Solved Paper

Question 1

The relation R defined in the set $\{1, 2, 3, 4, 5, 6\}$	as
$R = \{(a, b); b = a + 1\} is$	

Options:

- A. reflexive
- B. symmetric
- C. transitive
- D. neither reflexive nor symmetric

Answer: D

Solution:

Solution:

Question 2

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x. Then

Options:

- (A) f is one-one and onto
- (B) f is onto but not one-one
- (C) f is one-one but not onto
- (D) f is neither one-one nor onto

Answer: A

Solution:

Solution:

Question 3

Let f: [-1, 1] \rightarrow R be a function defined as f(x) = $\frac{x}{x+2}$. The inverse of the

function $f : [-1, 1] \rightarrow Range of f$ is

Options:

A.
$$f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$$

B.
$$f^{-1}(y) = \frac{y}{1-y}, y \neq 1$$

C.
$$f^{-1}(y) = \frac{2y}{1+y}$$

D.
$$f^{-1}(y) = \frac{y}{1+y}$$

Answer: A

Solution:

Solution:

Question 4

The binary operation * on Z^+ , defined by a * b = a - b, is

Options:

A. commutative

B. associative

C. commutative and associative

D. neither commutative nor associative

Answer: D

Solution:

Solution:

Question 5

Number of binary operations on the set {a, b}

Options:

A. 10

B. 16

C. 20

D. 8

Answer: D
Solution:
Solution:
Question 6
The principal value of $tan^{-1}(-\sqrt{3})$ is
Options:
A. $-\frac{\pi}{3}$
B. $\frac{\pi}{3}$
C. $\frac{2\pi}{3}$
D. $-\frac{2\pi}{3}$
Answer: C
Solution:
Solution:
Solution: Question 7
Question 7
Question 7 The value of $\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$ is
Question 7
Question 7
Question 7 The value of $\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$ is Options: A. $\frac{6\pi}{5}$ B. $\frac{2\pi}{5}$
Question 7 The value of $\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$ is Options: A. $\frac{6\pi}{5}$ B. $\frac{2\pi}{5}$ C. $\frac{4\pi}{5}$
Question 7 The value of $\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$ is Options: A. $\frac{6\pi}{5}$ B. $\frac{2\pi}{5}$ C. $\frac{4\pi}{5}$ D. $\frac{\pi}{5}$

Question 8

If $x \in [-1, 1]$, then $\sin^{-1}x + \cos^{-1}x$ is

Options:

А. п

B. 0

C. $\frac{\pi}{2}$

D. $\frac{\pi}{4}$

Answer: C

Solution:

Solution:

Question 9

If $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, then (adj A)A =

Options:

A.
$$\left[\begin{array}{cc} 1/5 & 0 \\ 0 & 1/5 \end{array}\right]$$

B.
$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

C.
$$\begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}$$

D.
$$\left[\begin{array}{cc} 5 & 0 \\ 0 & 5 \end{array}\right]$$

Answer: D

Solution:

Solution:

Question 10

Let $A = \begin{pmatrix} 1 & 2 & x \\ 3 & -1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} y \\ x \\ 1 \end{pmatrix}$ be such that $AB = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$. Then

Options:

- A. y = 2x
- B. y = -2x
- C. y = x
- D. y = -x

Answer: A

Solution:

Solution:

Question 11

Options:

- A. $\lambda = 1$
- B. $\lambda = -1$
- C. $\lambda = 2$
- D. $\lambda = -2$

Answer: A

Solution:

Solution:

Question 12

Matrices A and B will be inverse of each other only if

Options:

Answer: C

Solution:

D. 7 units

Question 15

The area of the parallelogram having a diagonal $3^{\vec{i}} + \vec{j} - \vec{k}$ and a side $\vec{i} - 3\vec{j} - \vec{k}$ is

Options:

- A. $10\sqrt{3}$
- B. $6\sqrt{30}$
- C. $\left(\frac{3}{2}\right)\sqrt{30}$
- D. $3\sqrt{30}$

Answer: D

Solution:

Solution:

Question 16

If $x^2 + y^2 = 1$, then the value of $\frac{1 + x + iy}{1 + x - iy}$ is

Options:

- A. x iy
- B. x + iy
- C. 2x
- D. -2iy

Answer: B

Solution:

Solution:

Question 17

If ω is the cube root of unity, then the value of $(1 - \omega)(1 - \omega^2)(1 - \omega^4)(1 - \omega^5)$ is

Options:
A. 9
B9
C. 16
D. 32
Answer: A
Solution:
Solution:
Question 18
The value of $\left[\frac{-1 + i\sqrt{3}}{2} \right]^{100} + \left[\frac{-1 - i\sqrt{3}}{2} \right]^{100}$ is
Options:
A. 2
B. 0
C1
D. 1
Answer: C
Solution:
Solution:
Question 19
Area of the region bounded by the curve $y^2 = 4x$, y axis and the line $y = 3$ is
Options:
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: B
Solution:
Solution:
Question 20
If $f(x) = \int_{0}^{x} t \sin t dt$, then $f'(x)$ is
Options:
A. $\cos x + x \sin x$
B. xsin x
C. x cos x
D. $\sin x + x \cos x$
Answer: B
Solution:
Solution:
Question 21
Q 11 0 3 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
The integrating factor of $\frac{dy}{dx} + \frac{y}{(x \log x)} = \frac{2}{x^2}$ is
The integrating factor of $\frac{dy}{dx} + \frac{y}{(x \log x)} = \frac{2}{x^2}$ is
The integrating factor of $\frac{dy}{dx} + \frac{y}{(x \log x)} = \frac{2}{x^2}$ is Options:
The integrating factor of $\frac{dy}{dx} + \frac{y}{(x \log x)} = \frac{2}{x^2}$ is Options: A. e^x
The integrating factor of $\frac{dy}{dx} + \frac{y}{(x \log x)} = \frac{2}{x^2}$ is Options: A. e^x B. $\log x$
The integrating factor of $\frac{dy}{dx} + \frac{y}{(x \log x)} = \frac{2}{x^2}$ is Options: A. e^x B. $\log x$ C. $1/x$
The integrating factor of $\frac{dy}{dx} + \frac{y}{(x \log x)} = \frac{2}{x^2}$ is Options: A. e^x B. $\log x$ C. $1/x$ D. e^{-x}

The particular integral of the differential equation f (D)y = e ^{ax} , where f (D) = (D – a)g(D), g(a) neq 0 is
Options:
A. me ^{ax}
B. $\frac{xe^{ax}}{g(a)}$
C. $\frac{e^{ax}}{g(a)}$
D. g(a)e ^{ax}
Answer: B
Solution:
Solution:
Question 23
The value of ' a ' so that the curves $y = 3e^x$ and $y = ae^{-x}$ intersect orthogonally, is
Options:
A1
B. 1
C. $\frac{1}{3}$
D. 3
Answer: C
Solution:
Solution:
Question 24
The line $y = x + 1$ is a tangent to the curve $y^2 = 4x$ at the point
Options:
A. (1, 2)
B. (2, 1)

C. (1, -2)

D. (-1, 2)	
Answer: A	
Solution:	
Solution:	
Question 25	
The approximate change by increasing the side by	in the volume of a cube of side x metres caused 3% is
Options:	
A. $0.06x^3m^3$	
B. $0.6x^3m^3$	
C. $0.09x^3m^3$	
D. $0.9x^3m^3$	
Answer: C	
Solution:	
Solution:	
Question 26	
If the rate of increase of x, then values of x are	$x^3 - 2x^2 + 3x + 8$ is twice the rate of increase of
Options:	
A. (-1 / 3, -3)	
B. (1 / 3, 1)	
C. (-1/3, 3)	
D. (1 / 3, -3)	
Answer: B	
Solution:	
Solution:	

Question 27

The point on the curve $x^2 = 2y$ which is nearest to the point (0, 5) is Options:

A. (0, 0)

B. (2, 2)

C. $(2\sqrt{2}, 4)$

D. $(2\sqrt{2}, 0)$

Answer: C

Solution:

Solution:

Question 28

$$\lim_{x \to 0} \frac{a^x - b^x}{c^x - d^x} =$$

Options:

