Circular Motion

Exercise Solutions

Solution 1:

Distance between the earth and the moon = Radius of Revolution = $R = 385 \times 10^5$ m Angular frequency, $\omega = 2\pi f = 2\pi/T$ Time taken by moon to complete one revolution = T = 273 days = 273 × 24 × 60 × 60 secs = 23587200 secs

Acceleration of the moon = $\omega^2 R = (2\pi/T)^2 R = 4\pi^2 R/T^2$

Substituting the values, we have

Acceleration of the moon = $2.73 \times 10^{-7} \text{ m/s}^2$

Solution 2:

Radius of earth = R = half of diameter = Diameter of earth/2 = 12800/2 km = 6400 km = 6.4×10^6 m

Time taken for one rotation = T = 24 hours = $24 \times 60 \times 60$ sec = 86400 secs

Angular velocity of the particle, $\omega = 2\pi/T$

Therefore, acceleration of the particle = $R\omega^2$

Substituting the values, we have

acceleration of the particle = 0.0338 m/s^2

Solution 3:

V = 2t and Radius = r = 1.0 cm

(a) At t = 1s

Velocity of the particle, $u = 2.0 t = 2.0 \times 1 = 2.0 cm/s$

Radial acceleration of the particle at t = 1 is $v^2/r = (2.0)^2/1 = 4 \text{ cm/s}^2$

(b) We know, $a = dv/dt = d/dt(2t) = 2 \text{ cm/s}^2$

Tangential acceleration at t=1 is 2 cm/s²

(c) Magnitude of acceleration at t = 1sec

Magnitude of acceleration = $\sqrt{(\text{Radial acceleration})^2 + (\text{Tangential acceleration})^2}$

 $= \sqrt{20} \text{ cm/s}^2$

Solution 4:

Mass of the scooter = M = 150 kg Velocity = v = 36 km/hr = $36 \times 5/18$ m/s = 10 m/s and Radius = r = 30 m

Horizontal force required = centripetal force = Mv^2/r

=150×10×10/30

= 500 N

Solution 5:

Velocity of the car = v = 10m/s Radius = r = 30m Consider, mass of the car=m, acceleration due to gravity = g, Angle of banking = θ and Normal reaction = R

From the diagram, R $\cos\theta = mg$

R sin θ = mv²/r Now, Tan θ = v²/rg

or $\theta = \tan^{-1}(v^2/rg)$

or $\theta = \tan^{-1}(10 \times 10/30)$

or $\theta = \tan^{-1}(1/3)$: Angle of banking

Solution 6:

Given: Average speed = v = 18km/hr or 5 m/s

Radius of park = r = 10 m

Acceleration due to gravity = $g = 10m/s^2$

We know, angle of banking, $\theta = \tan^{-1}(v^2/rg)$

 $= \tan^{-1}(1/4)$

Solution 7:

The road is horizontal (no banking)

 $mv^2/R = \mu N$ and N = mg

So, $mv^2/R = \mu mg$

=> 25/10 = μg

 $=> \mu = 25/100 = 0.25$

Solution 8: We know that, $tan\theta = v^2/rg$

Radius of the circular path = r = 50 m Acceleration due to gravity = g = $10m/s^2$ Angle of banking = θ = 30°

=> tan 30° = v²/(50x10)

=> v = 17 m/s

Vehicle should go with a speed of 17 m/s.

Solution 9:

Centripetal force is provided by coulomb attraction.

Mass of electron, m = 9.1×10^{-31} kg

Radius of the circular path, r = 5.3×10^{-11} m

 $k = 1/(4\pi\epsilon 0) = 9 \times 10^9$

 q_1 = charge on an electron= q_2 = charge on the proton = $q = 1.6 \times 10^{-19}$ C

```
We know, v^2 = kq^2/mr
```

 $= v^{2} = [9 \times 10^{9} \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}] / [9.31 \times 10^{-31} \times 5.3 \times 10^{-11}]$

or v = 2.2×10^6 m/s (approx)

Which is the speed of the electron in ground state.

Solution 10:

At the highest point of a vertical circle.

