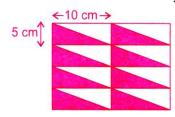
Perimeter and Area

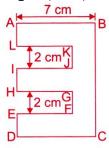
Do You Know

What topics we will cover in this chapter?

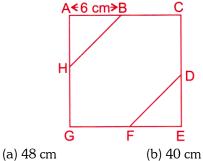
Yes! The topics are:


- Perimeter of polygons
- Area of square and rectangle
- Finding perimeter and area by counting number of squares

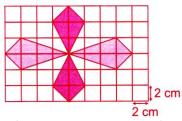
MATHEMATICAL REASONING


- 1. A carpet is laid on the floor of a room 38 m by 5 m, leaving a border 0.5 m wide all round it. What is the perimeter of the carpet?
 - (a) 22 m
- (b) 24 m
- (c) 26 m
- (d) 28 m
- 2. What is the area of the given figure?

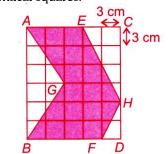
- (a) 21 square units
- (b) 23 square units
- (c) 25 square units
- (d) 27 square units
- 3. The figure is made up of 8 identical rectangles, Find the total area of the shaded figure.



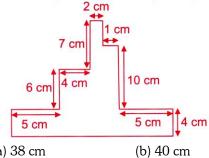
- (a) 300 sq. cm
- (b) 500 sq. cm
- (c) 150 sq. cm
- (d) 200 sq. cm
- In the given figure, DE = HI = AL = 2 cm and 4. LK = IJ = HG = EF = 5 cm. Find the perimeter of the given figure (in cm).



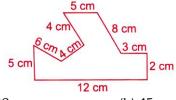
- (a) 52
- (b) 34
- (c) 54
- (d) 70


ACEG is a square. AB is $\frac{1}{2}$ of AC. What is the **5**. perimeter of the square?

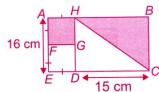
- (c) 36 cm
- (d) 24 cm
- 6. What is the area of the shaded figure?

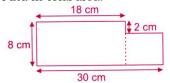


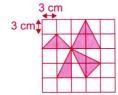
- (a) 26 cm^2
- (b) 52 cm²
- (c) 64 cm²
- (d) 56 cm²
- **7**. Perimeter of any regular figure is
 - (a) Sum of its all sides
- (b) Product of its sides
- (c) Both (a) and (b)
- (d) None of these
- 8. The perimeter of a rectangular picture is 160 cm. It is 30 cm wide. How long is it?
- (b) 50 cm
- (c) 100 cm
- (d) 130 cm
- 9. Find the total shaded area of the figure made up of identical squares.



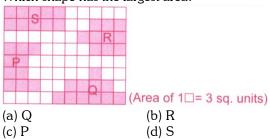
- (a) $38 cm^2$
- (b) 243 cm²
- (c) 171 cm²
- (d) 196 cm²


10. Find the perimeter of the given figure.

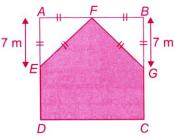

- (a) 38 cm
- (c) 68 cm
- (d) 52 cm
- 11. Find the perimeter of the given figure.


- (a) 42 cm
- (b) 45 cm
- (c) 49 cm
- (d) 53 cm
- **12**. Find the total area of the shaded parts of the rectangle.

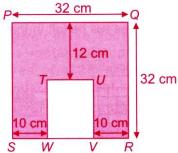
- (a) 196 cm²
- (b) 148cm²
- (c) 200 cm^2
- (d) 184 cm²
- **13**. The given figure is made up of two rectangles Find its total area.



- (a) $144 \, cm^2$
- (b) 216cm²
- (c) 240 cm^2
- (d) 300 cm²
- 14. Find the area of the shaded figure.

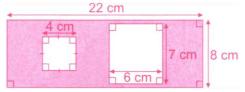


- (a) 49.5 cm²
- (b) 36.5 cm²
- (c) 24.5 cm²
- (d) 30 cm^2

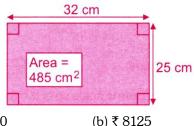

15. Which shape has the largest area?

16. ABCD is a square of perimeter 56 m. Two triangular corners have been cut away as shown in figure. What is the perimeter of the remaining figure?

- (a) 39 m
- (b) 42 m
- (c) 35 m
- (d) 53 m
- **17**. In the given figure. PQRS is a square and TUVW is a rectangle.

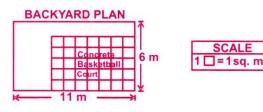

Find the remaining area if TUVW was removed from the figure.

- (a) 716 sq. cm
- (b) 784 sq. cm
- (c) 700 sq. cm
- (d) 768 sq. cm
- **18**. The figure below is made up of 6 similar squares and 2 triangles. The perimeter of each square is 32 cm. What is the perimeter of the figure?



- (a) 50 cm
- (b) 75 cm
- (c) 80 cm
- (d) 95 cm

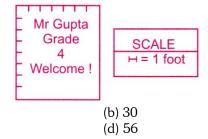
19. Find the area of the shaded part in the given figure.


- (a) 139 sq. cm
- (b) 118 sq. cm
- (c) 126 sq. cm
- (d) 152 sq. cm
- 20. The shaded part in the given figure is covered with cement. If it costs ₹ 84 to: cement an area of $3 cm^2$, find the total cost of cementing.

- (a) ₹8820
- (b) ₹ 8125
- (c) ₹8610
- (d) ₹8804

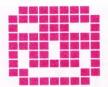
EVERYDAY MATHEMATICS

21. Rohit's family is planning to build a concrete: basketball court in their backyard. How many square metres will be left in the backyard: for grass?

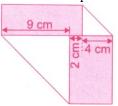


- (a) 60 sq. m
- (b) 35 sq. m
- (c) 31 sq. m
- (d) 24 sq. m
- **22**. The area of the floor of a rectangular hall is 80 sq. m. What is its perimeter if its length is 10 m?
 - (a) 8 m
- (b) 18 m
- (c) 30 m
- (d) 36 m
- **23**. Four poles are stuck into the square ground of side 30 m at the four corners. A rope fence is to be put around the poles. What length of rope will be required if 2 m are required for tying the knots?
 - (a) 120 m
- (b) 118
- (c) 122m
- (d) None of these
- 24. The cost of ploughing a field at ₹ 9 per square metre is ₹ 1872. If the breadth of the field is 13 m, then its length is ____.

- (a) 8 m
- (b) 16 m
- (c) 39 m


(a) 15 (c) 54

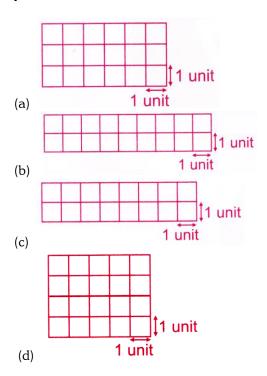
- (d) 3 m
- 25. Mr. Gupta wanted to make a border for his bulletin board. He marked the board to help him figure out the perimeter of the board. What is the perimeter (in feet), of Mr Gupta's bulletin board?



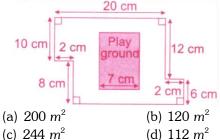
ACHIEVERS SECTION (HOTS)

26. A big rectangle is made up of 81 small rectangles. After removing some small rectangles from the big rectangle, the given figure is obtained. The length of a small rectangle is 3 cm and its breadth is 2 cm. Find the total area of the rectangles removed.

- (a) 81 sq. cm
- (b) 114 sq. cm
- (c) 129 sq. cm
- (d) 90 sq. cm
- **27**. Two corners of a napkin are folded as shown. Find the area of the napkin when It is unfolded.

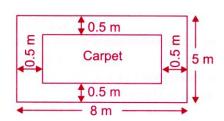


- (a) 60 cm^2
- (b) 225 cm²
- (c) 195 cm²
- (d) 450 cm²
- **28**. The figure is made up of 11 squares of the same size. The area of the figure is 99 cm^2 . Find the perimeter of the figure.



- (a) 12 cm
- (b) 24 cm
- (c) 48 cm
- (d) 36 cm

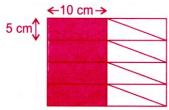
29. Which figure has an area of 20 sq. units and a perimeter of 18 units?


30. The given figure shows a park which has a rectangular playground with an area of $112m^2$. Find the area of the park that is not occupied by the playground.

ANSWER KEY									
1.	Α	2.	В	3.	D	4.	С	5.	Α
6.	D	7.	Α	8.	В	9.	С	10.	С
11.	C	12.	D	13.	В	14.	Α	15.	Α
16.	В	17.	В	18.	С	19.	В	20.	Α
21.	С	22.	D	23.	D	24.	В	25.	В
26.	В	27.	С	28.	С	29.	D	30.	С

HINTS & EXPLANATIONS

1. (a)



Length of carpet =
$$[8-(0.5\times2)]m$$

= $(8-1)m = 7m$
Breadth of carpet = $[5-(0.5\times2)]m$
= $(5-1)m = 4m$
So, perimeter of carpet = $2(\text{Length} + \text{Breadth})$
= $2(7+4)m$
= $2\times11m = 22m$

- 2. (b): Number of unit squares = 23

 Now, 1 = 1 sq. unit

 ∴ Area of figure = 23 square units
- **3.** (d): After rearranging the given figure, we get the new figure.

Area of 1 small rectangle = $10 \times 5 = 50$ sq. cm Number of shaded rectangles 4 \therefore Total shaded area = $4 \times 50 = 200$ sq. cm

4. (c): We have, BC = AL + KJ + IH + GF + ED = (2+2+2+2+2)cm = 10 cm \therefore Perimeter of the given figure = (7+10+7+2+5+2+5+2+5+2+5+2) cm 54 cm

5. (a) We have,
$$AB = \frac{1}{2} \times AC$$

$$\Rightarrow 6cm = \frac{1}{2} \times AC \Rightarrow AC = 6 \times 2 = 12cm$$

$$\therefore \text{ Side of square } -= 12 \text{ } cm$$
So, perimeter of square $12 \times 4 = 48 \text{ } cm$

6. (d) : Area of 1 small square = $(2 \times 2)cm^2$

$$= 4 cm^{2}$$

Number of shaded square ^ 14

$$\therefore$$
 Shaded area = $14 \times 4 = 56 \, cm^2$

- **7**. (a)
- **8.** (b) : Perimeter = $160 \, cm$

Breadth
$$= 30 cm$$

$$\therefore$$
 2(Length + Breadth) = 160 cm

$$\Rightarrow$$
 2(Length + 30 cm) = 160 cm

$$\Rightarrow$$
 Length $+30 cm = 80 cm$

$$\Rightarrow$$
 Length = $(80-30) cm = 50 cm$

9. (c) : Area of 1 small square = $(3 \times 3)cm^2$

$$=9cm^2$$

Number of shaded squares =19

$$\therefore$$
 Shaded area = $19 \times 9 = 171cm^2$

- 10. (c): Perimeter of the given figure = (2+3+1+10+5+4+17+4+5+6+4+7)cm = 68cm
- 11. (c): Perimeter of the given figure = (5+6+4+4+5+8+3+2+12) cm= 49 cm
- **12.** (d): We have,

$$AF = FE = ED = GD = GF = HG = AH$$

Now,
$$AF + FE = 16 cm$$

$$\Rightarrow AF + AF = 16 \ cm \Rightarrow AF = 8 \ cm$$

$$\therefore$$
 Area of square AFGH = $8 \times 8 = 64 \text{ cm}^2$

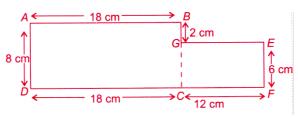
Now, area of rectangle HBCD = $(15 \times 16)cm^2$

$$= 240 cm^2$$

Area of shaded part of rectangle

$$= 240 \div 2 = 120 \text{ cm}^2$$

 \therefore Total shaded area = (64+120) cm^2


$$=184 cm^{2}$$

13. (b) : Area of rectangle ABCD = $(18 \times 8) cm^2$

$$=144 cm^{2}$$

Area of rectangle GEFC = $(12 \times 6) cm^2$

$$=72 cm^{2}$$

:. Total area = $(144 + 72) cm^2 = 216 cm^2$

14. (a) : Area of 1 small square = $3 \times 3 = 9$ cm² Number of shaded squares = $5 + \frac{1}{2} = \frac{11}{2}$

$$\therefore \text{ Shaded} = \frac{11}{2} \times 9 = 49.5 \text{ cm}^2$$

15. (a): Area of $1 \square = 3$ sq. units

$$\therefore$$
 Area of shape $P = 10 \ sq$. units

Area of shape $Q = 11 \, sq$ units.

Area of shape $R = 10 \ sq.$ units.

Area of shape $S = 10 \ sq$ units.

So, shape Q has largest area

- **16.** (b): Perimeter of square = 56 m
 - \Rightarrow 4×side of square = 56 m

$$\Rightarrow$$
 Side of square = $(56 \div 4) = 14 \, m$

Now,
$$AE + ED = 14 m$$

$$\Rightarrow$$
 7 m+ED=14 m \Rightarrow ED=7 m

So,
$$AE = AF = \pounds F = FB = BG = FG = 7 \text{ m}$$
 and

$$ED = CG = 7 \text{ m}$$

.. Perimeter of remaining figure

$$=ED+DC+CG+GF+FE$$

$$= (7+14+7+7+7) m = 42 m$$

17. (b): Area of square PQRS

$$= (32 \times 32) sq.cm$$

$$=1024 \text{ sq. cm}$$

Length of rectangle TUVW = (32-12) cm

$$=20 cm$$

Breadth of rectangle TUVW = (32-20) cm

$$=12 cm$$

So, area of rectangle TUVW

$$=(12\times20)$$
 sq.cm

$$= 240 \ sq. \ cm$$

: Area of remaining figure

$$= (1024 - 240) sq.cm = 784 sq.cm$$

18. (c): Perimeter of each square = 32 cm

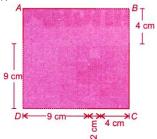
- \Rightarrow 4× side of square = 32 cm
- \Rightarrow Side of square = $(32 \div 4) cm = 8 cm$
- \therefore Perimeter of the figure = $10 \times 8 = 80 \, cm$
- **19.** (b): Area of larger rectangle = (22×8) sq. cm = 176 sq. cm

Area of unshaded rectangle = (7×6) sq. cm = 42 sq. cm

Area of square = (4×4) sq. cm = 16 sq. cm \therefore Area of shaded region = 176 sq. cm - (42+16) sq. cm = 118 sq. cm

20. (a): Area of larger rectangle $= (32 \times 25) cm^2 = 800 cm^2$

Also, area of smaller rectangle = $485 cm^2$ \therefore Area of shaded part = $(800-485) cm^2 = 315 cm^2$ Now,


Cost of cementing of $3cm^2 = Rs.84$

- $\therefore \text{ Cost of cementing of } 1 \text{ } cm^2 = (84 \div 3)$ = Rs.28
- \therefore Cost of cementing of 315 cm^2 = $Rs.(28 \times 315) = Rs.8820$
- **21.** (c): 1 sq. m = 1 D Area of the concrete basketball court = $7 \times 5 = 35$ sq. m Area of the backyard = $11 \times 6 = 66$ sq. m

Area of the backyard left for grass = (66-35) sq.m = 31 sq.m

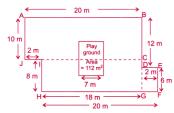
- 22. (d): Area of rectangular floor $= 80 \, sq.m$ Length \times Breadth $= 80 \, sq. m$ $\Rightarrow 10 \times$ Breadth $= 80 \, sq. m$ \Rightarrow Breadth $= 8 \, m$ \therefore Perimeter = 2(Length + Breadth) $= 2(10+8) = 2 \times 18 = 36 \, m$
- **23.** (d): Length of rope required $= 30 \times 4 + 2 \times 4 = 120 + 8 = 128 \, m$
- **24.** (b) Total cost = Rs.1872Cost of ploughing 1 sq. m = Rs.9

- ∴ Area of field = $1872 9 = 208 \ sq. \ m$ ⇒ Length × Breadth = $208 \ sq. \ m$ ⇒ Length ×13 $m = 208 \ sq. \ m$ ⇒ Length = $208 \div 13 = 16 \ m$
- **25.** (b): 1 foot = \mathbf{H} Length of the board = $8 \mathbf{H} = 8$ feet Breadth of the board = $7 \mathbf{H} = 7$ feet Perimeter of the rectangular board 2(7+8) = 30 feet
- **26.** (b): Area of 1 small rectangle $= 3 \times 2 = 6 \ sq. \ cm$ Number of rectangles removed = 19 \therefore Total area of rectangles removed $= 19 \times 6 \ sq. \ cm = 114 \ sq. \ cm$
- **27.** (c): Unfolded form of given napkin is shown as below.

Area of napkin = $AD \times DC$ = $[(9+4) \times (9+2+4)]cm^2$ = $(13 \times 15) cm^2 = 195 cm^2$

- **28.** (c): Area of figure = $99 cm^2$ \Rightarrow Area of 11 small squares = $99 cm^2$ \Rightarrow Area of 1 small square = $99 \div 11 = 9cm^2$ \Rightarrow Side of 1 small square = 3 cm \therefore Perimeter of the figure = $16 \times 3 = 48cm$
- 29. (d): Side of one square = 1 unit
 Area of one square = $1 \times 1 = 1$ sq. unit
 (a)Area of 18 squares = 18 sq. units
 Perimeter = 2(6+3) = 18 units
 (b)Area of 18 squares = 18 sq. units
 Perimeter = 2(9+2) = 22 units
 (c) Area of 16 squares = 16 sq. units
 Perimeter = 2(8+2) = 20 units
 (d) Area of 20 squares = 20 sq. units

Perimeter = 2(5+4) = 18 units


(c) : Area of rectangle $ABCJ = (20 \times 10) m^2$ **30**. $=200 m^2$

Area of rectangle CIHG = $(18 \times 8) m^2$

$$=144 m^2$$

Area of rectangle DEFG = $(2 \times 6) m^2$

$$=12m^2$$

- ∴ Area of park excluding playgroundTotal area of park Area of playground
- $= (200 + 144 + 12 112) m^2$
- $= 244 m^2$