A. ∞

B. 0

C. $\log \frac{ab}{cd}$

D. $\log \frac{a/b}{c/d}$

Answer: D

Solution:

Solution:

Question 29

The value of 'p', so that the lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{p}$ and $\frac{x}{p} = \frac{y}{2} = \frac{z}{3}$ are at right angles, is

Options:

A. 2

B. 1

C	3
◡.	J

D. 5

Answer: B

Solution:

Solution:

Question 30

The point of intersection of the lines $\frac{x-6}{-6} = \frac{y+4}{4} = \frac{z-4}{-8}$ and

$$\frac{x+1}{2} = \frac{y+2}{4} = \frac{z+3}{-2}$$
 is

Options:

A. (0, 0, -4)

B. (1, 0, 0)

C.(0, 2, 0)

D. (1, 2, 2)

Answer: A

Solution:

Solution:

Question 31

The direction cosines of the line passing through the points (-2, 4, -5) and (1, 2, 3) are

Options:

A.
$$\frac{3}{\sqrt{87}}$$
, $\frac{-2}{\sqrt{87}}$, $\frac{8}{\sqrt{87}}$

B.
$$\frac{3}{\sqrt{87}}$$
, $\frac{2}{\sqrt{87}}$, $\frac{5}{\sqrt{87}}$

C.
$$\frac{3}{\sqrt{77}}$$
, $\frac{2}{\sqrt{77}}$, $\frac{5}{\sqrt{77}}$

D.
$$\frac{3}{\sqrt{77}}$$
, $\frac{-2}{\sqrt{77}}$, $\frac{8}{\sqrt{77}}$

Answer: D

Solution:

Solution:
Question 32
The distance to the plane $2x - 3y + 4z - 6 = 0$ from the origin is
Options:
A. $\frac{3}{\sqrt{29}}$
B. $\frac{4}{\sqrt{29}}$
C. $\frac{6}{\sqrt{29}}$
D. $\frac{2}{\sqrt{29}}$
Answer: C
Solution:
Solution:
Question 33
The planes $2x - y + 4z = 5$ and $5x - 2.5y + 10z = 6$ are
Options:
A. perpendicular
B. parallel
C. intersect on y-axis
D. passing through (0, 0, 5 / 4)
Answer: B
Solution:
Solution:
Question 34

If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then Options:

Given $E(X + c) = 8$ and $E(X - c) = 12$. Then the value of c is
Options:
A. 2
B2
C. 4
D4
Answer: B
Solution:
Solution:
Question 40
The value of x for which $\frac{x-1}{x} \ge 2$ is
Options:
A. (0, 1)
B. $(-\infty, -1)$
C. $(-\infty, 0)$
D. [-1, 0)
Answer: D
Solution:
Solution:
Question 41
The value of x for which $12x - 6 < 0$, $12 - 3x < 0$ is
Options:
Α. φ
B. R
C. R\{0}

D. set of all non-negative integers

Answer: A

Solution: Solution: Question 42 The value of x for which |x + 3| > |2x - 1| is **Options:** A. $\left(-\frac{2}{3}, 4\right)$ B. $\left(-\frac{2}{3}, -\infty\right)$ C.(0,1)D. [0, 1] **Answer: A Solution: Solution: Question 43** If $n^4 < 10^n$ for a fixed positive integer $n \ge 2$, then **Options:** A. $(n + 1)^4 < 10^{n+1}$ B. $(n + 1)^4 > 10^{n+1}$ C. $(n + 1)^4 < 10^n$ D. $(n + 1)^4 > 10^n$ **Answer: A Solution: Solution:**

Question 44

If $x^2 + 6x - 27 > 0$ and $x^2 - 3x - 4 < 0$, then

A. $x > 3$
B. $x < 4$
C. $3 < x < 4$
D. $\frac{7}{2}$
Answer: C
Solution:
Solution:
Question 45
Solution of $2x - 1 - x + 7 $ is
Options:
A2
B. 8
C2, 8
D. 4
Answer: B
Solution:
Solution:
Question 46
If $x \in I$ (set of all integers) such that $x^2 - 3x < 4$, then the number of possible values of x is
Options:
A. 3
B. 4
C. 6
D. 2
Answer: B

Options:

If the fourth roots of unity are z_1 , z_2 , z_3 , z_4 , then $z_1^2 + z_2^2 + z_3^2 + z_4^2$ is
equal to
Options:
A. 1
B. 0
C. i
Di
Answer: B
Solution:
Solution:
Question 50
If z is a complete number, then $z^2 + \omega z^2 = 2$ represents, where $\omega^3 = 1$,
Options:
A. a circle
B. a straight line
C. a hyperbola
D. an ellipse
Answer: C
Solution:
Solution:
Question 51
The value of $\left[i^{19} + \left(\frac{1}{i}\right)^{25}\right]^2$ is
Options:
A. 4
B4
C. 2

D. -2

Answer: B
Solution:
Solution:
Question 52
The value of $ \sqrt{2i} - \sqrt{-2i} $ is
Options:
A. 2
B. $\sqrt{2}$
C. 0
D. $2\sqrt{2}$
Answer: A
Solution:
Solution:
Question 53
$\cos\left(i\log\frac{a-ib}{a+ib}\right)$ is equal to
Options:
A. ab
B. $\frac{a^2 - b^2}{a^2 + b^2}$
C. $\frac{a^2 - b^2}{2ab}$
D. $\frac{2ab}{a^2 + b^2}$
Answer: B
Solution:
Solution:

Question 54

Locus of the point z satisfying the equation |iz - 1| + |z - i| = 2 is

Options:

A. a straight line

B. a circle

C. an ellipse

D. a pair of straight lines

Answer: A

Solution:

Solution:

Question 55

If the cube root of unity is 1, ω , ω^2 , then the roots of the equation $(x+1)^3+8=0$ are

Options:

A.
$$-1$$
, $1 + 2\omega$, $1 + 2\omega^2$

B.
$$-3$$
, $-1 - 2\omega$, $-1 - 2\omega^2$

$$C. -1, -1, -1$$

D. . -2, -2ω , $-2\omega^2$

Answer: B

Solution:

Solution:

Question 56

If x = a + b + c, $y = a\alpha + b\beta + c$ and $z = a\beta + b\alpha + c$ where α , β are complex cube roots of unity and a, b, c are real, then xyz is equal to

Options:

A.
$$2(a^3 + b^3 + c^3)$$

B.
$$2(a^3 - b^3 - c^3)$$

Solution:

Solution:

Answer: C

Question 57

If z_1 , z_2 , z_3 are vertices of an equilateral triangle inscribed in the circle |z|=2 and if $z_1=1+1$ sqrt 3, then

Options:

A.
$$z_2 = -2$$
 and $z_3 = 1 - i\sqrt{3}$

B.
$$z_2 = 2$$
 and $z_3 = 1 - i\sqrt{3}$

C.
$$z_2 = -2$$
 and $z_3 = -1 - i\sqrt{3}$

D.
$$z_2 = 1 - i\sqrt{3}$$
 and $z_3 = -1 - i\sqrt{3}$

Answer: C

Solution:

Solution:

Question 58

If $\frac{3}{2 + \cos \theta + i \sin \theta} = \mathbf{a} + i \mathbf{b}$, then $[(\mathbf{a} - \mathbf{2})^2 + \mathbf{b}^2]$ is equal to

Options:

- A. 0
- B. 1
- C. -1
- D. 2

Answer: B

Solution:

Solution:
Question 59
Let z_1 and z_2 be the roots of the equation $z^2 + pz + q = 0$ where p, q are real. The points represented by z_1 , z, and the origin from an equilateral triangle, if
Options:
$A. p^2 = 3q$
B. $p^2 > 3q$
$C. p^2 < 3q$
$D. p^2 = 2q$
Answer: A
Solution:
Solution:
Question 60
The value of sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$, equals
Options:
A. i
B. i – 1
C. –i
D. 0
Answer: B

Solution:

Solution:

Question 61

If $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$ where a, b, c are in geometrical progression, then x, y, z

are in	
Options:	
A. AP	
B. GP	
C. HP	
D. None of the above	
Answer: A	
Solution:	
Solution:	
Question 62	
The difference between two numbers is 48 and the catheir arithmetic mean and their geometric mean is of the two numbers is	
Options:	
A. 96	
B. 60	
C. 54	
D. 49	
Answer: D	
Solution:	
Solution:	
Question 63	
The first two terms of a geometric progression add the third and the fourth terms is 48 . If the terms of progression are alternately positive and negative, the	f the geometric