 $mv^2/R = mg$

=> v = √Rg

Solution 11: Diameter = d = 120 cm = 1.2 m

Radius = r = d/2 = 0.6 m

Frequency = f = 1500 rpm = 1500/60 rps = 25 s⁻¹

Now, Angular frequency, $\omega = 2\pi f = 157.14$ rad s⁻¹ [putting value of f]

Again, Mass of the particle, m = 1g =0.001 kg

Force on the particle on the blade = $mr\omega^2$

= 0.001 × 0.6 × 157.14 ×157.14
= 14.81 N
The fan runs at the full speed in circular path. This exerts the force on the particle.
Force exerted by the particle on the blade = Force exerted on the particle = 14.81 N

Solution 12:

A mosquito is sitting on an L.P. record disc rotating on a turn table at 33_1/3 revolutions per minute. (given)

say, n = 33_1/3 rpm = 100/(3x60) rps

we know, $\omega = 2\pi n = 10\pi/9$ rad/sec

Also, we are given with radius = r = 10 cm or 0.1 m and g = 10 m/sec²

$$\mu mg \ge mr\omega^2 \Longrightarrow \mu = \frac{r\omega^2}{g} \ge \frac{0.1 \times \left(\frac{10\pi}{9}\right)^2}{10}$$
$$\Rightarrow \mu \ge \frac{\pi^2}{81}$$

Solution 13:

Radius = r = 10 m, speed = v = 36 km/h and g = 10 m/s²

The speed of the car is not changing. So, there is no force acting in the tangential direction of motion.

From the figure:

```
T sin \theta = mv<sup>2</sup>/r ....(1)
and T cos \theta = mg ....(2)
=> tan \theta = v<sup>2</sup>/rg
```

or $\theta = \tan^{-1}(v^2/rg)$

After substituting and solving the above equation, we have

 $\theta = 45^{\circ}$

Solution 14:

A simple pendulum always constitutes some velocity at the lowest point. This proves that there exists a non-zero central force in the system. This central force will contribute to increase tension.

At the lowest point:

 $T = mg + v^2/r$

Here m = 100g or 1/10 kg, r = 1m and v = 1.4 m/s

 $T = 1/10 \times 9.8 \times (1.4)^2/10 = 1.2 N$

Solution 15:

The bob has a velocity 1.4 m/s, when the string makes an angle of 0.2 radian.

Here m = 100g or 0.1 kg and r = 1m and v = 1.4 m/s

From figure,

T - mg cos θ = mv²/r

=> T = 0.196 + 9.8(1-0.04/2)[$\cos\theta = 1 - \theta^2/2$ for small θ]

=> T = 0.196 + (0.98)(0.98)

= 1.16N (approx)

Solution 16:

When a simple pendulum reaches the extreme position, velocity of the pendulum is zero.

=> no centrifugal force.

 \Rightarrow T = mg cos θ_{o}

Solution 17:

(a) As person is standing at one position, he is in an equilibrium with the reaction force.

Net force on the spring balance:

 $R = mg - m\omega^2 r$

The actual weight of the body,

W = mg

So, the decrement will be,

$$\frac{R - W}{W} = \frac{mg - mg + m\omega^2 R}{mg}$$
$$= \frac{\omega^2 R}{g}$$

and, Angular speed of earth, $\omega = 2\pi/(24x60^2)$ Hz

So, it will decrease at a rate,

$$\frac{\left\{\left(\frac{2\pi}{24\times60\times60}\right)^2\times6400\times10^3\right\}}{10}$$

 $= 3.5 \times 10^{-3}$

(b) When the balance reading is half the true weight mg - $m\omega^2 R$ = 1/2 mg

 $(1/2) g = \omega^{2} R$ $\omega = \sqrt{\left(\frac{g}{2R}\right)}$ $\frac{2\pi}{T} = \sqrt{\left(\frac{g}{2R}\right)}$ $T = 2\pi \sqrt{\left(\frac{2R}{g}\right)}$

= 7105 sec or 2 hrs(approx)

Solution 18:

Let θ be the path has an inclination. There is no movement in vertical direction. So,

 $R = mg \cos \theta + mv^2/R \sin \theta$

If the vehicle is not to be slide up then the friction must reinforce the overall force. Condition must be

$$\mu$$
R = mg sin θ - mv²/R cos θ

From above equations, we have

$$\mu \left(\text{mgcos}\theta + \frac{\text{mv}^2}{\text{R}} \sin\theta \right) = \text{mgsin}\theta - \frac{\text{mv}^2}{\text{R}} \cos\theta$$
$$\mu \left(\text{gcos}\theta + \frac{\text{v}^2}{\text{R}} \sin\theta \right) = \text{gsin}\theta - \frac{\text{v}^2}{\text{R}} \cos\theta$$
$$v = \sqrt{\frac{(-\mu \cos\theta + \sin\theta)\text{gR}}{\cos\theta + \mu \sin\theta}}$$
$$v = \sqrt{\frac{(-\mu + \tan\theta)\text{gR}}{1 + \mu \tan\theta}}$$

Find tan θ :

 $\tan\theta = v^2/Rg$

Putting, v = (36x1000)/(60x60), R = 20 and g = 10, we have

$$\tan\theta = 0.5$$

=> v = 14.7 km/h

The condition for not to skid down will be

 $\mu R = mv^2/R \cos\theta - mg \sin\theta$

Solving above equation, we get

The possible speeds are between 14.7 km/h and 54 km/h.

