) = (4.2, 2)

%

QR=(1L0,1)—=(3,1,2)=@2, -1, -1
Here P_Q> = (—2)Q7{. So, P_(S and Q?{ have opposite directions. Thus, P, Q, R are collinear.

— | &2
(PQ ff QR)

_)
(3) AP =(5.2,2)—(1,2,3)=(4,0,-1)

P = (2.3 )= (5.2.2) = (3. 1, =)
If possible suppose for a non-zero, £k € R

—> —>

AP = k(PS)

(4,0, =1) = k(=3, 1, =1)

4==3k 0=k —1 =—k

— —
For any k£ € R all there are not satisfied. So, AP and PS have different directions. Hence A, P
and S are not collinear.

@) TN = (1. 0) = (0. 0) = (1, 0)

H
MN =0, 1) —(1,0) =L 1)
If possible suppose for some £k € R — {0},
— —
IM = kK(MN)
(1, 0) = &(=1, 1)
1 = —k, k = 0 which is not possible.

So, LM and MN have different directions. Hence given points are non-collinear.
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Example 20 : Prove that A(1, 2, 3), B(—1, =2, —1), C(2, 3, 2) and D(4, 7, 6) forms a parallelogram.

Solution : Mid-point of AC = (%,%%) Mid-point of BD = (%,%%)
AC and BD bisect each other and they intersect at the mid-point. Hence AC and BD are

coplanar.
A, B, C, D form a quadrilateral in a plane and its diagonals bisect each other.

[J ABCD is a parallelogram.

Alternate Method :

— — —
AB = (=2, =4, —4), BC = (3, 5, 3), DC = (-2, —4, —4)

AB and DC are in the same direction.
AB || CD or A, B, C, D are collinear. But AB and BC are in different direction,
>
Cé¢& AB
&~
AB || CD
.. > &2 -
Similarly, AD || BC (AD = @3, 5, 3))
A, B, C, D are coplanar and [] ABCD is a parallelogram.

Note : Solution given below is not proper :
AB = [J4+16+16 =6, CD = ‘/4+16+16 =6, AD = \[9+25+9 = 443 = BC
Opposite sides of [[] ABCD congruent. Hence [[] ABCD is a parallelogram.

If A, B, C, D are coplanar, then this decision is correct. So it is necessary to prove A, B, C, D
are coplanar. See the example given below :

Example 21 : Prove that for O(0, 0, 0), A(1, 1, 0), B(1, 0, 1), C(0, 1, 1), OA=AB =BC =AC=0B = 0OC,
but O, A, B, C do not form a parallelogram.

— — —
Solution : OA = (1, 1,0), OB =(1,0, 1), OC=(0, 1, 1)

Z
— — —.
AB =(0, =1, 1), BC = (=1 1,0), AC = (=10, I)
OA = OB = OC = AB = BC = AC = V2
N C(,1,1)
But any two of above vectors are not in the AN
same or in the opposite directions. 0600 v
O, A, B, C do not form a parallolegram.
That these points are non-coplanar can be
proved. Points O, A, B, C form a tetrahedron. X A(1,1,0)
Figure 9.15

Exercise 9.5

1. Find the points of trisection of the segment E, where A(1, 3, —2), B(2, 4, —1).

2. Using section formula, check the collinearity of points :
(1) P(1, =1, 1), Q(1, 0, 3), R(2, 0, 0) 2) A5, 6,—1),B(,—1,3), C(, 1, 1)
(3) L2 3,4, M1, 2, D.N(-1,2,2) @) 00, 0,0 AL 1. 1), B2, 2, 2)

(5) L, 2, 3), M(—1, =2, =3), N(1, =2, 3)
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Exercise 9

Show that the points A(—2, =3, —1), B2, 1, 1), C(=3, =2, —2) and D(-7, —6, —4) form a
parallelogram. Is it a rectangle ?

Determine the type of AABC, given that A(0, 1, 2), B(2, —1, 3), C(1, =3, 1).

Find the equation of the set of points at the same distance from the points (1, 2, 3) and (3, 2, —1).
Find the lengths of medians and coordinates of the centroid in each of the following triangles :
(1) A(1,0, 1), B(1, 2, 0), C(, 1, 2)

(2) P(1,2,3), Q(—1, 1, 0), R(0, 0, 3)

3) L(-1,-2,-3), M(1, 2, 3), N(1, 2, 1)

Let P(1, 2, =3), Q(3, 0, 1) and R(—1, 1, 4) be the mid-points of the sides of AABC.
Find the centroid of AABC.

Using vectors examine the collinearity of the points given below. If they are collinear, then
in which ratio and from which side one point divides segment joining other two ?

(1) AG, 4, 6), B(1, -1, 3), C4, 3, 2)

2) A2, 3,4),B(—4, 1, —10), C(—1, 2, —-3)
3) A, 2,3),B(0,4, 1), C(—1, -1, —1)
(4) L@, 2, —4), M(5, 4, —6), N(9, 8, —10)
(5) P2, 3,4), Q@3, 4,5), R(1, 2, 3)

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

(1) The magnitude of sum of vectors (1, —\/5 ), (2, \/5 ) is ... []
(a) =3 (b)3 (©9 (d) -9

(2) Given that the points A(1, 0, 1), B(2, —1, 3) and C(3, —2, 5) are collinear, then the ratio in
which C divides AB from side of A is ... []
(a)2:1 b)—1:2 (c)1:2 (d)—2:1

(3) The centroid of the triangle whose vertices are P(1, —2, 1), Q(2, 3, —1), R(1, —1, —=1)is ... [__]
@ (1,21 ®(30-3)  ©F30) @543

(4) If the position vectors of A and B are respectively (1, 1, 0) and (0, 1, 1) then A?} = e [ ]
(@ (0, 0, 0) (b) (1, 0, =1) (© (=1, 0, 1) (d) (1, 2, 1)

(5) The direction of (1, 1, 2) and (2, 1, 0) is ...... []
(a) same (b) opposite (c) different (d) not defined

(6) <2,2,2>= .. ]
(a) —<—4,—4,—4> (b)) <L, 1, —1> (c)<—L,1,—-1> (d) <0, 0, 0>

(7) (%%%) = ]
(@) <1, 1, —=1> (b) <cosO cosQL, cosO sinl, sin®>
(c) <5, 5, 5> (d) <3, 3, —3>
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(8) Unit vector in the direction of (2, 2, —1) is ...... []

1 —2 1 2 21
@ (333 oFF3) ©ez) @ (2.2.4)
(9)  Unit vector in the direction of (1, 0, 0) is ...... []
(a) (0, 1, 0) (b) (0, 0, 1) (¢) (=1, 0,0) (d) (1, 0, 0)
(10) If the centroid of AABC is (0, 0, 0), where A(l, 1, 1), B2, 1, 2), C(x, ) z) then
x ¥y z)= .. ]
(@ (3, 2,3) (b) (0, 0, 0) (¢) (=3, =2, =3) (d) (1, -1, 1)
(11) If A(1, 1, 2), B(2, 1, 2), C(2, 2, 1) then A, B, C are ...... ]
(a) vertices of a triangle (b) collinear
(c) on axes (d) non-coplanar
— —>
(12) If A(1, 2, 1), B(2, 3, 2), C(2, 1, 3), D(3, 2, 4), then directions of AB and CD are ...... ]
(a) same (b) perpendicular to each other
(c) different (d) not defined
(13) If A(1, 2, 1), B(2, 3, 2), C(2, 1, 3), D(3, 2, 4) then ...... ]
> <> > >
(a) AB || CD (b) AB = CD
(©) AHB N (% is singleton d Ce 1?3
(14) Vector (0, 0, 0) ...... ) ]
(a) has no direction (b) has no magnitude
(c) is in the direction of (1, 1, 1) (d) is in opposite direction of (—1, —1, —1)
(15) P(2, 3, 1) and Q(7, 15, 1) then |P_(>)| = . ]
(a5 (b) 12 (c) 13 (d) 17
(16) A vector which is in the directions of (3, 6, 2) and has magnitude 4 is ...... ) [ ]
2 12 24
(@ (2.£,2) (b) (12, 24, 8) © (£.2%) @ 12,-24,-8)
(17) A unit vector which is in the opposite direction of (2, =2, 1) is ....... .
—1 1 2 2 1
@(F3F) ®2-H ©FF) @F33)
(18) (cosQ., sin®) and (cos(Tt + QU), sin(Tt + ) (00 € R) have directions ....... i ]
(a) same (b) opposite (c) different (d) same as (1, 0)
(19) If X is a non-zero vector and k > 0, k # 1, then % is ....... ) []
(a) unit vector in the direction of X
(b) in the direction of X having magnitude k&
(c) in the opposite direction of X having magnitude &
(d) unit vector in the opposite direction of X
(20) If X is a non-zero vector and k < 0, k # —1, then % is ... ) ]

(a) unit vector in the direction of ¥

(b) unit vector in the opposite direction of X

(c) in the opposite direction of X having magnitude | & |
(d) in the direction of X having magnitude | k|

*
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Summary

We studied following points in this chapter :

1.

Set of ordered pairs and ordered triplets of real numbers R? and R3 respectively form a
vector space over R.

Magnitude of a vector X = (x}, x,, x3) is | ¥ | = Jx12+x%+x32, and if X = (x;, x,), then

| %1 = xf + 23
|X|=0& x =0 and | kx| = |k||X|

For two non-zero vectors X and Y if X = kY, then X, Y have the same direction, if k > 0.
They have opposite directions, if £ < 0.
For two points A and B (in R? or RY)

%
AB = Position vector of B — Position vector of A

Distance between two points A(x, y, z;) and B(x,, y,, z,) is given by

AB = \/(xz —x)* (- +H(z-a)’

If 71 and 7, are position vectors of points A and B respectively and point P divides AB in

: . .. . 1 o =
the ratio A from the side of A, then position vector of P is A1 (A + 7).
If A(xy, ¥y, z1), B(xy, ¥y, zp) and C(x3, y3, z3) then position vector of the centroid is

(xl+x2+x3 Vit Y, + s Z1+Z2+Z3j'

3 ’ 3 ’ 3

— ‘ —
R X

Bhaskara 1I
Solutions of Diophantine equations of the second order, such as 61x%+ 1 = 2. This very equation
was posed as a problem in 1657 by the French mathematician Pierre de Fermat, but its solution
was unknown in Europe until the time of Euler in the 18th century.
Solved quadratic equations with more than one unknown and found negative and irrational
solutions.
Preliminary concept of infinitesimal calculus, along with notable contributions towards integral
calculus.
Conceived differential calculus, after discovering the derivative and differential coefficient.
Stated Rolle's theorem, a special case of one of the most important theorems in analysis, the
mean value theorem. Traces of the general mean value theorem are also found in his works.
Calculated the derivatives of trigonometric functions and formulae.
In Siddhanta Shiromani, Bhaskara developed spherical trigonometry along with a number of
other trigonometric results.

2 2
Bhaskara II gave the formula : ‘,ais/_ = ‘/“— Vg_b + "a—— Vg_b

Bhaskaracharya studied Pell's equation px2 + 1 = 32 for p = 8, 11, 32, 61 and 67. When

p = 61, he found the solutions x = 226153980, y = 1776319049. When p = 67 he found the
solutions x = 5967, y = 48842. He studied many Diophantine problems.

The topics covered in Lilavati, thirteen chapters of the book are : definitions; arithmetical

terms; interest; arithmetical and geometrical progressions; plane geometry; solid geometry;
the shadow of the gnomon; the kuttaka; combinations.
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Chapter 10

LIMITS )

If people do not believe that mathematics is simple, it is only because they do
not realise how complicated life is.
— John Louis Von Neumann

10.1Introduction and History

Now we start with the study of calculus. Whatever we have studied so far is known as pre-calculus.
Calculus is a Latin word meaning a small stone used for counting. Calculus is the study of change
in the way that geometry is the study of shape and algebra is the study of operations and their
applications to solving equations. Calculus has widespread applications in science, economics and
engineering.

The ancient period saw some of the ideas that led to integral calculus. Calculations of volumes
and areas by integral calculus can be found in the Egyptian Moscow Papyrus (1820 B.C.). But the
formulae are mere instructions and some of them are wrong. From the age of Greek mathematics
Eudoxus (408-335 B.C.) used the method of exhaustion which prefigures the concept of the
limit to calculate areas and volumes. Archimedes (287-212 B.C.) developed the idea further.
The method of exhaustion was reinvented by Lie Hui in China in the third century A.D. to find the

area of a circle.

Brahmagupta's Yuktibhasha is considered to be the first book on calculus. Bhaskar's work
on calculus precedes much before the time of Leibnitz and Newton. Bhaskara-2 used principles
of differential calculus in problems on Astrotomy. There is a strong evidence that Bhaskar was a
pioneer on some principles of differential calculus. He stated Rolle's Mean value theorem. In
his book Siddhanta Shiromani, we find elementary concept of mathematical analysis and infinitesimal

calculus.

These ideas were systematized into calculus by Gottfried Wilhelm Leibnitz. He independently

invented calculus along the same time as Newton. Leibnitz and Newton are both credited with the
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invention of calculus. Newton derived his results first but Leibnitz published them first. Both arrived at
the results independently. But Leibnitz started with integral calculus and Newton started with
differentiation. The name calculus was given by Leibnitz. In the 19th century calculus was put on a much
rigorous footing by Cauchy, Riemann and Weierstrass. The modern €-0 definition of limit is due to
Weierstrass.