Options:

A. -4

B. -12

C. 12

Τ)	1

Answer: B

Solution:

Solution:

Question 64

If the first, second and last term of an arithmetic series are a, b, c respectively, then the number of terms is

Options:

A.
$$\frac{b+c-2a}{b-a}$$

B.
$$\frac{b+c+2a}{b-a}$$

C.
$$\frac{b+c-2a}{b+a}$$

D.
$$\frac{b+c+2a}{b+a}$$

Answer: A

Solution:

Solution:

Question 65

Find the sum of the series

$$(1+2) + (1+2+2^2) + (1+2+2^2+2^3) + \dots$$
 upto n terms

Options:

A.
$$2^{n+2} - n - 4$$

B.
$$2(2^n - 1) - n$$

C.
$$2^{n+1} - n$$

D.
$$2^{n+1} - 1$$

Answer: A

Solution:

Solution:

Question 66
If a, b, c are in arithmetic progression, then the value of $(a + 2b - c)(2b + c - a)(a + 2b + c)$ is
Options:
A. 16abc
B. 4abc
C. 8abc
D. 3abc
Answer: A
Solution:
Solution:
Question 67
Question 67 The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50° . The number of sides of the polygon is
The interior angles of a polygon are in AP. The smallest angle is 120°
The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50° . The number of sides of the polygon is
The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50° . The number of sides of the polygon is Options:
The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50° . The number of sides of the polygon is Options:
The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50°. The number of sides of the polygon is Options: A. 9 B. 10
The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50°. The number of sides of the polygon is Options: A. 9 B. 10 C. 16
The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50°. The number of sides of the polygon is Options: A. 9 B. 10 C. 16 D. 5
The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50°. The number of sides of the polygon is Options: A. 9 B. 10 C. 16 D. 5 Answer: A
The interior angles of a polygon are in AP. The smallest angle is 120° and the common difference is 50°. The number of sides of the polygon is Options: A. 9 B. 10 C. 16 D. 5 Answer: A Solution:

Options:

A. $S_n = T_{n^3}$

$$B. S_n = T_{n^2}$$

C.
$$S_n = T_n^2$$

D.
$$S_n = T_n^3$$

Answer: C

Solution:

Solution:

Question 69

The number of real solutions of $x - \frac{1}{x^2 - 4} = 2 - \frac{1}{x^2 - 4}$ is

Options:

- A. 3
- B. 1
- C. 0
- D. infinite

Answer: C

Solution:

Solution:

Question 70

If $x + \lambda y - 2$ and $x - \mu y + 1$ are factors of the expression $6x^2 - xy - y^2 - 6x + 8y - 12$, then

Options:

A.
$$\lambda = \frac{1}{3}, \mu = \frac{1}{2}$$

B.
$$\lambda = 2$$
, $\mu = 3$

C.
$$\lambda = \frac{1}{3}, \mu = \frac{-1}{2}$$

D.
$$\lambda = 2$$
, $\mu = -3$

Answer: C

Solution:

Sol	lut	in	n:

Question 71

If $x + \frac{1}{x} = 5$, then $\left(x^3 + \frac{1}{x^3}\right) - 5\left(x^2 + \frac{1}{x^2}\right) + \left(x + \frac{1}{x}\right)$ is equal to

Options:

- A. 0
- B. 5
- C. -5
- D. 10

Answer: A

Solution:

Solution:

Question 72

If $\frac{6x^2-5x-3}{x^2-2x+6}$ < 4, then the least and highest values of $4x^2$ are

Options:

- A. 0,81
- B. 0,36
- C. -10, 3
- D. 10, -3

Answer: A

Solution:

Solution:

Question 73

For real a and b, the roots of the equation $(x - a)(x - b) = abx^2$ are always

Options:
A. real
B. purely imaginary
C. complex
D. one rational and other irrational
Answer: A
Solution:
Solution:
Question 74
If $f(x) = 2x^3 + mx^2 - 13x + n$ and 2,3 are roots of the equation $f(x) = 0$, then the values of m and n are
Options:
A5, -30
B5, 30
C. 5, 30
D. 5, -30
Answer: B
Solution:
Solution:
Question 75
If $\log_{10} x + \log_{10} y \ge 2$, then the smallest possible value of $x + y$ is
Options:
A. 10
B. 30
C. 20
D. 5
Answer: C

Solution:

Solution:
Question 76
The number of real solutions of the equation $27^{\frac{1}{x}} + 12^{\frac{1}{x}} = 2 \times 8$
Options:
A. one
B. two
C. zero
D. infinite
Answer: C
Solution:
Solution:
Question 77
The roots of the equation $x^{\sqrt{x}} = \sqrt{x^x}$ are
Options:
A. 0 and 4
B. 0 and 1
C. 0.1 and 4
D. 1 and 4
Answer: D
Solution:
Solution:

Question 78

How many 10 digit numbers can be written by using the digits 1 and 2 ? $\hat{}$

Options:

A.
$${}^{10}\text{C}_1 + {}^{9}\text{C}_2$$

B. 2 ¹⁰
C. 10 C $_2$
D. 10!
Answer: B
Solution:
Solution:
Question 79
The total number of 9 digit numbers which have all different digit is
Options:
A. 10!
B. 9!
C. 9.9!
D. 10.10!
Answer: C
Solution:
Solution:
Question 80
The number of possible outcomes in a throw of n ordinary dice in which at least one of the dice shows an odd number is
Options:
A. $6^n - 1$
B. $3^n - 1$
C. $6^{n} - 3^{n}$
D. 6 ⁿ
Answer: C
Solution:
Solution:

Question 81	
The number of different garlands, that can be formed using 3 flower one kind and 3 flowers of other kind, is	rs of
Options:	
A. 60	
B. 20	
C. 4	
D. 5	
Answer: D	
Solution:	
Solution:	
Question 82	
The number of divisors of the form $4n + 2(\ge 0)$ of the integer 240 is	
Options:	
A. 4	
B. 8	
C. 10	
D. 3	
Answer: A	
Solution:	
Solution:	
Question 83	
If a, b, c are three natural numbers in AP and $a+b+c=21$, then the possible number of ordered triplet (a, b, c) is	ıe
Options:	

A. 15

B. 14
C. 13
D. 12
Answer: C
Solution:
Solution:
Question 84
The number of different ways of distributions of 10 marks among 3 questions, each question carrying at least 1 mark, is
Options:
A. 72
B. 71
C. 36
D. 84
Answer: C
Solution:
Solution:
Question 85
Let A be the set of 4-digit numbers $a_1a_2a_3a_4$ where $a_1 < a_2 < a_3 < a_4$, then n(A) is equal to
Options:
A. 126
B. 84
C. 210
D. 96
Answer: A
Solution:

Solution:
Question 86
In the binomial expansion of (a – b)*, n \geq 5 the sum of the 5 th and 6 th terms is zero. Then, $\frac{a}{b}$ equals
Options:
A. $\frac{n-5}{6}$
B. $\frac{n-4}{5}$
C. $\frac{5}{n-4}$
D. $\frac{6}{n-5}$
Answer: B
Solution:
Solution:
Question 87
The largest coefficient in the expression of $(1 + x)^{2n}$ is
Options:
A. ²ⁿ C _n
B. $^{2n}C_{n+1}$
C. $^{2n}C_{n-1}$
D. ${}^{2n}C_{2n-1}$
Answer: A
Solution:
Solution:

Question 88

The remainder when $3^{100} \times 2^{50}$ is divided by 5 is

Options:
A. 1
B. 2
C. 3
D. 4
Answer: D
Solution:
Solution:
Question 89
The digit at the unit place in the number $19^{2005} + 11^{2005} - 9^{2005}$ is
Options:
A. 2
B. 1
C. 0
D. 8
Answer: B
Solution:
Solution:
Question 90
If $P(n): 2+4+6++(2n)$, $n \in \mathbb{N}$, then $P(k) = k(k+1)+2$ implies $p(k+1) = (k+1)(k+2)+2$ is true for all $k \in \mathbb{N}$. So, the statement $P(n) = n(n+1)+2$ is true for
Options:
A. $n \ge 1$
B. $n \ge 2$
C. $n \ge 3$
D. None of the above