Solution 19:

Let us consider, L be the total length of the over bridge and R be the radius of the bridge.

(a) At the highest point

 $mg = mv^2/R$

or v = v(Rg)

(b) Distance π R/3 along the bridge from the highest point,

The condition for just flying off will be,

$$\frac{4}{\sqrt{2}} \frac{mv}{R} \stackrel{2}{=} mgcos\theta$$

or $cos \theta = 1/2$
or $\theta = \pi/3$
we can also write, $\theta = x/R$

or x = $\pi R/3$, is the distance where it lose the contact when it moves with $1/\sqrt{2}$ times the maximum.

(c) The chances of losing contact is maximum at the end of the bridge for which $\alpha = L/2R$

 \Rightarrow mg cos α = mv²/R

$$v = \sqrt{Rgcos\left(\frac{L}{2R}\right)}$$

Solution 20:

The body is experiencing a force in the tangential direction as there exists some an acceleration along this direction.

friction force = $F = \mu N$

As the path is circular the body will also experience centrifugal force in the radial direction.

 $F_c = mv^2/R$

As there is no motion in vertical direction, normal reaction force will be mg N = mg

Magnitude of the tangential force:

 $F_a = m dv/dt$

=> F_a = ma

The car will skid when the friction will not be enough to reinforce $F_a + F_c$.

Condition for just skidding:

$$\mu N = \sqrt{F_a^2 + F_c^2}$$
$$\mu mg = m\sqrt{a^2 + \left(\frac{v^2}{R}\right)^2}$$
$$\mu^2 g^2 = a^2 + \left(\frac{v^2}{R}\right)^2$$
$$v = \sqrt[4]{\{R^2(\mu^2 g^2 - a^2)\}}$$

Solution 21:

(a)

When the system rotates the block will experience centrifugal force which will be balanced by friction.

Normal reaction will be balance the force of gravitation.

N = mg

 $F_C = f$

 $= m\omega^2 L = \mu mg$

or $\omega = \sqrt{(\mu g)/L}$

(b)

When there comes some amount of acceleration, friction starts working in the opposite direction of motion.

Radial acceleration will be due to centrifugal force.

 $a_R = \omega^2 L$

and tangential acceleration, $a_T = dv/dt$

 $= d/dt (L\omega)$

= $L d/dt (\omega)$

```
=> a<sub>T</sub> = Lα
```

When friction reaches its maximum value, it will start slipping.

$$\mu g = \sqrt{(\omega^2 L)^2 + (L\alpha)^2}$$
$$(\mu g)^2 = (\omega^2 L)^2 + (L\alpha)^2$$
$$\omega = \left\{\frac{\mu^2 g^2}{L^2} - \alpha^2\right\}^{\frac{1}{4}}$$

Solution 22: Radius of curve = R = 100 m Weight = m = 100 kg Velocity = v = 18km/h or 5m/sec and g = 10 m/s².

(a) At point B

 $mg - mv^2/R = N$

on substituting the values.

=> N = 975N

(b) At points B and D, the cycle has no tendency to slide. So at these points friction of force is zero.

At Point C, mg sin θ = F

=> F = 1000 x 1/v2 = 707 N

(c) Before point C: mg $\cos\theta - N = mv^2/R$

```
=> N = mg \cos\theta - mv^2/R = 707 - 25 = 683N and
```

N - mg cos θ = mv²/R

 $=> N = mv^2/R + mg \cos \theta = 25 + 707 = 732N$

(d) Consider a point just before C, where N is minimum.

 μN = mg sin θ

=> μ x 682 = 707

=> μ = 1.037

Solution 23:

Radius= R = diameter/2 = 3/2 = 1.5 m where R is the distance from the centre to one of the kids

Here, $\omega = 2\pi R = 2\pi/3$ m = 15 kg (given)

Now, the frictional force on one of the kids = F = $mR\omega^2$

```
= 15 \times 1.5 \times (2\pi/3)^{2}
```

```
= 10 \ \pi^2
```


Here gravity force and the centrifugal force are used.

Normal reaction force is balanced as,

 $N = mg \cos\theta + m\omega^2 R \sin^2\theta$

Here two cases of friction aries, one is along mgsin θ and the another in opposite direction as friction is a variable.

When friction is along mg sin $\!\theta$

 $f = m\omega^2 R \cos\theta \sin\theta - mg \sin\theta$

when friction is at its maximum limit, we have

 $f = \mu N$

 $\mu(\text{mgcos}\theta + \text{m}\omega^2\text{Rsin}^2\theta) = -\text{mgsin}\theta + \text{m}\omega^2\text{Rcos}\theta\text{sin}\theta$ or $\omega = \sqrt{\frac{g(\sin\theta + \mu\cos\theta)}{\text{Rsin}\theta(\cos\theta - \mu\sin\theta)}}$(1)

When Friction is in the opposite direction of mgsin θ

```
f = mg \sin\theta - m\omega^2 R \cos\theta \sin\theta
```

when friction is at its maximum limit, we have

 $f = \mu N$

 $\mu(mgcos\theta + m\omega^2Rsin^2\theta) = mgsin\theta - m\omega^2Rcos\thetasin\theta$

or

$$\omega = \sqrt{\frac{g(\sin\theta - \mu\cos\theta)}{R\sin\theta(\cos\theta + \mu\sin\theta)}}$$
....(2)

The angular speed is lies in the range from (2) to (1) then the block will not slip.

Solution 25:

A particle is projected with a speed u at an angle θ with the horizontal. Vertical component of velocity is zero at the highest point.

consider at any point velocity is u $\text{cos}\theta$

Centripetal force = $mu^2 cos^2 (\theta/2)$

So, the radius of the circle at highest point is

 $mg = mv^2/r$

 \Rightarrow r = (u² cos² θ)/g

Solution 26:

Here g is in downwards direction. Hence, some component to g will act as central force which will be changing at each point depending upon θ .

Horizontal component of velocity will not change due to absence of force.

 $v_H = u \cos \theta$

or

 $v_{\rm H} = v \cos(\theta/2)$

or v = $u\cos\theta/\cos(\theta/2)$

We know, central force = $F_c = mv^2/R$

```
=> m g cos(\theta/2) = mv^2/R
```

=> R = $(mu^2 \cos^2\theta)/(g\cos^3(\theta/2))$

Solution 27:

(a) When normal reaction will be balancing the centrifugal force.

$$F_c = mv^2/R$$

and normal reaction, $N = mv^2/R$

(b) Friction force is at maximum as the body is moving,

```
Force of friction = f = \mu N = \mu m v^2/R
```

(c) The force changing the velocity will be friction.

 $f = \mu m v^2 / R$

mass x acceleration = $\mu mv^2/R$

```
or acceleration = -\mu v^2/R
```

```
(d) dv/dt = v dv/dv
```

```
= v(dv/ds) = -\muv<sup>2</sup>/R
```

 $\Rightarrow dv/v = -\mu/R ds$

for one complete revolution, $s = 2\pi R$

$$(\ln v) \begin{pmatrix} v \\ v_0 \end{pmatrix} = -\frac{\mu}{R} s$$
$$v = v_0 e^{-\frac{\mu}{R}s}$$
$$v = v_0 e^{-\frac{\mu}{R}2\pi R}$$
$$v = v_0 e^{-2\pi\mu}$$

Solution 28:

The cabin rotates with angular velocity $\boldsymbol{\omega}$ and radius R.

The particle experience a force $mR\omega^2$.

The component of $mR\omega^2$ along groove provides the required force to the particle to move along AB.

 $mR\omega^2 \cos\theta = ma$

 $\Rightarrow a = R\omega^2 \cos\theta$

If length of groove be L then

 $L = ut + 1/2 at^{2}$

 $L = 1/2 R \omega^2 \cos\theta t^2$

$$t^2 = \frac{2L}{\omega^2 R \cos \theta}$$

$$t = \sqrt{\frac{2L}{\omega^2 R \cos\theta}}$$

Solution 29:

(a) The speed in MKS = v = 10m/sThe normal force will be balancing the centrifugal force.

 $F_c = N$

 $N = mv^2/R$

N = 0.2 N

(b) The plate is turned so the angle between normal t the plate and the radius of the road slowly increases.

```
N = mv^2/R \cos\theta \dots (1)
```

```
\mu N = mv^2/R \sin\theta \dots 2)
```

Solving (1) and (2), we have

 $\mu = tan\theta$

 μ = friction coefficient between plate and body = 0.58 (given)

or $\theta = \tan^{-1}(0.58) = 30^{\circ}$

Solution 30:

From the free body diagrams,

 $T + 2ma - 2m\omega^2 R = 0$ (2)

on subtracting (2) from (1)

 \Rightarrow 3 ma = m ω^2 R

 $=> a = m\omega^2 R/3$

(1)=> T = $4/3 \text{ m}\omega^2 \text{ R}$