The modern notion of the limit of a function dates back to Bolzano. He introduced €-0 technique
in 1817 for continuous functions. Cauchy discussed limits in his cours de’ analyse in 1821. But he gave
only a verbal definition. Weierstrass introduced modern €-0 definition which is studied today. He also
gave notations /im and lim x — x,. The modern notation lim is due to Hardy given in his book

. . X —> X0
‘A Course of Pure Mathematics’ in 1908.

10.2 Intuitive Idea of Limit

Now we turn to the main idea of calculus namely limits. Before giving definition, we will get
intuitive idea of limits. We understand that the discussion that follows only gives some intuitive idea of

limits and the examples solved only suggest ideas leading to the concept of limits.

Limit of a function is the ‘ultimate’ value of the function, if it exists, when variable changes
continuouly in the domain and goes nearer and nearer to a specific value. Let us be more specific. Limit
of f(x) = 3x + 2 when x approaches 1 is written as lim (3x + 2) and let us see how we ‘find’ it.

X —1
Let us tabulate some values of x and f(x) as follows :

X 0.9 0.99 0.999 | 0.9999 1.1 1.01 1.001 | 1.0001

fx)| 4.7 4.97 4997 | 4.9997 53 5.03 5.003 | 5.0003

We observe that as x — 1 through values less than 1, f(x) approaches 5. This we express by

saying that limit of f(x) is 5 as x approaches 1 from left and we write lim f(x) = 5 in notation.

x = 1-
Similarly the limit of f(x) as x approaches 1 from right is 5 or lim f(x) = 5. Incidentally
x =+
f(1) =3 + 2 = 5. But this is not necessary.
Y y=3x+2
If lim f(x) and lim f(x) exist and
X —>a- X — a+
are equal, we say lim f(x) exists and is equal
X—a
2.8
to either of lim f(x) or lim f(x).
X —>a- X — a+
(1.5)
Let us understand by a graph.
. (0.2)
See that as x — 11—, y-coordinate
X
approaches 5 and so is the case with x — 1+. 0
Note that in discussing this limit, /(1) = 5
Figure 10.1

has no bearing on the limit.
Example 1 to 13 are for understanding of concept of limit only. They are not meant to be

asked in the examination.
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1

I B
Example 1 : Verify th al =

~1 Sx—7 = 2 by tabulation. (x # %)
X 0.49 0.499 | 0.4999 | 0.51 0.501 |0.5001
f(x)| 198 1.998 | 1.9998 [ 2.02 2.002 |2.0002
Y
See that y=2x+1
2 _
Fx) = 423; - 11 05,2
=2x+1asx¢%. (0,1)
Hence we can see that X
. 1,0 o
lim f(x) = 2. 2
xX—=

2

Figure 10.2

Explanation : As x approaches % from left or from right f(x) approaches 2. Here the graph

does not contain the point corresponding to x = 1

as approaches 1, is 2.

Example 2 : Find lim |x].
x—=0

Solution : We know | x | ={ X

2

namely (%, 2). All the while ‘ultimate’ value of f(x),

x20
-x x<0
Hence, X —0.1 —0.01 | —0.001 0.1 0.01 0.001
JAE) 0.1 0.01 0.001 0.1 0.01 0.001
We can guess that lim f(x) = 0.
x—=0
Y
y=1lx]
0 X
Figure 10.3

See that f(0) = 0

Example 3 : Prove that lim [x] does not exist.

x—2
Solution : f(x) =[x] ={ 1 if
2 if

LIMITS

1<x<2

2<x<3
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BY 1.9 1.99 1.999 |11.9999 2.1 2.01 2.001 | 2.0001

f(x) 1 1 1 1 2 2 2 2
Y
So, lim f(x)=1and lm f(x)=2 Q
x—=2- x =2+
lim f(x) does not exist. P
x—2 %
Explanation : Observe that there is a ‘gap’ o 1 23
between P and Q. Left limit and right limit do not B
coincide. S =1
Example 4 : What can you say about lim % ?27(x#0)
- r=0 Figure 10.4
Solution : Here f(x) = -~ 1 if x>0
-1 if x<0
fis not defined for x = 0.
x —0.1 —0.01 [ —0.001 | 0.1 0.01 0.001
fx | -1 —1 -1 1 1 1

Obviously, lim f(x)=1, Lm f(x)= -1
x— 0+ x—0-

lim f(x) does not exist.
x—=0

Note : In the example 1, f (%) is not defined but 1im1 f(x) exists.

x—)a

In the example 2, f(0) is defined and lim f(x) = f(0).
x—0

In the example 3, lim f(x) # lim ., f(x) but f(2) exists. But limit does not exist.
x—2- x =2+

lim lim

In the example 4, x;mf(x) # X;O_f(x) and f(0) does not exist. Limit does

not exist.

So we have enough ground to conclude that existence or value of lim f(x) is not affected by
X—a
its value at a, namely f(a).

Example 5 : Find lim f(x) where f(x) ={x +3 x<0
x—=0
3—x x20
Solution : Here for x < 0, f(x) = x + 3 and for x > 0, f(x) = 3 — x.

The table of values will be as follows :

X —0.1 —0.01 | —0.001 [ 0.1 0.01 0.001
x| 29 299 | 2999 29 2.99 2.999
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lim f(x) = lm f(x) =3

x = 3= x— 3+

and also f(0) =3 — 0 = 3.

Y
Explanation : (0, 3) is on the graph. As x — 0—, C(0.3)
point A move towards C and as x — 0+, point B moves A(-1L.2) B(1.2)
towards C. Hence lim f(x) and lim f(x) coincide. 2.1 2.1)
x— 0+ x— 0-
. (=3.0) 0 (3.0)
Also f(0) = 3. All the three coincide.
Example 6 : Find lim f(x) where f(x) = x + 3 x> 1
x—1 Figure 10.5

10 x =1
x+5 x <1

Solution :
X 09 0.99 0.999 1.1 1.01 1.001
[ (x) 5.9 5.99 5.999 4.1 4.01 4.001

x <1 x> 1
Thus, Lm f(x) seems to be 6 and Lim f(x) appears to be 4. Thus lim f(x) does not exist.
x—1- x = 1+ x—1
Also f(1) = 10. All the three are distinct. Y
(1,10)

Explanation :
Hence, '™ f)# ™ £(x) (0.5) 3.6)

(-1.4) (2:5)

and the two are different.

O
Example 7 : Find lim (% — x).
=l Figure 10.6
Solution :
X 0.9 0.99 0.999 1.1 1.01 1.001

f(x)| —0.09 | —0.0099| —0.000999 | 0.11 |0.0101 {0.000101

Thus, lim f(x) = hm f(x)—Of(l)—lZ 1=0

x—1-

lim f(x) =0 = f(1)
x =1

LIMITS



Figure 10.7
Explanation : As x — 1—, A approaches C and x — 1+, B approaches C.
lim f(x) =0
x—1
Example 8 : f: R = R. f(x) =5, Find Lm f(x).
x =10

Solution :

X 9.9 9.99 9.999 10.1 10.01 | 10.001

) 5 5 5 5 5 5
lim f(x) =35
x—=10
Y
A B
C
5
X
10
Figure 10.8

Explanation : As x — 10—, A approaches C and as x — 10+, B approaches C.
C is (10, 5).

lim f(x) = 5

x =10
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Example 9 : Find lim cosx.
x =L
2
Solution :
T _  _ I _ I iy I
x |5 0.1 E 0.01 b 0.001 b + 0.1 b + 0.01 b + 0.001
S (x)[0.099833 | 0.009999833 | 0.0009999998| —0.099833 | —0.009999833 | —0.0009999998
Obviously lim cosx =0
x—L
2
Explanation : Look at the graph of cosx.
Y
A
(@) C X
I
2 B
Figure 10.9

As before A approaches C and B tends to C as x — %— and x — %+ respectively.

lim cosx = 0

x—Z
Example 10 : Verify Lm 3% = |, (x # 0)
x>0 X
Solution :

X —0.7 —0.2 —0.05 1.4 0.3 0.03 0.01
f(x)] 0.92031 (0.993347| 0.999583 [ 0.97275 | 0.98506 | 0.99985 |0.999983
Explanation : Note that SIMX s an even function i.e. sm_(;x) = _f i;‘x = Si)’;x

Y
O.1)
—37 2T -t O 21 31T X
Figure 10.10

LIMITS
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So we need consider x > 0 only. It is apparent that lim % = 1. This is reflected in the graph
x—0

given also. In fact we will prove this in this chapter later on.

Example 11 : Find lim (x + cosx).
x—=0

Solution :

X —0.1 —0.01 —0.001 0.1 0.01 0.001
S (x) [0.895004165(0.98995 [ 0.9989995 [1.095004165( 1.009995| 1.0009995

Explanation : From the graph as well the table we infer that lim (x + cosx) = 1.

x—0
Y
y = Xx + cosx
y = cosx ©, 1)
X
@)
y =X
Figure 10.11
See lim x =0, lim cosx = 1.
x—0 x—0
lim (x + cosx) = lim x + lLim cosx
x—0 x—0 x—0
Example 12 : Discuss existence of lim 1
x—>0%
Solution :
X —0.1 —0.01 [ —0.001 0.1 0.01 0.001
f(x)| —10 —100 | —1000 10 100 1000

Explanation : Here we observe that as x — 0+, i increases ‘unboundedly’ and as x — 0—, we

say L decreases ‘unboundedly’. So lim Lor lim < do not exist. We say as x — 0+, 15w
X x—0+ ¥ x = 0- X

and as x — 0—, L 5 —c. lim <+ does not exist.
X x—=0
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0 X
Figure 10.12
It is incorrect to say lim L —coor lim L = _oo Note that oo and —oo are merely symbols
x>0+ X x—0- X

or members of the extended real number system. We are dealing with limits in real number system only.

Example 13 : Discuss lim %

x—=0X
Solution :
X —0.1 —0.01 |—0.001 0.1 0.01 0.001
fx) | 102 104 100 102 104 100
Explanation : In this case, whether x — 0+ or x — 0—, ? increases unboundedly or ? — oo,
Y
0 X
Figure 10.13
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. . . 1 . 1 .
Again we do not write lim —5 = oo. lim —5; does not exist.
x—>0X o—0X

10.3 Formal Definition of Limit
Now we are ready to give formal definition of limit. So far we had inferred certain limits by
observing some tabulated values and graphs. But in practice it is not possible even in simple

examples and this tabulation may even mislead. Look at the graph of sini (figure 10.14).

Al

Figure 10.14

Can we infer anything about ]iglosini ? When x takes a sequence of values ﬁ ke 7 — {0},
X

1 2 .1 _ 2 .1 _ .
sin—- = 0, for x = (Am+nm- SN, = 1 and for x = (4m+3)m> SN = —1. Other values of x also exist

which we have not considered. So it is difficult to guess anything about ]jinosini.
X

Definition : Limit of a function : Let f(x) be a function defined on a domain containing some
interval containing a but ¢ may not be in the domain of f. If for every € > 0, there exists

some O > 0 such that whenever a — d <x <a+ O, x#a=>1— € <f(x) <[+ €, we say

lim f(x) =/ or limit of f(x) as x tends to a is /.
X —a

See that O > 0 is any positive number. Hence f(x) can be brought as near to / as we please.
—€ < f(x)—1<€or|f(x)— 1| <€ just by proper selection of 0 such that a — & < x < a + 0,
xZaor—-0<x—a<O0,x#aie |x—a|<0,x%a

Thus £ (x) can be brought as near to / as we please if we can choose & > 0 such that x should be
brought near to a.

Left limit of a function : If f(x) is a function defined in some interval (¢ — h, a), (I > 0)
and if for every € > 0, there exists 0 > 0 such that / — € < f(x) < [ + € whenever

x € (a— O, a) and & < h, we say left limit of f(x) is / as x = a— or lim f(x) =L
X —>a—

Right limit of a function : If f(x) is a function defined in an interval (a, a + k), (kK > 0)
and for every € > 0, there exists & > 0 such that /| — € < f(x) < [ +€& whenever

x € (a, a + ), & < k, then we say right limit of f(x) is / as x = a+ or lim f(x) = L

X —>a+
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Notes : (1) Nowhere in the definition, it is required that @ be in domain of f. f(x) must be
defined ‘around’ a. f must be defined in an interval containing a except for possibly at x = a. f may
or may not be defined at x = a.

(2) €> 0 is any given number and O > 0 is to be found out depending upon f.

Let us understand the definition more closely by some examples.

Example 14 : Prove : lim (3x + 2) = 8
x—2

Solution : Let € > 0 be any positive number.
We require 8§ —€<3x +2<8+ € (=29
§—E<C3x+2<B+ES 6—E<3<O6+E

<:>2—%<x<2+%.

Comparing with 2 — 0 < x < 2 + 0, we are motivated to let 0 = % (a =2
Now let 0 = %

2-0<x<2+ 8, x#2 =>2—%<x<2+%

= 6—-E<3x<6+E
= 8—-€<3xx+2<8+¢

This is what we wanted and 0 = % exists for every € > 0 such that

2-0<x<2+ 0, x#2 =8—-€<3x+2<8+¢
lim 3x + 2) = 8.

x—2

Example 15 : Prove : lim x = a
X —a

Solution : Let £€=0,€>0. Then,a— 0<x<a+ O, x#*a=>a—€<x<a+§¢
im x = a

X—a

Note : It is not obvious that x — a, as x — a, we have proved it using definition.