Answer: D

matrix, then **Options:** A. A and B are non-singular B. B is non-singular C. A is non-singular D. A and B are singular **Answer: D Solution: Solution: Question 94** The solution set of the equation $\begin{bmatrix} 2 & 3 & x \\ 2 & 1 & x^2 \\ 6 & 7 & 3 \end{bmatrix} = \mathbf{0} \text{ is}$ **Options:** Α. φ B. {0, 1} C. $\{-1, 1\}$ D. $\{1, -3\}$ **Answer: D Solution:**

Solution:

Question 95

If ω is a complex cube root of unity, then the value of the determinant

A. 0			
Β. ω)		
C. 2			
D. 4	:		
Ans	wer: D		
Sol	lutio	n:	
Solu	tion:		
Qı	ıest	ion 96	
If A	A =	$ \begin{array}{ccccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{array} $, then A ³ + A is equal to
Opt	ions:		
A.	0 0 0 0 0 0	0 0 0	
В.	0 1 0 0 1 0	0 1 0	
C.	0 0 0 0 1 -	1 1 1 0	
D.	1 0 0 1 0 0	0 0 1	
Ans	wer: D		
0.1		_	

Solution:

Solution:

$$\mathbf{If} \mathbf{A} = \begin{bmatrix} 1 & 0 \\ & x & 1 \\ & x & x \end{bmatrix}$$

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x & x & 1 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then $A^3 - 3A^2 + 3A + I$ is equal to

Options:

A. 31

B. I

C. -I

D. 2I

Answer: D

Solution:

Solution:

Question 98

If
$$A = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$
, then A^4 is equal to

Options:

A. 27A

B. 81A

C. 243A

D. 729A

Answer: D

Solution:

Solution:

Question 99

If
$$\begin{vmatrix} 2i & -3i & 1 \\ 3 & 3i & -1 \\ 4 & 3 & i \end{vmatrix} = x + iy$$
, then

Options:

A.
$$x = 3$$
, $y = 1$

B.
$$x = 2$$
, $y = 3$

C.
$$x = 0$$
, $y = 0$

D.
$$x = 1$$
, $y = 1$

Answer: C

Solution:

Solution:

Question 100

Options:

A. AP

В. НР

C. GP

D. None of the above

Answer: C

Solution:

Solution:

Question 101

If $2^x \cdot 3^{x+4} = 7x$, then x is equal to

$$A. \ \frac{4log_e 3}{log_e 7 - log_e 6}$$

$$B. \ \frac{4\log_e 3}{\log_e 6 - \log_e 7}$$

$$C. \ \frac{2log_e 3}{log_e 7 - log_e 6}$$

Which of the following is not correct?

Options:

A.
$$A \subseteq A'$$
 if and only if $A = \phi$

B.
$$A \subseteq A$$
 if and only if $A = X$, where X is the universal set

C. If
$$A \cup B = A \cup C$$
, then $B = C$

D. B = C if and only if
$$A \cup B = A \cup C$$
 and $A \cap B = A \cap C$

Answer: D

Solution:

Solution:

A relation R is defined in the set Z of integers as follows $(x, y) \in R$ if and only if $x^2 + y^2 = 9$. Which of the following is false?

A. $R = \{(0, 3), (0, -3), (3, 0), (-3, 0)\}$

B. Domain of $R = \{-3, 0, 3\}$

C. Range of $R = \{-3, 0, 3\}$

D. At least one of the above is false

Answer: D

Solution:

Question 105

Two finite sets A and B have m and n elements respectively. If the total number of subsets of A is 112 more than the total number of subsets of B. then the value of m is

Options:

A. 7

B. 9

C. 10

D. 12

Answer: A

Solution:

Solution:

Question 106

A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn in random from this pack without replacement. The probability, that at least one of them will be an ace, is

A. $\frac{1}{5}$
B. $\frac{9}{20}$
C. $\frac{1}{6}$
D. $\frac{1}{9}$
Answer: B
Solution:
Solution:
Question 107
If $P(A) = 0.65$, $P(B) = 0.80$, then $P(A cap B)$ lies in the interval
Options:
A. [0.30, 0.80]
B. [0.4, 0.70]
C. [0.4, 0.70]
D. [0.45, 0.65]
Answer: D
Solution:
Solution:
Question 108
One hundred identical coins, each with probability p, of showing up a head, are tossed. If 0 < p < 1, and if the probability of heads on exactly 50 coin is equal to that of heads on exactly 51 coins, then the value of p, is
Options:
A. $\frac{1}{2}$
B. $\frac{49}{101}$
C. $\frac{50}{101}$

Solution:

Solution:

Question 109

The probability density function of X is

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 3e^{-3x} & x > 0 \\ 0 & \text{elsewhere} \end{cases}$$

The cumulative distribution function of X is

Options:

A. F (x) =
$$\begin{cases} 0 & x \ge 0 \\ 1 - e^{-3x} & x < 0 \end{cases}$$

B. F (x) =
$$\begin{cases} 0 & x \le 0 \\ 1 + e^{-3x} & x > 0 \end{cases}$$

C. F (x) =
$$\begin{cases} 0 & x \le 0 \\ 1 - e^{-3x} & x > 0 \end{cases}$$

D. None of the above

Answer: C

Solution:

Solution:

Question 110

There are 12 white and 12 red balls in a bag. Balls are drawn one by one with replacement from the bag. The probability that 7 th drawn ball is 4 ^{m.} white is

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{8}$$

C. $\frac{1}{2}$
D. $\frac{1}{3}$
Answer: C
Solution:
Solution:
Question 111
A determinant of second order is made with the elements 0,1 . What is the probability that the determinant is positive?
Options:
A. $\frac{7}{12}$
B. $\frac{11}{12}$
C. $\frac{3}{16}$
D. $\frac{15}{16}$
Answer: C
Solution:
Solution:
Question 112
A box contains 3 red and 5 blue balls. The probability, that two balls are drawn in which 2 nd ball drawn is blue without replacement, is
Options:
A. $\frac{5}{16}$
B. $\frac{5}{36}$
C. $\frac{5}{8}$
D. $\frac{20}{56}$

Answer: C

Options:	
A. $\frac{1}{2}$	
B. $\frac{\sqrt{3}}{2}$	
C. $\frac{-1}{2}$	
D. $\frac{-\sqrt{3}}{3}$	

Answer: B

Solution:

Question 116

If $\cos^{-1}\left(\frac{5}{13}\right) - \sin^{-1}\left(\frac{12}{13}\right) = \cos^{-1}x$, then x is equal to

.....

If $-\frac{x}{2} < \sin^{-1}x < \frac{x}{2}$, then $\tan(\sin^{-1}x)$ is equal to

Solution:

Options:

A. 1

B. $\frac{1}{\sqrt{2}}$

C. 0

D. $\frac{\sqrt{3}}{2}$

Answer: A

Solution:

Question 117

Solution:

Options:

A. $\frac{x}{1-x^2}$

B. $\frac{x}{1+x^2}$

If $\sqrt{x} + \sqrt{y} = 4$, then $\frac{dx}{dy}$ at y = 1 is

Options:

- A. 1
- B. 3
- C. 3
- D. 1

Answer: B

Solution: Solution: Question 120

The derivative of $\sin x^3$ with respect to $\cos x^3$ is equal to

Options:

- A. $-\tan x^3$
- B. $-\cot x^3$
- $C. \cot x^3$
- D. $\tan x^3$

Answer: B

Solution:

Solution:

Question 121

If $y = \sqrt[4]{x + \sqrt{y + \sqrt{x + \sqrt{y + \dots \infty}}}}$, then $\frac{dy}{dx}$ is equal to

Options:

A.
$$\frac{y+x}{y^2-2x}$$

B.
$$\frac{y^2 - x}{2y^2 - 2xy - 1}$$

$$C. \frac{y^3 + x}{2y^2 - x}$$

D.
$$\frac{y^2 - x}{y^3 - xy - 1}$$

Answer: D

Solution:

Solution:

 $\lim_{\substack{n \to \infty \\ n \to \infty}} \left(\frac{3x^2 + 2x + 1}{x^2 + x + 2} \right)^{\frac{6x + 1}{3x + 2}}$ is equal to

Options:

- A. 3
- B. 9
- C. 1
- D. 5

Answer: B

Solution:

Solution:

Question 123

The values of constants a and b so that $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 0$ is

Options:

A.
$$a = 0$$
, $b = 0$

B.
$$a = 1$$
, $b = -1$

C.
$$a = -1$$
, $b = 1$

D.
$$a = 2$$
, $b = -1$

Answer: B

Solution:

Solution:

Question 124

If [.] denotes the greatest integer function, then $\lim_{n\to\infty}\frac{[x]+[2x]+...+[nx]}{n^2}$ is

- A. 0
- B. x

olution:	
Question 127	
The diameter of a circle is 2.486m. Its area with due regard to ignificant figures is (Given π = 3.142)	
ptions:	
$1.4.85454 \text{m}^2$	
$3.4.8545 \text{m}^2$	
$2.4.584 \text{m}^2$	
$0.4.855 \mathrm{m}^2$	
nswer: D	
Solution:	
olution:	
Question 128	
an athlete completes one round of a circular track of radius R in 40 s What will be his displacement at the end of 2 minutes 20 seconds?	•
ptions:	
7R	
5. 2R	
2. 2πR	
). 7πR	
nswer: B	
Solution:	
olution:	
Dugstion 120	

Vectors A and B have same magnitude. In addition, the magnitude of their resultant is also equal to the magnitude of either of them. Then A and B are at an angle

Options:
A. 120°
B. 60°
C. 90°
D. 45°
Answer: A
Solution:
Solution:
Question 130
In a tug of war contest, two men pull on a horizontal rope from opposit sides. The winner will be the man who
Options:
A. exerts greater force on the rope
B. exerts greater force on the ground
C. exerts force on the rope which is greater than the tension in the rope
D. makes a smaller angle with the vertical
Answer: B
Solution:
Solution:
Question 131
Which one of the following is not a conservative force?
Options:
A. gravitational force
B. electromagnetic force between two charges

Solution:

Answer: D

D. frictional force

C. magnetic force between two magnetic dipoles

olution:
Question 132
The center of mass of a system of particles does not depend on
Options:
a. mass of the particles
3. position of particles
C. forces on the particles
). relative distance between the particles
answer: C
Solution:
olution:
Question 133
f the separation between carbon and oxygen in CO molecule is 0.12 nm hen the distance of the center of mass from the carbon atom is
Options:
a. 0.03 nm
3. 0.068 nm
C. 0.05 nm
0. 0.06 nm
answer: B
Solution:
olution:
Question 134

Which one of the following is an evidence to show that there must be a force acting on earth and directed towards sun?

Options:

A. deviation of the falling bodies towards east

B. revolution of the earth round the sun
C. phenomenon of day and night
D. expanding universe
Answer: B
Solution:
Solution:
Question 135
Kepler's second law regarding constancy of aerial velocity of a planet is a consequence of conservation of
Options:
A. energy
B. distance
C. linear momentum
D. angular momentum
Answer: D
Solution:
Solution:
Question 136
Glass is a
Options:
A. Crystalline solid
B. Amorphous solid
C. Liquid crystalline material

Solution:

Answer: B

Solution:

D. Polymeric material

Question 137	
A certain planet is at a distance d from the sun. Then the temporal of the planet is	erature
Options:	
A. proportional to d	
B. inversely proportional to d	
C. inversely proportional to \sqrt{d}	
D. inversely proportional to d ²	
Answer: D	
Solution:	
Solution:	
Question 138	
The velocity of sound in air is independent of change in	
Options:	
A. temperature	
B. density	
C. pressure	
D. humidity	
Answer: C	
Solution:	
Solution:	
Question 139 A parallel plate condenser is charged and isolated. When a she	

A parallel plate condenser is charged and isolated. When a sheet of glass is interposed between the plates

- $\boldsymbol{A}.$ the charges on the plates will be reduced
- B. the potential difference between the plates will be reduced

C. the potential difference between the plates will be increased
D. the charges on the plates will be increased
Answer: C
Solution:
Solution:
Question 140
Two wires carrying the same current in the same direction and placed 1 cm apart will experience
Options:
A. a mutually attractive force
B. a mutually repulsive force
C. no force at all
D. attractive as well as repulsive force
Answer: A
Solution:
Solution:
Question 141
Eddy currents developed on a conductor moving in a magnetic field w tend to
Options:
A. speed up the motion
B. slow down the motion
C. rotate the conductor
D. oscillate the conductor
Answer: B
Solution:
Solution:

Question 142 Two coils of inductances \mathbf{L}_1 and \mathbf{L}_2 are linked such that their mutual inductance is M. Then, **Options:** A. $M = L_1 - L_2$ B. $M = L_1 + L_2$ C. $M = (L_1 + L_2) / 2$ D. the maximum value of M is $\sqrt{(L_1L_2)}$ **Answer: D Solution: Solution:** **Question 143** Two monochromatic light beams of intensities I and 4I are superposed. The maximum and minimum possible intensities in the resulting beam are **Options:** A. 5I and I B. 5I and 3I C. 9I and I D. 9I and 3I **Answer: D Solution: Solution:** -----Question 144 The penetrating powers of a, b and g radiations, in decreasing order,

Α. α, β, γ	
3. γ, α, β	
C. β, γ, α	
Ο. γ, β, α	
Answer: D	
Solution:	
Solution:	
Question 145	
If orbits of n greater than 4 are not allowed, the maximum number elements in nature would be	· of
Options:	
A. 78	
3. 60	
C. 106	
D. 32	
Answer: B	
Solution:	
Solution:	
Question 146	
Fermi level in the case of intrinsic semiconductor lies	
Options:	
A. close to the conduction band	
Delegate the relegacy band	

- B. close to the valence band
- $C.\ in\ the\ middle\ of\ the\ forbidden\ energy\ gap$
- D. above the conduction band

Answer: C

Solution:

Solution:
Question 147
A certain npn transistor has a forward current gain β of 99 . The current amplification factor α of the transistor is
Options:
A. 0.66
B. 0.99
C. 0.98
D. 9.9
Answer: B
Solution:

The truth table of a certain logic circuit is shown below.

A (input)	B (input)	Y (output)
0	0	0
0	1	1
1	0	1
1	1	0

The logic gate represented by the above truth table belongs to

Options:

Solution:

A. NAND

B. OR

C. NOR

D. XOR

Answer: D

Solution:

Solution:

Question 149 Optical fibers transmit light signals from one place to another place by **Options:** A. internal conical refraction B. double refraction C. interference of light signals D. total internal reflection **Answer: D Solution: Solution:** **Question 150** Numerical aperture of an optical fiber is a measure of **Options:** A. attenuation of light signals in the fiber B. difference between the refractive indices of core and the cladding C. light gathering power of the fiber D. signal distortion in the fiber **Answer: C Solution: Solution: Question 151** In a sample of radioactive material, what percentage of initial number

of active nuclei will decay during one mean life?