Example 16 : Prove : lim (mx + ¢) = ma + ¢ (m # 0)
X —a

P .
Solution : Let & = s € 0.

£ €
a—8<x<a+5,x¢a=>a—m<x<a+m

€ £
= ma — m < mx < ma~+ 1,5 m (m > 0)

= ma— &< mx<ma-+ €

= ma—€+tc<mx+c<ma+é€+c
Let I = ma + ¢

a—0<x<a+ O, x#za=Il—€<mx+c<I+E€

Ifm>0, lim (mx +c¢)=ma+c
X —a
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Similarly if m < 0 we can prove.
a—0<x<a+0,xZa=>ma+c+E>mx+c>ma+tc—¢ (|m|=—m)
= matc—EE<mx+tc<ma+c+§&

If m<0, im (mx+ c¢)=ma+ c.
X —a

10.4 Algebra of Limits
It is tedious and difficult to find limits using definition. So some working rules are derived. They can

be proved but we will not prove them.

Let lim f(x) exist and be equal to / and let lim g(x) exist and be equal to m.
xX—a xX—a

Then (1) lim (f(x) + g(x)) exists and
X —a

lim (f(x) + gx)) = lim f(x) + lim gx) =171+ m
X —a

X —a X —a

(2) lim (f(x) g(x)) exists and

X —a

lim (f(x) g&)) = lim f(x) lim g(x) = Im

X —a X —a X —a
lim f(x)
lim L&) lim L) _x2a g
3B) Ifm#0, e exists and e xlgnag(x) p

Example 17 : Prove if f(x) is a constant function and if f(x) ¢, then lim f(x) = ¢

X —a
or in other words lim ¢ = c.
X —a
Deduce lim c¢f(x) = ¢ im f(x), if lim f(x) exists.
X —a xX—a X —a

Solution : Let f(x) =cand x € (¢ — 0, a + 0) — {a}. Let [ = c.
a—0<x<a+0,x#a=|fx)—Il|=|c—c|=0<¢€as0<E.
im f(x) =c ie. lim c=c

xX—a xX—a
If lim f(x) exists, then lim c¢f(x) = lim ¢ lim f(x)
xX—a X —a xX—a X —a
= ¢ lim f(x)
xX—>a

Note : Using lim (f(x) + g(x)) = lim f(x) + lim g(x) and
X —>a X —>a

X —a

lim c¢f(x) = ¢ lim f(x), we can prove

X —a X —a
lim (f(x) — g(x)) = lim f(x) — lim g(x)
xX—a xX—a xX—a
If c = —1, Iim (f(x) — g(x)) = Lm (f(x) + (—=1)g(x))
X —a X —a
= lim f(x) + lim (=1)g(x)
X —a X —>a
- Xliina f(X) - X]igla g(X)
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Theorem 1 : Prove lim x" = d" n € N
X—a

Let P(n): lim x"=4d" né€ N

X—a

We have proved lim x = a

X —a
P(1) is true.
Let P(k) be true.

lim xk = ok
xX—a
Let n=Fk+ 1
lim x*T!1 = Lim xf-x
X —a X —>a
= lLim x* liin X (Product rule for limits)
x—a X—a
=d-a=d"! (P(k) and P(1))

P(k + 1) is true.
P(n) is true, Vn € N by PM.L

Theorem 2 : lim (f{(x) + f,(x) +...+ f,(x)) = lim fi(x) + lim f(x) +..+ lim f(x),
X —a xX—da X —a X —a

Let P(n) : lim (fj(x) + f4(x) +...+ f,(x)) = lim fi(x) + lim f(x) +..+ lim f(x)

X —>da X —>a X —>a X —a

if individual limits lim f,(x) exist i=1,2,3,.., n
X —a

For n = 1 the result is obvious.

Let P(k) be true.

lim (f;(x) + A(x) +...+ fix) = lim f(x) + lim f£(x) +..+ lim f(x)

xX—a x—a xX—=a x—a
Letn=F%k+ 1

li;n (i) + .o + fi0) + £ 4+ (X))

=m0+t f) + i () (xlig]a () +5() = lim f()+ lim g(x))

= lim f;()+ lm () + ...+ lim £x)+ lim £, () (P(K))
X —a X —a X —a X —a

P(k + 1) is true.
P(n) is true, Vn € N by PM.L
Limit of a Polynomial :
We know f(x) = ¢, x" + ¢, _ | X"~ Ty + cp» X € R (¢, #0, ¢y ¢y ¢, € R)

is called a polynomial of degree n.
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lim f{x) = lim (cnx”+cn_1x”_1+...+c0)
xX—a X —a
= lim ¢, x"+ lim cn_lx”_1+...+ lim ¢, (Lemma 2)
X —>a X —>a X —a

(lim (F@) + gx)) = lim f()+ lim g(x))

lim ¢, lim x"+ lim ¢,_; lim ¥~ 1+ .+ lim T

X —>a X —a xX—>a X —a xX—a
(1im (F@)ge) = tim fx) lim g(v)
X —a X —a X —a
=cna”+cn_1a”_1+...+c0 (lim x*"=qa", lim ck=ck)
X —a X —a
=f(a)

Thus, limit of a polynomial as x — « is obtained by just substituting x = & in the polynomial.

(This is called ‘continuity” of polynomials.)

Example 18 : Find lim (2x3 + 3x2 — 5x + 1).
x—2

Solution : lim (2x3 +3x2 —5x+ 1) =2-23+3-22-5.2+ 1
e =16+12—-10+1
=19
Limit of Rational Functions :

p()
q(x0)

If p(x) and g(x) are polynomials defined over a domain in which ¢(x) # 0, then A(x) =

is called a rational function.

If p(x) and ¢(x) are polynomials defined in a domain containing a and g(a) # 0 then

) lim p(x) @
Jim AC) = 090 T Tim g q@ @)
X —a

In other words rational function A(x) is also a ‘continuous’ function.

x> +1

Example 19 : Find P m.

Solution : Here x2 + 3x + 4 # 0 forx = 1.

lim _ x°+1

X _2_
x—>1x2+3x+4 8

1
4

p(x)
q(x)

Hence in case of a rational function A(x) = if g(a) # 0, then lim A(x) = h(a) is obtained by

just substituting x = a in A(x). But what happens if g(a) = 0 ? s
By remainder theorem, we know that x — a is a factor of ¢g(x). Now we consider some cases.
Case (1) : p(x) = (x — @)k f(x)
q(x) = (x — a)f g(x), f(a) # 0, gla) # 0, k € N
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- — lim 29
Now xhi)nah(x) x—a q(X)

Nk
lim X =@ )
xX—=a (x—a)kg(x)

lim S (x)

x—a 8(X)

_ fla)
-~ gla)

(while discussing limit x # a)

Thus, if (x — a) occurs to the same index in both numerator and denominator, we can cancel it

and have the limit by substituting x = a after cancellation of the factor (x — a)*.

; X —3x*+x

Example 20 : Find , _ T s +ax-

lim X —3x*+x _ lim x(x?=3x+1)

Solution = Here 0o 3 52 13 T x>0 x(4x? —sx+3)

lim x2—3x+1
x>0 4x% —5x+3

1

3
lim *'— 7% +8x% —3x +1
x =1 3x* —5x3 +6x2 —10x+6°

Example 21 : Find

Soluti xt=7x3 +8x% —3x+1 lim (x=D(x*—6x*+2x—1
olution = S TS50 1 6x’ —10x+6 11 (x—1) (3 — 222 + 4x —6)

lim X —6x*+2x—1
x—=13x3—2x? +4x—6

Note : Here p(1) = g(1) = 0. Hence (x — 1) is a factor of p(x) and ¢g(x). After factorisation of
p(x) and ¢g(x), we remove the factor (x — 1) and substitute x = 1.

lim X —5x*+8x—4
x—=>22x3 —9x? +12x—4"

Example 22 : Find

Solution : p2) =8 —20+ 16 —4=0,92) =16 —-36 +24 —4 =0
(x — 2) is a factor of p(x) and ¢(x).

lim X —5x°+8x—4 lim (x—2°(x-1)
x=22x3 —ox?+12x—4  x—22(x-2)202x—-1)

lim X!
x—22x—1

= l
3
Here (x — 2)? is a factor of both p(x) and g(x).

Case (2) : Let us see what happens if (x — @) and (x — a)” are factors of p(x) and g(x)

p(x) and q(x)
(x-a)k x-a"

respectively where £ # m and do not have x — a as a factor.
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px  x—affx) _ - T )

™~ x—alg(n) 200 it k> m.

Now h(x) =

Here Kk — m € N
Also f(a) # 0, g(a) # 0.

0-fla) _

lim h(a) = g(a) =0

X—a

Thus, if (x — a) occurs to higher index in p(x), then lim A(x) = 0.

X —a
Case (3) : If p(x) = (x — @) f(x), q(x) = (x — a)" g(x) with k < m and L)k = f(x) and
(x-a
qx) )
———— = g(x) are non-zero for x — a, we proceed as follows :
x-ay"
k
. x—af fx . S
lim A(x) = lim —mf = lim s
Y a x—=a (x—a)" g(x) x—a(Xx—a g(x)

Now f(a) is a real number. (a — a)" ~ *g(a) = 0

Denominator of A(x) becomes unbounded as x — a and we say lim A(x) does not exist.
xX—>a

‘ lim X° —3x>+3x—1
Example 23 : Find Y51 21
3 4.2 _ ) 3
X7 =3x"+3x—1 lim (x—1
x—1 x2 -1 T x—ol (x=D(x+1D

Solution :

lim (x—1?2

- ~ — _0_
Tx—=1 x+1 2 0
4.3, .2
o lim X XA
Example 24 : Find '~/ Ot
_ im X X+’ lim X (x*—x+10)
Solution : 7, - +x o0 (P —xt+1)
lim X —x+D .
im0 ¥y 1 0
An Important Limit :
. n__ n
lim X _—¢ =nd"~ !, ne N@x#a),x a€ R

xX—a X—da
We can see that this is a rational function.

lim X" —=4" _ lim x—a) X'+ X" 2+ X" A d Y
xX—a X—da xX—a X—a

= lim (" '+ x""2a4+x"" 32 +...+a
X —a

=d"" '+ 20+ 32 +..+d"" ! =pg !
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Note : This result is true even for n € R. But then x € RT, a € R, x # a.
We will use this extended result in future.
lim X°—1

x—1 x6 -

Example 25 : Find

m X0 =1 Jim %% -1 X1

Solution : ", 061 xo1Tx=T X 16
X181
lim
_ Xl x-1
16
lim !
x—1 X1
17
16 1 8
. X’ +32
Example 26 : Find , __, PR
) X0 +32 lim X —2°
Solution : x>-2 Py xo-2x_(2)
lim =2’
xo-2 X2
fim =2
xo>-2 X2
5=t 5416 9
T 3=2)? 3473
4
_ lim X" —16
Example 27 : ', 2 —32 t3x—2°
4 _,4
4 lim - 3
Soluti ~ lim X" —16 _ x—2 4.2 32
olution : . ~3 7 ., = . (x—2)(x%2—x+1  4-2+1 3
x—2 X-2

Rule of Substitution or Rule of Limit of a Composite Function :

Suppose lim f(x) exists and lim f(x) = b and lim g(y) exists and lim g(y) = [
y—>b

xX—a xX—a y—=b

Then lim g(f(x)) = L

XxX—a

Here lim f(x) exists means £ is defined in (a — 0, a + &) — {a} for some & >0 and y = f(x).
X —a

g is defined in (b — &', b + ') — {b} for some &' > 0.

lim (x+2)>°-32

Example 28 : Find '~ ~

Solution : Let y = f(x) = x + 2. Then lim f(x) =2 = b.
x—0
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) li y5_25
lim g0) = 5=

y—2
=5.24=380
) lim (x+2)°-32
lim g(f(x)) = M L2232 g
x—=0 X

In practice, we just take the substitution y = x + 2 and write y — 2 as x — 0 in
the example. This is valid for so called ‘continuous’ functions.
Another Method :

im (x+2°-32 _ lim x5+(5)x 2+()x 224 ()x2-23+(2)x-24+@)25—32

x—0 X x—0 X
= xli;no (x4 + (?)2x3 + (;)4x2 + (g) 8x + (2)24)
=5.16 =80

Example 29 : Find h—>0 Vx+ ‘/_

Solution : Let y = x + A. Theny —> xas h — 0.

1

lim \/X+ ~Vx _ lim y2—x2 :l%: 1
h—>0"73 y—ox y—x 2 2‘/;
x> =38

lim
Example 30 : Find ', ,/x Txt2- il

x’—8
Solution : fim
x=2 [+ x+2- fx+2

(x =2)(x? +2x +4) (‘/x2+x+2+,/3x+2j
_ lim
T x> (‘/x2+x+2—‘/m1(‘/x2+x+2+‘/m1

(x =2)(x* +2x +4) (\/xz +x+2 +‘/3x+2)

x—>2 (X +x+2)-3x+2)
(x —2)(x* +2x +4) (‘/x2+x+2+‘/3x+2)
_x—>2 x2_2x
lim (x—2)(x2+2x+4)(\/x2+x+2 +‘/3x+2)
Cxo2 x(x—2)

= lim

x—2

_ (128 +48) _ _ . > _ [lim (x2+x+2) _
= 82D = 64d2) = 2442 (tim 2 srs2 - \/H2 - /8

by rule of limit of composite function.)

(x2+2x+4)(\/x2+x+2 +‘/3x+2]
X
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Two Important Rules :

(1) If f(x) < g(x), Vx in the same domain and both lim 7(x) and lim g(x) exist, then

X —a xX—a

lim f(x) £ lim gx).

X —>a X —>a

(2) If g(x) < f(x) < h(x), Vx in the same domain and if lim g(x) and lim A(x) exist and are

X—a X —da

both equal to /, then lim f(x) exists and is equal to /.
X —>a

This is known as Sandwich Theorem or Squeeze Theorem.

(We do not prove it.)

Example 31 : Prove lim xsint = 0. x#0)
x—=0 x

Solution : —1 < sini <1

—x < xsiné <x (x>0

Iim x=0, lim —x=— 1lm x=0

x — 0+ x — 0+ x — 0+

By sandwich theorem lim xsin= = 0
x — 0+

Similarly lim xsini =0

x —0-

lim xsinl =0
x—0 X

Note : It is incorrect to argue as follows :

lim xsinl = lim x lim sinl
x—0 X x—0 x—0 X

= 0 (a number between —1 and 1)

=0
Product rule for limit applies only if both the factors have limits. Here xliglo sini does not exist.
(Look at the graph 10.14)
Example 32 : Prove lim X2sint = 0. x#0)
x—0 X
Solution : —1 < siné <1
—? < xzsini < x? % >0
lim 2 =0 lim —2=_1lm 2=
x—=0 x—=0 x—=0

By sandwich theorem lim x2

sinl =0
x—0 X
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Note : Tabulating values will not offer rigorous results. Thus we can proceed by definition.
Let O = JE
Since € > 0, O exists.
0<|x—0]<d =0<]|x|<e
=S0<|x]’<e¢

Now, xzsini —0|=|x2sini|S |x|2<8as|sini‘ﬁ land 0<|x—0]<d

lim x2sin~ = 0

x—0 %

10.5 Trigonometric Limits

B
We proceed to prove some lemmas. Q
P
Lemmal:cosx<w<l; O<|x|<%.
X

Proof : Let x be the radian measure of ZAOP 0 M A
such that 0 < x < % Then P(x) € AB. ®(0, OA) is
unit circle.

.

Let OP intersect tangent at A at Q. Figure 10.15

Let PM L X-axis and M € OA.

Obviously area of AOAP < area of sector OAP < area of AOAQ (i)

Now PM = sinx, AQ = é—g +OA = OA tanx = tanx

%OA-PM < %(OA)zx < %OA-AQ (from (i) and area of a sector = l1'29)

2
sinx < x < tanx OA =1)
X L (sinx > 0)
SINX ~ COSX
cosx < SHX < 0<x<Il
X 2

Ifx<0,letx=—y, y>0

siny
cosy<7<1 0<y<%
sin(—x) T
cos(—x) < ——= < 1 0<—x< =
cosx < X O<|x|<% (Ix]==x)
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Lemma 2 : |sinx| < | x| Vx € R
Proof : If | x| =2 1, then |sinx| < 1 < | x| is true.
Forx =0 |sinx|=0<0=|0]

Thus, we have to prove the result for 0 < | x| < 1.
Wehave,%<l 0<|x|<%
Let 0 <x <1

0<x<1<Z

Sinx
X

<l
sinx < x
|Si7’lx|$|x|assinx>0,x>0for0<x<%_
Let -1 <x<0. Letx=—y

Then -1 <—y <0 or 0<y<1
|siny| < |yl
| sin(—x) | < |—x]|
| =sinx| < |—x| Hence |sinx| < |x|
|sinx| < x| Vx€ R

Lemma 3 : lim |[x| =0
x—0

Proof : Let € =9. Then, -0 <x< 0 = |x|< 0
= |x|<E€
= |Ix||<e
=||x|-0|<e

im |[x| =20

x—0

Lemma 4 : If lim |f(x)] =0, lim f(x) =0
x—=0 x—0

Proof : —|f(x)| £ f(x) < | f(x)]

lim —[f(x)| =—1lm |[f(x)]=0, lim [f(x)|=0
0 x—=0 x—0

X =

By sandwich theorem lim f(x) = 0
x—0

x> 0)

©® =9
(J1x1p=1xD
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Lemma 5 : lim sinx = 0

x—0
Proof : 0 < |sinx| < | x| Vx € R
lim 0 =0, lim |x| =0
x—0 x—0
Lim |sinx| =0
x—0
lim sinx =0
x—0
2
Lemma6:1—x7ScosxSl Vx e R
Proof : We know 1 — cosx = 2sin2%
| sinx| < | x|
mX | < | X
|s’”2|—‘2‘

2
sinzfﬁxT
1—cosx=2sz’n2£32><3€_2:x_2
2 4 2
1—%2Scosxﬁl

Theorem 3 : lim cosx = 1
x—0

2
Proof:l—xTScosxSI

lim 11— =1-0=1
x—0 2

Iim 1 =1
x—0

By sandwich theorem lim cosx = 1
x—=0

Theorem 4 : lim sinx _ 1
x—>0 X

SIX < 0<|x|<Z

Proof : cosx < . <
Im cosx =1, lm 1 =1
x—0 x—0
By sandwich theorem lim SUX -
x—0 X

Theorem 5 : lim sinx = sina
X—a

Proof : Let x —a=h. Thenx =a + h
Asx > a, h—0

(Sandwich theorem)

(Lemma 4)

(limit of a polynomial)
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lim sinh =0

h—0
lim sin(a + h) = lim (sina cosh + cosa sinh)
h—0 h—0
= sina lim cosh + cosa lim sinh (algebra of limits)
h—0 h—0
= sina+1 + cosa-0 (lim cosh = 1, lim sinh = 0)
h—0 h—0
= sina

Iim sinx = sina
X —a

Theorem 6 : lim cosx = cosa
X —da

Proof : Againletx =a + h

Asx > a, h—0

lim cosh = 1 and lim sinh
h—0 h—0

Il
o

lim cosx = lim cos(a + h) lim (cosa cosh — sina sinh)
x—=a h—0 h—0

= cosa lim cosh — sina lim sinh (algebra of limits)
h—0 h—0

= cosa+1 + sina-0

= cosa

lim cosx = cosa
X —a

Theorem 7 : lim MC=1
x—>0 X

Proof : lim fanx _ |y _sinx

x—>0 X x—0 XxXcosx
lim Sinx
x—=0 X .
27 - 1 . Sinx _ . _
= limcosx*T’1 (llmT—l, llmcosx—l)
x—=0 x—0 x—0
lim tanle
xr—0 X

Now we will apply these results to examples.

Example 33 : Find lim Sinax , a b#0
x—0 sinbx
lim 314X g
. ; —(0 ax
Solution : lim Sitax _ Z -
x—0 sinbx lim Sinbx p,
xX—a 29
l-a 4 . sinx
=15 ~ b (llm _—= = 1)
x—0 ¥
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im 1 —cos2x
Example 34 : Find fim

. lim 1—¢os2x  lim 2sin’x
Solution : ,_ G—r— = X0 52X
2
_ hmo sinx | sinx . 2% 52
X —> X X . X . X
sing. sins
=1-1-2:2=4

Another Method :

im  Sinax +bx
Example 35 : Find fim

x— 0 ax + sinbx

x—=0 1—cosx -

lim 11— cos2x
x—0 1—cosx

lim (1—cos 2x)(1+ cos 2x)(1+ cosx)

x—=0 (14 cos2x)(1—cos x)(1+ cosx)

lim sin®2x(1+ cosx)

T x>0 gin?x(1+ cos2x)

x=0 432 gin2x (A+cos2x)
— 143
=1-4 2) =4

sinax+b

lim sin®2x _4x>

(1+ cosx)

X

x—0 g4 Sinbx
X

a sinax + b
ax

x—0 a+b sinbx
bx

. sinax + bx lim
Solution : |~y =
_ lim
a+b
T a+b
. tan 2x
Example 36 : Find hmn - .
x—>; L _x

2

1

Solution : Let % —x = 0. Then as x — %, a—0

lim
x—>% ﬂ_x oa—0

oax—0

Example 37 : Find '~ 3

; tanx — sinx
Solution : lim T~ ST _

x—0 3

Ao

o

lim fanx — sinx

o

Sinx

tan 2x lim fan 2(% - 0()

lim fan(T—20)  [jjm —fan20

ax—0

COSX

x—0

lim sinx(1— cosx)
x—0

lim

x—0

x3

cosx - x3

— sinx

200

tanx- 2sin§ . sin%

1
2

X22

X
2

<2
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. lim cosecx—cotx
Example 38 : Find Tt
Solution : lim cosecx—cotx _ lim 17€osx
olution : fo 0 = x>0 Sxex

inx.sinx
2Sll’l2 Sll’l2

lim 1—cosx  fjm (1 —cosx)(1+ cosx)
x—0 sinx-x ~ x—=0 (1+ cosx) xsinx

or

lim sin*x

x— 0 xsinx (1+ cosx)

Sinx
x—0 x(1+cosx)

1

1
1+1 2
lim sinx — cosx

Example 39 : Find x—>% =

T—x

1 . 1
lim sinx — cosx lim ﬁ(ﬁsznx —ﬁcosx]

Solution : T = I
X = T_ X = T_
4 4
) R_ i
lim ﬁ(smx cos < — sin 4cosx)
== T
x—o>= T
4 7 X
i _ I
po Jasin(x— %)
= 7T
X — = oy =X
P8
_ lim 2sino
oa—>0 —0L

Miscellaneous Problems

Example 40 : Find lim (ﬁ_L)

x—1 x2 -1
: lim | _L 2 lim X+1=2
Solution : "4 | 3 21T x>1 x2-1
_ lim (=D
T x>l (x=1D(x+1)
_ lim _1_
T ox—=1l x+1
:l
2

(takeoc=x—%,00—>0)
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X+ xr+4x+12

Example 41 : Find xim_z

x> —3x+2
ol lim X +x%+4x+12 lim (x+2)(* —x+6)
olution : =, , T 3 T T x5 2 (x+2)(x* —2x+1)

lim X —Xx+6
x—==2 x2—2x+1

44246
d+4+1

=12
9

Example 42 : Find hm x° +x+1—ux+

Gh2+x+1—Jx+1XJx2+x+1+Jx+1]
. lim
Solution : x—0 x2 (‘/xz +x+1 +‘/m]

X24+x+1—x—-1

lim
T x>0 x? (‘/x2+x+1+,/x+1]

[SSYEN

1

lim
=0 2+ x+1+ X+

1
2

Example 43 : Find lim (xtanx - %secx),
x>
2
. - xsinx—%
Solution : lim (xtanx - —secx) = lim ——————
n 2 n  COSX
X == x—>=
2 2
T T
. ——0|cosoL - =
= lim (2 ) 2 (E—x:a’aﬁo)
x—0 SinoL 2

— lim %(COS(X—I) A cost

o—0 sino. sinoL.
- 2sm —) o
= lim
% —0 2sm— cos & tana
= lim (-Z,,,o _ &
o—0 2 2 tand.

Example 44 : Find lim (1 — x) tan ZX,

x—1 2

Solution : Let ] —x =0, & — 0 as x — 1.
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lim (1 —x)ran%
x—1

lim O(tan%(l - o)
oax—0

lim o tan(% —%)

a—0
Iim O(cotnTa
a—0

7T

=
lim 2

T
oa—0 2tan >

Tt

-1 _2
A
2
Example 45 : Find lir%n1 (l—njcm - l—nxn]; (m, n € N).
X
m n m(1—=x")—n(1—x")

Solution : i - = i
olution = lim, [l—x’" l—x”] T

Letx=14+hsothat » > 0asx > 1

m n
lim T
s =" 1= X"

m1—=(1+h)"] = n[1—-0+h)"]

h—0 [+ —1[a+m" -1

m(l—l—nh—[’;

Jt = () == ) === () -

m
2

)hz -

= [ (2 e e e =)

h(—mn —m(’gjh—m(”)hz —mmh" ! +nm+n(’;’)h+n(’?)h2 +...+nhm_1)

=i ([ (e () (3]

lim h(_m(};)‘m jh—---—mh"_z +n(’§’)+n(’§’)h +...+nhm_2)

-mn(n—1 nm@m-—1)
= 2 2
mn
_ m—1-n+1
- 2
m—n
o 2

';)h e 1] ((7) +(g)h boa kT 1]
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Exercise 10

Using algebra of limits and the definition of limit prove the following : (1 to 3)

1. lim x*=4 2. lim |2 = 3. lim 3=77
PIN) x—1 x—3

Prove following limits do not exist : (4 to 6)

lx—3lI
4. lim X! 5. 6. lim [x
x—=0 X x—>3 X3 xez[ :
x* =9 ;
7. Forf(x) = ——5.x #3./(3) = 6, prove M 7#(x) = £(3).
x* =1
8. Forf() = S x# ~L /(=) =5 prove lim f(x) # /(=D
X = -

9. If xlina fx) = xﬁi)na g(x) where x € (@ — 8, a + ) — {a} for some O > 0, can we say
f(x) = g(x) forallx € (a— 0, a+ 0) — {a}.

10. fx2+ 1 <f(x) <2x*+ x2+ 1, prove lim f(x)= 1.

x—0
Find following limits : (11 to 32)
1
. 6 _1 . tanmx
lim 2 lim
o e Jx =3 12 o tannx
lim J3 cosx — sinx
13. - _x
x—)% X—=
lim 9sinx — 40cosx 40 B
4. T o where tan06—7,0<0c<3
i 1 1l 1
15. lLim XEM*-xt 16. lim &*+hP-x*
h—0 h h—0 h
. xt—3x*+2 .
lim lim —
17. T s 1 ax 1 18. x_)ﬂ(secx lanx)
2
x—1
19. lim (why x = 1+ ?)
x— 1+ ,/x2—1+,/x3—1
. X" —m+px+n 25inx — sin 2x
20. lim 3 ,n €N 21, lim ————
x—1 (x—=D =0 X
. Sin 3x + cos3x 1+ n_ (14 nx)"
2p, Mim ———— 23, pim QMmO e N
x—= x-—I 2
4 4 x—0 X
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24, lim

10+ cosx —3

X—ow (T —x)?

26. Lm s/_—,/lz-l-cosx

x—0 X

COS5X — coSTx

)C2

secx — tanx

T
> X

lim J2a+3x - Jx+4a

" xoafa+2x - Jax+a

lim Sin(a + 3h) — 3sin(a + 2h) + 3sin(a + h) - sina
28. h—0 3
29, lim Sin(3 + x) — sin(3 — x)

x—0 X

2 o 2

31 lim (a + h)* sin (a + h) - a*sina

h—0 h

+ +h) -

32, lim (x + h) sec (x + h) — xsecx

h—0 h

33. Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the

right so that the statement becomes correct :

lim  1—sinx
(1) X — % COSX T eeeees D
(a) 1 (b) 0 (c) —1 (d) 2
Iim Ixl
2) x50 & e . [ ]
(a) is 1 (b) is —1 (c) is zero (d) does not exist
3y lim  fanx
(€ ) R . ]
(a) is 1 (b) is —1 (c) does not exist  (d) is 0
. n_ An
4) 1f Im X2 =80, thenn= ... ]
(a) =3 (b) 2 (©5 (d) 6
lim l—cosmx
() xS0 T—cosmxe — ]
3
m m_ m_
() 2 (b) %5 © % (0
lim [Ismnxl
(©) 504 —— o ]
(a) is 1 (b) is —1 (c) does not exist  (d) is 0
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7 xlg‘})_%[]x] ...... (-1 <x<0,x€ R)
(a) is 1 (b) is zero
(c) is —1 (d) is sinl
lim sinx
(8) x—0 ’x+1_ 1—x = e
(a) 1 (b) 2 (c) 0
lim (X —Dex-3)
(C) I a3
(a) does not exist (b) is 1 (c) is %
(10) x]jglo Sinx — 2sinx3x + sin 5x -
(a) 5 (b) 6 (©) 0
() 1 <fx)<x*+2x+2 Vxe R, lim f(x) = ...
x— -1
(a) 2 (b) 0 (c) —1
lim
1z m (iJrﬁ) =
(a) 2 (b) 1 () 0
(13) M #(x) = ... where f(x) = ( 2x+3 x<2
5 x=2
3x + 2 x>2
(a) 5 (b) 3 (c) 2
(14) EH}H f(x) = ... where f(x) = { 3x2 — 1 x<0
3x2 + 1 x>0
(a) 1 (b) —1 (©) 0
(15) lim [x] = .....
X =5+
(@) 6 (b)5 (c) =5
(16) lm [x] = ...
x = —4-
(a) 5 (b) =5 (c) —4
li sinx — sina B
an B S = e
(a) cosa (b) sina () a

(d) -1

. 1
(d) is T

(d) 10

1

(d) —1

(d) does not exist

d %

(d) 4

(d) 4

(d) 0
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sinx— sina

sy Hm T @>0= .

(a) cosa (b) % (c) 2\/5 cosa (d) 2\/5
. tanx — 5x
(19) thnO Tx — sinx e E]
2 -2 5 _5
(@) 5 (b) 5 () 7 (d) =
1 1
lim -4
20) 5, I IT(@>0~=... ]
x5 —as
3 L 3 2
(a) $a’ (b) $a" © 2a’ (d) 2a"®
%k
Summary

We studied following points in this chapter :

1.

2
3.
4

History of limits
Graphical and tabulation for inference of limit

Formal definition of limit and applications

Algebra of limits, if lim f(x) and lim g(x) exist, then
X —a X —a

lim (f(x) £ g(x)) = lim f(x) £ Lim g(x),
x—a x—a x—a

lim (f(x) gx)) = lim f(x) lim g(x),
x—a x—a

X—a

lim f(x)
lim L) _ 2o (where lim g(x) # 0)
x—a 8X) xllna 8(x) x—a

h'm xn_an

_ n—1 . 5
Poa o na and rule of substitution

Sandwich theorem and trigonometric limits

h.m_sinle, ﬁmw=l, lim sinx =0, lim cosx = 1

x—0 X x—0 X x—0 x—0

lim sinx = sina, lim cosx = cosa
X —>a X —>a

— ‘ —
e

Bhaskara 1

Bhaskara stated theorems about the solutions of today's so called Pell equations. For
instance, he posed the problem : "Tell me, O mathematician, what is that square which multiplied
by 8 becomes - together with unity - a square?" In modern notation, he asked for the solutions of
the Pell equation 8x2 + 1 = y2. It has the simple solution x = 1, y = 3, or shortly (x,y) = (1,3), from
which further solutions can be constructed, e.g., (x,y) = (6,17).

LIMITS
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Chapter 11

DERIVATIVE J

Mathematics is as much an aspect of culture as it is a collection of algorithms.
— Carl Boyer (in a Calculus Textbook)

11.1 Introduction

In calculus the derivative is a measure of how a function changes as its input changes. Loosely
speaking we can think of a derivative as how much one quantity changes in response to changes in
some other quantity. The derivative of the position of a moving object with respect to time is its
instantaneous velocity.

The derivative of a function at a chosen input value describes the best linear approximation to the
function near the input value. For a real function of a real variable, the derivative at a point is equal to
the slope of the tangent line to the graph of the function at that point.

For a ‘small’ 4 the line passing through (a, f(a)) and (a + A, f(a + h)) is called a secant line. Its
slope for a value of / near to zero, gives a good approximation to the slope of the tangent line to the
curve y = f(x) at (a, f(a)) and smaller the value of 4, we get a better approximation.

Slope m of the secant line at (a, f(a)) is given by

This is called Newton's difference quotient.

lim f@+h-f@

he0 7 is the derivative of f at a and is denoted by f'(a), if this limit exists.

This represents slope of the tangent to y = f(x) at (a, f(a)).

We can also say

lim f@+h-f@-h'@ _ lim fa+h-f@ _

h—0 h T h—0 7 f'(a)
= fla) = [
=0
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This gives best linear approximation f(a + h) = f(a) + hf'(a) for f near ‘small’ A.

h

(a + h, f(a + h)) on the graph of y = f(x). If the graph of fis a unbroken curve with no gaps, then

If we write Q(h) = , Q(h) is the slope of the secant line joining points (a, f(a)) and

h]jmo Q(h), if it exists, is called the derivative of f at @ and we say f is differentiable at x = a.
ﬁ

Rocket scientists need to compute the accurate velocity with which the satellite needs to be
shot out from the rocket knowing the height of the rocket. Derivative is a word regularly used in
stock market. Financial institutes predict the change in the value of a stock knowing its present value.
All these require the knowledge of change in one quantity called dependent variable depending upon
the change in another quantity called independent variable.

11.2 Formal Definition and Examples

Definition : Let f be real valued function defined on an interval (a, b). Let ¢ € (a, b). Let h be

sufficiently small so that ¢ + 4 € (a, b).

If h]jino w exists, it is called the derivative of f at ¢ and is denoted by f'(c).

Example 1 : Find f'(1) for f: R — R, f(x) = 3x + 5, if it exists.

Sa+h-fm _ lim 31+h)+5-8

i M ]_1 =
Solution : hino 7 Jm 7 Q) =39
= lim 34 - 3
h—0 h

£'(1) exists and f'(1) = 3
Example 2 : For f: R — R, f(x) = 2x2 + 3x — 1, find f'(0), if it exists.

fo+h-fO _ 2h* +3h—1—(—1)

Solution : lim lim 0) = —1
olution Jim 7 Jm - (f (0) )
2
— L 2Mt3h
h=0 h
= lim 2h+3)=3
h—0
f'(0) exists and f'(0) = 3
Example 3 : For f: R = R, f(x) = sinx, find £'(0), if it exists.
. lim SO+ -fO _ lim sinh — 0 .
Solution : hs0 " Jm 7 (sin0 = 0)
— lim Sinh _
h—0 h

/'(0) exists and f'(0) = 1
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inl
Example 4 : For f: R = R, f(x) = {)(C)Slnx ’ x;té), find £'(0), if it exists.

’

hsint
. . hy - f(0) . h
Solut . lim Sh-fO _ lim ——2 0) = 0
o = h h—0 h s )
= lim sin+- does not exist. (Refer chapter 10)
h—o h
inL
fx) = {)(;Slnx ’ xi(()) has no derivative at x = 0.
X =

2001
Example 5 : For f: R = R, f(x) = {)(; S x¢8, find £'(0), if it exists.

’

h2sinL
. . h - 1) . h
Solut : lim Sh-TO _ Lim 0) =0
oo h h—>0 h GO =0
= lim hsin%
h—0
Now 0 < [sinsl < 1= 0 < |hsing| < |h| and lim 0=0, lim |h|=0
h—0 h—0
lim |hsind| = 0
h—0 h
lim  hsin- = 0
h—0 h

1'(0) exists and f'(0) = 0
Definition : Let f be defined on (a, ). Let x € (a, b) and /i be sufficiently small so that

x+h € (a b). If lim f(x+h)-f(x)
h—0 h

exists, we say f is differentiable at x and call this limit
the derivative of f at x. This gives us a function di f(x) defined at all points of x € (a, b) where
x

h _
fis differentiable and we write £'(0) = & f() = lim LX)
dx h—0 h

, at all points of (a, b)

where f is differentiable. (Assuming that f is differentiable at at least one point of (a, b).)

d
If we write y = f(x), di f(x) may be written as d_y Its value at x = ¢ can be written as
x x

[i f(x)] or (d_y] or sometimes [D f(x)],. _ . or f'(¢).
dx X =c dx jx =c

Example 6 : For f: R — R, f(x) = ax? + bx + ¢, find f'(x) and f'(0).

lim fa+h-fo _ lim [a(x+h)?*+b(x+h)+c]-(ax* +bx +¢)

Solution :
h—0 h h—0 h

lim [a(x> +2hx + h?) + bx + bh + ] - (ax*> + bx + ¢)

_h—>0 h
2
— lim 2ahx + ah” + bh
h—0 h
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lim (2ax + ah + b)
h—0

2ax + b
f'(x) exists for Vx € R and f'(x) = 2ax + b

f'0) = b (taking x = 0 in f'(x))

Note : If we obtain f'(0) as hlimo M, then also we will get b as the answer.
ﬁ

h
Example 7 : For f: R = R, f(x) = ax + b, find f'(x).

Solution : lim LEFM-F0 _ pax+h+b-(ax+tb
h=0 h h—0 h

lim 4k _
h—0 h

f'(x) exists and f'(x) = a, Vx € R.
ax+b d
Example 8 : For f: R = R, f(x) = 7 find f'(x) and f"(0). (x " _?)

Solution : lim M
h—=0 h

ax+h+b B ax+b
= lim c&x+h+d cx+d
h—0 h

(ax+ah+b)ycx +d)— (ax+b)cx +ch+d)
h—0 (ex+ch+d)(ex+d)h

h(acx + ad — acx — bc)
ho (cx+tch+d)(cx+d)h

3 (ad — bc)
 h—o (ex+ch+d)(ex+d)
(ad—bc)
" (cx+d)?
ad—bc
f'(x) exists and f'(x) = m
. ad — bc
f'0) = 2
d
Note:%éZ;—z1 (taking a =0, b=1,c =1, d = 0 in (1))

11.3 Algebra of Derivatives
Let fand g be differentiable in (a, b).

Then (1) f+ g is also differentiable in (a, b) and
a4 - d a4

L (f(x) + g) = L 1) + 4L o)

(2) f— g is also differentiable in (a, b) and

L (f(v) - g0) = L 1) - L g

(@)
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(3) [fX g is also differentiable in (a, b) and
< (1) - a + d
L (f(x)g0) = gL /() + /() <= ()
“4) % is also differentiable in (a, b), if g(x) # 0, and

d f(x) 88X (x)-fx)e'(x)
dx g(x) [g(x0)]

Some Important Results :

r—x

| . f-f
1) f'(x) = lim ————
t—x
We have f'(x) = lim M
h—=0 h
Letx + 2 =1t Then t = x as h — 0.

N SO R A€
AL thinx r—x

(2) The derivative of a constant function is zero.

Let f(x) = ¢, Vx € R.

m L&t -f) o c-¢

= lim 0= 0
h—0 h h—so h h—0
i =
dxc 0

@) Lk = kp

L yr ) =kl po + fo) Lk

KL f o) + f()-0
= kL f )
 Prove + () — ) = < 70y — 4 1) usi
Example 9 : Prove : dx(f x) — gx) = I f(x) I 2(x) using
L1 + g0) = L f(0) + <L g() and L kf () = kp ()
Solution = “L(7(x) — g() = L(F(x) + (~1)g(w)
= Ly + <L (e
=Ly + (o)

= L7 — e

(k € R is a constant.)

(by (2)
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Example 10 : Prove : T K (x) = k e fx), k€ R

Solution : lm HCEFXW=KD _py p jyyy SEEDZFO (Rules of limit)
h—0 h h—>0 h—0 h
S
N

d - d
k() = k5 /()
Some Standard Forms :

€)) %x”=nx”_l, n€ N,x e R

n n
Proof:ixnz Iim M
dx

h—0 h
(e (e e ()
h—0 7

nx"_1h+(2’)x"_2h2 +..+ W
lim
h—0 h

h]jmo(nx”‘l+—n(n2_l) X2 h+ (’;)xn_3h2+...+hn_l) ="~ 1
%

Second Proof : Let P(n) : %x” =y~ |

We have 4= x! = Tim 2XA2X _ i By Al eyl - T =11 =1 « # 0)
dx h—0 h h—0 h
P(1) is true.

Let P(k) be true.

d ko= k=1

dx
Letn =%k + 1

d k+1 - d k.

dxx dxx *
- hd d

xkdxx+xdxx

=3l + x kb -1
= xk + koK
= (k + Ik

P(k + 1) is true.
P(n) is true, Vn € N by PM.L

By the principle of mathematical induction P(n) is true, Vn € N.
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. d o, _ limt"-x"
Third Proof : PR I — (formula (2))

lim =) T T T

t—x r—x

lim (7= 1+ /=2y + =324+ ... +x"" 1
r—>x

="l =200 4 =302 4 4 x|
= px" — 1
Note : We have given the proof for n € N, x € R, but the result is valid for » € R, x € R™.
We will not prove it.
(2) Derivative of a Polynomial :
Let P(x) =anx”+an_1x”_l +an_2x”_2+...+ao,x€ R,ne N,a, #0,q, € R
i=0,1,2,..,n

be a polynomial of degree n.

n

%P(x) =%(anx”+an_]x”_l+a _2x”_2+...+a0)

_d  onyd n-14 4d n-2 d o

dx + dx - 1% + i In 2% +..+ % % (Derivative of sum)
" d n-1 d n-2 d
_a”dxxn+a”—1dxxn +an_2dxx” +...+ )

=na”x”_1+(n—l)an_lx”_2+(n—2)an_2x”_3+...+0)

()

(3) Derivative of a Rational Function :

Let h(x) = ZE;; be a rational function, where p(x) and g(x) are polynomial functions. g(x) # 0.
g(x) p'x) - p(x¥) g'x) ‘
h(x) = GO and p'(x) and ¢'(x) can be obtained by (2).

€)) %sinx = cosx, x € R

. . +h .
lim sin(x+ h) — sinx — lim 2¢0s 2x2 sm—éL
h—0 h heo0 —h
cos(x + %) sin-éL
= lim 7, = cosx
h—0 -
d .
== sinx = cosx
dx
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d

®) x COsx = —sinx, x € R
i hy ¢l
lim cos(x +h) —cosx  _ lim 2szn(x+ 2)s1n2
h—0 h h—0 h
) sin(x + %) sinzzL
_ _ lim
h—0 h
2
= —sinx
%cosx = —sinx
(6) L yanx = sec’x, x € R — k-1 Zlkez
dx 2
d d_ sinx
= tanx = — —=
dx dx cosx
A iy — giny 4
_ COSX = SINX — Sinx - cosx
cos*x

cosx (cosx) — sinx (—sinx)

COSZX

. 2
cos’x + sin’x

cos'x
_ 1
cos’x
= sec?x
7 %cotx = —cosec’x, x € R— {kw | k € 7}
d d cosx
== cotx = —— ===
dx dx sinx
_ Sinx - COSX = Cosx - = sinx
sin*x

sinx (—sinx) — cosx -cosx

sin’x

—(sin’*x +cosx)

Sin°x
—1
sin’x

= —coseczx

) isecx = secx tanx, x € R —

{(2k—1)§‘ke z}

d
b le for —
(yrue or -

b le for —
(yrue or —

7

dx é)

dx
% seex = % colsx
_ cosx%l—l%cosx
cos’x
DERIVATIVE
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cosx *0— 1(—sinx)

COSZX

Sinx
cos’x

= secx lanx

) icosecx = —cosecx cotx, x € R—{km | k € Z}

dx
d d 1
== cosecx = — ———
dx dx sinx
_ sinx dxl 1dx Sinx
sin*x

sinx +0—1(cosx)

sin’x
—COSX
sin’x

= —cosecx colx

Note : f'(x) = hﬁglo w is called the derivative of f(x) obtained using definition or

from first principle. Above standard forms can also be obtained from first principle.

d _d d
Also we can extended the rule Tr (fix) + () = Tr fi) + Tr SH(x) as

L (@) + HE) + ot [0 = Lfi) + Lp) + o+ L), using principle of
mathematical induction and we have used it in obtaining derivative of a polynomial.

Also we note that this result is true only for a finite sum of » terms and for infinite sum
% (i) + H(x) +...) = % Six) + % SH(x) + ... may not be valid. This would require advance
discussion on convergence and uniform convergence of a series which we are not able to do
here at this stage.
Some Miscellaneous Problems :

2

Example 11 : Find the derivative of f(x) = cos“x.

Solution : icoszx S COSX COSX

dx dx

= cosxi cosx + cosxi cosx
dx dx

= 2cosx (—sinx)
= —2sinx cosx
= —sin2x
Example 12 : Find the derivative of xsin x from first principle.

Solution : 4 xsinx = lim (x +h) sin(x +h) - xsin x
dx h—0 7
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Example 13 : Find ix tanx

Solution :

Example 14 : Find

Solution :

d

i tanx

dx

d
dx

i secx

dx

(x+h) sintx+h) - (x+h)sinx+ (x+ h)sinx — xsin x

lim
h—=0 h
. sin(x+h) — sinx . _ ;
im (x+h)[ = J+ im (x+ h - x)sinx
h—0 h—0 h
(x+h) 2c0s(x+%) sin%
lim + lim sinx
h—0 h h—0
(x+h)c0s(x+%)sin%
lim 7 + sinx ( lim ¢ = C)
h—0 5 h—0

xcos x + sinx

from first principle. x € R — {(2k -1 % ’k € Z}

tan (x + h) - tanx

h—0 h

~ lim
h—0 h

— lim ltanh
hso h h

- secx

tan (x +h - x)

1-(1 + tanx)

S€C2x

(1 + tanx tan (x + h))

(tan(A + B) formula)

lim (1 + tanx tan (x + h))
—0

from first principle. x € R — {(2k -1 % ‘ k € Z}

secx (x + h) — secx

h—0 h
_1 1
lim cosx +h cosx
h—0 h
. cosx —cos (x +h)
lim h
h— 0o hcosx cos(x+h)
fm —2sin(_7h) sin(x +%)
h—>0 hcosxcos(x+h)
. h
ik sin (x + —)
lim sing 2
h—0 L cosxcos(x+h)
2
1. sinx
COSX COSX
secx tanx
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Example 15 : Find 4 sinx.

dx
Solution : isian S 2sinx cosx
dx dx
= 2[sinxi cosx + cosxi sinx]
dx dx
= 2[sinx (—sinx) + cosx - cosx]
= 2(cos*x — sin*x)
= 2cos 2x
‘ o n RS K12
Example 16 : Find the derivative of 2— + + +..+x+1
n n—1 n—2
n—1 n—1 n—1)x""? n—2)x""3
sOlution:i(ﬂ+x +...+x+1):”x ;D ;22 +140
dx \ n n—1 n n—1 n—2

=x" "l x =2 413 4 4]

x =1
= as a sum of G.P.
x—1

Example 17 : Find % (ax + b)". Deduce value of %(ax + bY" (ex + d)Y".

Solution :

L@+ by =@y + (’fjmx)n—lb + (’;)(ax)ﬂ—%z +.t (n’il) a1+ )

:a”n-x”_l+n(n—l)xn_za”’_lb+(n—2)(’21)x”_3a”_2b2
+...+(n’11)a-1-b"—1+0

—(n—z)z(n— D (ax)" ~ 324+ .+ b - 1]

na[(ax)” Lt = D)y~ 2%b +

na((ax)” -4 (nl_l)(ax)” “2p + (nz_lj(ax)” 324+ l)
= na(ax + by" 1

Now, %(ax + b)Y (ex + d)Y' = (cx + dA)" %(ax + bY" + (ax + b)" %(cx + d)"

= (ex + dY ma(ax + bY" ~ 1+ (ax + bY" ne(ex +dy? — !

= (ax+b)" = V(cx +dy' ~  [ma(cex + d) + ne(ax + b)]

Example 18 : Find

d (@ +bsinx .
- (—). (¢ + dsinx # 0)

dx \ ¢ +dsinx

a+ bsmxj (¢ + dsinx) % (a + bsinx) — (a + bsinx) %(C + dsinx)

Solution : ix (c+dsinx (c + dsinx)?

(c+dsinx bcosx— (a +bsinx dcosx
(¢ + dsinx?
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bccosx+bd sinxcosx—adcosx— bd sinxcosx

B (c +dsinx)?
—(ad—-bc)cosx
(c +dsinx)?
Example 19 : Find 4 _x . (sinx #0), n € N
dx gin"x
Solution : First of all we prove % sin"x = nsin ~ 1x cosx by PM.L

d . .
For n = 1, <= sinx = cosx = 1-sinx cosx

dx
S P(1) is true.

k

x = ksink =1

d .
So i sin

kx - sinx

Let P(k) be true for some k € X COSX

N.
= d k+1, - d
Forn = k + 1, xS X e Sin
= sinx 4 sinfx + sinfx 4 sinx

dx dx

k

! X COSX

sinx - ksin* ~ lx cosx + sin

k

x cosx + sink

k- sin X COSsx

(k + 1) sinfx cosx
S Pk + 1) is true.
o P(n) is true, Vn € N by PM.L

Now i X _ smin xdxx xdxsmx

> . .
dx gin"x sin*x

sil'x — x -nsin” "' x cosx

sint'x

sin’ ~ 'x (sinx— nxcosx)

sin*'x
SINX— NXCOSX

sin* t1x

Example 20 : Find the derivative of v sinx from first principle. (sinx > 0)

Solution : LM — lim ¥sint - ¥sinx
" dx r—x t—x
sint— sinx

~ 1o x (Jsint +sinx)(t - x)

t+xs.nt—x
2 L 2

_ lim _
Tt x (Jsint +s/sinx)(t ijz

24/ sinx 24/ sinx

2cos
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d o

Example 21 : Find == x“sinx by definition and verify using rules.

dx
Solution :
2 o 2
ixzsinx — lim (x+ h)” sin (x+ h) — x“sinx
dx h—0 h
_ fim W% sin(x + h) — (x + h)? sinx + (x + h)* sin x - x*sinx
h—0 h
_ lim (x4 A (sin(x+h)—sinxj + lim [(x + h)? — x?] sin x
h—0 h h—0 h
X+ h)? (2cos x+L sinﬂ]
 m ( ) ( 2) 2 + Qhx + h?) sinx
h—0 2 % h—0 h
(x + h)? cos (x + %) sin % -
= 50 % + o Qx + h)sinx
= x2cosx + 2x sinx
Now, %xzsinx = x2 % sinx + sinx %xz
= x2 cosx + 2x sinx
Example 22 : Find % %. (sinx # —1)
(1+ sinx)i cosx — cosx - (1+ sinx)
Solution : 4 oSy _ bt — b
dx 1+ sinx (1+ sinx)

(1+ sinx)(—sinx) — cosx-cosx
(1+ sinx)’

—sinx — sin’x — cos’x

(1+ sinx)*

—(1+ sinx

) 2. _
(1+ sinx)* (sin“x + cos“x = 1)

—1
1+ sinx

Example 23 : For f(x) = x100 + x% + x9 +  + 1, find 7'(1).
Solution : f(x) = x100 + x99 + X + 4+ 1

f'(x) = 100x7? + 99x8 + ...+ 0

£1(1) =100 4+ 99 + 98 + ... + 1
_ 100(2101) — 5050 (Zn _ n(n2+ 1))
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Example 24 : Find 4 ( (sinx # cosx)

SINX — COSX

Sinx + cosx )
dx .

Solution :

) inx — d (i —(si A ciny —
d  sinx + cosx (Sinx — cosx) - (Sinx + cosx) — (sinx + cosx) dx(smx COSX)

dx Sinx — cosx (sinx — cosx)?

(Sinx — cosx) (cosx — sinx) — (Sinx + cosx) (cosx + Sinx)

(Sinx — cosx)?

—[(sinx — cosx)* + (sinx + cosx)*]

(Sinx — cosx)>

—2

= . . 2 2 —
(sinx — cosx)? (sin“x + cos“x 1)

Example 25 : For f(x) = | x|, find f'(0), if it exists.

Solution : We want lim M = lim M
h—0 h h—>0 h
Iim M: lim ﬁ:L
h—0+ h h—0+ h
im A gm R -
h—s0- h  h—o0- h
lim PAG O] does not exist.
h—0 h

f(x) = |x] is not differntiable at x = 0.
Example 26 : £ R = Z, f(x) = [x]. Find (1), if it exists. Find f'(L), if it exists.

Solution : f(x) = 0 if 0<x<1
1 if 1<x<2

im LOEW=SO oy 121 (since h > 0,1+ 7> 1 and [L + & = 1)
h— 0+ h h—0 h

fim LOEW=FO o 021 4o exist, h<0,1+h<1)
h— 0— h h—>0 h Y

£'(1) does not exist.

1 1 1 _
Ford —hn<x<d+n (h<3),f(x)—0

f'(x) = 0 since fis a constant function in

1,1
(5 h,2+h).

f'(x) = 0. Look at the graph. Figure 1.1
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Exercise 11

1. Find following derivatives from first principle at given point :

(1) sinx at x=0 ) % at x=1
3x+2

(3) 2x+3 at x=2 @ T35 at x=1

(5) 3x2—2x+1 at x=-1 (6) cosx at x==1

(7) tanx at x = % (8) secx at x = %

) cotx at x = ST (10) cosecx at x= %

2. Find following derivatives from definition : (on proper domain)

(1) 10x (2) secx + tanx (3) cosecx — cotx
(4) 2sin®x + 3cosx + 1 (5) cos2x (6) sin2x

(7) tan2x ®) 1 ;i;())csx ©) %

(10) x3 11y x* (12) x©

(13) sin*x (14) cos*x (15) sec’x

3. If f(x) — g(x) is a constant function, prove that f'(x) = g'(x).

4. Find % cos2x by definition and also verify by using cos2x = cos*x — sin?x,
5. Find L 2L s
: mex -1 7
6. L Xl _d ot pe2 w3y g
U ol T I (x X X ot x )
== "2+ m—2x" "3+ =3+ + 140
. d X'—1 o _ B _ _nn-1
el atx=1lism—D+mn—-2)+m—3) +...+ 1 —
Comment !
Obtain following derivatives where the function is defined :
x* =1 X —ah S
7. 21 8. 4 x#a 9. x2((7+3x
6 D) 3 . secx — 1
10. x7° (4x- — 8x°) 11. 2secx — 3tanx + Ssinx cosx 12, o 11
4x + 7sinx
13. s 14. TToom 15. (2 = Dysin®c + (2 + Decosx
16. (ax? + bx + sinx)(p + gtanx) 17. sin(x + a)
18, Sxta) 19. tan(x + a)
cosx
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20. Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the
right so that the statement becomes correct :

(1) For f(x) = sinx, f'(%) = ]
(a) =1 (b) 0 (© 1 d 1

(2) For f(x) = Jx + ﬁ,f’(l) = ]
(a) =5 (b) £ (©) 0 (d) 1

G)IFf@) =1+ x+x2+x3+ ..+ x2 + x19 then £'(=1) = ...... []
(a) =50 (b) 50 (c) 5050 (d) —5050

4) % cos"x = ... ]
(a) ncos” ~ x (b) nsin" ~ x
(¢) ncos"~ x sinx (d) —ncos" = 1 x sinx

5 % (sin*x + cos*x) = ...... []
(a) sin2x + cos2x  (b) sin2x — cos2x  (¢) 0 (d) sinx + cosx

(6) Ify=1+x+’§—2!+’§—?+...+”€1—’;,then%= ...... ]
@ » (b) y = x ©y- 2 @y = T

1- 2

(7) Ify = "% x € (%n) then Zx—y = ]
(a) sec’x (b) —sec’x (c) cos*x (d) | tanx |

(8) If fis differentiable at g, 10 T @G _ -
(@) af'(a) ) f(@) = af'@) () /'@ (@) L2

Q) Iffx)=x""1+x""2+..+1, =1 <x<1,then f'(x) = ... ]

1
@ Goo? (b) 757
1 m—Dx" —nx" " +1

© = @ 0>

(10)If £(4) = 16, £'(4) = 2 and £ is differentiable at 4, xﬁ;ﬂ% - ]
(a) 2 (b) 1 © 7 (d) 7¢
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(11) If f(x) = 2. x € [3, 5]. then f'(x) =

(a) 1 (b) —1

3T d [1+cos2x _
(12) f T <x < 2F, 7 1/T ......

(a) —sinx (b) sinx

d [1—cos2x _
x T T e

(13) If T < x < 2m,

(a) sinx (b) cosx

a4 L2 51 e[ -1 =

(a) does not exist (b) 0
(H) (x+|x|)|x|(x<0)— ......
(a) 1 ®) o

(16) (x+|x|)|x|(x>0)— ......

(a) —4x (b) 4x
an - |x|2= ...... (at x = 0)
(@) 0 (b) does not exist

(18) %x|x|(x>0)= ......

(a) x? (b) —2x
(19) (cos X — sin®x) = ...
(a) sin2x (b) cos2x

(20) (3smx — 4sin’x) = ...
(a) 3cos3x (b) cos3x

d 180 —
(21) delnlS ......

(a) cos18° (b) —sin18°
i 0 =

(22) Uy STx® =
(a) cosx® (b) —sinx®

(23) < (2x + 3 =

(@) n(2x + 3"~ 1 (b) 2n(2x + 3)" !

(c) does not exist

(c) cosx

(c) —cosx

(c) 1

(c) 2

(c) 2x2

(c) 2

(c) 2x

(c) —cos2x

(c) 3sin3x

(c) —cos18°

(c) m cosx®

(c) 3n(2x + 3)" ~ !

(d) 0

(d) sin2x

(d) —sin2x

(d) —1

(d) 4

(d) x?

(d) 1

(d) 0

(d) —2sin2x

(d) —3cos3x

(d) 0

(d) 0

(d) 2"n(2x + 3"~ !
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(uy%JMm,w<x<% = ]

- COSX Sinx
(a) vcosx (b) « sinx (c) o sine (d) > Jeos
(25) % tan*x = ... ]
(a) 2tanx (b) sec?x (c) cot*x (d) 2tanx sec*x
%
Summary
We studied following points in this chapter :
1. Formal definition of derivative and examples based on it.
2. Algebra of derivatives and examples based on rules.
If f(x) and g(x) are differentiable in (a, b),
da -4 a
M) <L 7o) + gw) = L7 + L)
d _ - d _d
@ <L 7o) - gw) = L7 - L)
d - d d
3) <L) 20 = 20 L1 + ()L e
d f(x) &X' x)-fx)e'(x)
4y 4 L)
@ dx e (807 8 0
) L k) = kf ), ke R
dx dxf ’
3. Some standard forms :
(1)%020 (2)%x”=nx”‘l,n€N,xER
A iy = d = —j
3) Jy Sinx = cosx 4) I COsX Sinx
(5) %tanx = sec*x (6) %cotx = —cosec’x
(7 %secx = secx tanx (8) %cosecx = —cosecx cotx

4. Derivative of a polynomial and a rational function.

— ‘ —
e

Bhaskara 1

Bhaskara wrote three astronomical contributions. In 629 he created the Aryabhatiya,
written in verses, about mathematical astronomy. The comments referred exactly to the 33 verses
dealing with mathematics. There he considered variable equations and trigonometric formulae.

His work Mahabhaskariya is divided into eight chapters about mathematical astronomy. In
chapter 7, he gives a remarkable approximation formula for sin x, that is

16x(TT— Xx) (

e <x<Z
SINX = s5p2 _ 4x(mt— x) 2
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31.

10.

11.
21.

ANSWERS )

(Answers to questions involving some calculations only are given.)

Exercise 1
(hd @)d @G)b @a G)d G)b (Hhd @)d Od (10)d

Exercise 2.1
=2 @-1+8 2+i I +53i O—= ©)—=1 ()4
®2 ©Z+2 (0 —%i

_ _ _ _1l6 - 29 — - _
Dx=4y=1 @x=-L£,-2 @Gr=-4y=-=2

@ {2} ¢ r=14,=-1
WE+2i O-1-Bi L-Ti - +Zi ¢

Exercise 2.2

MmV2. & L2 32 @w2E e

z, may not be equal to z, 8.40 12. 23 +2i 13.2,=2+iz,=2—i 15. 2

Exercise 2.3

. —1+J3i 1 £ 419 SEN Y ~1£ V7
W21 @ == 05 @282 5 —7

M 2B+ @3 —=2) G+ +7) @) +2d2 — V50
Gt (W21 -ifJ2+1) ©=20+) D2 =202 ®*5i ©) /10

Exercise 2

307 + 599i It I
(H2-=2i (2 —n 2.2 4. 30° 30 7.1 8. b 012+
V2. 5+ 2i 2 4 V14,
(Hh1=x S ) 3) 4 * TR
Maximum value is 5, Minimum value is 1 12. —48 13. 4 15. 3 2

(e @b (a Hd GSec BGc NDa @)c (9)b (10) b
(I)d (12)b (13)a (14 ¢ (15)b

Exercise 3.1
M) x4+ 57 + 106 + 10x + > + = (2) 1 — 8x + 24x2 — 323 + 16x*
X X
(3) 729x% — 2916x5 + 4860x* — 4320x3 + 2160x2 — 576x + 64

1
4 5_§3+i_5+—_
(4) x 2x X 16x3 320

274
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2. (1) x® 4+ 4x7 + 10x° + 16x5 + 19x* + 16x° + 10x2 + 4x + 1
(2) x0 — 3x5 + 6x* — 7x3 + 6x2 — 3x + 1
3. (1) 0.92236816 (2) 96059601 (3) 1061520150601 4. (1.01)10000 jg Jarger.
Exercise 3.2
Lo (672 (21365 2.(1)2 ()& 3.7=55
4o (1) By 3009 0) B s (3) (2610 (4) 720223, 1080 52
5. n=6 6.n=14o0r7
Exercise 3
1. 2:1 2.r=3o0rl5 3.n=6,x=2,y=5 4.a=2,b=3,n=5 6.n=11 7.135 8.n=10
12. (e 2)b B)a @ c Ba G)c (Db B)d (9 a (10)b
Exercise 4.1
_L L _1 2 _ _L 1
L7 @Fn 00— OF 6 V2 (6 7 17.(03 @0 B35 HI
18. (1) Negative (2) Positive (3) Negative (4) Negative 19. %
Exercise 4.2
1 —1 6 —42
1. (1) BV 2) I 3) '/_4’/_ 4. (1) Fourth quadrant (2) Fourth quadrant
5. % First quadrant 6. (1) [<25, 25] (2) [0, 2] 8.r =2, O = %
= =_I 1 1
9. r=2,0=-% 20.—1, 5
Exercise 4.3
1. (1) 5in100 + sind® (2) sin30 — sin20  (3) sin80 — sin20 (4) sin6O + sind
(5) cos140 + cos80 (6) cos40 + cosO (7) %(00329 — c0s200) (8) cos® — cos80  (9) sin26
2. hd o1 © “2'/5 ) ’/52‘2 V2 ©1 51
Exercise 4.4
1. (1) 2sin50 cos20  (2) 2sin® cos% (3) —2cos40 sin® (4) 2cos% sin®
(5) 2¢05100 cos®  (6) 2c0s40 cos2 (7) 25in80 5in30 (8) 2sin® sind
© —25i?8 (10 25in($+E) cos(§-F) (1) V2cos(Z-0) (12) V2 sin(0-E)
Exercise 4
9. V19, —J19
14. Hec @a B)d @#Hd BG)c b (Hc (B)a ©a (10)a
(IHb (12)c (13)b (14 ¢ (15 d (16)c (17)d (18)d (19)d
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Exercise 5.1
20. &
Exercise 5.2

=L 5 L 64
Jio° J10° 77 71650 65
Exercise 5
23. (Da ()b B)c @b G)c (6)d (MHa @ a 9d (10)a
(Db (12)b (13)a (14)c (15)d (16)a (17)b (18 ¢ (19)a (20)d

Exercise 6.1

1 {m+ ke z) 2. {ek+DE|kez}u{unt | ke 7}

5. nikezyo{untLlkezf 4 {un+Z|ke z)
(i + ¥ Elkez) 6 tnikezy U {kn+ 1) E|ke 7}
ffm+1fE ke zf U b+ Dk Elke 7}
{@k+DE ke z} U {kn - 1} E|ke z)

9. {{E|ke z} U (& £ L e 7|
{
{4
{

10. {@k+ DE | ke z} U 2| ke Z)

. {&8 4+ T ke 7y o {ek+DE|ke zju {kn+ L ke z}
3. km+Zl ke zp U i+ Zlke z}

14. @km ke zy U {2m+ E| ke 7}

15. {2+ 3L | ke z} U {2hn - L2 | ke 7}

6.9 17.{{E+ X )rez} 18 {lL+Z]sez|
19. {(8k + 3)ﬁ| ke z) 20. {@k+ DE| ke 7|

Exercise 6.2

21 . . S i
16. & 17.1: 43 :2 18. 2% 20. I

Exercise 6
Lo {antZ|kezfu{un+ ke zf 2. {@k+DE|ke z|
5. mlke zyU{GkEDE|kez} 4 {untZ|ke z|

5. {ek+nE|kez) 6 {un+Zkez) 7. {@ktnE|ke z|
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21.

13.

12.

12.

{ak+ DL | ke z} 9 {@h+ 1)%|ke z} 10 {2k £ 5)%‘ke z}

MHa @c @Gd @c e 6Gb NDec B)a 9d (10)b
(Iha (12)a (13)b (14)d (15b

Exercise 7.1
(1)4,7,10, 13,16 (2) 1, % 2, % 3 (3)2,3,5 7,11

2,3,58 3.(1)=5 -9, —17 (2) % % % 4.(1)0,3,519 (2)1,2,3,10
a,=a" " ,neN (2)a;=0,a,=16(-=3y""2n=2
Exercise 7.2

(143 249 ()L 2.510 3.23700 4.d=—4, 1= -24

27 6.—(m+mn) 7.0 8.1:2 9.5:11 10.6000 11.1 12.-1,3,7
2,6,10, 14 14.% 7800 15.n = 10,% 1287.50 16. 660 cm

Exercise 7.3

(1) 256 (2)10% G)—16J2 2.(1)768 ()13 ()5 (4)%

93 4.2.3,6,12.24,... 5. (1) %[%(10}1 —D=n] @3+ o=t - D]

a@”’ =1 ab@"" -
2 2
-1 T a1 7. 5> 526,18 8. Jmn 9.2

%, 1,4, 16 13.% 39,366

Exercise 7.4

19 10 7 11 23 11 L
2 0 T 03 253,21 344124 4.\/5,1,5

45, 5 6. x2 —20x + 64 =0

Exercise 7.5
(1) 800 (2) 465 (3) 1070 (4) —2704
O (6n* + 12n — 1)  (2) %(27;13 — 1822 —9m+4) (3) 5 @n? +n—1)

(4) 107”(;72 +6n+11) (5 12n(m + )On® + 9n + 8) (6) % (4n? + 150 + 17)

n(ntD) 3.0 41, 410)  (9) 0D

(D 2w +n (8) =0 7

(1) —6479  (2) —465

Exercise 7

—140,42 2.-2,4,10,16,... 3.9hr 4.16rows, 5blocks 6.1:2:3

20n _ 20 4 20 - 1 __L n
3 57 T 57 X 107" 9. 740  10. 25 11. 2(1 5n)

11, 14,1720, .. 13.3 +242) : 3 —242) 14 2B
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15.3,5,7,9, 11,13 16.48,12,3, 3, =

17. e @d B)a @#Ha G)c K)c (Db B a (9b (10)d
(1)ya (12)d (13)c (14)a (15 ¢ (16)b (17)a (18) ¢

Exercise 8.1

I. (D +y>+4x—6p—12=0 Qx>+ +2x—2y=0
(3)x2+y2+8xcosOL—8ysinOL—9=0(4)x2+y2+2ﬁx+2s/§y+2=0
S x*+)?=2x=0

2. X4+ —6x+4—12=0 3. X+ +4x+10p+25=0

4. x2+y2+6x+6y+9=0 5. x2+y2—2\/§x=0

Exercise 8.2

1. (1) Not a circle. (2) Circle, Centre (0, 0), radius 1
(3) Circle, Centre (1, 1), radius 1 (4) Not a circle.
(5) Not a circle. (6) Not a circle.
(7) Circle, Centre (%,—%), radius = f (8) Not a circle.

(9) Circle, Centre = (tanQ., —secQl), radius = 1
(10) Case-1 : o =0 Centre (0, —1), radius = 1
Case-2 : 00 # 0 Not a circle.
2. ¥2+)y2—6x—8y=0 3. ¥2+y2—10y—15=0

4. x>+ > +6x—6y+9=0and x>+ >+ 30x — 30y + 225 =0
Exercise 8.3

1. (1) Focus (%,0), directrix 8x + 1 = 0 (2) Focus (0, —1), directrix y = 1
(3) Focus (0,—1—16), directrix 16y — 1 = 0 (4) Focus (3, 0), directrix x + 3 = 0
2. (Hx*=-8 (2))*=l6x
3. D2+ +2x0+2x—6y+9=0 (2) 16x2 + 9y + 24xy + 180x + 160y + 600 = 0
a -2a

4. 4,y+3=0 5.18 6. (t—z i ] 7. (3, 16)
1

Exercise 8.4

2 2 2 2 2 2 2
L WL+ =1 OL+3-1 OG+--1 @S +=1

PR
Do+ = !

a4 F
®) 81+4_5 1(6)16+E

2. L 42

2
18 9_1
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No. e Foci Directrices Length of a
Latus-rectum

J5 _ 19 8

M| L2 | 0 y=1g5 ;

) % (+4, 0) x =19 2—30

3) f *542, 0) x=+1042 10
3 |fo +ﬂj _ 4 1633 301
2 +-6 _ 4 2L

(5) : (_ ./E’Oj x=toF 245

n
w|4

4. e=f 5.5:3, x=1% 7.7x2 + 152 =247 8. 4x2+3)2 —24x — 6y + 27 =0

9. Foci:(2,1% \/g), Directrices : y = 1 * %

Exercise 8.5
In answer 1, O € (—T, T]
1. (1) x = 4cosO, y = 35in0 (2) x = 4cos0, y = 243 5in0
(3) x = 2c0s0, y = 3 sind (4) x = 4cos0, y = J7sin®  (5) x = 342 cos0, y = 3sind

2. (I)e= @, Foci : (0, i\/g) 2) e = %, Foci : (i%,oj 3)e= ’/47, Foci : (iﬁ, 0)

16 15
Exercise 8.6
1. No. Foci Directrices Length of a Length of Length of
latus-rectum transverse axis |conjugate axis

M| @E&sv5,0 | x=+45 5 20 10

Q| @E8v2,0) | x=2442 16 16 16

3) (i%,oj N £ e Jio 2,2

@] (0.5 y=if 2 8 6

(5) (0, £8) y=%2 L 10 2439

In answer 2 and 4, 0 € (-T, ] — {—Tn’%}

2 2 [ 2 2
y —_— 9i = . = ﬂ = x_ —_ y_ = . = =
2. () oy V) 1; x 3 tan®, y = 7sec®  (2) 5 7 1; x = 3secO, y = 21an®
2 2
3) )26_;_;;_02 1; x = 5secO, y = ¥201an0 @) g—z—g—;=1;x=4ﬁtan9,y=4ﬁsece
®)) y_2 X 1; x = 3tanB, y = 4secO
16 9 ’ ’
4 x_2_y_2:1 5. x = 4tanB, y = 3secO
T 9 ’ > Y
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Exercise 8

1. ¥ +)2—=3x+y—4=0 2. X2+3y2—6y—16=0

3. X2+ —4dx—6y+4=0 4. Focus : (%,0), Length of lectus-rectum = 1
ELR S R

5. =t o5 1 6. = = 1

7. = —12(x +1) 8. (a)y*=10x (b) 24110 9. (6,0) 10.3.2 m

2

y =
11. Ellipse, & = +T 1

12.(Ha @d BG)a @b G)d ©b (Dec @ c )b (10)a
(1Hb (12)a (I3)b (4)b (15 c (16)a (I17)a (18)b (19) ¢ (20)d

Exercise 9.1

L D)Gpx)) @@y B)G6,-22) D@44 OCL-4-7 (6 -5 -2)

2. (Dx=1y=—=1 2)x=0,y=0 (3)x=%,y=% A x=0y=0
3. V3 V3 )5 @V1E 5) V38
4 DT HTI<F AP @QF+TI =7+ Ssk=1 6 (=40

Exercise 9.2
1. (1) OXYZ (2) OXY'Z' (3) OXYZ' (4) OX'Y'Z (5) OX'Y'Z' 2. (0, 0, 0)
Exercise 9.3

1. (1) Same directions (2) Different directions (3) Opposite directions (4) Different directions

2 032 0R2) olkEE 06l oo © @Y
3. o= x23_x1,[3=

Exercise 9.4
1. (Hh0o (@ 243 B3)6 H4 B)5 (61
(1) Non-collinear (2) Collinear (3) Non-collinear  (4) Non-collinear
3. Isosceles right triangle 4. (0, 0, 0) or (0,0, 6) 5. x4+ y2+ 22— 2x — 6y — 12z + 52 = k?
Exercise 9.5

4 10 =5 5 11 —4
L. (3’3’3)a“d(3 3’3)

2. (1) Non-collinear (2) Non-collinear (3) Non-collinear  (4) Collinear (5) Non-collinear

Exercise 9

1. Parallelogram, not a rectangle 2. Isosceles right triangle 3. x = 2z

4. (1)%%%(1 L, 1) (2)3’/— 3'/_ }(012) (3) 3v5. 21, V6 (%%%)
5. (11,2

6. (1) Non-collinear
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(2) Collinear, A divides in the ratio —2 : 1 from B and —1 : 2 from C
B divides in the ratio =2 : 1 from A and —1:2 from C
C divides in the ratio 1: 1 from A and 1:1 from B
(3) Non-collinear
(4) Collinear, L divides in the ratio —1 : 3 from M and —3 : 1 from N
M divides in the ratio 1 :2 from L and 2 : 1 from N
N divides in the ratio =3 : 2 from L and =2 : 3 from M
(5) Collinear, P divides in the ratio 1: 1 from Q and 1:1 from R
Q divides in the ratio —1 :2 from P and —2 : 1 from R
R divides in the ratio —1 : 2 from P and —2 : 1 from Q
7. (Hhb 2)d @B)b @#c B)c (6)a (e Ba (9d (10)c (Il)a (12)a (13)a
(14)a (15)c (16)c (17)a (18 b (19 ¢ (20) c
Exercise 10
_73

=2
X 3

-lklr—

1. & 1222 132 14.41 15 16. 3-x° 173 18.0

12
19. V3 = V2 20.@ 21,1 22. =342 23.@ 24. L

25. 12 26. ﬁ 27. % 28. —cosa 29. 2cos3 30. —1

31. 2asina + a*cosa 32. secx(xtanx + 1)
33. (hb @2)d B)b @)c BG)b (B)a (Hd @) a O)d (10)c
(1Hd (12)c (13)d (14)a (15 b (16)b (17)a (18 c (199b (20)d

Exercise 11

LMl @-1 &2 @i G-8 ©-1 D2 ®225 ©-2 (10-2
2. (1) 10 (2) secx tanx + sec*x (3) cosec’x — cosecx cotx

(4) 4sinx cosx — 3sinx  (5) —2sin2x  (6) 2cos2x () 2sec?2x

(8) Hém 9) 1—§inx (10) 3x2  (11) 4x3  (12) 6x°  (13) 4sin’x cosx

(14) —4cos3x sinx  (15) 2sec?x tanx

1 1

+1 __4x_ mn=0x"—a.-nx" "' +a"

m-Dx"-n.-x""
7. X2 + 1) . 3
(x—a)

(x—1?

9. —35x70 — 12x73 10. —16x75 + 24x74 11. 2secx tanx — 3sec’x + 5cos2x

4. —2sin2x 5.

2s5ecx tanx 56 + 35(xcosx — sinx) + 32(cosx + Sinx) 1+ cotx + xcosec *x

12. TGeex +12 13 (5x — 8cosx)? 14. (1+ cotx)?

15. 2(x — sin2x) 16. (p + gtanx)2ax + b + cosx) + (ax* + bx + sinx)gsecx

17. cos(x + a) 18. cosa - sec*x 19. sec’(x + a)

200 (Db 2 c B)a @Hd G)e BG)c (Db @b (9d (10)c
(I)ya (12)b (13)c (14)d (I5b (16)b (I7)a (I8 c (19)d (20)a
ehd (22)c (23)b (4 c (25d

o o o

ANSWERS 281



Addition Formulae
Allied Numbers
Argand diagram

Argument

Arithmetic Progression (A.P.)

Binomial Theorem

Bound Vector

Branch

Calculus

Central Conic

Centroid

Chord

Circumcentre

Common Difference

Complex Numbers

Conic / Conic Section

Conjugate Axis

Conjugate Hyperbola

Conjugate of a Complex
Number

Coordinate

Coordinate Axis

Derivative

Differentiation

Direction

Directrices

Directrix

Divisible

Eccentricity

Ellipse

Factor Formulae

Focal Chord

Foci

Focus

Free Vector

TERMINOLOGYJ

(In Gujarati)

ARALUAL Aol
A6i B AvAL
2191w (A
PIIE

AHidR el
FUTARI ]
(fad Aulzal
vl

se9l

Sedly alisa
b

L

uR3s

ALY, dsldd
A5 AL
s

2eA0lg 218
weolg wldaay
Vel A5 AvAUL

UL
JIKIE
[asl@d
[Asa
(2ol
(Rafsiil
(st
BISTES)
Bebvadl
Guaay
A Yoll
AllMeal
AlMH21L
ALl

Y5 Al

Geometric Progression (G.P.) Q{RO\LSELTR ALl

Graph
Hyperbola

AV,
fdadu

Imaginary Part
Incentre
Instantaneous Velocity
Latera-recta
Latus-rectum

Law of Trichotomy

Limit

Magnitude

Major Axis
Mathematical Induction
Mean

Minor Axis

Modulus of a Complex Number

Multiple

Parabola

Parameter

Polar Form

Position Vector
Projection Formula
Purely Imaginary Number
Real Part
Rectangular Hyperbola
Recurrence Relation
Rule of Substitution
Scalar

Secant

Sequence

Series

Slope

Space

Square Root
Submultiple
Symmetric

Tangent

Transverse Axis
Vector

Vertex

sieul-is euaL
ld:
dlca[BLs dal
Aol
Aldeol

Bilas [seul
[y

A8l

Hiet

PEIRIERE
oUBLefly, 2ArHiA
Heys

olleL 8

A5 AvAIAL IS
oUfBict

UREICH]

YA

el 234
2l Alzal
UalY Aol

s sleulrs Aval
CIENICEXCIR]
dollfdaqy
ilgTl AoiY,
AL [Run
izl

B2 51

2.l

23l

2l

2519

QRN
BuayfBld

AMd

w95

Hoy e

auleal

RIS
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