Options:

A. 37%

B. 63%

C. 50%	
D. 69.3%	
Answer: B	
Solution:	
Solution:	
Question 152	
The frequency of radio waves from a certain radio station is 600 KHz. It wavelength is	S
Options:	
A. 5m	
B. 500m	
C. 0.6m	
D. 6m	
Answer: B	
Solution:	
Solution:	
Question 153	
Blue colour of the sky is due to	
Options:	
A. Raman scattering	
B. Tyndall scattering	
C. Raleigh scattering	
D. Mie scattering	
Answer: C	
Solution:	
Solution:	

Question 134	
In a parallel LCR circuit, the current at reson	ance will be
Options:	
A. maximum	
B. zero	
C. minimum	
D. infinity	
Answer: B	
Solution:	
Solution:	
Question 155	
The time period of an earth-satellite in circula	ar orbit is independent of
Options:	
A. mass of the satellite	
B. radius of the orbit	
C. both of them	
D. none of them	
Answer: A	
Solution:	
Solution:	

Question 156

The kinetic energy of a body of moment of inertia I $% \left(1\right) =\left(1\right) +\left(1\right)$

Options:

A. L^2/I

B. $L^2/2I$

C. L / 2I

$D. IL^2$
Answer: B
Solution:
Solution:
Question 157
The phase difference between the displacement and velocity of a particle executing simple harmonic motion is
Options:
Α. π / 2
В. п
C. m / 4
D. zero
Answer: A
Solution:
Solution:
Question 158
Which physical phenomenon is responsible for spherical shape of the rain drop?
Options:
A. Viscosity
B. Buoyancy
C. Friction
D. Surface tension
Answer: D
Solution:
Solution:

Bernoulli's principle is a consequence of

Defindum's principle is a consequence of
Options:
A. conservation of energy alone
B. conservation of energy and momentum
C. conservation of momentum alone
D. conservation of angular momentum
Answer: A
Solution:
Solution:
Question 160
At what temperature do the Fahrenheit and Celcius scales of temperature coincide?
Options:
A. 0°C
B40°C
C. –273°C
D. 32°F
Answer: B
Solution:
Solution:
Question 161
When the source and the listener move in the same direction with

When the source and the listener move in the same direction with a speed equal to the half of the speed of sound, the change in frequency of the sound is

Options:

A. Zero

B. 25%

D. 75%
Answer: A
Solution:
Solution:
Question 162
In Young's double slit experiment, the fringe width is β. If the entire arrangement is now placed inside a liquid of refractive index μ, the fringe width will become
Options:
Α. μβ
B. $(\mu + 1)\beta$
C. β / μ
D. $\beta / (\mu + 1)$
Answer: C
Solution:
Solution:
Question 163
Formation of rainbow involves
Options:
A. dispersion of sunlight
B. interference of sunlight

Solution:

Answer: A

C. diffraction of sunlight

 $\ \, \hbox{D. polarization of sunlight}$

Solution:

C. 50%

Question 164

Which one of the following distance-time graphs represent one dimensional uniform motion?

Options:

A.

В.

C.

D.

Answer: D

Solution:

Solution:

Question 165

At the top of the trajectory of a projectile, the acceleration is

Options:

A. Zero

B. g

C. Maximum

D. Minimum

Answer: B

Solution:
Solution:
Question 166
In a uniform circular motion \vec{r} , \vec{V} and $\vec{\omega}$ stands for radius vector, linear velocity and angular velocity respectively. Then which of the following is true?
Options:
$A. \overrightarrow{V} = \overrightarrow{r} \times \overrightarrow{a}$
$B. \vec{V} = \vec{\omega} \times \vec{r}$
$\vec{C} \cdot \vec{V} = \vec{r} \cdot \vec{a}$
D. None of the above
Answer: B
Solution:
Solution:
Question 167
Two balls of masses 2g and 6g are moving with a kinetic energy in the ratio 3:1. What is the ratio of their linear momentum?
Options:
A. 1:1
B. 2:1
C. 1:2
D. None of the above
Answer: A
Solution:
Solution:

Which of the	following	surfaces:	in contact	has	maximum	coefficient	of
friction (u)?							

friction (u) ?
Options:
A. wood on wood
B. rubber tyre on dry concrete
C. steel on steel
D. rubber tyre on wet concrete
Answer: B
Solution:

Question 169

If two electrons are forced to come closer to each other, the potential energy of the system of 2 electrons will

Options:

Solution:

- A. Becomes zero
- B. Increases
- C. Decreases
- D. Becomes ∞

Answer: B

Solution:

Solution:

Question 170

If $\vec{P} \times \vec{Q} = \vec{Q} \times \vec{P}$, then the angle between \vec{P} and \vec{Q} is

Options:

А. п

B. $\pi/2$

C. n/4

Answer: A
Solution:
Solution:
Question 171
The total energy of the particle executing Simple Harmonic Motion is
Options:
A. proportional to x
B. proportional to x^2
C. independent of x
D. proportional to x ³
Answer: C
Solution:
Solution:
Question 172
Young's modulus of a perfectly rigid body is
Options:
A. zero
B. unity
C. infinity
D. more than zero but less than infinity
Answer: C
Solution:
Solution:
Ouestion 173

D. None of the above

A wire fixed at the upper end stretches by length Δl by applying a force F . The work done in stretching is
Options:
Α. F / 2 Δ l
3. F Δl
C. 2F Δ l
D. F Δ1 / 2
Answer: D
Solution:
Solution:
Question 174
A hole is drilled along the diameter of the earth and a stone is dropped nto it. Then the stone
Options:
A. reaches the centre of the earth and stops
3. reaches the opposite end and stops
C. executes simple harmonic motion about the centre of the earth
). reaches the opposite side and escapes earth
Answer: C
Solution:
Solution:
Question 175
A car and a bus are moving with the same kinetic energy. They are brought to rest by applying brakes which brovide equal retarding forces. The distances covered by them before

coming to rest will be

- A. Inversely proportional to the square of their masses
- $\ensuremath{\mathsf{B}}.$ Inversely proportional to their masses

C. Directly proportional to their masses
D. Equal
Answer: D
Solution:
Solution:
Question 176
A ring of radius r and mass m rotates about its central axis. The kinetic energy is
Options:
A. $mωω^2$
B. $m^2\omega^2$
C. $\frac{1}{2}$ mr ω^2
D. $\frac{1}{2}$ mr ² ω^2
Answer: D
Solution:
Solution:
Question 177
Which waves are used in sonography?
Options:
A. Microwaves
B. Infra-red waves
C. Sound waves
D. Ultrasonic waves
Answer: D
Solution:

Solution:

Question 178	
$[M^{-1}L^{-2}T^2Q^2]$ is dimensional formula of	
Options:	
A. capacitance	
B. resistance	
C. inductance	
D. magnetic field	
Answer: A	
Solution:	
Solution:	
Question 179	
The value of gravitational constant G depends upon	
Options:	
A. nature and size of bodies	
B. the medium between two masses	
C. the temperature of bodies	
D. None of the above	
Answer: D	
Solution:	
Solution:	
Question 180	
If 22g of ${\rm CO_2}$ at 27°C is mixed with 16g of ${\rm O_2}$ at 37°C, the temperature the mixture is	of
Options:	
A. 32°C	
B. 27°C	

C. 37°C	
D. 30.5°C	
Answer: A	
Solution:	
Solution:	
Question 181	
A black body at high temperature emits radiations of	
Options:	
A. longer wavelength	
B. shorter wavelength	
C. one fixed wavelength	
D. all wavelength	
Answer: D	
Solution:	
Solution:	
Question 182	
Cloudy nights are usually warmer than clear ones, because clouds	
Options:	
A. do not radiate heat	
B. do not absorb heat	
C. have low thermal conductivity	
D. have high thermal conductivity	
Answer: C	
Solution:	
Solution:	

In a container having water filled up to a height h, a hole is made in the bottom. The velocity of water flowing out of the hole is
Options:

Options:
A. proportional to h
B. proportional to h ²
C. proportional to $h^{1/2}$
D. independent of h
Answer: C
Solution:
Solution:
Question 184
If $x=asin$ (ot + π / 6) and $x=a\cos\sigma x$, then the phase difference between the two waves is
Options:
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
B. $\frac{\pi}{6}$ C. $\frac{\pi}{2}$
C. $\frac{\pi}{2}$
C. $\frac{\pi}{2}$ D. π
C. π/2 D. π Answer: A

Two heater coils separately take $10\,\mathrm{min}$ and $5\,\mathrm{min}$ to boil a certain amount of water. If both the coils are connected in series, the time taken to boil water is

A. 2.5 min
B. 3.33 min
C. 7.5 min
D. 15 min
Answer: D
Solution:
Solution:
Question 186
If a star emitting orange light moves away from the earth, its colour
Options:
A. will appear red
B. will appear yellow
C. remain the same
D. turns gradually blue
Answer: A
Solution:
Solution:
Question 187
A stretched string fixed at both ends has n nodes then the length of the string in terms of wavelength is $ \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left$
Options:
A. $n \frac{\lambda}{2}$
B. $(n + 1) \frac{\lambda}{2}$
C. $(n-1)\frac{\lambda}{2}$

D. $\left(n + \frac{1}{2}\right) \frac{\lambda}{2}$

Answer: C

Solution:
Solution:
Question 188
Which of the following properties has low value for ferrites?
Options:
A. Conductivity
B. Permeability
C. Magnetic susceptibility
D. None of the above
Answer: C
Solution:
Solution:
Question 189
In Carnot's engine at the end of the cycle, the temperature of the working substance is
Options:
A. less than initial temperature
B. greater than initial temperature
C. equal to initial temperature
D. None of the above
Answer: C
Solution:
Solution:

Compressed air coming out of punctured football becomes cooler because of

Options:
A. adiabatic expansion
B. Joule Thomson effect
C. isothermal expansion
D. energy dissipation
Answer: A
Solution:
Solution:
Question 191
Two identical samples of gas are allowed to expand (i) isothermally and (ii) adiabatically. The amount of work done is then
Options:
A. equal in both the cases
B. more for adiabatic expansion
C. more for isothermal expansion
D. None of the above
Answer: C
Solution:
Solution:
Question 192
The thermodynamic process in which the pressure of the system remains constant is called
Options:
A. Isochoric

B. Adiabatic

C. Isothermal

D. Isobaric

Answer: D

Solution:
Solution:
Question 193
The internal energy of a perfect gas does not change during
Options:
A. adiabatic process
B. isothermal process
C. isobaric process
D. isochoric process
Answer: B
Solution:
Solution:
Question 194
The process of superimposing a signal frequency on the carrier wave is known as
Options:
A. transmission
B. reception
C. modulation
D. detection
Answer: B
Solution:
Solution:

Which one of the following statements is wrong?

Options:
A. Ultra-violet rays have a wavelength longer than infra red rays
B. infra red rays travel with the same velocity as visible light
C. infra red ray can be focused by a lens and can be reflected by a mirror just as visible light
D. Infra red rays have more heating power than visible light rays
Answer: A
Solution:
Solution:
Question 196
When a diamagnetic substance is brought near the north or south pole of a bar magnet, it is
Options:
A. attracted by the poles
B. repelled by the poles
C. attracted by north pole and repelled by south pole
D. repelled by north pole and attracted by south pole
Answer: B
Solution:
Solution:
Question 197
How will an image produced by a lens change if half the lens is wrapped in black paper?
Options:
A. there will be no effect
B. the size of image will be reduced to one half

 $\ensuremath{\text{C.}}$ the image will disappear

Answer: D

 $\ensuremath{\mathsf{D}}.$ the brightness of the image will be reduced

Solution:	
Solution:	
Question 198	
The diode is used as	
Options:	
A. an amplifier	
3. an oscillator	
C. a rectifier	
O. a modulator	
Answer: C	
Solution:	
Solution:	
Question 199	
Which of the following interactions is the weakest?	
Options:	
A. Gravitational	
3. Electrostatic	
C. Nuclear	
D. Electromagnetic	
Answer: A	
Solution:	
Solution:	
Question 200	

In the following nuclear reaction $_6C^{11} \rightarrow ^{11}B^{11} + B^+ + X$, X stands for

A. a neutron
B. a neutrino
C. an electron
D. a proton
Answer: B
Solution:
Solution:
Question 201
Total number of electrons in sub shells is calculated by
Options:
A. 2(21 + 1)
B. 2n ²
C. 3(21 + 1)
D. $2(2n + 1)$
Answer: A
Solution:
Solution:
Question 202
The order of ionization energy
Options:
A. s
B. $s > p > d > f$

Answer: B

Solution:

C. s > d > p > f

D. s < d < p < f

Solution:

Question 203 Sulphuric acid is **Options:** A. an oxidizing agent B. a dehydrating agent C. Both (A) and (B) D. Neither (A) nor (B) **Answer: C Solution: Solution: Question 204** Which is reduced in the following reaction (a) $2 \text{ KI (aq)} + \text{(b) } \text{Cl}_2 \text{ (aq)}$ \rightarrow 2 KCl + I_2 (aq) **Options:** A. (a) and (b) B. (a) C. (b) D. None of the above **Answer: C Solution: Solution: Question 205**

The common isotopes of carbon are 12 C and 13 C. The average mass of carbon is 12.01115 amu. What is the abundance of the $^{13}\mathrm{C}$ isotope?

Options:

A. 1.115%

B. 98.885%
C. 0.480%
D. 99.52%
Answer: A
Solution:
Solution:
Question 206
Which of the following sets of ions represent the collection of isoelectronic species?
Options:
A. K^+ , Ca^{2+} , Sc^{3+} , Cl^-
B. Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻
C. K^+ , Cl^- , Mg^{2+} , Sc^{3+}
D. Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻
Answer: A
Solution:
Solution:
Question 207
Which of the following molecule does not have a net dipole moment?
Options:
A. H ₂ O
B. NH ₃
C. BF ₃
D. BrF ₅
Answer: C
Solution:

Solution:
Question 208
Which of the following ions has a magnetic moment of $5.93BM$? (At.no V = 23, Cr = 24, Mn = 25, Fe = 26)
Options:
$A. Mn^2$
B. Fe ²⁺
C. Cr ²⁺
D. V^{3+}
Answer: A
Solution:
Solution:
Question 209
The purple colour of permanganate ion is due to
Options:
A. L to M charge transfer
B. M to L charge transfer
C. d-d transition
D. f-f transition
Answer: A
Solution:
Solution:
Question 210 Among the following, shortest bond length is found in
5

A. C_2

B. N_2
C. O ₂
D. F ₂
Answer: B
Solution:
Solution:
Question 211
The acid which has peroxy linkage is
Options:
A. Dithonic acid
B. Sulphurous acid
C. Caro's acid
D. Pyrosulphuric acid
Answer: C
Solution:
Solution:
Question 212
Bond angle of NH_3 , PH_3 , AsH_3 and SbH_3 is in the order
Options:
$A. PH_3 > AsH_3 > SbH_3 > NH_3$
B. $SbH_3 > AsH_3 > PH_3 > NH_3$
C. $SbH_3 > AsH_3 > NH_3 > PH_3$
D. $NH_3 > PH_3 > AsH_3 > SbH_3$
Answer: D
Solution:

Solution:

Question 213	
Which one of the following octahedral complexes does geometrical isomerism? (A and B are monodentate lig	
Options:	
A. $[MA_2B_4]$	
B. $[MA_3B_3]$	
C. $[MA_4B_2]$	
D. [MA ₅ B]	
Answer: D	
Solution:	
Solution:	
Question 214	
Among the following which are ambidentate ligands 1) NO ₂ ⁻ 2) C ₂ O ₄ ²⁻ 3) EDTA ⁴⁻ 4) SCN ⁻	
Options:	
A. (1) and (2)	
B. (1) and (4)	
C. (2) and (4)	
D. (1) and (3)	
Answer: B	
Solution:	
Solution:	

Options:	
A. He	
B. Ne	
C. Ar	
D. Rn	
Answer: D	
Solution:	
Solution:	
Question 216	
Zone refining is used for the purification of	
Options:	
A. Au	
B. Ge	
C. Ag	
D. Cu	
Answer: B	
Solution:	
Solution:	
Question 217	
Sulphide ores are generally concentrated by	
Options:	
A. Froth flotation	
B. Roasting	

Among the noble gases, which is used for cancer treatment?

Answer: A

C. Magnetic separation

D. Carbon reduction

Solution:
Solution:
Question 218
0.177g of a monobasic acid required 30 ml of N / 10 NaOH solution for complete neutralization. Its molecular weight will be
Options:
A. 49
3. 59
C. 69
D. 79
Answer: B
Solution:
Solution:
Question 219
Which statement is true?
Options:
A. Resonance hybrids are inherently unstable
3. Resonance hybrids are more stable than any individual resonance form
C. Resonance hybrids are averages of all resonance forms resembling the less stable forms
D. Resonance hybrids are averages of all resonance forms resembling the more stable forms
Answer: D
Solution:
Solution:

A meso compound

A. is an achiral molecule which contains chiral carbons
B. contains a plane of symmetry or a center of symmetry
C. is optically inactive
D. is characterized by all of the above
Answer: D
Solution:
Solution:
Question 221
Ethers are kept in brown bottles because
Options:
A. Brown bottles are cheaper than colorless clear bottles
B. Ethers absorb moisture
C. Ethers evaporate readily
D. Ethers are oxidized to explosive peroxides
Answer: D
Solution:
Solution:
Question 222
Acetone undergoes reduction with hydrazine in the presence of NaOH to form propane. This reaction is known as,
Options:
A. Clemmensen reduction
B. Wolf-Kishner reduction

Solution:

Answer: B

C. Rosenmund reduction

D. Reformatsky reaction

olution:
Question 223
The self-condensation reaction of one molecule of 5-hydroxyhexanoiocid
ptions:
. an anhydride
. a lactone
. a ketone
. a lactam
nswer: B
olution:
olution:
Question 224
The Zwitter ion structure is shown by
ptions:
. Sulphanilic acid
. Acetanilide
. Sulphanilamide
. p-phenylene diamine
nswer: A
olution:
olution:
Question 225

The IUPAC name of $C_2(CN)_4$ is

Options:

A. 2,3-Dicyano butanedinitrile

B. 2,3-Dicyano-2-butenedinitrile
C. 1,1,2,2- Tetracyanoethane
D. 1,1,2,2-Tetracyanoethene
Answer: B
Solution:
Solution:
Question 226
Which effect best explains that o-nitrophenol is insoluble in water?
Options:
A. Inductive effect
B. Intermolecular H-bonding
C. Intramolecular H-bonding
D. Resonance effect
Answer: C
Solution:
Solution:
Question 227
Cannizzaro reaction involves migration of which species
Options:
A. Proton
B. Carbene
C. Hydride ion
D. Carbanion
Answer: C
Solution:
Solution:

Bromination of 2-methyl propane gives preferentially

Options:
A. 2-Bromo-2-methyl propane
B. 1-Bromo-2-methyl propane
C. 2-Bromobutane
D. 1-Bromobutane
Answer: A
Solution:
Solution:
Question 229
Question 229 Which of the following method may be used to distinguish between
Question 229 Which of the following method may be used to distinguish between primary, secondary and tertiary alcohols?
Question 229 Which of the following method may be used to distinguish between primary, secondary and tertiary alcohols? Options:
Question 229 Which of the following method may be used to distinguish between primary, secondary and tertiary alcohols? Options: A. Lucas test

Answer: D

Solution:

Solution:

Question 230

Reaction of benzaldehyde with acetic anhydride in the presence of base is known as. and the product is

- A. Claisen reaction, Cinnamaldehyde
- B. Perkin reaction, Cinnamaldehyde
- C. Knovenagel reaction, Cinnamic acid

D. Perkin reaction, Cinnamic acid	
Answer: D	
Solution:	
Solution:	
Question 231	
Which of the following is not a true aromatic compound?	
Options:	
A. Acetophenone	
B. Hydroquinone	
C. p-Benzoquinone	
D. Phenyl acetaldehyde	
Answer: C	
Solution:	
Solution:	
Question 232	
Which one of the following are called pseudo acids?	
Options:	
A. Alkyl nitrites	
B. Primary nitro compounds	
C. Tertiary nitro compounds	
D. Alkyl sulphonic acids	
Answer: B	
Solution:	
Solution:	

known as
Options:
A. Racemization
B. Asymmetric induction
C. Fluxional isomerisation
D. Mutarotation
Answer: D
Solution:
Solution:
Question 234
The Birch reduction of benzoic acid gives
Options:
A.
соон
В.
соон
C.
соон
D.
соон
Answer: A
Solution:
Solution:

The hydrogen ion concentration of a solution with pH value 3.69 is given by

Options:

A. 2.042×10^{-4} M

B. 3.69×10^{-2} M

C. 4.31×10^{-4} M

D. 0.369M

Answer: A

Solution:

Solution:

Question 236

The variation of physical adsorption with temperature is shown by Options:

A.

В.

C.

D.

Answer: B

Solution:

Solution:

Question 237

A molecule of SO_2 is two times heavier than a O_2 molecule. At 298K the average kinetic energy of SO_2 molecule is

Options:

- A. two times that of O2 molecules
- B. half that of O₂ molecules
- C. four times that of ${\rm O_2}$ molecules
- D. same as that of O_2 molecules

Answer: D

Solution:

Sol	utio	n	
-----	------	---	--

Question 238

For the reaction, $N_2(g) + 3H_2(g) \rightarrow 2\,NH\,g(g)$; $\Delta H = -99.4\,kJ$ and $\Delta S = -1983JK^{-1}$. The temperature at which the system is in equilibrium is

Options:

- A. 500K
- B. 279K
- C. 198.8K
- D. 99.4K

Answer: A

In diamond, the coordination number of carbon is

Options:
A. 4 and its unit cell has 8 carbon atoms
B. 4 and its unit cell has 6 carbon atoms
C. 6 and its unit cell has 4 carbon atoms
D. 4 and its unit cell has 4 carbon atoms
Answer: A
Solution:
Solution:
Question 242
The Miller indices of a crystal plane which cuts through the crystal axes at (2a, 3b, c) are
Options:
A. 2, 3, 1
B. 4,6, 2
C. 3, 2, 6
D. 1 / 2, 1 / 3, 1
Answer: C
Solution:
Solution:
Question 243
If the radius of metal atom is 1.0Å and its crystal structure is simple cubic, the volume of the unit cell is
Options:
A. $8 \times 10^{-28} \mathrm{cc}$

B. $4 \times 10^{-30} \text{m}^3$

C. $8 \times 10^{-30} \text{m}^3$

D. 2×10^{-24} cc

Answer: C

Solution:
Solution:
Question 244
0.5M glucose solution has density 1.21gcm ⁻³ . The molality of the solution is
Options:
A. 0.246
3. 0.346
C. 0.446
D. 0.0546
Answer: C
Solution:
Solution:
Question 245
The boiling point of an azeotropic mixture of water-ethanol is less than that of both water and ethanol. This means that the mixture
Options:
A. shows negative deviation from Raoult's law
3. shows positive deviation from Raoult's law
C. shows no deviation from Raoult's law
D. is not a true solution
Answer: B
Solution:
Solution:

The molar conductances at infinite dilution for sodium formate,

126.5S cm 2 mol – 1 respectively at 298K. The molar conductance of acetic acid at infinite dilution would be
Options:
A. $335.2 \text{cm}^2 \text{mol}^{-1}$
B. $461.7 \text{cm}^2 \text{mol}^{-1}$
C. 217.5cm ² mol ⁻¹
D. $390.7 \text{Scm}^2 \text{mol}^{-1}$
Answer: D
Solution:
Solution:
Question 247
The position of some metals in the electrochemical series in decreasing electropositive character is Mg > Al> Zn > Cu > Ag. The change expected on stirring the solution of aluminium nitrate with copper spoon is
Options:
A. the spoon gets coated with aluminium
B. any alloy of aluminium and copper is formed
C. the solution starts turning blue
D. no reaction occurs
Answer: D
Solution:
Solution:
Question 248
The EME of the following Devial cell at 200V is

hydrochloric acid and sodium chloride are 91.0 , 426.2 and

The EMF of the following Daniell cell at 298K is $E_1 : Zn 1 ZnSO_4(0.01M) \mid CuSO_4(1.0M)rCu$ When the concentration of ${\rm ZnSO_4}$ is 1.0M and that of ${\rm CuSO_4}$ is 0.01M, the EMF changes to E $_2$. The relationship between E $_1$ and E $_2$ is

Options:

A. $E_1 > E_2$

B. $E_1 < E_2$

C. $E_1 = E_2$

D. E₁ = 0 \neq E₂

Answer: A

Solution:

Solution:

Question 249

For a reaction $1\A \to 2B$, rate of disappearance of A is related to rate of appearance of B by the expression

Options:

A. $\frac{-d[A]}{dt} = 4 \frac{d[B]}{dt}$

B. $\frac{-d[A]}{dt} = \frac{1}{2} \frac{d[B]}{dt}$

C. $\frac{-d[A]}{dt} = \frac{1}{4} \frac{d[B]}{dt}$

D. $\frac{-d[A]}{dt} = \frac{d[B]}{dt}$

Answer: C

Solution:

Solution:

Question 250

The half life of a first order reaction is $12\,\text{min}$. Fraction of the reactant left behind after $1\,\text{hr}$ from the beginning is

Options:

A. 1/8

B. 1/32

C. 1 / 64

D. 1 / 128
Answer: B
Solution:
Solution: