Chapter : 13. METHOD OF INTEGRATION

Exercise : 13A

Question: 1

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{(n+1)}}{n+1} + c$

Therefore,

Put $2x + 9 = t \Rightarrow 2 dx = dt$

$$\int t^5(\frac{dt}{2}) = \frac{1}{2} \int t^5 dt = \frac{1}{2} \frac{t^6}{6} + c = \frac{t^6}{12} + c$$
$$= \frac{(2x+9)^6}{12} + c$$

Question: 2

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{(n+1)}}{n+1} + c$

Therefore,

Put 7 - $3x = t \Rightarrow -3 dx = dt$

$$\int t^4 \left(\frac{dt}{-3}\right) = \frac{1}{-3} \int t^4 dt = \frac{1}{-3} \frac{t^5}{5} + c = -\frac{t^5}{15} + c$$
$$= -\frac{(7-3x)^5}{15} + c$$

Question: 3

Evaluate the foll

Solution:

Formula =
$$\int x^n dx = \frac{x^{(n+1)}}{n+1} + c$$

Therefore,

Put
$$3x - 5 = t \Rightarrow 3 dx = dt$$

$$\int t^{0.5}\left(\frac{dt}{3}\right) = \frac{1}{3} \int t^{0.5} dt = \frac{1}{3} \times \frac{t^{1.5}}{1.5} + c = \frac{2}{1} \times \frac{t^{1.5}}{9} + c$$
$$= \frac{2(3x-5)^5}{9} + c$$

Question: 4

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{(n+1)}}{n+1} + c$

Therefore,

Put $4x + 3 = t \Rightarrow 4 dx = dt$

$$\int t^{-0.5}(\frac{dt}{4}) = \frac{1}{4} \int t^{-0.5} dt = \frac{1}{4} \times \frac{t^{0.5}}{0.5} + c = \frac{2}{4} \times \frac{t^{0.5}}{1} + c$$
$$= \frac{\sqrt{4x+3}}{2} + c$$

Question: 5

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{(n+1)}}{n+1} + c$

Therefore ,

Put 3 - $4x = t \Rightarrow -4 dx = dt$

$$\int t^{-0.5} \left(\frac{dt}{-4}\right) = \frac{1}{-4} \int t^{-0.5} dt = \frac{1}{-4} \times \frac{t^{0.5}}{0.5} + c = \frac{2}{-4} \times \frac{t^{0.5}}{1} + c$$
$$= -\frac{\sqrt{3-4x}}{2} + c$$

Question: 6

Evaluate the foll

Solution:

Formula =
$$\int x^n dx = \frac{x^{(n+1)}}{n+1} + c$$

Therefore,

Put $2x - 3 = t \Rightarrow 2 dx = dt$

$$\int t^{-\frac{3}{2}}(\frac{dt}{2}) = \frac{1}{2} \int t^{-\frac{3}{2}} dt = \frac{1}{2} \times \frac{t^{-\frac{1}{2}}}{-\frac{1}{2}} + c = \frac{-2}{2} \times \frac{t^{-0.5}}{1} + c$$

$$= -\frac{1}{\sqrt{2x-3}} + c$$

Question: 7

Evaluate the foll

Solution:

Formula = $\int e^x dx = e^x + c$

Therefore,

Put $2x - 1 = t \Rightarrow 2 dx = dt$

$$\int e^{t} \left(\frac{dt}{2}\right) = \frac{1}{2} \int e^{t} dt = \frac{1}{2} \times e^{t} + c = \frac{e^{2x-1}}{2} + c$$
$$= \frac{e^{(2x-1)}}{2} + c$$

Question: 8

Evaluate the foll

Solution:

Formula = $\int e^x dx = e^x + c$

Therefore,

Put 1 - $3x = t \Rightarrow -3 dx = dt$

$$\int e^t \left(\frac{dt}{-3}\right) = \frac{1}{-3} \int e^t dt = \frac{1}{-3} \times e^t + c = \frac{e^{1-3x}}{-3} + c$$
$$= -\frac{e^{(1-3x)}}{3} + c$$

Question: 9

Evaluate the foll

Solution:

Formula = $\int a^x dx = \frac{a^x}{\log a} + c$

Therefore,

Put 2 - $3x = t \Rightarrow -3 dx = dt$

$$\int 3^t \left(\frac{dt}{-3}\right) = \frac{1}{-3} \int 3^t dt = \frac{1}{-3} \times \left(\frac{3^t}{\log 3}\right) + c = \frac{3^t}{-3\log 3} + c$$
$$= -\frac{3^{(2-3x)}}{3\log 3} + c$$

Question: 10

Evaluate the foll

Solution:

Formula = $\int \sin x \, dx = -\cos x + c$

Therefore,

Put $3x = t \Rightarrow 3 dx = dt$

$$\int \sin t \left(\frac{dt}{3}\right) = \frac{1}{3} \int \sin t \, dt = \frac{1}{3} \times (-\cos t) + c = \frac{-\cos 3x}{3} + c$$
$$= -\frac{\cos 3x}{3} + c$$

Question: 11

Evaluate the foll

Solution:

Formula = $\int \cos x \, dx = \sin x + c$

Therefore,

Put 5 + 6x = t \Rightarrow 6 dx = dt

$$\int \cos t \left(\frac{dt}{6}\right) = \frac{1}{6} \int \cos t \, dt = \frac{1}{6} \times (\sin t) + c = \frac{\sin 5 + 6x}{6} + c$$
$$= \frac{\sin(5 + 6x)}{6} + c$$

Question: 12

Evaluate the foll

Solution:

Formula $\int \cos x \, dx = \sin x + c$ 1 + cos 2x = 2cos² x Therefore,

$$\int \sin x \sqrt{1 + \cos 2x} \, dx = \int \sin x \sqrt{2} \cos x + c$$
$$\int \sqrt{2} \sin x \cos x \, dx$$

Put sin x =t \Rightarrow cos x dx = dt

$$\int \sqrt{2} \sin x \cos x \, dx = \int \sqrt{2}t \, dt = \sqrt{2} \, \frac{t^2}{2} + c$$
$$= \frac{(\sin x)^2}{\sqrt{2}} + c$$

Question: 13

Evaluate the foll

Solution:

Formula $\int cosec^2 x \, dx = -\cot x + c$

Therefore ,

Put $2x + 5 = t \Rightarrow 2 dx = dt$

$$\int cosec^2 t \, \frac{dt}{2} = -\frac{1}{2} \cot t + c = -\frac{1}{2} \cot(2x+5) + c$$
$$= -\frac{1}{2} \cot(2x+5) + c$$

Question: 14

Evaluate the foll

Solution:

Formula $\int \sin x \, dx = -\cos x + c$

Therefore ,

Put sin x =t \Rightarrow cos x dx = dt

$$\int t \, dt = \frac{t^2}{2} + c$$
$$= \frac{(\sin x)^2}{2} + c$$

Question: 15

Evaluate the foll

Solution:

Formula $\int \sin x \, dx = -\cos x + c$

Therefore ,

Put sin x =t \Rightarrow cos x dx = dt

$$\int t^3 dt = \frac{t^4}{4} + c$$
$$= \frac{(\sin x)^4}{4} + c$$

Question: 16

Evaluate the foll

Solution:

Formula $\int \sin x \, dx = -\cos x + c$

Therefore ,

Put $\cos x = t \Rightarrow -\sin x \, dx = dt$

$$\int t^{0.5} (-1)dt = -\frac{t^{1.5}}{1.5} + c$$
$$= -\frac{2(\cos x)^{\frac{3}{2}}}{3} + c$$

Question: 17

Evaluate the foll

Solution:

Formula $\int x^n dx = \frac{x^{(n+1)}}{n+1} + c \frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$

Therefore,

Put
$$\sin^{-1} x = t \Rightarrow \frac{1}{\sqrt{1-x^2}} dx = dt$$

$$\int t^1 dt = \frac{t^2}{2} + c$$
$$= \frac{(\sin^{-1} x)^2}{2} + c$$

Question: 18

Evaluate the foll

Solution:

Formula
$$\int \sin t \, dx = -\cos t + c \, \frac{d(\tan^{-1}x)}{dx} = \frac{1}{1+x^2}$$

Therefore ,

Put
$$\tan^{-1} x = t \Rightarrow \frac{1}{1+x^2} dx = dt$$

$$\int \sin 2t \, dt = \frac{-\cos 2t}{2} + c$$
$$= -\frac{\cos(2\tan^{-1} x)}{2} + c$$

Question: 19

Evaluate the foll

Solution:

Formula $\int \cos t \, dx = \sin t + c \, \frac{d(\log x)}{dx} = \frac{1}{x}$

Therefore,

Put
$$\log x = t \Rightarrow \frac{1}{x}dx = dt$$

 $\int \cos t \, dt = \sin t + c$

 $= \sin(\log x) + c$

Question: 20

Evaluate the foll

Solution:

Formula $\int \csc^2 x \, dx = -\cot x + c \, \frac{d(\log x)}{dx} = \frac{1}{x}$

Therefore ,

Put
$$\log x = t \Rightarrow \frac{1}{x} dx = dt$$

$$\int \csc^2 t \frac{dt}{1} = -\cot t + c = -\cot(\log x) + c$$

$$= -\cot(\log x) + c$$

Question: 21

Evaluate the foll

Solution:

Formula $\frac{d(logx)}{dx} = \frac{1}{x} \int \frac{1}{x} dx = \log x$

Therefore ,

Put $\log x = t \Rightarrow \frac{1}{x}dx = dt$

$$\int \frac{dt}{t} = \log t + c = \log(\log x) + c$$
$$= \log(\log x) + c$$

Question: 22

Evaluate the foll

Solution:

Formula
$$\frac{d(\log x)}{dx} = \frac{1}{x} \int \frac{1}{x} dx = \log x$$

$$\int \frac{(x+1)(x+\log x)^2}{x} dx = \int \frac{x+1}{x} \times \frac{(x+\log x)^2}{1} dx$$
$$= \int (1+\frac{1}{x}) \times \frac{(x+\log x)^2}{1} dx$$

Therefore,

Put
$$x + \log x = t \Rightarrow (1 + \frac{1}{x})dx = dt$$

$$\int t^2 dt = \frac{t^3}{3} + c$$
$$= \frac{(x + \log x)^3}{3} + c$$

Question: 23

Evaluate the foll

Solution:

Formula $\frac{d(logx)}{dx} = \frac{1}{x} \int \frac{1}{x} dx = \log x$

Therefore ,

Put
$$\log x = t \Rightarrow \frac{1}{x} dx = dt$$

$$\int t^2 dt = \frac{t^3}{3} + c = \frac{(\log x)^3}{3} + c$$

$$=\frac{(\log x)^3}{3}+c$$

Evaluate the foll

Solution:

Formula $\int \cos t \, dx = \sin t + c \, \frac{d(\sqrt{x})}{dx} = \frac{1}{2\sqrt{x}}$

Therefore,

$$\operatorname{Put}\sqrt{x} = t \Rightarrow \frac{1}{2\sqrt{x}}dx = dt$$

$$\cos t \ 2dt = 2\sin t + c$$

 $= 2\sin(\sqrt{x}) + c$

Question: 25

Evaluate the foll

Solution:

Formula = $\int e^x dx = e^x + c \frac{d(\tan x)}{dx} = sec^2 x$ Therefore ,

Put tan x = t \Rightarrow $sec^2 x dx = dt$

$$\int e^t dt = e^t + c$$

 $= e^{\tan x} + c$

Question: 26

Evaluate the foll

Solution:

Formula = $\int e^x dx = e^x + c \frac{d(\cos^2 x)}{dx} = 2\cos x (-\sin x) = -\sin 2x$ Therefore,

- - - - ,

Put $cos^2 x = t \Rightarrow -\sin 2x \, dx = dt$

$$\int -e^t dt = -e^t + c$$
$$= -e^{\cos^2 x} + c$$

Question: 27

Evaluate the foll

Solution:

Formula = $\int \sin x \, dx = -\cos x + c$

Therefore,

Put $ax+b = t \Rightarrow adx = dt$

$$\int \sin t \cos t \, \frac{dt}{a} = \frac{1}{a} \int \sin t \cos t \, dt$$

Put sin t = z \diamondsuit cos t dt = dz

$$\frac{1}{a}\int zdz = \frac{1}{a} \times \frac{z^2}{2} + c$$
$$= \frac{(\sin ax + b)^2}{2a} + c$$

Evaluate the foll

Solution:

Formula = $\int \cos x \, dx = \sin x + c$

$$\cos 3x = 3\cos x - 4\cos^3 x$$

Therefore ,

$$\int \left(\frac{3\cos x}{4} - \frac{\cos 3x}{4}\right) dx = \frac{3\sin x}{4} - \frac{\sin 3x}{4 \times 3} + c$$
$$= \frac{3\sin x}{4} - \frac{\sin 3x}{12} + c$$

Question: 29

Evaluate the foll

Solution:

Formula = $\int e^x dx = e^x + c$

Therefore,

$$\operatorname{Put} -\frac{1}{x} = t \Rightarrow \frac{1}{x^2} dx = dt$$
$$\int e^t (dt) = \int e^t dt = e^t + c = e^{-\frac{1}{x}} + c$$
$$= e^{-\frac{1}{x}} + c$$

Question: 30

Evaluate the foll

Solution:

Formula = $\int \cos x \, dx = \sin x + c$

Therefore ,

$$\operatorname{Put} -\frac{1}{x} = t \Rightarrow \frac{1}{x^2} dx = dt$$
$$\int \cos t \, (dt) = \int \cos t \, dt = \sin t + c = \sin(-\frac{1}{x}) + c$$
$$= -\sin\frac{1}{x} + c$$

Question: 31

Evaluate the foll

Solution:

Formula = $\int e^x dx = e^x + c$

Therefore ,

$$\int \frac{e^x}{1+e^{2x}} dx$$

Put $e^x = t \Rightarrow e^x dx = dt$

$$\int \frac{1}{1+t^2} (dt) = \int \frac{1}{1+t^2} dt = \tan^{-1} t + c$$
$$= \tan^{-1} (e^x) + c$$

Question: 32

Evaluate the foll

Solution:

Formula = $\int e^x dx = e^x + c$

Therefore ,

Put
$$e^{2x} - 2 = t \Rightarrow 2e^{2x}dx = dt$$

$$\int \frac{1}{t} \left(\frac{dt}{2}\right) = \frac{1}{2} \int \frac{1}{t} dt = \frac{1}{2} \log t + c$$
$$= \frac{1}{2} \log(e^{2x} - 2) + c$$

Question: 33

Evaluate the foll

Solution:

Formula =
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

Therefore,

Put log (sin x) = t $\Rightarrow \frac{\cos x}{\sin x} dx = dt$ $\Leftrightarrow \cot x dx = dt$

$$\int t \, dt = \frac{t^2}{2} + c$$
$$= \frac{(\log \sin x)^2}{2} + c$$

Question: 34

Evaluate the foll

Solution:

Formula =
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

Therefore,

Put log (sin x) = t $\Rightarrow \frac{\cos x}{\sin x} dx = dt$ $\Leftrightarrow \cot x dx = dt$

$$\int \frac{1}{t} dt = \log t + c$$

 $= \log(\log \sin x) + c$

Question: 35

Evaluate the foll

Solution:

Formula = $\int \sin x \, dx = -\cos x + c$

Therefore,

Put $x^2 + 1 = t \Rightarrow 2x \, dx = dt$

 $\int \sin t \, dt = -\cos t + c$

 $= -\cos(x^2 + 1) + c$

Question: 36

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

Therefore,

Put log (sec $x + \tan x$)= t

 $\frac{1}{\sec x + \tan x} \times (\sec x \tan x + \sec^2 x) \, dx = dt$ $\frac{1}{\sec x + \tan x} \times \sec x (\sec x + \tan x) \, dx = dt$ $\operatorname{Sec} x \, \mathrm{dx} = \mathrm{dt}$

$$\int t\,dt = \frac{t^2}{2} + c$$

 $=\frac{(\log(\sec x + \tan x))^2}{2} + c$

Question: 37

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ Therefore,

 $\tan \sqrt{x} = t$ $\sec^2 \sqrt{x} \times \left(\frac{1}{2\sqrt{x}}\right) dx = dt$ $\int t \, dt = \frac{t^2}{2} + c$ $= \frac{(\tan \sqrt{x})^2}{2} + c$

Question: 38

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ Therefore, Put $\tan^{-1} x^2 = t \Rightarrow \frac{1}{1 + (x^2)^2} \times 2x \times c$

Put
$$\tan^{-1} x^2 = t \Rightarrow \frac{1}{1+(x^2)^2} \times 2x \times dx = dt \, \textcircled{2x}_{1+x^4} dx = dt$$
$$\int t \left(\frac{dt}{2}\right) = \frac{1}{2} \int t dt = \frac{t^2}{4} + c$$
$$= \frac{(\tan^{-1} x^2)^2}{4} + c$$

Evaluate the foll

Solution:

Formula =
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

Therefore,

Put
$$\sin^{-1} x^2 = t \Rightarrow \frac{1}{\sqrt{1 - (x^2)^2}} \times 2x \times dx = dt \, \diamondsuit \, \frac{2x}{\sqrt{1 - x^4}} \, dx = dt$$
$$\int t \left(\frac{dt}{2}\right) = \frac{1}{2} \int t \, dt = \frac{t^2}{4} + c$$
$$= \frac{(\sin^{-1} x^2)^2}{4} + c$$

Question: 40

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

Therefore,

Put
$$\sin^{-1} x^1 = t \Rightarrow \frac{1}{\sqrt{1 - (x^2)^1}} \times dx = dt$$

 $\int \frac{1}{t} \left(\frac{dt}{1}\right) = \int \frac{1}{t} dt = \log t + c$

 $=\log\sin^{-1}x+c$

Question: 41

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

Therefore ,

Put 2 + log x = t $\Rightarrow \frac{1}{x} \times dx = dt$ $\int \sqrt{t} \left(\frac{dt}{1}\right) = \int \sqrt{t} dt = \frac{2t^{1.5}}{3} + c$

$$=\frac{2(2+\log x)^{\frac{3}{2}}}{3}+c$$

Question: 42

Evaluate the foll

Solution:

Formula =
$$\int \frac{1}{x} dx = \log x + c$$

Therefore,

Put 1 + tan x = t \Rightarrow sec² x × dx = dt

$$\int \left(\frac{dt}{t}\right) = \int \frac{1}{t} dt = \log t + c$$
$$= \log(1 + \tan x) + c$$

Evaluate the foll

Solution:

Formula = $\int \cos x \, dx = \sin x + c$

Therefore,

Put 1 + $\cos x = t \Rightarrow -\sin x \times dx = dt$

$$\int \left(\frac{-dt}{t}\right) = -\int \frac{1}{t}dt = -\log t + c$$

 $= -\log(1 + \cos x) + c$

Question: 44

Evaluate the foll

Solution:

Formula = $\int \cos x \, dx = \sin x + c$

Therefore,

$$\int \left(\frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}}\right) dx = \int \left(\frac{\cos x + \sin x}{\cos x - \sin x}\right) dx$$

Put $\cos x - \sin x = t \Rightarrow (-\cos x - \sin x) dx = dt$

$$\int \left(\frac{-dt}{t}\right) = -\int \frac{1}{t}dt = -\log t + c$$

 $= -\log(\cos x - \sin x) + c$

Question: 45

Evaluate the foll

Solution:

(i)

Formula = $\int \frac{1}{x} dx = \log x + c$

Therefore ,

Put x + log (sec x) = t = 1 + $\frac{1}{\sec x} \times \sec x \tan x \, dx = dt$ (1 + tan x)dx = dt $\int \left(\frac{dt}{t}\right) = \int \frac{1}{t} dt = \log t + c$ = log(x + log(sec x)) + c (ii) Formula = $\int \frac{1}{x} dx = \log x + c$ Therefore, Put x + cos²x = t = 1 + 2 cos x × (-sin x)dx = dt (1 - sin 2x)dx = dt $\int \left(\frac{dt}{t}\right) = \int \frac{1}{t} dt = \log t + c$ $= \log(x + \cos^2 x) + c$

Question: 46

Evaluate the foll

Solution:

Formula = $\int \frac{1}{x} dx = \log x + c$ Therefore, Put $a^2 + b^2 \sin^2 x = t \textcircled{}{} b^2 \times 2 \sin x \times \cos x \, dx = dt$ $(b^2 \sin 2x) dx = dt$ $\int \frac{1}{t} \left(\frac{dt}{b^2}\right) = \frac{1}{b^2} \int \frac{1}{t} dt = \frac{1}{b^2} \log t + c$ $= \frac{1}{b^2} \log |a^2 + b^2 \sin^2 x| + c$

Question: 47

Evaluate the foll

Solution:

Formula = $\int \frac{1}{x} dx = \log x + c$

Therefore ,

Put $a^2 \cos^2 x + b^2 \sin^2 x = t$ $(a^2 \times 2\cos x \times (-\sin x) + b^2 \times 2\sin x \times \cos x)dx = dt$ $(b^2 - a^2)\sin 2x \ dx = dt$

$$\int \frac{1}{t} \left(\frac{dt}{b^2 - a^2} \right) = \frac{1}{b^2 - a^2} \int \frac{1}{t} dt = \frac{1}{b^2 - a^2} \log t + c$$
$$= \frac{1}{b^2 - a^2} \log |a^2 \cos^2 x + b^2 \sin^2 x| + c$$

Question: 48

Evaluate the foll

Solution:

Formula = $\int \cos x \, dx = \sin x + c$

Therefore,

Put $3\cos x + 2\sin x = t \Rightarrow (2\cos x - 3\sin x) dx = dt$

$$\int \left(\frac{dt}{t}\right) = \int \frac{1}{t} dt = \log t + c$$

 $= \log(3\cos x + 2\sin x) + c$

Question: 49

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

Therefore,

Put $2x^2 + 3 = t \Rightarrow (4x) dx = dt$

$$\int \left(\frac{dt}{t}\right) = \int \frac{1}{t} dt = \log t + c$$

 $= \log(2x^2 + 3) + c$

Question: 50

Evaluate the foll

Solution:

Formula = $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

Therefore,

Put $x^2+2x+3=t \Rightarrow (2x+2) dx = dt 2(x+1)dx=dt$

$$\int \frac{1}{t} \left(\frac{dt}{2}\right) = \frac{1}{2} \int \frac{1}{t} dt = \frac{1}{2} \log t + c$$
$$= \frac{1}{2} \log(x^2 + 2x + 3) + c$$

Question: 51

Evaluate the foll

Solution:

To find: Value of $\int \frac{4x-5}{(2x^2-5x+1)} dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \frac{4x-5}{(2x^2-5x+1)} dx$... (i) Let $2x^2 - 5x + 1 = t$ $\Rightarrow \frac{d(2x^2-5x+1)}{dx} = \frac{dt}{dx}$ $\Rightarrow 4x - 5 = \frac{dt}{dx}$ $\Rightarrow (4x - 5) dx = dt$ Putting this value in equation (i)

$$I = \int \frac{dt}{t} [2x^2 - 5x + 1 = t]$$

$$I = \log|t| + c$$

$$I = \log|2x^2 - 5x + 1| + c$$

Ans) $\log|2x^2 - 5x + 1| + c$

Question: 52

Evaluate the foll

Solution:

To find: Value of
$$\int \frac{(9x^2 - 4x + 5)}{(3x^3 - 2x^2 + 5x + 1)} dx$$

Formula used: $\int \frac{1}{x} dx = \log |x| + c$
We have, $\mathbf{I} = \int \frac{(9x^2 - 4x + 5)}{(3x^3 - 2x^2 + 5x + 1)} dx$... (i)

Let $3x^3 - 2x^2 + 5x + 1 = t$

$$\Rightarrow \frac{d(3x^3 - 2x^2 + 5x + 1)}{dx} = \frac{dt}{dx}$$
$$\Rightarrow 9x^2 - 4x + 5 = \frac{dt}{dx}$$
$$\Rightarrow (9x^2 - 4x + 5)dx = dt$$
Putting this value in equation (i)

$$\begin{split} I &= \int \frac{dt}{t} \left[3x^3 - 2x^2 + 5x + 1 = t \right] \\ I &= \log |t| + c \\ I &= \log |3x^3 - 2x^2 + 5x + 1| + c \\ Ans) \log |3x^3 - 2x^2 + 5x + 1| + c \end{split}$$

Question: 53

Evaluate the foll

Solution:

To find: Value of $\int \frac{\sec x \csc x}{\log(\tan x)} dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \frac{\sec x \csc x}{\log(\tan x)} dx \dots (i)$ Let $\log(\tan x) = t$ $\Rightarrow \frac{d(\log(\tan x))}{dx} = \frac{dt}{dx}$ $\Rightarrow \frac{d(\log(\tan x))}{d\tan x} = \frac{dt}{dx}$ $\Rightarrow \frac{d(\log(\tan x))}{d\tan x} = \frac{dt}{dx}$ $\Rightarrow \frac{1}{\tan x} \sec^2 x = \frac{dt}{dx}$ $\Rightarrow \sec x \csc x = \frac{dt}{dx}$ $\Rightarrow (\sec x \csc x) dx = dt$ Putting this value in equation (i)

$$I = \int \frac{dt}{t} [\log(tanx) = t]$$

I = log|log(tanx)| + c

Ans) log|log(tanx)| + c

Question: 54

Evaluate the foll

Solution:

To find: Value of $\int \frac{(1 + \cos x)}{(x + \sin x)^3} dx$

Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int \frac{(1+\cos x)}{(x+\sin x)^3} dx$... (i) Let $x + \sin x = t$ $\Rightarrow \frac{d(x + \sin x)}{dx} = \frac{dt}{dx}$ $\Rightarrow \frac{d(x)}{dx} + \frac{d(\sin x)}{dx} = \frac{dt}{dx}$ $\Rightarrow (1 + \cos x) = \frac{dt}{dx}$ $\Rightarrow (1 + \cos x) dx = dt$

Putting this value in equation (i)

$$I = \int \frac{dt}{t^3} [x + \sin x = t]$$

$$\Rightarrow I = -\frac{1}{2t^2} + c$$

$$I = -\frac{1}{2(x + \sin x)^2} + c$$

Ans) - $\frac{1}{2(x + \sin x)^2} + c$

Question: 55

Evaluate the foll

Solution:

To find: Value of $\int \frac{\sin x}{(1 + \cos x)^2} dx$ Formula used: $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ We have, $I = \int \frac{\sin x}{(1 + \cos x)^2} dx \dots (i)$ Let $1 + \cos x = t$ $\Rightarrow \frac{d(1 + \cos x)}{dx} = \frac{dt}{dx}$ $\Rightarrow \frac{d(1)}{dx} + \frac{d(\cos x)}{dx} = \frac{dt}{dx}$ $\Rightarrow (0 - \sin x) = \frac{dt}{dx}$ $\Rightarrow (-\sin x) dx = dt$ Putting this value in equation (i)

$$I = \int -\frac{dt}{t^2} [1 + \cos x = t]$$
$$\Rightarrow I = \frac{1}{t} + c$$

$$I = \frac{1}{1 + \cos x} + c$$

Ans) $\frac{1}{1 + \cos x} + c$

Evaluate the foll

Solution:

To find: Value of $\int \frac{(2x+3)}{\sqrt{x^2+3x-2}} dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int \frac{\sin x}{(1+\cos x)^2} dx \dots (i)$ Let $x^2 + 3x - 2 = t$ $\Rightarrow (2x+3) = \frac{dt}{dx}$ $\Rightarrow (2x+3) dx = dt$ Putting this value in equation (i) $I = \int \frac{dt}{\sqrt{t}} [x^2 + 3x - 2 = t]$

$$\Rightarrow I = \frac{t^2}{\frac{1}{2}} + c$$
$$I = 2t^{\frac{1}{2}} + c$$
$$I = 2\sqrt{x^2 + 3x - 2} + c$$

Ans) $2\sqrt{x^2 + 3x - 2} + c$

Question: 57

Evaluate the foll

Solution:

To find: Value of $\int \frac{(2x-1)}{\sqrt{x^2-x-1}} dx$ Formula used: $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ We have, $I = \int \frac{\sin x}{(1+\cos x)^2} dx$... (i) Let $x^2 - x - 1 = t$ $\Rightarrow \frac{d(x^2 - x - 1)}{dx} = \frac{dt}{dx}$ $\Rightarrow \frac{d(x^2)}{dx} - \frac{d(x)}{dx} - \frac{d(1)}{dx} = \frac{dt}{dx}$ $\Rightarrow (2x - 1) = \frac{dt}{dx}$ $\Rightarrow (2x - 1) dx = dt$ Putting this value in equation (i)

$$I = \int \frac{dt}{t^{\frac{1}{2}}} [x^2 - x - 1 = t]$$

$$\Rightarrow I = \frac{t^{\frac{1}{2}}}{\frac{1}{2}} + c$$

$$\Rightarrow I = \frac{2\sqrt{t}}{\frac{1}{2}} + c$$

$$I = \frac{2\sqrt{t}}{\frac{1}{2}} + c$$

$$I = \frac{2\sqrt{x^2 - x - 1}}{1} + c$$
Ans) $2\sqrt{x^2 - x - 1} + c$
Question: 58
Evaluate the foll
Solution:
To find: Value of $\int \frac{dx}{\sqrt{x + a} + \sqrt{x + b}}$
Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$
We have, $I = \int \frac{dx}{\sqrt{x + a} + \sqrt{x + b}} \dots (i)$

$$I = \int \frac{dx}{\sqrt{x + a} - \sqrt{x + b}} \dots (i)$$

$$I = \int \frac{\sqrt{x + a} - \sqrt{x + b}}{(\sqrt{x + a})^2 - (\sqrt{x + b})^2} dx$$

$$I = \int \frac{\sqrt{x + a} - \sqrt{x + b}}{(x + a) - (x + b)} dx$$

$$I = \frac{1}{a - b} \left[\int \sqrt{x + a} dx - \int \sqrt{x + b} dx \right]$$

$$I = \frac{1}{a - b} \left[\int (x + a)^{\frac{1}{2}} dx - \int (x + b)^{\frac{1}{2}} dx \right]$$

$$I = \frac{1}{a - b} \left[\frac{(x + a)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{(x + b)^{\frac{3}{2}}}{\frac{3}{2}} \right]$$

$$I = \frac{2}{3(a - b)} \left[(x + a)^{\frac{3}{2}} - (x + b)^{\frac{3}{2}} \right] + c$$

Ans)
$$\frac{2}{3(a-b)} \left[(x+a)^{\frac{3}{2}} - (x+b)^{\frac{3}{2}} \right] + c$$

Question: 59

Evaluate the foll

Solution:

To find: Value of $\int \frac{dx}{\sqrt{1-3x}-\sqrt{5-3x}}$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int \frac{dx}{\sqrt{1-3x} - \sqrt{5-3x}} \dots$ (i) $I = \int \frac{dx}{\sqrt{1 - 3x} - \sqrt{5 - 3x}} \times \frac{\sqrt{1 - 3x} + \sqrt{5 - 3x}}{\sqrt{1 - 3x} + \sqrt{5 - 3x}}$ $I = \int \frac{\sqrt{1 - 3x} + \sqrt{5 - 3x}}{\left(\sqrt{1 - 3x}\right)^2 - \left(\sqrt{5 - 3x}\right)^2} dx$ $I = \int \frac{\sqrt{1 - 3x} + \sqrt{5 - 3x}}{(1 - 3x) - (5 - 3x)} dx$ $I = \int \frac{\sqrt{1 - 3x} + \sqrt{5 - 3x}}{1 - 3x - 5 + 3x} dx$ $I = -\frac{1}{a} \left[\int \sqrt{1 - 3x} \, dx + \int \sqrt{5 - 3x} \, dx \right]$ $I = -\frac{1}{4} \left[\int (1 - 3x)^{\frac{1}{2}} dx + \int (5 - 3x)^{\frac{1}{2}} dx \right]$ $I = -\frac{1}{4} \left[\frac{(1-3x)^{\frac{3}{2}}}{\frac{3}{2}(-3)} + \frac{(5-3x)^{\frac{3}{2}}}{\frac{3}{2}(-3)} \right]$ $I = -\frac{2}{-9\times4} \left[(1-3x)^{\frac{3}{2}} + (5-3x)^{\frac{3}{2}} \right] + c$ $I = \frac{1}{18} \left[(1 - 3x)^{\frac{3}{2}} + (5 - 3x)^{\frac{3}{2}} \right] + c$ Ans) $\frac{1}{18} \left[(1 - 3x)^{\frac{3}{2}} + (5 - 3x)^{\frac{3}{2}} \right] + c$

Question: 60

Evaluate the foll

Solution:

To find: Value of
$$\int \frac{x^2}{(1+x^6)} dx$$

Formula used: $\int \frac{1}{1+x^2} dx = \tan^{-1} x$
We have, $I = \int \frac{x^2}{(1+x^6)} dx$... (i)
 $I = \int \frac{x^2}{1+(x^3)^2} dx$
Let $x^3 = t$
 $d(x^3)$ dt

$$\Rightarrow \frac{d(x^3)}{dx} = \frac{dt}{dx}$$
$$\Rightarrow (3x^2) = \frac{dt}{dx}$$
$$\Rightarrow (x^2)dx = \frac{dt}{3}$$

Putting this value in equation (i)

....

$$I = \frac{1}{3} \int \frac{dt}{1+t^2} [1 + \cos x = t]$$

$$\Rightarrow I = \frac{1}{3} \tan^{-1}(t) + c$$

$$I = \frac{1}{3} \tan^{-1}(x^3) + c$$

Ans) $\frac{1}{3} \tan^{-1}(x^3) + c$

Question: 61

Evaluate the foll

Solution:

To find: Value of $\int \frac{x^3}{(1+x^8)} dx$ Formula used: $\int \frac{1}{1+x^2} dx = \tan^{-1} x$ We have, $I = \int \frac{x^3}{(1+x^8)} dx$... (i) $I = \int \frac{x^3}{1+(x^4)^2} dx$ Let $x^4 = t$ $\Rightarrow \frac{d(x^4)}{dx} = \frac{dt}{dx}$ $\Rightarrow (4x^3) = \frac{dt}{dx}$ $\Rightarrow (x^3) dx = \frac{dt}{4}$ Putting this value in equation (i) $I = \frac{1}{4} \int \frac{dt}{1+x^2} [1+\cos x = t]$

$$I = \frac{1}{4} \int \frac{dt}{1 + t^2} [1 + \cos x] = t$$

$$\Rightarrow I = \frac{1}{4} \tan^{-1}(t) + c$$

$$I = \frac{1}{4} \tan^{-1}(x^4) + c$$

Ans) $\frac{1}{4} \tan^{-1}(x^4) + c$

Question: 62

Evaluate the foll

Solution:

To find: Value of $\int \frac{x}{(1+x^4)} dx$ Formula used: $\int \frac{1}{1+x^2} dx = \tan^{-1} x$ We have, $I = \int \frac{x}{(1+x^4)} dx$... (i)

$$I = \int \frac{x}{1 + (x^2)^2} dx$$

Let $x^2 = t$
 $\Rightarrow \frac{d(x^2)}{dx} = \frac{dt}{dx}$
 $\Rightarrow (2x) = \frac{dt}{dx}$
 $\Rightarrow (x)dx = \frac{dt}{2}$

Putting this value in equation (i)

$$I = \frac{1}{2} \int \frac{dt}{1+t^2} [1 + \cos x = t]$$

$$\Rightarrow I = \frac{1}{2} \tan^{-1}(t) + c$$

$$I = \frac{1}{2} \tan^{-1}(x^2) + c$$

Ans) $\frac{1}{2} \tan^{-1}(x^2) + c$

Question: 63

Evaluate the foll

Solution:

To find: Value of $\int \frac{x^5}{\sqrt{1+x^3}} dx$ Formula used: $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ We have, $I = \int \frac{x^5}{\sqrt{1+x^3}} dx$... (i) Let $1 + x^3 = t$ $\Rightarrow x^3 = t \cdot 1$ $\Rightarrow \frac{d(x^3)}{dx} = \frac{d(t-1)}{dx}$ $\Rightarrow (3x^2) = \frac{dt}{dx}$ $\Rightarrow x^2 dx = \frac{dt}{3}$

Putting this value in equation (i)

$$I = \int \frac{x^3 x^2}{\sqrt{1 + x^3}} dx$$

$$I = \int \frac{(t - 1)}{t^{\frac{1}{2}}} \frac{dt}{3} [1 + x^3 = t]$$

$$\Rightarrow I = \frac{1}{3} \int \frac{t}{t^{\frac{1}{2}}} dt - \frac{1}{3} \int \frac{1}{t^{\frac{1}{2}}} dt$$

$$\Rightarrow I = \frac{1}{3} \left[\int t^{\frac{1}{2}} dt - \int t^{-\frac{1}{2}} dt \right]$$

$$\Rightarrow I = \frac{1}{3} \left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{\frac{1}{2}}}{\frac{1}{2}} \right]$$

$$\Rightarrow I = \frac{2}{3} \left[\frac{(1+x^3)^{\frac{3}{2}}}{3} - \frac{(1+x^3)^{\frac{1}{2}}}{1} \right]$$

$$\Rightarrow I = \frac{2(1+x^3)^{\frac{3}{2}}}{9} - \frac{2(1+x^3)^{\frac{1}{2}}}{3} + c$$

Ans) $\frac{2(1+x^3)^{\frac{3}{2}}}{9} - \frac{2(1+x^3)^{\frac{1}{2}}}{3} + c$

Evaluate the foll

Solution:

To find: Value of $\int \frac{x}{\sqrt{1+x}} dx$ Formula used: $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ We have, $I = \int \frac{x}{\sqrt{1+x}} dx$... (i) Let 1 + x = t $\Rightarrow x = t - 1$ $\Rightarrow dx = dt$ Putting this value in equation (i)

$$I = \int \frac{t-1}{\sqrt{t}} dx [1 + x = t]$$

$$\Rightarrow I = \int \sqrt{t} dt - \int \frac{1}{\sqrt{t}} dt$$

$$\Rightarrow I = \left[\int \frac{t^2}{2} dt - \int t^{-\frac{1}{2}} dt \right]$$

$$\Rightarrow I = \left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{\frac{1}{2}}}{\frac{1}{2}} \right] + c$$

$$\Rightarrow I = 2 \left[\frac{(1+x)^{\frac{3}{2}}}{3} - \frac{(1+x)^{\frac{1}{2}}}{1} \right] + c$$

$$\Rightarrow I = \frac{2(1+x)^{\frac{3}{2}}}{3} - 2(1+x)^{\frac{1}{2}} + c$$

Ans) $\frac{2(1+x)^{\frac{3}{2}}}{3} - 2(1+x)^{\frac{1}{2}} + c$

Question: 65

Evaluate the foll

Solution:

To find: Value of $\int \frac{1}{x\sqrt{x^4-1}} dx$ Formula used: $\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1}x + c$ We have, $I = \int \frac{1}{x\sqrt{x^4-1}} dx \dots$ (i) Multiplying numerator and denominator with x

$$I = \int \frac{x}{x^2 \sqrt{(x^2)^2 - 1}} dx$$

Let $x^2 = t$
 $\Rightarrow 2x = \frac{dt}{dx}$
 $\Rightarrow xdx = \frac{dt}{2}$

Putting this value in equation (i)

$$I = \frac{1}{2} \int \frac{dt}{t\sqrt{t^2 - 1}} [x^2 = t]$$

$$\Rightarrow I = \frac{1}{2} \sec^{-1} t + c$$

$$\Rightarrow I = \frac{1}{2} \sec^{-1}(x^2) + c$$

Ans) $\frac{1}{2} \sec^{-1}(x^2) + c$

Question: 66

Evaluate the foll

Solution:

To find: Value of $\int x\sqrt{x-1} dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int x\sqrt{x-1} dx$... (i) Let x - 1 = t x = t + 1 $\Rightarrow dx = dt$ Putting this value in equation (i) $I = \int (t+1)\sqrt{t} dt [x = t+1]$ $\rightarrow t = \int t\sqrt{t} dx + \int \sqrt{t} dx$

$$\Rightarrow I = \int t\sqrt{t}dx + \int \sqrt{t}dx$$
$$\Rightarrow I = \int t^{\frac{3}{2}}dx + \int t^{\frac{1}{2}}dx$$
$$\Rightarrow I = \frac{t^{\frac{5}{2}}}{\frac{5}{2}} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$\Rightarrow I = \frac{2}{5} (x - 1)^{\frac{5}{2}} + \frac{2}{3} (x - 1)^{\frac{3}{2}} + c$$

Ans) $\frac{2}{5} (x - 1)^{\frac{5}{2}} + \frac{2}{3} (x - 1)^{\frac{3}{2}} + c$

Evaluate the foll

Solution:

To find: Value of $\int (1 - x)\sqrt{1 + x} dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int (1 - x)\sqrt{1 + x} dx$... (i) Let 1 + x = t x = t - 1 $\Rightarrow dx = dt$

Putting this value in equation (i)

$$I = \int \{1 - (t - 1)\} \sqrt{t} dt [x = t - 1]$$

$$\Rightarrow I = \int \{1 - t + 1\} \sqrt{t} dt$$

$$\Rightarrow I = \int \{2 - t\} \sqrt{t} dt$$

$$\Rightarrow I = \int 2\sqrt{t} dt - \int t\sqrt{t} dt$$

$$\Rightarrow I = 2 \int t^{\frac{1}{2}} dx - \int t^{\frac{3}{2}} dx$$

$$\Rightarrow I = 2 \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{\frac{5}{2}}}{\frac{5}{2}} + c$$

$$\Rightarrow I = \frac{4}{3} (1 + x)^{\frac{3}{2}} - \frac{2}{5} (1 + x)^{\frac{5}{2}} + c$$

Ans) $\frac{4}{3} (1 + x)^{\frac{3}{2}} - \frac{2}{5} (1 + x)^{\frac{5}{2}} + c$

Question: 68

Evaluate the foll

Solution:

To find: Value of $\int x\sqrt{x^2 - 1} dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int x\sqrt{x^2 - 1} dx \dots (i)$ Let $x^2 - 1 = t$ $\Rightarrow 2x = \frac{dt}{dx}$

$$\Rightarrow$$
 xdx = $\frac{dt}{2}$

Putting this value in equation (i)

$$I = \int \frac{1}{2} \sqrt{t} dt [x = x^{2} - 1]$$

$$\Rightarrow I = \frac{1}{2} \int t^{\frac{1}{2}} dx$$

$$\Rightarrow I = \frac{1}{2} \frac{t^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$\Rightarrow I = \frac{1}{3} t^{\frac{3}{2}} + c$$

$$\Rightarrow I = \frac{1}{3} (x^{2} - 1)^{\frac{3}{2}} + c$$

Ans) $\frac{1}{3} (x^{2} - 1)^{\frac{3}{2}} + c$

Question: 69

Evaluate the foll

Solution:

To find: Value of $\int x\sqrt{3x-2} dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int x\sqrt{3x-2} dx$... (i) Let 3x - 2 = t $\Rightarrow 3x = t + 2$ $\Rightarrow x = \frac{t+2}{3}$ $\Rightarrow 3 = \frac{dt}{dx}$ $\Rightarrow dx = \frac{dt}{3}$

Putting this value in equation (i)

$$I = \int \left(\frac{t+2}{3}\right) \sqrt{t} \frac{dt}{3} [t = 3x - 2]$$

$$\Rightarrow I = \frac{1}{9} \left[\int t^{\frac{3}{2}} dx + 2 \int t^{\frac{1}{2}} dx \right]$$

$$\Rightarrow I = \frac{1}{9} \left[\frac{t^{\frac{5}{2}}}{\frac{5}{2}} + 2 \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right] + c$$

$$\Rightarrow I = \frac{1}{9} \left[\frac{2}{5} (3x - 2)^{\frac{5}{2}} + \frac{4}{3} (3x - 2)^{\frac{3}{2}} \right] + c$$

$$\Rightarrow I = \frac{2}{45} (3x - 2)^{\frac{5}{2}} + \frac{4}{27} (3x - 2)^{\frac{3}{2}} + c$$

$$\Rightarrow I = \frac{2}{45} (3x - 2)^{\frac{5}{2}} + \frac{4}{27} (3x - 2)^{\frac{3}{2}} + c$$

Ans) $\frac{2}{45} (3x - 2)^{\frac{5}{2}} + \frac{4}{27} (3x - 2)^{\frac{3}{2}} + c$

Evaluate the foll

Solution:

To find: Value of $\int \frac{dx}{x\cos^2(1+\log x)}$ Formula used: $\int \sec^2 x \, dx = \tan x + c$ We have, $I = \int \frac{dx}{x\cos^2(1+\log x)} \dots$ (i) Let $1 + \log x = t$ $\Rightarrow \frac{1}{x} = \frac{dt}{dx}$ $\Rightarrow \frac{1}{x} dx = dt$

Putting this value in equation (i)

$$I = \int \frac{dt}{\cos^2(t)} [t = 1 + \log x]$$

$$\Rightarrow I = \int \sec^2 t dt$$

$$\Rightarrow I = \tan(t) + c$$

$$\Rightarrow I = \tan(1 + \log x) + c$$

Ans) tan (1 + log x) + c
Question: 71

Evaluate the foll

Solution:

To find: Value of $\int x^2 \sin x^3 dx$

Formula used: $\int sinx \, dx = -cosx + c$

We have,
$$I = \int x^2 \sin x^3 dx \dots (i)$$

Let $x^3 = t$

$$\Rightarrow 3x^{2} = \frac{dt}{dx}$$
$$\Rightarrow x^{2}dx = \frac{dt}{3}$$

Putting this value in equation (i)

$$I = \int \operatorname{sint} \frac{dt}{3} [t = x^3]$$
$$\Rightarrow I = \frac{1}{3} \left[\int \operatorname{sint} dt \right]$$

$$\Rightarrow I = \frac{1}{3}(-\cos t) + c$$
$$\Rightarrow I = \frac{1}{3}(-\cos x^{3}) + c$$
Ans) $\frac{-\cos x^{3}}{3} + c$

Evaluate the foll

Solution:

To find: Value of $\int (2x + 4)\sqrt{x^2 + 4x + 3} dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int (2x + 4)\sqrt{x^2 + 4x + 3} dx \dots (i)$ Let $x^2 + 4x + 3 = t$ $\Rightarrow (2x + 4) = \frac{dt}{dx}$ $\Rightarrow (2x + 4) dx = dt$ Putting this value in equation (i) $I = \int \sqrt{t} dt [t = (2x + 4)]$ $\Rightarrow I = \int t^{\frac{1}{2}} dx$

$$\Rightarrow I = \frac{t^3}{\frac{3}{2}} + c$$

$$\Rightarrow I = \frac{2}{3} \left[(t)^{\frac{3}{2}} \right] + c$$

$$\Rightarrow I = \frac{2}{3} \left[(x^2 + 4x + 3)^{\frac{3}{2}} \right] + c$$

Ans) $\frac{2}{3} \left[(x^2 + 4x + 3)^{\frac{3}{2}} \right] + c$

Question: 73

Evaluate the foll

Solution:

To find: Value of $\int \frac{\sin x}{(\sin x - \cos x)} dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \frac{\sin x}{(\sin x - \cos x)} dx$... (i) $\Rightarrow I = \frac{1}{2} \int \frac{2\sin x}{(\sin x - \cos x)} dx$

$$\Rightarrow I = \frac{1}{2} \int \frac{(\sin x + \cos x) + (\sin x - \cos x)}{(\sin x - \cos x)} dx$$
$$\Rightarrow I = \frac{1}{2} \int \frac{(\sin x + \cos x)}{(\sin x - \cos x)} dx + \frac{1}{2} \int \frac{(\sin x - \cos x)}{(\sin x - \cos x)} dx$$
Let sinx - cosx = t

$$\Rightarrow (\cos x + \sin x) = \frac{dt}{dx}$$
$$\Rightarrow (\cos x + \sin x)dx = dt$$

Putting this value in equation (i)

$$I = \frac{1}{2} \int \frac{dt}{t} + \frac{1}{2} \int dx$$

$$\Rightarrow I = \frac{1}{2} \log|\sin x - \cos x| + \frac{1}{2} x + c$$

$$\Rightarrow I = \frac{x}{2} + \frac{1}{2} \log|\sin x - \cos x| + c$$

Ans) $\frac{x}{2} + \frac{1}{2} \log|\sin x - \cos x| + c$

Question: 74

Evaluate the foll

Solution:

To find: Value of $\int \frac{dx}{(1-tanx)}$ Formula used: $\int \frac{1}{x} dx = \log|x| + c$ We have, $I = \int \frac{dx}{(1-tanx)} \dots (i)$ $\Rightarrow I = \int \frac{dx}{(1 - \frac{\sin x}{\cos x})}$ $\Rightarrow I = \int \frac{dx}{(\frac{\cos x - \sin x}{\cos x})}$ $\Rightarrow I = \frac{1}{2} \int \frac{2\cos x dx}{(\cos x - \sin x)}$ $I = \frac{1}{2} \int \frac{(\cos x + \sin x) + (\cos x - \sin x) dx}{(\cos x - \sin x)}$ $I = \frac{1}{2} \int \frac{(\cos x + \sin x)}{(\cos x - \sin x)} dx + \frac{1}{2} \int \frac{(\cos x - \sin x)}{(\cos x - \sin x)} dx$ Let $(\cos x - \sin x) = t$ $\Rightarrow (-\sin x - \cos x) = \frac{dt}{dx}$ $\Rightarrow (\sin x + \cos x) dx = - dt$ Putting this value in equation (i)

$$I = -\frac{1}{2} \int \frac{dt}{(t)} dx + \frac{1}{2} \int dx$$

$$\Rightarrow I = -\frac{1}{2} \log|\cos x - \sin x| + \frac{1}{2}x + c$$

$$\Rightarrow I = \frac{1}{2}x - \frac{1}{2} \log|\sin x - \cos x| + c$$

Ans) $\frac{1}{2}x - \frac{1}{2} \log|\sin x - \cos x| + c$

Evaluate the foll

Solution:

To find: Value of $\int \frac{dx}{(1 - \cot x)}$ Formula used: $\int \frac{1}{x} dx = |og|x| + c$ We have, $I=\int \frac{dx}{(1-\cot x)}$... (i) $\Rightarrow I = \int \frac{dx}{\left(1 - \frac{\cos x}{\sin x}\right)}$ $\Rightarrow I = \int \frac{dx}{\left(\frac{\sin x - \cos x}{\sin x}\right)}$ $\Rightarrow I = \frac{1}{2} \int \frac{2 \sin x dx}{(\sin x - \cos x)}$ $I = \frac{1}{2} \int \frac{(\sin x + \cos x) + (\sin x - \cos x)dx}{(\sin x - \cos x)}$ $I = \frac{1}{2} \int \frac{(\sin x + \cos x)}{(\sin x - \cos x)} dx + \frac{1}{2} \int \frac{(\sin x - \cos x)}{(\sin x - \cos x)} dx$ Let (sinx - cosx) = t \Rightarrow (cosx + sinx) = $\frac{dt}{dx}$ \Rightarrow (cosx + sinx)dx = dt Putting this value in equation (i) $I = \frac{1}{2} \int \frac{dt}{(t)} dx + \frac{1}{2} \int dx$ $\Rightarrow I = \frac{1}{2} \log|\sin x \cdot \cos x| + \frac{1}{2} x + c$

Ans)
$$\frac{1}{2}x + \frac{1}{2}\log|\sin x - \cos x| + c$$

Question: 76

Evaluate the foll

Solution:

To find: Value of $\int \frac{\cos 2x}{(\sin x + \cos x)^2} dx$

Formula used: $\int \frac{1}{x} dx = \log|x| + c$ We have, $I = \int \frac{\cos 2x}{(\sin x + \cos x)^2} dx \dots (i)$ $\Rightarrow I = \int \frac{\cos^2 x - \sin^2 x}{(\sin x + \cos x)^2} dx$ $\Rightarrow I = \int \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\sin x + \cos x)^2} dx$ $\Rightarrow I = \int \frac{(\cos x - \sin x)}{(\sin x + \cos x)} dx$ Let $(\cos x + \sin x) = t$ $\Rightarrow (-\sin x + \cos x) = \frac{dt}{dx}$ $\Rightarrow (\cos x - \sin x) dx = dt$ Putting this value in equation (i)

$$1 - \int t$$

 \Rightarrow I = log|t| + c

 $\Rightarrow I = \log|cosx + sinx| + c$

Ans)
$$\log|\cos x + \sin x| + c$$

Question: 77

Evaluate the foll

Solution:

To find: Value of $\int \frac{(\cos x - \sin x)}{(1 + \sin 2x)} dx$ Formula used: $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ We have, $I = \int \frac{(\cos x - \sin x)}{(1 + \sin 2x)} dx$... (i) $\Rightarrow I = \int \frac{\cos x - \sin x}{\cos^2 x + \sin^2 x + 2\sin x \cos x} dx$ $\Rightarrow I = \int \frac{(\cos x - \sin x)}{(\cos x + \sin x)^2} dx$ Let $(\sin x + \cos x) = t$ $\Rightarrow (\cos x - \sin x) = \frac{dt}{dx}$ $\Rightarrow (\cos x - \sin x) dx = dt$ Putting this value in equation (i) $I = \int \frac{dt}{t^2}$

$$I = \int \frac{1}{t^2}$$
$$\Rightarrow I = -\frac{1}{t} + c$$

$$\Rightarrow I = -\frac{1}{\sin x + \cos x} + c$$
Ans) $\frac{-1}{\sin x + \cos x} + c$

Evaluate the foll

Solution:

To find: Value of $\int \frac{(x+1)(x+\log x)^2}{x} dx$ Formula used: $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ We have, $I = \int \frac{(x+1)(x+\log x)^2}{x} dx$... (i) Let $(x + \log x) = t$ $\Rightarrow \left(1 + \frac{1}{x}\right) = \frac{dt}{dx}$ $\Rightarrow \left(\frac{x+1}{x}\right) = \frac{dt}{dx}$

Putting this value in equation (i)

$$I = \int t^{2} dt$$

$$\Rightarrow I = \frac{t^{3}}{3} + c$$

$$\Rightarrow I = \frac{(x + \log x)^{3}}{3} + c$$

Ans) $\frac{(x + \log x)^{3}}{3} + c$

Question: 79

Evaluate the foll

Solution:

To find: Value of $\int x \sin^3 x^2 \cos x^2 dx$ Formula used: $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ We have, $I = \int x \sin^3 x^2 \cos x^2 dx$... (i) Let $(\sin x^2) = t$ $\Rightarrow (\sin x^2 \cdot 2x) = \frac{dt}{dx}$ $\Rightarrow (\sin x^2 \cdot x) dx = \frac{dt}{2}$

Putting this value in equation (i)

$$I=\int t^3 \frac{dt}{2}$$

$$I = \frac{1}{2} \int t^{3} dt$$

$$\Rightarrow I = \frac{1}{2} \frac{t^{4}}{4} + c$$

$$\Rightarrow I = \frac{t^{4}}{8} + c$$

$$\Rightarrow I = \frac{\sin^{4} x^{2}}{8} + c$$

Anc) $\frac{\sin^{4} x^{2}}{8} + c$

Ans) — + c

Question: 80

Evaluate the foll

Solution:

To find: Value of $\int \frac{\sec^2 x}{\sqrt{1 - \tan^2 x}} dx$ Formula used: $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + c$ We have, $I = \int \frac{\sec^2 x}{\sqrt{1 - \tan^2 x}} dx$... (i) Let (tanx) = t $\Rightarrow \left(\sec^2 x \right) = \frac{dt}{dx}$ \Rightarrow (sec² x)dx = dt Putting this value in equation (i) $I = \int \frac{dt}{\sqrt{1 + t^2}}$ \Rightarrow I = sin⁻¹(t) + c \Rightarrow I = sin⁻¹(tanx) + c Ans) $\sin^{-1}(\tan x) + c$ **Question: 81** Evaluate the foll Solution: To find: Value of $\int e^{-x} \csc^2(2e^{-x} + 5) dx$ Formula used: $\int \csc^2 x \, dx = -\cot x + c$ We have, $I = \int e^{-x} \csc^2(2e^{-x} + 5) dx$... (i) Let (2e^{-x} + 5) = t

$$\Rightarrow (2e^{-x}(-1)) = \frac{dt}{dx}$$
$$\Rightarrow (e^{-x})dx = \frac{dt}{-2}$$

Putting this value in equation (i)

$$I = \int \operatorname{cosec}^{2}(t) \frac{dt}{-2}$$

$$I = \frac{1}{-2} \int \operatorname{cosec}^{2}(t) dt$$

$$\Rightarrow I = \frac{1}{-2} (-\cot t) + c$$

$$\Rightarrow I = \frac{1}{2} \cot(2e^{-x} + 5) + c$$
Ans) $\frac{1}{2} \cot(2e^{-x} + 5) + c$

Question: 82

Evaluate the foll

Solution:

To find: Value of $\int 2x \sec^3 (x^2 + 3) \tan(x^2 + 3) dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int 2x \sec^2 (x^2 + 3) \sec (x^2 + 3) \tan(x^2 + 3) dx$... (i) Let $\sec(x^2 + 3) = t$ $\Rightarrow \sec(x^2 + 3) = \frac{dt}{dx}$ $\Rightarrow \sec(x^2 + 3) \tan(x^2 + 3) \cdot 2x = \frac{dt}{dx}$ $\Rightarrow \sec(x^2 + 3)\tan(x^2 + 3) \cdot 2x = \frac{dt}{dx}$ Putting this value in equation (i) $I = \int t^2 dt$ $\Rightarrow I = \frac{\sec^3(x^2 + 3)}{3} + c$

Ans)
$$\frac{\sec^3(x^2+3)}{3} + c$$

Question: 83

Evaluate the foll

Solution:

To find: Value of $\int \frac{\sin 2x}{(a + b\cos x)^2} dx$ Formula used: (i) $\int \frac{1}{x} dx = \log |x| + c$ (ii) $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ We have, $I = \int \frac{\sin 2x}{(a + b\cos x)^2} dx$... (i)

$$I = \int \frac{2 \sin x \cos x}{(a + b \cos x)^2} dx$$

Let $(a + b \cos x) = t$
 $\Rightarrow (\cos x) = \frac{t - a}{b}$
 $\Rightarrow (\sin x) dx = \frac{dt}{-b}$

Putting this value in equation (i)

$$I = \frac{2}{-b^2} \int \frac{t - a}{t^2} dt$$

$$I = \frac{2}{-b^2} \left[\int \frac{t}{t^2} dt - \int \frac{a}{t^2} dt \right]$$

$$I = \frac{2}{-b^2} \left[\int \frac{1}{t} dt - a \int \frac{1}{t^2} dt \right]$$

$$I = \frac{2}{-b^2} \left[\log |t| - a \left(-\frac{1}{t} \right) + c \right]$$

$$I = -\frac{2}{b^2} \left[\log |a + b\cos x| + \left(\frac{a}{a + b\cos x} \right) \right] + c$$
Ans)
$$-\frac{2}{b^2} \left[\log |a + b\cos x| + \left(\frac{a}{a + b\cos x} \right) \right] + c$$

С

Question: 84

Evaluate the foll

Solution:

To find: Value of $\int \frac{dx}{(3-5x)}$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \frac{dx}{(3-5x)}$... (i) Let (3-5x) = t $\Rightarrow (-5) = \frac{dt}{dx}$ $\Rightarrow dx = \frac{dt}{-5}$

Putting this value in equation (i)

 $I = \int \frac{1}{t} \frac{dt}{-5}$ $I = \frac{1}{-5} \int \frac{dt}{t}$ $\Rightarrow I = \frac{1}{-5} \log |t| + c$ $\Rightarrow I = -\frac{1}{5} \log |3 - 5x| + c$

Ans)
$$-\frac{1}{5}\log|3-5x|+c$$

Evaluate the foll

Solution:

To find: Value of $\int \sqrt{1 + x} dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int \sqrt{1 + x} dx$... (i) Let (1 + x) = t $\Rightarrow dx = dt$

Putting this value in equation (i) $% \left(\frac{1}{2} \right) = 0$

$$I = \int \sqrt{t} dt$$

$$I = \int t^{\frac{1}{2}} dt$$

$$\Rightarrow I = \frac{2}{3} (1+x)^{\frac{3}{2}} + c$$

Ans) $\frac{2}{3} (1+x)^{\frac{3}{2}} + c$

Question: 86

Evaluate the foll

Solution:

To find: Value of $\int x^2 e^{x^3} \cos(e^{x^3}) dx$ Formula used: $\int \cos x \, dx = \sin x + c$ We have, $I = \int x^2 e^{x^3} \cos(e^{x^3}) dx$... (i) Let $e^{x^3} = t$

 $\Rightarrow e^{x^3} \cdot 3x^2 = \frac{dt}{dx}$ $\Rightarrow e^{x^3} \cdot x^2 \cdot dx = \frac{dt}{3}$

Putting this value in equation (i)

$$I = \int \cos(t) \frac{dt}{3}$$
$$I = \frac{\sin(t)}{3} + c$$
$$I = \frac{\sin(e^{x^3})}{3} + c$$
Ans) $\frac{\sin(e^{x^3})}{3} + c$

Question: 87

Evaluate the foll

Solution:

To find: Value of
$$\int \frac{e^{mtan^{-1}x} dx}{(1+x^2)}$$

Formula used: $\int e^t dx = e^t + c$
We have, $I = \int \frac{e^{mtan^{-1}x} dx}{(1+x^2)} \dots (i)$
Let $(mtan^{-1}x) = t$
 $\Rightarrow m\left(\frac{1}{1+x^2}\right) = \frac{dt}{dx}$
 $\Rightarrow \left(\frac{1}{1+x^2}\right) dx = \frac{dt}{m}$

Putting this value in equation (i)

$$I = \int e^{t} \frac{dt}{m}$$

$$\Rightarrow I = \frac{e^{t}}{m} + c$$

$$\Rightarrow I = \frac{e^{mtan^{-1}x}}{m} + c$$

Ans) $\frac{e^{mtan^{-1}x}}{m} + c$

Question: 88

Evaluate the foll

Solution:

To find: Value of $\int \frac{(x+1)e^x dx}{\cos^2(xe^x)}$ Formula used: $\int \sec^2 x \, dx = \tan x + c$ We have, $I=\int \frac{(x+1)e^x\,dx}{\cos^2(xe^x)}~\ldots$ (i) Let $(xe^x) = t$ $\Rightarrow xe^{x} + e^{x}.1 = \frac{dt}{dx}$ $\Rightarrow e^{x}(x+1) = \frac{dt}{dx}$ Putting this value in equation (i)

$$I = \int \frac{dt}{\cos^2(t)}$$

$$\Rightarrow I = \int \sec^2(t) dt$$

$$\Rightarrow I = \tan(t) + c$$

$$\Rightarrow I = \tan(xe^x) + c$$

Ans) tan (xe^x) + c
Question: 89

Evaluate the foll

Solution:

To find: Value of $\int \frac{e^{\sqrt{x}} \cos(e^{\sqrt{x}}) dx}{\sqrt{x}}$ Formula used: $\int \cos x \, dx = \sin x + c$ We have, $I = \int \frac{e^{\sqrt{x}} \cos(e^{\sqrt{x}}) dx}{\sqrt{x}} \dots$ (i) Let $(e^{\sqrt{x}}) = t$ $\Rightarrow e^{\sqrt{x}} \frac{1}{2\sqrt{x}} = \frac{dt}{dx}$ $\Rightarrow \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2dt$

Putting this value in equation (i)

$$I = \int \cos(t) 2dt$$

 $I=2\sin\left(e^{\sqrt{x}}\right)+c$

Ans) 2 sin $(e^{\sqrt{x}}) + c$

Question: 90

Evaluate the foll

Solution:

To find: Value of $\int \sqrt{e^x - 1} dx$ Formula used: $\int \frac{1}{x^2 + 1} dx = \tan^{-1} x + c$ We have, $I = \int \sqrt{e^x - 1} dx \dots (i)$ Let $(e^x - 1) = t^2$ $\Rightarrow e^x - 1 = t^2$ $\Rightarrow e^x = t^2 + 1$ $\Rightarrow e^x = \frac{2tdt}{dx}$ $\Rightarrow dx = \frac{2tdt}{e^x}$ $\Rightarrow dx = \frac{2t}{t^2 + 1} dt$

Putting this value in equation (i)

$$I = \int \sqrt{t^2} \frac{2t}{t^2 + 1} dt$$

$$\Rightarrow I = \int \frac{2t^2}{t^2 + 1} dt$$

$$\Rightarrow I = 2 \int \frac{t^2 + 1 - 1}{t^2 + 1} dt$$

 $\Rightarrow I = 2 \int \left(1 - \frac{1}{t^2 + 1}\right) dt$ $\Rightarrow I = 2 [t - tan^{-1}t] + c$ $\Rightarrow I = 2 [\sqrt{e^x - 1} - tan^{-1}\sqrt{e^x - 1}] + c$ Ans) 2 [$\sqrt{e^x - 1} - tan^{-1}\sqrt{e^x - 1}] + c$ Question: 91 Evaluate the foll Solution: To find: Value of $\int \frac{dx}{(x - \sqrt{x})}$ Formula used: $\int \frac{1}{x} dx = \log|x| + c$ We have, $I = \int \frac{dx}{(x - \sqrt{x})} \dots (i)$ $\Rightarrow I = \int \frac{dx}{\sqrt{x}(\sqrt{x} - 1)}$ Let $(\sqrt{x} - 1) = t$ $\Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}$ $\Rightarrow \frac{1}{\sqrt{x}} dx = \frac{dt}{2}$

Putting this value in equation (i)

$$I = \int \frac{1}{t} \frac{dt}{2}$$

$$I = \frac{1}{2} \log |t| + c$$

$$I = \frac{1}{2} \log |\sqrt{x} - 1| + c$$
Ans) $\frac{1}{2} \log |\sqrt{x} - 1| + c$

Question: 92

Evaluate the foll

Solution:

To find: Value of $\int \frac{\sec^2(2\tan^{-1}x)}{(1+x^2)} dx$ Formula used: $\int \sec^2 x \, dx = \tan x + c$ We have, $\mathbf{I} = \int \frac{\sec^2(2\tan^{-1}x)}{(1+x^2)} dx$... (i) Let $2\tan^{-1}x = t$ $\Rightarrow \frac{2}{1+x^2} = \frac{dt}{dx}$

$$\Rightarrow \frac{1}{1+x^2} dx = \frac{dt}{2}$$

Putting this value in equation (i)

$$I = \int \sec^2 (t) \frac{dt}{2}$$
$$I = \frac{1}{2} \tan(t) + c$$
$$I = \frac{1}{2} \tan(2 \tan^{-1} x) + c$$
Ans) $\frac{1}{2} \tan(2 \tan^{-1} x) + c$

Question: 93

Evaluate the foll

Solution:

- To find: Value of $\int \left(\frac{1+\sin 2x}{x+\sin^2 x}\right) dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \left(\frac{1+\sin 2x}{x+\sin^2 x}\right) dx$... (i) Let $x + \sin^2 x = t$ $\Rightarrow 1 + 2\sin x . \cos x = \frac{dt}{dx}$ $\Rightarrow (1 + \sin 2x) dx = dt$ Putting this value in equation (i) $I = \int \frac{dt}{t}$ $I = \log |t| + c$ $I = \log |x + \sin^2 x| + c$ Ans) $\log |x + \sin^2 x| + c$ Question: 94 Evaluate the foll Solution:
- To find: Value of $\int \left(\frac{1 \tan x}{x + \log(\cos x)}\right) dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \left(\frac{1 - \tan x}{x + \log(\cos x)}\right) dx$... (i) Let $x + \log(\cos x) = t$ $\Rightarrow 1 + \frac{1 \cdot (-\sin x)}{\cos x} = \frac{dt}{dx}$

 \Rightarrow 1 - tanx = $\frac{dt}{dx}$

 \Rightarrow (1 - tanx)dx = dt

Putting this value in equation (i)

$$I = \int \frac{dt}{t}$$

 $I = \log |t| + c$

 $I = \log |x + \log(\cos x)| + c$

Ans) $\log |x + \log(\cos x)| + c$

Question: 95

Evaluate the foll

Solution:

To find: Value of $\int \left(\frac{1+\cot x}{x+\log(\sin x)}\right) dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \left(\frac{1+\cot x}{x+\log(\sin x)}\right) dx$... (i) Let $x + \log(\sin x) = t$ $\Rightarrow 1 + \frac{1.(\cos x)}{\sin x} = \frac{dt}{dx}$ $\Rightarrow 1 + \cot x = \frac{dt}{dx}$ $\Rightarrow (1 + \cot x) dx = dt$ Putting this value in equation (i) $I = \int \frac{dt}{t}$ $I = \log |x + \log(\sin x)| + c$ $I = \log |x + \log(\sin x)| + c$ Ans) $\log |x + \log(\sin x)| + c$

Question: 96

Evaluate the foll

Solution:

To find: Value of $\int \frac{\tan x \sec^2 x}{(1 - \tan^2 x)} dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \frac{\tan x \sec^2 x}{(1 - \tan^2 x)} dx$... (i) Let $1 - \tan^2 x = t$ $\Rightarrow 0 - 2 \cdot \tan x \cdot \sec^2 x = \frac{dt}{dx}$

$$\Rightarrow (tanx. sec^2 x) dx = \frac{dt}{-2}$$

 $\Rightarrow (1 + \cot x)dx = dt$

Putting this value in equation (i)

$$I = \int \frac{1}{t} \frac{dt}{(-2)}$$

$$I = \frac{1}{2} \log |t| + c$$

$$I = \frac{1}{2} \log |1 - \tan^2 x| + c$$
Ans) $\frac{1}{2} \log |1 - \tan^2 x| + c$

Question: 97

Evaluate the foll

Solution:

To find: Value of $\int \frac{\sin(2\tan^{-1}x)}{(1+x^2)} dx$ Formula used: $\int \sin x \, dx = \cos x + c$ We have, $I = \int \frac{\sin(2\tan^{-1}x)}{(1+x^2)} dx$... (i) Let $2\tan^{-1}x = t$ $\Rightarrow 2\frac{1}{1+x^2} = \frac{dt}{dx}$ $\Rightarrow \frac{dx}{1+x^2} = \frac{dt}{2}$ $\Rightarrow (1 + \cot x) dx = dt$ Putting this value in equation (i) $I = \int \sin(t) \frac{dt}{(2)}$ $I = -\frac{1}{2}\cos(t) + c$

$$I = -\frac{1}{2}\cos(2\tan^{-1}x) + c$$

Ans) $-\frac{1}{2}\cos(2\tan^{-1}x) + c$

Question: 98

Evaluate the foll

Solution:

To find: Value of $\int \frac{dx}{\left(x^{\frac{1}{2}} + x^{\frac{1}{3}}\right)}$ Formula used: (i) $\int \frac{1}{x} dx = \log|x| + c$ (ii) $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int \frac{dx}{\left(x^{\frac{1}{2}} + x^{\frac{1}{3}}\right)} \dots$ (i) Let $x = t^6$ $\Rightarrow x^{\frac{1}{6}} = t$ $\Rightarrow 6t^5 dt = dx$ Putting this value in equation (i) $I = \int \frac{6t^5 dt}{\left(t^3 + t^2\right)}$

$$I = \int \frac{6t^{5} dt}{t^{2}(t+1)}$$

$$I = 6 \int \frac{t^{3} dt}{(t+1)}$$

$$I = 6 \int \frac{t^{3} + 1 - 1}{(t+1)} dt$$

$$I = 6 \int \frac{(t+1)(t^{2} - t+1)}{(t+1)} dt - \int \frac{1}{(t+1)} dt$$

$$I = 6 \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} + t - \log|t+1| \right] + c$$

$$I = \left[2t^{3} - 3t^{2} + 6t - 6\log|t+1| \right] + c$$

$$I = \left[2\left(x^{\frac{1}{6}}\right)^{3} - 3\left(x^{\frac{1}{6}}\right)^{2} + 6\left(x^{\frac{1}{6}}\right) - 6\log\left|\left(x^{\frac{1}{6}}\right) + 1\right| \right] + c$$

$$I = \left[2\sqrt{x} - 3\left(x^{\frac{1}{3}}\right) + 6\left(x^{\frac{1}{6}}\right) - 6\log\left|\left(x^{\frac{1}{6}}\right) + 1\right| \right] + c$$
Ans) $\left[2\sqrt{x} - 3\left(x^{\frac{1}{3}}\right) + 6\left(x^{\frac{1}{6}}\right) - 6\log\left|\left(x^{\frac{1}{6}}\right) + 1\right| \right] + c$

Question: 99

Evaluate the foll

Solution:

To find: Value of $\int (\sin^{-1} x)^2 dx$ Formula used: $\int \sin x \, dx = \cos x + c$ We have, $I = \int (\sin^{-1} x)^2 dx \dots (i)$ Let $\sin^{-1} x = t$, $x = \sin t$, $\Rightarrow \cos t = \sqrt{1 - x^2}$ $\Rightarrow \frac{1}{\sqrt{1 - x^2}} = \frac{dt}{dx}$

$$\Rightarrow \sqrt{1 - x^2} dt = dx$$

$$\Rightarrow \sqrt{1 - (\sin t)^2} dt = dx$$

$$\Rightarrow \sqrt{1 - \sin^2 t} dt = dx$$

$$\Rightarrow \cos t dt = dx$$
Putting this value in equation (i)
$$I = \int t^2 \cos t dt$$

$$I = \int t^2 \cos t dt - \int \left[\frac{d(t^2)}{dt} \int \cos t dt\right] dt$$

$$I = t^2 \sin t - \int [2t \sin t] dt$$

$$I = t^2 \sin t - 2 \left\{ \int t [\sin t] dt - \int \left[\frac{dt}{dt} \int \sin t dt\right] dt \right\}$$

$$I = t^2 \sin t - 2 \left[-t \cosh t + \int 1 \cdot \cot t dt \right]$$

$$I = t^2 \sin t + 2t \cosh t - 2 \sin t + c$$

$$I = (\sin^{-1} x)^2 x + 2(\sin^{-1} x)\sqrt{1 - x^2} - 2x + c$$

$$Ans) (\sin^{-1} x)^2 x + 2(\sin^{-1} x)\sqrt{1 - x^2} - 2x + c$$

Question: 100

Evaluate the foll

Solution:

To find: Value of $\int \frac{2x\tan^{-1}(x^2)}{(1+x^4)} dx$ Formula used: $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ We have, $I = \int \frac{2x\tan^{-1}(x^2)}{(1+x^4)} dx$... (i) Let $\tan^{-1}(x^2) = t$ $\Rightarrow \frac{1}{(1+x^2)^2} \cdot 2x = \frac{dt}{dx}$

$$\Rightarrow \frac{1}{1 + (x^2)^2} \cdot 2x = \frac{1}{6}$$
$$\Rightarrow \frac{2x}{1 + x^4} dx = dt$$

Putting this value in equation (i)

$$I = \int t. dt$$
$$I = \frac{t^2}{2} + c$$
$$I = \frac{\{tan^{-1}(x^2)\}^2}{2} + c$$

Ans)
$$\frac{\{\tan^{-1}(x^2)\}^2}{2} + c$$

Question: 101

Evaluate the foll

Solution:

To find: Value of $\int \frac{(x^2+1)}{(x^4+1)} dx$ Formula used: $\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$ We have, $I = \int \frac{(x^2+1)}{(x^4+1)} dx$... (i)

Dividing Numerator and Denominator by $\boldsymbol{x}^2,$

$$\begin{split} I &= \int \frac{\left(1 + \frac{1}{x^2}\right)}{\left(x^2 + \frac{1}{x^2} + 2 - 2\right)} dx \\ I &= \int \frac{\left(1 + \frac{1}{x^2}\right)}{\left(x^2 - 2.x.\frac{1}{x} + \left(\frac{1}{x}\right)^2 + 2\right)} dx \\ I &= \int \frac{\left(1 + \frac{1}{x^2}\right)}{\left(\left(x - \frac{1}{x}\right)^2 + \left(\sqrt{2}\right)^2\right)} dx \end{split}$$

Let $x - \frac{1}{x} = t$

$$\Rightarrow \left(1 + \frac{1}{x^2}\right) dx = dt$$

Putting this value in equation (i)

$$I = \int \frac{1}{(t)^{2} + (\sqrt{2})^{2}} dt$$

$$I = \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{t}{\sqrt{2}}\right) + c$$

$$I = \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x - \frac{1}{x}}{\sqrt{2}}\right) + c$$

$$I = \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^{2} - 1}{\sqrt{2}x}\right) + c$$
Ans) $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^{2} - 1}{\sqrt{2}x}\right) + c$

Question: 102

Evaluate the foll

Solution:

To find: Value of $\int \frac{(\sin x + \cos x)}{\sqrt{\sin 2x}} dx$

Formula used: $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + c$ We have, $I = \int \frac{(\sin x + \cos x)}{\sqrt{\sin 2x}} dx$... (i) Let $(\sin x - \cos x) = t$ $\Rightarrow (\cos x + \sin x) = \frac{dt}{dx}$ $\Rightarrow (\cos x + \sin x) dx = dt$ $\Rightarrow t^2 = \sin^2 x - 2\sin x \cdot \cos x + \cos^2 x$ $\Rightarrow t^2 = 1 - 2\sin x \cdot \cos x$ $\Rightarrow 2\sin x \cdot \cos x = 1 - t^2$ $\Rightarrow \sin 2x = 1 - t^2$

Putting this value in equation (i) $% \left(\frac{1}{2} \right) = 0$

$$\Rightarrow I = \int \frac{dt}{\sqrt{1 - t^2}}$$

$$I = \sin^{-1} t$$

$$I = \sin^{-1} (\sin x - \cos x)$$

$$Let \sin^{-1} (\sin x - \cos x) = \theta$$

$$\Rightarrow I = \sin^{-1} (\sin x - \cos x) = \theta \dots (ii)$$

$$\Rightarrow \sin \theta = \sin x - \cos x$$
Now if $\sin \theta = \sin x - \cos x$
Then $\cos \theta = \sqrt{1 - (\sin x - \cos x)^2}$

$$\Rightarrow \cos \theta = \sqrt{1 - (\sin^2 x - 2\sin x \cos x)}$$

$$\Rightarrow \cos \theta = \sqrt{1 - (1 - 2\sin x \cos x)}$$

$$\Rightarrow \cos \theta = \sqrt{2\sin x \cos x}$$
Now $\tan \theta = \frac{\sin \theta}{\cos \theta}$
Now $\tan \theta = \frac{\sin \theta}{\cos \theta}$
Now $\tan \theta = \frac{\sin x - \cos x}{\sqrt{2\sin x \cos x}}$

Comparing the value $\boldsymbol{\theta}$ from eqn. (ii)

$$I = \theta = \tan^{-1} \left(\frac{\sin x - \cos x}{\sqrt{2 \sin x . \cos x}} \right)$$

Dividing Numerator and denominator from cosx

$$I = \theta = \tan^{-1} \left(\frac{\tan x - 1}{\sqrt{2 \tan x}} \right)$$

Ans.)
$$\tan^{-1} \left(\frac{\tan x - 1}{\sqrt{2 \tan x}} \right)$$

Exercise : OBJECTIVE QUESTIONS I

Question: 1

Mark ($\sqrt{}$) against

Solution:

Given = $\int (2x+3)^5$ Let, 2x + 3 = z $\Rightarrow 2dx = dz$ So, $\int (2x+3)^5 dx$ $= \int \frac{z^5}{2} dz$ $= \frac{1}{2} \frac{z^6}{6} + c$ where c is the integrating constant. $= \frac{z^6}{12} + c$ $= \frac{(2x+3)^6}{12} + c$

Question: 2

Mark (\checkmark) against

Solution:

Given =
$$\int (3-5x)^7$$

Let, 3 - 5x = z
 \Rightarrow -5dx = dz
So,
 $\int (3-5x)^7 dx$
= $-\int \frac{z^7}{5} dz$

 $=-\frac{1}{5}\frac{z^8}{8}+c$ where c is the integrating constant.

$$= -\frac{z^{8}}{40} + c$$
$$= -\frac{(3-5x)^{8}}{40} + c$$

Question: 3

Mark (\checkmark) against

Solution:

Given = $\int \frac{1}{\left(2 - 3x\right)^4}$

Let, 2 - 3x = z $\Rightarrow -3dx = dz$ So, $\int \frac{1}{(2 - 3x)^4} dx$ $= \int \frac{1}{z^4} \left(\frac{dz}{-3}\right)$ $= -\frac{1}{3} \int \frac{dz}{z^4}$ where c is the integrating constant. $= -\frac{1}{3} \int z^{-4} dz$ $= -\frac{1}{3} \frac{z^{-3}}{-3} + c$ $= \frac{1}{9(2 - 3x)^3} + c$

Question: 4

Mark ($\sqrt{}$) against

Solution:

Given = $\int \sqrt{ax + b}$

Let, $ax + b = z^2$

 \Rightarrow adx = 2zdz

So,

$$\int \sqrt{ax + b} dx$$

= $\int z \frac{2zdz}{a}$
= $\frac{2}{a} \int z^2 dz$
= $\frac{2}{a} \frac{z^3}{3} + c$ where c is the integrating constant.
= $\frac{2}{3a} z^3 + c$
= $\frac{2(ax + b)^{3/2}}{3a} + c$

Question: 5

Mark (\checkmark) against

Solution:

Given = $\int \sec^2 (7 - 4x)$ Let, 7 - 4x = z \Rightarrow -4dx = dz

$$\int \sec^{2} (7 - 4x) dx$$

= $\int \sec^{2} z \frac{dz}{-4}$
= $-\frac{1}{4} \int \sec^{2} z dz$ where c is the integrating constant.
= $-\frac{1}{4} \tan z + c$
= $-\frac{1}{4} \tan (7 - 4x) + c$

Question: 6

Mark (\checkmark) against

Solution:

Given = $\int \cos 3x$

So, $\int \cos 3x dx = \frac{\sin 3x}{3} + c$ where c is the integrating constant.

Question: 7

Mark ($\sqrt{}$) against

Solution:

Given = $\int e^{(5-3x)}$ Let, 5 - 3x = z \Rightarrow -3dx = dz So, $\int e^{(5-3x)} dx$ = $\int e^z \frac{dz}{-3}$ = $-\frac{1}{3} \int e^z dz$ where c is the integrating constant. = $-\frac{1}{3}e^z + c$ = $-\frac{1}{3}e^{(5-3x)} + c$

Question: 8

Mark (\checkmark) against

Solution:

Given = $\int e^{(3x+4)}$ Let, 3x + 4 = z $\Rightarrow 3dx = dz$ So,

$$\int e^{(3x+4)} dx$$
$$= \int e^{z} \frac{dz}{3}$$
$$= \frac{1}{3} \int e^{z} dz$$
$$= \frac{1}{3} e^{z} + c$$
$$= \frac{1}{3} e^{(3x+4)} + c$$

Question: 9

Mark (\checkmark) against

Solution:

Given =
$$\int \tan^2 \frac{x}{2}$$

Let, $\frac{x}{2} = z$
 $\Rightarrow dx = 2dz$
So,
 $\int \tan^2 \frac{x}{2} dx$
 $= 2\int \tan^2 z dz$
 $= 2\int \frac{\sin^2 z}{\cos^2 z} dz$
 $= 2\int \frac{1 - \cos^2 z}{\cos^2 z} dz$
 $= 2\int (\sec^2 z - 1) dz$
 $= 2[\tan z - z] + c$
 $= 2[\tan \frac{x}{2} - \frac{x}{2}] + c$ where c is the integrating constant.

Question: 10

Mark (\checkmark) against

Solution:

Given = $\int \sqrt{1 - \cos x}$

$$\int \sqrt{1 - \cos x} dx$$

= $\int \sqrt{1 - \cos x} \frac{\sqrt{1 + \cos x}}{\sqrt{1 + \cos x}} dx$
= $\int \frac{\sqrt{1 - \cos^2 x}}{\sqrt{1 + \cos x}} dx$
= $\int \frac{\sin x}{\sqrt{1 + \cos x}} dx$
Let $1 + \cos x = u^2$
So, -sinxdx = 2udu

$$-\int \frac{2u}{u} du = -2\int du = -2u + c = -2\sqrt{1 + \cos x} + c$$

where c is the integrating constant.

Question: 11

Mark (\checkmark) against

Solution:

Given = $\int \sqrt{1 + \sin x}$

So,

$$\int \sqrt{1 + \sin x} \, dx$$
$$= \int \sqrt{1 + \sin x} \frac{\sqrt{1 - \sin x}}{\sqrt{1 - \sin x}} \, dx$$
$$= \int \frac{\sqrt{1 - \sin^2 x}}{\sqrt{1 - \sin x}} \, dx$$
$$= \int \frac{\cos x}{\sqrt{1 - \sin x}} \, dx$$

Let 1 - sinx = u^2

So, $-\cos x dx = 2u du$

$$-\int \frac{2u}{u} du = -2\int du = -2u + c = -2\sqrt{1 - \sin x} + c$$

where \boldsymbol{c} is the integrating constant.

Question: 12

Mark (\checkmark) against

Solution:

Given =
$$\int \sin^3 x dx$$

$$\int \sin^3 x dx$$

= $\int \sin^2 x \sin x dx$
= $\int (1 - \cos^2 x) \sin x dx$

Let $\cos x = u$ So, $-\sin x dx = du$ $-\int (1 - u^2) du$ $= -\int du + \int u^2 du$ $= -u + \frac{u^3}{3} + c$ $= -\cos x + \frac{\cos^3 x}{3} + c$

where \boldsymbol{c} is the integrating constant.

Question: 13

Mark ($\sqrt{}$) against

Solution:

Given = $\int \frac{\log x}{x}$ Let, $\log x = u$ So, $\frac{1}{x} dx = du$ So, $\int \frac{\log x}{x} dx$ $= \int u du$ $= \frac{u^2}{2} + c$ $= \frac{(\log x)^2}{2} + c$

where \boldsymbol{c} is the integrating constant.

Question: 14

Mark (\checkmark) against

Solution:

Given =
$$\int \frac{\sec^2(\log x)}{x}$$

Let, logx = z

$$\Rightarrow \frac{dx}{x} = dz$$

$$\int \frac{\sec^2 (\log x)}{x} dx$$

= $\int \sec^2 z dz$
= $\tan z + c$
= $\tan(\log x) + c$

Question: 15

Mark (\checkmark) against

Solution:

Given =
$$\int \frac{1}{x \left(\log x \right)}$$

Let, logx = z

$$\Rightarrow \frac{\mathrm{dx}}{\mathrm{x}} = \mathrm{dz}$$

So,

$$\int \frac{1}{x(\log x)} dx$$
$$= \int \frac{1}{z} dz$$
$$= \log z + c$$
$$= \log (\log x) + c$$

where c is the integrating constant.

Question: 16

Mark (\checkmark) against

Solution:

Given = $\int e^{x^3} x^2$ Let, $x^3 = z$ $\Rightarrow 3x^2 dx = dz$ $\Rightarrow x^2 dx = \frac{dz}{3}$ So, $\int e^{x^3} x^2 dx$ $= \frac{1}{3} \int e^z dz$ $= \frac{1}{3} e^z + c$ $= \frac{1}{3} e^{x^3} + c$ where c is the integrating constant.

Question: 17

Mark (\checkmark) against

Solution:

Given =
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}$$

Let, x = z²
 \Rightarrow dx = 2zdz
So,
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
$$= \int \frac{e^{z}}{z} 2z dz$$
$$= 2\int e^{z} dz$$
$$= 2e^{z} + c$$
$$= 2e^{\sqrt{x}} + c$$

where \boldsymbol{c} is the integrating constant.

Question: 18

Mark ($\sqrt{}$) against

Solution:

Given =
$$\int \frac{e^{\tan^{-1}x}}{\left(1+x^2\right)}$$

Let, $\tan^{-1}x = z$

$$\Rightarrow \frac{1}{1+x^2} dx = dz$$

So,

$$\int \frac{e^{\tan^{-1}x}}{(1+x^2)} dx$$
$$= \int e^z dz$$
$$= e^z + c$$
$$= e^{\tan^{-1}x} + c$$

where \boldsymbol{c} is the integrating constant.

Question: 19

Mark (\checkmark) against

Solution:

Given =
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}}$$

Let,
$$x = z^2$$

 $\Rightarrow dx = 2zdz$
So,
 $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$
 $= \int \frac{\sin z}{z} 2zdz$
 $= 2\int \sin zdz$
 $= -2\cos z + c$
 $= -2\cos \sqrt{x} + c$

Question: 20

Mark (√) against

Solution:

Given =
$$\int (\sqrt{\sin x}) \cos x$$

Let, $\sin x = z^2$
 $\Rightarrow \cos x dx = 2z dz$
So,
 $\int (\sqrt{\sin x}) \cos x dx$
 $= 2\int z^2 dz$
 $= 2\frac{z^3}{z^3} + c$

$$=\frac{2}{3}\sin^{3/2}x + c$$

= $\frac{2}{3}\sin^{3/2}x + c$

where c is the integrating constant.

Question: 21

Mark (\checkmark) against

Solution:

Given =
$$\int \frac{1}{\left(1+x^2\right)\sqrt{\tan^{-1}x}}$$

Let, $\tan^{-1}x = z^2$

$$\Rightarrow \frac{1}{1+x^2} dx = 2zdz$$

$$\int \frac{1}{(1+x^2)\sqrt{\tan^{-1}x}} dx$$
$$= \int \frac{2z}{z} dz$$
$$= 2\int dz$$
$$= 2z + c$$
$$= 2\sqrt{\tan^{-1}x} + c$$

Question: 22

Mark ($\sqrt{}$) against

Solution:

 $Given = \int \frac{\cot x}{\log(\sin x)}$ Let, sinx = z \Rightarrow cosxdx = dz So, $\int \frac{\cot x}{\log(\sin x)} dx$ $=\int \frac{\cos x}{\sin x \log (\sin x)} dx$ $=\int \frac{\mathrm{d}z}{z\log z}$ Let, logz = u $\Rightarrow \frac{1}{z} dz = du$ So, $\int \frac{dz}{z \log z}$ $=\int \frac{\mathrm{d}u}{\mathrm{u}}$ $= \log u + c$ $= \log \left| \log z \right| + c$

where \boldsymbol{c} is the integrating constant.

Question: 23

Mark (\checkmark) against

Solution:

$$Given = \int \frac{1}{x \cos^2 \left(1 + \log x\right)}$$

Let, $1 + \log x = z$

$$\Rightarrow \frac{1}{x} dx = dz$$

$$\int \frac{1}{x \cos^2 (1 + \log x)} dx$$
$$= \int \frac{dz}{\cos^2 z}$$
$$= \int \sec^2 z dz$$
$$= \tan z + c$$
$$= \tan (1 + \log x) + c$$

where c is the integrating constant.

Question: 24

Mark (√) against

Solution:

$$Given = \int \frac{x^2 \tan^{-1} x^3}{\left(1 + x^6\right)} dx$$

Let, $\tan^{-1}x^3 = z$

$$\Rightarrow \frac{1}{1+x^6} \times 3x^2 dx = dz$$
$$\Rightarrow \frac{x^2}{1+x^6} dx = \frac{dz}{3}$$

So,

$$\frac{1}{3}\int z dz$$
$$= \frac{1}{3}\frac{z^2}{2} + c$$
$$= \frac{z^2}{6} + c$$
$$= \frac{(\tan^{-1}x^3)^2}{6} + c$$

where \boldsymbol{c} is the integrating constant.

Question: 25

Mark ($\sqrt{}$) against

Solution:

Given =
$$\int \sec^5 x \tan x$$

So, $\int \sec^5 \tan x dx = \int \sec^4 x (\sec x \tan x) dx$
Let, $\sec x = z$
 $\Rightarrow \sec x \tan x dx = dz$

$$\int \sec^4 x (\sec x \tan x) dx$$
$$= \int z^4 dz$$
$$= \frac{z^5}{5} + c$$
$$= \frac{\sec^5 x}{5} + c$$

where c is the integrating constant.

Question: 26

Mark (\checkmark) against

Solution:

Given =
$$\int \cos ec^3 (2x+1) \cot (2x+1)$$

So,

$$\int \cos e^3 (2x+1) \cot (2x+1) dx$$

=
$$\int \csc^2 (2x+1) \csc (2x+1) \cot (2x+1) dx$$

Let, $\csc(2x + 1) = z$

 $\Rightarrow -2 \operatorname{cosec}(2x + 1) \operatorname{cot}(2x + 1) dx = dz$

$$\int \cos ec^{2} (2x+1) \csc (2x+1) \cot (2x+1) dx$$

= $\int z^{2} \frac{dz}{-2} =$
= $-\frac{1}{2} \frac{z^{3}}{3} + c$
= $-\frac{\csc e^{6} (2x+1)}{6} + c$

where \boldsymbol{c} is the integrating constant.

Question: 27

Mark ($\sqrt{}$) against

Solution:

Given =
$$\int \frac{\tan(\sin^{-1}x)}{\sqrt{1-x^2}}$$

Let, $\sin^{-1}x = z$

$$\Rightarrow \frac{\mathrm{dx}}{\sqrt{1-x^2}} = \mathrm{dz}$$

$$\int \frac{\tan(\sin^{-1} x)}{\sqrt{1-x^2}} dx$$

= $\int \tan z dz$
= $\log |\sec z| + c$
= $\log |\sec(\sin^{-1} x)| + c$

Question: 28

Mark ($\sqrt{}$) against

Solution:

 $\text{Given} = \int \frac{\tan\big(\log x\big)}{x}$

Let, $\log x = z$

$$\Rightarrow \frac{1}{x}dx = dz$$

So,

$$\int \frac{\tan(\log x)}{x} dx$$

= $\int \tan z dz$
= $\log |\sec z| + c$
= $\log |\sec(\log x)| + c$
= $-\log |\cos(\log x)| + c$

where \boldsymbol{c} is the integrating constant.

Question: 29

Mark (\checkmark) against

Solution:

Given =
$$\int e^x \cot(e^x) dx$$

Let, $e^x = z$
 $\Rightarrow e^x dx = dz$
So,
 $\int e^x \cot(e^x) dx$
 $= \int \cot z dz$
 $= \log |\sin z| + c$
 $= \log |\sin(e^x)| + c$

where \boldsymbol{c} is the integrating constant.

Question: 30

Mark ($\sqrt{}$) against

Solution:

Given = $\int \frac{e^{x}}{\sqrt{1 + e^{x}}}$ Let, 1 + e^x = z² $\Rightarrow e^{x}dx = 2zdz$ So, $\int \frac{e^{x}}{\sqrt{1 + e^{x}}} dx$ $= \int \frac{2zdz}{z}$ $= 2\int dz$ = 2z + c $= 2\sqrt{1 + e^{x}} + c$

where c is the integrating constant.

Question: 31

Mark (\checkmark) against

Solution:

Given = $\int \frac{x}{\sqrt{1 - x^2}} dx$ Let, $1 - x^2 = z^2$ $\Rightarrow -2xdx = 2zdz$ So, $\int \frac{x}{\sqrt{1 - x^2}} dx$ $= -\int \frac{zdz}{z}$ $= -\int dz$ = -z + c $= -\sqrt{1 - x^2} + c$

where \boldsymbol{c} is the integrating constant.

Question: 32

Mark (\checkmark) against

Solution:

 $Given = \int \frac{e^{x} \left(1 + x\right)}{\cos^{2} \left(x e^{x}\right)} dx$

Let, $xe^x = z$

$$\Rightarrow e^{x}(1 + x)dx = dz$$
So,

$$\int \frac{e^{x}(1 + x)}{\cos^{2}(xe^{x})}dx$$

$$= \int \frac{dz}{\cos^{2} z}$$

$$= \int \sec^{2} zdz$$

$$= \tan z + c$$

$$= \tan (xe^{x}) + c$$

where c is the integrating constant.

Question: 33

Mark ($\sqrt{}$) against

Solution:

Given =

$$\int \frac{dx}{\left(e^{x} + e^{-x}\right)}$$
$$= \int \frac{e^{x}}{\left(e^{x} + 1\right)} dx$$

Let, $e^{x} + 1 = z$

 $\Rightarrow e^{x}dx = dz$

$$\int \frac{e^{x} dx}{\left(e^{x} + 1\right)}$$
$$= \int \frac{dz}{z}$$
$$= \log |z| + c$$
$$= \tan |e^{x} + 1| + c$$

where c is the integrating constant.

Question: 34

Mark ($\sqrt{}$) against

Solution:

Given =

$$\int \frac{2^{x} dx}{1-4^{x}}$$
$$= \int \frac{2^{x}}{1-\left(2^{x}\right)^{2}} dx$$

Let, $2^x = z$

$$\int \frac{2^{x} dx}{1 - (2^{x})^{2}}$$
$$= \frac{1}{\log 2} \int \frac{dz}{1 - z^{2}}$$
$$= \frac{1}{\log 2} \sin^{-1} z + c$$
$$= \frac{\sin^{-1} 2x}{\log 2} + c$$

Question: 35

Mark ($\sqrt{}$) against

Solution:

Given =

$$\int \frac{dx}{e^x - 1}$$

$$= -\int \frac{-1 + e^x - e^x}{e^x - 1} dx$$

$$= -\int \frac{e^x - 1}{e^x - 1} dx + \int \frac{e^x}{e^x - 1} dx$$

$$= -\int dx + \int \frac{e^x}{e^x - 1} dx$$
Let, $e^x - 1 = z$

$$\Rightarrow e^x dx = dz$$
So,
$$-\int dx + \int \frac{e^x}{e^x - 1} dx$$

 $= -x + \int \frac{dz}{z}$ $= -x + \log z + c$ $= -x + \log \left| e^{x} - 1 \right| + c$

where \boldsymbol{c} is the integrating constant.

Question: 36

Mark ($\sqrt{}$) against

Solution:

Given =

$$\int \frac{dx}{\left(\sqrt{x} + x\right)}$$
$$= \int \frac{1}{\sqrt{x}} \frac{1}{\left(1 + \sqrt{x}\right)} dx$$

Let, $1 + \sqrt{x} = z$

$$\Rightarrow \frac{1}{2\sqrt{x}} dx = dz$$

So,

$$\int \frac{1}{\sqrt{x}} \frac{1}{\left(1 + \sqrt{x}\right)} dx$$
$$= 2 \int \frac{dz}{z}$$
$$= 2 \log |z| + c$$
$$= 2 \tan \left|1 + \sqrt{x}\right| + c$$

where \boldsymbol{c} is the integrating constant.

Question: 37

Mark (\checkmark) against

Solution:

$$\int \frac{dx}{1+\sin x}$$

$$= \int \frac{dx}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}}$$

$$= \int \frac{dx}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2}$$

$$= \int \frac{\sec^2 \frac{x}{2} dx}{\left(\tan \frac{x}{2} + 1\right)^2}$$
Let, $\tan \frac{x}{2} + 1 = z$

$$\Rightarrow \frac{1}{2}\sec^2 \frac{x}{2} dx = dz$$
So,

$$\int \frac{2dz}{z^2}$$
$$= -\frac{2}{z} + c$$
$$= -\frac{2}{\tan \frac{x}{2} + 1} + c$$

Question: 38

Mark (\checkmark) against

Solution:

Given

$$\int \frac{\sin x}{1 + \sin x} dx$$

$$= \int dx - \int \frac{dx}{1 + \sin x}$$

$$= x - \int \frac{dx}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}}$$

$$= x - \int \frac{dx}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2}$$

$$= x - \int \frac{\sec^2 \frac{x}{2} dx}{\left(\tan \frac{x}{2} + 1\right)^2}$$
Let, $\tan \frac{x}{2} + 1 = z$

$$\Rightarrow \frac{1}{2}\sec^2 \frac{x}{2} dx = dz$$
So,
$$x - \int \frac{2dz}{z^2}$$

$$= x + \frac{2}{z} + c$$

$$= x + \frac{2}{\tan \frac{x}{2} + 1} + c$$

where \boldsymbol{c} is the integrating constant.

Question: 39

Mark (\checkmark) against

Solution:

$$\int \frac{\sin x}{1 - \sin x} dx$$

$$= -\int dx + \int \frac{dx}{1 - \sin x}$$

$$= -x + \int \frac{dx}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}$$

$$= -x + \int \frac{dx}{\left(\sin \frac{x}{2} - \cos \frac{x}{2}\right)^2}$$

$$= -x + \int \frac{\sec^2 \frac{x}{2} dx}{\left(\tan \frac{x}{2} - 1\right)^2}$$

Let, $\tan \frac{x}{2} - 1 = z$

$$\Rightarrow \frac{1}{2}\sec^2\frac{x}{2}dx = dz$$

So,

$$-x + \int \frac{2dz}{z^2}$$
$$= -x - \frac{2}{z} + c$$
$$= -x - \frac{2}{\tan \frac{x}{2} + 1} + c$$

where \boldsymbol{c} is the integrating constant.

Question: 40

Mark (\checkmark) against

Solution:

$$\int \frac{dx}{1 + \cos x}$$

$$= \int \frac{dx}{1 + 2\cos^2 \frac{x}{2} - 1}$$

$$= \frac{1}{2} \int \frac{dx}{\cos^2 \frac{x}{2}}$$

$$= \frac{1}{2} \int \sec^2 \frac{x}{2} dx$$

$$= \frac{1}{2} 2 \tan \frac{x}{2} + c$$

$$= \tan \frac{x}{2} + c$$

where c is the integrating constant.

Question: 41

Mark (√) against

Solution:

Given

$$\int \frac{\mathrm{dx}}{1 - \cos x}$$
$$= \int \frac{\mathrm{dx}}{1 - 1 + 2\sin^2 \frac{x}{2}}$$
$$= \frac{1}{2} \int \frac{\mathrm{dx}}{\sin^2 \frac{x}{2}}$$
$$= \frac{1}{2} \int \cos ec^2 \frac{x}{2} \mathrm{dx}$$
$$= -\frac{1}{2} 2\cot \frac{x}{2} + c$$
$$= -\cot \frac{x}{2} + c$$

where c is the integrating constant.

Question: 42

Mark ($\sqrt{}$) against

Solution:

$$\int \frac{1 - \tan \frac{x}{2}}{1 + \tan \frac{x}{2}} dx$$

$$= \int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} dx$$

$$= \int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} dx$$

$$= \int \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} dx$$
Let, $\cos \frac{x}{2} + \sin \frac{x}{2} = z$

$$\Rightarrow \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right) dx = dz$$
So,

$$\int \frac{\cos\frac{x}{2} - \sin\frac{x}{2}}{\cos\frac{x}{2} + \sin\frac{x}{2}} dx$$
$$= \int \frac{dz}{z}$$
$$= \log z + c$$
$$= \log \left(\cos\frac{x}{2} + \sin\frac{x}{2} \right) + c$$

Question: 43

Mark (\checkmark) against

Solution:

Given

$$\int \sqrt{e^x} dx$$
$$= \int \left(e^x\right)^{\frac{1}{2}} dx$$
$$= \int e^{\frac{1}{2}x} dx$$
$$= 2e^{\frac{1}{2}x} + c$$
$$= 2\sqrt{e^x} + c$$

where \boldsymbol{c} is the integrating constant.

Question: 44

Mark (\checkmark) against

Solution:

Given

$$\int \frac{\cos x \, dx}{1 + \cos x}$$
$$= \int \frac{1 + \cos x - 1}{1 + \cos x} \, dx$$
$$= \int dx - \int \frac{dx}{1 + \cos x}$$
$$= x - \tan \frac{x}{2} + c$$

[From Question no. 40] where c is the integrating constant.

Question: 45

Mark (\checkmark) against

Solution:

Given

$$\int \sec^2 x \csc^2 x dx$$

= $\int \frac{1}{\sin^2 x \cos^2 x} dx$
= $\int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx$
= $\int \frac{1}{\cos^2 x} dx + \int \frac{1}{\sin^2 x} dx$
= $\int \sec^2 x dx + \int \csc^2 x dx$
= $\tan x - \cot x + c$

where c is the integrating constant.

Question: 46

Mark (\checkmark) against

Solution:

$$\int \frac{(1-\cos 2x)}{(1+\cos 2x)} dx$$
$$= \int \frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}} dx$$
$$= \int \tan^2 \frac{x}{2} dx$$
$$= \int \left(\sec^2 \frac{x}{2} - 1\right) dx$$
$$= 2\tan \frac{x}{2} - x + c$$

where c is the integrating constant.

Question: 47

Mark ($\sqrt{}$) against

Solution:

Given

$$\int \frac{(1+\cos 2x)}{(1-\cos 2x)} dx$$
$$= \int \frac{2\cos^2 \frac{x}{2}}{2\sin^2 \frac{x}{2}} dx$$
$$= \int \cot^2 \frac{x}{2} dx$$
$$= \int \left(\cos \sec^2 \frac{x}{2} - 1\right) dx$$
$$= -2\cot \frac{x}{2} - x + c$$

where \boldsymbol{c} is the integrating constant.

Question: 48

Mark ($\sqrt{}$) against

Solution:

Given

$$\int \frac{1}{\sin^2 x \cos^2 x} dx$$

= $\int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx$
= $\int \frac{1}{\cos^2 x} dx + \int \frac{1}{\sin^2 x} dx$
= $\int \sec^2 x dx + \int \csc^2 x dx$
= $\tan x - \cot x + c$

where \boldsymbol{c} is the integrating constant.

Question: 49

Mark (\checkmark) against

Solution:

Given

$$\int \frac{\cos 2x}{\sin^2 x \cos^2 x} dx$$

= $\int \frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos^2 x} dx$
= $\int \frac{1}{\sin^2 x} dx - \int \frac{1}{\cos^2 x} dx$
= $\int \csc^2 x dx - \int \sec^2 x dx$
= $-\tan x - \cot x + c$

where c is the integrating constant.

Question: 50

Mark ($\sqrt{}$) against

Solution:

Given

$$\begin{split} &\int \frac{\left(\cos 2x - \cos 2\alpha\right)}{\left(\cos x - \cos \alpha\right)} dx \\ &= \int \frac{-2\sin\left(\frac{2x + 2\alpha}{2}\right)\sin\left(\frac{2x - 2\alpha}{2}\right)}{-2\sin\left(\frac{x + \alpha}{2}\right)\sin\left(\frac{x - \alpha}{2}\right)} \\ &= \int \frac{\sin\left(x + \alpha\right)\sin\left(x - \alpha\right)}{\sin\left(\frac{x + \alpha}{2}\right)\sin\left(\frac{x - \alpha}{2}\right)} \\ &= \int \frac{2\sin\left(\frac{x + \alpha}{2}\right)\cos\left(\frac{x + \alpha}{2}\right) \times 2\sin\left(\frac{x - \alpha}{2}\right)\cos\left(\frac{x - \alpha}{2}\right)}{\sin\left(\frac{x + \alpha}{2}\right)\sin\left(\frac{x - \alpha}{2}\right)} \\ &= 2\int 2\cos\left(\frac{x + \alpha}{2}\right)\cos\left(\frac{x - \alpha}{2}\right) \\ &= 2\int \cos\left(\frac{x + \alpha}{2} + \frac{x - \alpha}{2}\right) + \cos\left(\frac{x + \alpha}{2} - \frac{x - \alpha}{2}\right) \\ &= 2\int (\cos x + \cos \alpha) dx \\ &= 2[\sin x + x \cos \alpha] + c \end{split}$$

where \boldsymbol{c} is the integrating constant.

Question: 51

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $1 + \cos 2x = 2\cos^2 x$; $1 - \cos 2x = 2\sin^2 x$

Therefore,

$$\Rightarrow \int \tan^{-1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} dx = \int \tan^{-1} \sqrt{\frac{2 \sin^2 x}{2 \cos^2 x}} dx = \int \tan^{-1} \tan x \, dx$$
$$\Rightarrow \int x \, dx = \frac{x^2}{2} + c$$

Question: 52

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $1 + \sin x = (\cos \frac{x}{2} + \sin \frac{x}{2})^2$

$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}; \tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Therefore,

$$\Rightarrow \int \tan^{-1} (\sec x + \tan x) \, dx = \int \tan^{-1} \left(\frac{1 + \sin x}{\cos x} \right) dx$$

$$\Rightarrow \int \tan^{-1} \frac{(\cos \frac{x}{2} + \sin \frac{x}{2})^2}{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}} \, dx = \int \tan^{-1} \frac{(\cos \frac{x}{2} + \sin \frac{x}{2})^2}{(\cos \frac{x}{2} + \sin \frac{x}{2})(\cos \frac{x}{2} - \sin \frac{x}{2})} \, dx$$

$$\Rightarrow \int \tan^{-1} \frac{(\cos \frac{x}{2} + \sin \frac{x}{2})^1}{(\cos \frac{x}{2} - \sin \frac{x}{2})} \, dx = \int \tan^{-1} \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \, dx$$

(Multiply by sec $\frac{x}{2}$ in numerator and denominator)

$$\Rightarrow \int \tan^{-1} \frac{1 + \tan^{\frac{x}{2}}}{1 - \tan^{\frac{x}{2}}} dx = \int \tan^{-1} \frac{\tan^{\frac{\pi}{4}} + \tan^{\frac{x}{2}}}{\tan^{\frac{\pi}{4}} - \tan^{\frac{\pi}{2}} \tan^{\frac{\pi}{2}}} dx = \int \tan^{-1} \tan(\frac{\pi}{4} + \frac{x}{2}) dx$$
$$\Rightarrow \int (\frac{\pi}{4} + \frac{x}{2}) dx = \frac{\pi x}{4} + \frac{x^{2}}{4} + c$$

Question: 53

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \sec^2 x dx = \tan x$

Therefore,

$$=\int \frac{1+\sin x(1+\sin x)}{1-\sin x(1+\sin x)} dx$$

$$=\int \frac{(1+\sin x)^2}{1-\sin^2 x} dx = \int \frac{1+\sin^2 x+2\sin x}{\cos^2 x} dx$$

$$=\int \frac{1}{\cos^2 x} dx + 2\int \frac{\sin x}{\cos^2 x} dx + \int \frac{\sin^2 x}{\cos^2 x} dx$$

$$=\int \sec^2 x dx + 2\int \frac{\sin x}{\cos^2 x} dx + \int (-1 + \sec^2 x) dx$$

$$=\int \sec^2 x dx + 2\int \frac{\sin x}{\cos^2 x} dx + \int (-1 + \sec^2 x) dx$$

$$=2\int \sec^2 x dx + 2\int \frac{\sin x}{\cos^2 x} dx - \int 1 dx$$

Put cos x = t
Therefore -> sin x dx = - dt

 $\Rightarrow 2 \tan x - 2 \int \frac{dt}{t^2} - x + c$ $\Rightarrow 2 \tan x + 2 \frac{1}{t} - x + c$ $\Rightarrow 2 \tan x + 2 \sec x - x + c$

Question: 54

Mark ($\sqrt{}$) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \sec^2 x dx = \tan x$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

$$= \int \frac{x^4 + 1 - 1}{1 + x^2} dx$$

$$= \int \frac{x^4 - 1}{1 + x^2} dx + \int \frac{1}{1 + x^2} dx = \int \frac{(1 + x^2)(x^2 - 1)}{1 + x^2} dx + \int \frac{1}{1 + x^2} dx$$

$$= \int x^2 - 1 dx + \int \frac{1}{1 + x^2} dx$$

$$= \frac{x^2}{3} - x + \tan^{-1} x + c$$

Question: 55

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$

 $\int \cot x = \log (\sin x) + c$

Therefore,

 $\Rightarrow \int \frac{\sin(x + \alpha - 2\alpha)}{\sin(x + \alpha)} dx$ $\Rightarrow \int \frac{\sin(x + \alpha) \cos(-2\alpha) + \cos(x + \alpha) \sin(-2\alpha)}{\sin(x + \alpha)} dx$

 $\Rightarrow \int \cos(2 \, \alpha) \, dx - \sin 2 \, \alpha \int \cot(x + \alpha) \, dx$

 $\Rightarrow \cos(2 \propto) x - \sin 2 \propto \log |\sin(x + \propto)| + c$

Question: 56

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$

$$\int \cot x = \log (\sin x) + c$$

Therefore,

 $\Rightarrow \int \frac{(\sqrt{x+3}+\sqrt{x+2})}{(\sqrt{x+3}-\sqrt{x+2})(\sqrt{x+3}+\sqrt{x+2})} dx \text{ (Rationalizing the denominator)}$ $\Rightarrow \int (\sqrt{x+3}+\sqrt{x+2}) dx$

$$\Rightarrow \int (\sqrt{x} + 3 + \sqrt{x} + 2) dx$$
$$\Rightarrow \int \sqrt{x + 3} dx + \int \sqrt{x + 2} dx$$

$$\Rightarrow \frac{2(x+3)^{\frac{3}{2}}}{3} + \frac{2(x+2)^{\frac{3}{2}}}{3} + c$$

Question: 57

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$

 $\int \cot x = \log (\sin x) + c$

Therefore,

 $= \int \frac{\frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}}}{1 - \frac{\sin x}{\cos x}} dx$ (Rationalizing the denominator)

 $\Rightarrow \int \frac{\cos x + \sin x}{\cos x - \sin x} dx$

Put $\cos x - \sin x = t$

 $(-\sin x - \cos x) \, dx = dt$

 $(\sin x + \cos x) \, dx = -dt$

$$\Rightarrow \int \frac{-dt}{t} = -\log t + c$$

 $\Rightarrow -\log |\cos x - \sin x| + c$

Question: 59

Mark ($\sqrt{}$) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

Put $x^3 = t \ 3x^2 dx = dt$

$$\Rightarrow \int \frac{dt}{1+t^2}$$

 $\Rightarrow \tan^{-1}t + c$

 $\Rightarrow \tan^{-1} x^3 + c$

Question: 59

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1} x + c$

Therefore,

Put
$$x^3 = t$$
, $3x^2 dx = dt$

$$\Rightarrow \int \frac{dt}{x \times 3x^2 \sqrt{t^2 - 1}} = \int \frac{dt}{3t \sqrt{t^2 - 1}}$$

$$\Rightarrow \frac{1}{3} \int \frac{dt}{t \sqrt{t^2 - 1}}$$

$$\Rightarrow \frac{1}{3} \sec^{-1} t + c$$
$$\Rightarrow \frac{1}{3} \sec^{-1} x^3 + c$$

Mark ($\sqrt{}$) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1} x + c$

Therefore,

Put $x^2 + x + 1 = t$, (2x + 1)dx = dt $\Rightarrow \int \sqrt{t} dt = \frac{\frac{3}{t^2}}{\frac{3}{2}} + c$ $\Rightarrow \frac{2}{3}t^{\frac{3}{2}} + c$ $\Rightarrow \frac{2}{3}(x^2 + x + 1)^{\frac{3}{2}} + c$

Question: 61

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$

$\int \cot x = \log (\sin x) + c$

Therefore,

$$= \int \frac{(\sqrt{2x+3} - \sqrt{2x-3})}{(\sqrt{2x+3} + \sqrt{2x-3})(\sqrt{2x+3} - \sqrt{2x-3})} dx$$
 (Rationalizing the denominator)

$$= \int \frac{\sqrt{2x+3} - \sqrt{2x-3}}{6} dx$$

$$= \frac{1}{6} \int \sqrt{2x+3} dx - \frac{1}{6} \int \sqrt{2x-3} dx$$

$$= \frac{2(2x+3)^{\frac{2}{2}}}{3\times6\times2} - \frac{2(2x-3)^{\frac{2}{2}}}{3\times6\times2} + c$$

$$= \frac{(2x+3)^{\frac{2}{2}}}{18} - \frac{(2x-3)^{\frac{2}{2}}}{18} + c$$
Question: 62
Mark (1) a main at

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\int \cot x = \log (\sin x) + c$ Therefore, $\Rightarrow \int \frac{\sin x}{\cos x} dx$

Put $\cos x = t - \sin x \, dx = dt$

$$\Rightarrow \int \frac{-dt}{t}$$

 $\Rightarrow -\log t + c$

 $\Rightarrow -\log|\cos x| + c$

Question: 63

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$

 $\int \cot x = \log (\sin x) + c$

Therefore,

 $\Rightarrow \int \sec x \frac{\sec x + \tan x}{\sec x + \tan x} dx$

 $\Rightarrow \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} dx$

 $\operatorname{Put} \sec x + \tan x = t , (\sec^2 x + \sec x \tan x) dx = dt$

$$\Rightarrow \int \frac{dt}{t}$$

 $\Rightarrow \log t + c$

 $\Rightarrow \log |\sec x + \tan x| + c$

Question: 64

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ sin(a + b) = sin a cos b + cos a sin b $\int cot x = log (sin x) + c$ Therefore, $\Rightarrow \int cosec x \frac{cosec x - cot x}{cosec x - cot x} dx$ $\Rightarrow \int \frac{cosec^2 x - cosec x \cot x}{cosec x - cot x} dx$ Put cosec x - cot x = t, (cosec² x - cosec x cot x)dx = dt $\Rightarrow \int \frac{dt}{t}$ $\Rightarrow log t + c$ $\Rightarrow log | cosec x - cot x | + c$ Question: 65 Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \sec^2 x dx = \tan x$

Therefore,

$$\Rightarrow \int \frac{1+\sin x}{2\cos^2 \frac{x}{2}} dx$$

$$\Rightarrow \int \frac{1}{2\cos^2 \frac{x}{2}} + \frac{2\sin \frac{x}{2}\cos \frac{x}{2}}{2\cos^2 \frac{x}{2}} dx = \frac{1}{2} \int \sec^2 \frac{x}{2} dx + \int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} dx$$

$$\Rightarrow \frac{1}{2} \tan \frac{x}{2} \times 2 + \int \tan \frac{x}{2} dx$$

$$\Rightarrow \tan \frac{x}{2} + 2 \left(-\log \cos \frac{x}{2} \right) + c$$

$$\Rightarrow \tan \frac{x}{2} - 2 \log |\cos \frac{x}{2}| + c$$

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \sec^2 x dx = \tan x$

Therefore,

$$\Rightarrow \int \frac{\sec x \tan x}{\sec^2 x + 1} dx$$

Put sec x = t (sec $x \tan x$) dx = dt

$$\Rightarrow \int \frac{dt}{1+t^2} = \tan^{-1}t + c$$

 $\Rightarrow \tan^{-1} \sec x + c$

$$\Rightarrow -\tan^{-1}(\cos x) + c$$

Question: 67

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \sec^2 x dx = \tan x$

Therefore ,

$$\Rightarrow \int \sqrt{\frac{(1+x)^2}{(1+x)(1-x)}} dx$$

$$\Rightarrow \int \frac{1+x}{\sqrt{1-x^2}} dx = \int \frac{1}{\sqrt{1-x^2}} dx + \int \frac{x}{\sqrt{1-x^2}} dx$$

Put $1 - x^2 = t \cdot 2x \, dx = dt$

$$\Rightarrow \sin^{-1} x - \frac{1}{2} \int \frac{1}{\sqrt{t}} dt + c$$

$$\Rightarrow \sin^{-1} x - \frac{1}{2} \frac{\sqrt{t}}{\frac{1}{2}} + c$$

$$\Rightarrow \sin^{-1} x - \sqrt{t} + c = \sin^{-1} x - \sqrt{1-x^2} + c$$

Question: 68

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \sec^2 x dx = \tan x$

Therefore,

Put $-\frac{1}{x} = t \frac{1}{x^2} dx = dt$ $\Rightarrow \int e^t dt$ $\Rightarrow e^t + c$ $\Rightarrow e^{-\frac{1}{x}} + c$

Question: 69

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

 $\operatorname{Put} x^4 = t \ 4x^3 dx = dt$

$$\Rightarrow \frac{1}{4} \int \frac{1}{1+t^2} dt$$
$$\Rightarrow \frac{1}{4} \tan^{-1} t + c$$
$$\Rightarrow \frac{1}{4} \tan^{-1} x^4 + c$$

Question: 70

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

Put
$$x^{1} + \log x = t \left(1 + \frac{1}{x}\right) dx = dt \Rightarrow \left(\frac{x+1}{x}\right) dx = dt$$

$$\Rightarrow \int t^{2} dt$$

$$\Rightarrow \frac{t^{3}}{3} + c$$

$$\Rightarrow \frac{(x+\log x)^{3}}{3} + c$$

Question: 71

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

Put $\tan^{-1} x^2 = t \left(\frac{1}{1+(x^2)^2} \times 2x\right) dx = dt \Rightarrow \left(\frac{2x}{1+x^4}\right) dx = dt$ $\Rightarrow \int t^1 dt$ $\Rightarrow \frac{t^2}{2} + c$ $(\tan^{-1} x^2)^2$

$$\Rightarrow \frac{(\tan^{-1} x^2)^2}{2} + C$$

Question: 72

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{x^1} dx = \log x + c$ Therefore, Put 2 - 3x = t - 3dx = dt $\Rightarrow -\frac{1}{3} \int \frac{1}{t} dt$ $\Rightarrow -\frac{1}{3} \log t + c$ $\Rightarrow -\frac{1}{3} \log |2 - 3x| + c$

Question: 73

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{x^1} dx = \log x + c$ Therefore, Put $x^2 - 1 = t \ 2x dx = dt$

$$\Rightarrow \int \sqrt{t} dt$$
$$\Rightarrow \frac{1}{2} \frac{t^{\frac{2}{2}}}{\frac{2}{2}} + c \Rightarrow \frac{t^{\frac{2}{2}}}{3} + c$$
$$\Rightarrow \frac{(x^2 - 1)^{\frac{2}{2}}}{3} + c$$

Question: 74

Mark ($\sqrt{}$) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int a^x dx = \frac{a^x}{\log a} + c$

Therefore,

Put 5 - 3x = t - 3dx = dt $\Rightarrow -\frac{1}{3}\int 3^t dt$ $\Rightarrow -\frac{1}{3} \times \frac{3^t}{\log 3} + c \Rightarrow -\frac{1}{3} \times \frac{3^{(5-2x)}}{\log 3} + c$ $\Rightarrow -\frac{3^{(5-2x)}}{3\log 3} + c$

Question: 75

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int e^x dx = e^x + c$ Therefore, Put $\tan x = t \sec^2 x dx = dt$

 $\Rightarrow \int e^t dt$

 $\Rightarrow e^t + c \Rightarrow e^{\tan x} + c$

Question: 76

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int e^x dx = e^x + c$

Therefore,

Put $\cos^2 x = t \Rightarrow 2\cos x (-\sin x)dx = dt \Rightarrow -\sin 2x dx = dt$

$$\Rightarrow -\int e^t dt$$

 $\Rightarrow -e^t + c \Rightarrow -e^{\cos^2 x} + c$

Question: 77

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int e^x dx = e^x + c$

Therefore,

Put $\sin x^2 = t \Rightarrow 2x \cos x^2 dx = dt$ $\Rightarrow \frac{1}{2} \int t^3 dt$ $\Rightarrow \frac{1}{2} \frac{t^4}{4} + c \Rightarrow \frac{t^4}{8} + c$ $\Rightarrow \frac{(\sin x^2)^4}{8} + c$

Question: 78

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int e^x dx = e^x + c$

Therefore,

Put $\sin e^{\sqrt{x}} = t \Rightarrow (\cos e^{\sqrt{x}}) \times (e^{\sqrt{x}}) \times (\frac{1}{2\sqrt{x}}) dx = dt$

 $\Rightarrow \int 2dt$

 $\Rightarrow 2t + c \Rightarrow 2\sin e^{\sqrt{x}} + c$

Question: 79

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int e^x dx = e^x + c$ Therefore, Put $x^3 = t \Rightarrow 3x^2 dx = dt$ $\Rightarrow \frac{1}{3} \int \sin t dt$ $\Rightarrow -\frac{1}{3} \cos t + c \Rightarrow -\frac{1}{3} \cos x^3 + c$

Mark (\checkmark) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int e^x dx = e^x + c$

Therefore ,

Put
$$xe^x = t \Rightarrow (e^x + xe^x)dx = dt \Rightarrow e^x(1+x)dx = dt$$

 $\Rightarrow \int \frac{dt}{\cos^2 t} \Rightarrow \int \sec^2 t \, dt = \tan t + c$
 $\Rightarrow \tan(xe^x) + c$

Question: 81

Mark ($\sqrt{}$) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \frac{1}{t\sqrt{t^2-1}} dt = \sec^{-1} t + c$

Therefore,

Put
$$x^2 = t \Rightarrow 2x dx = dt$$

$$\Rightarrow \int \frac{1}{x\sqrt{t^2 - 1}} \times \frac{dt}{2x} \Rightarrow \frac{1}{2} \int \frac{1}{t\sqrt{t^2 - 1}} dt$$

$$\Rightarrow \frac{1}{2} \sec^{-1} t + c \Rightarrow \frac{1}{2} \sec^{-1} x^2 + c$$

Question: 82

Mark (\checkmark) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \frac{1}{t\sqrt{t^2-1}} dt = \sec^{-1} t + c$

Therefore,

Put
$$\mathbf{x} - \mathbf{1} = \mathbf{t} \Rightarrow \mathbf{x} = \mathbf{t} + \mathbf{1} \Rightarrow d\mathbf{x} = d\mathbf{t}$$

$$\Rightarrow \int (t+1) \times \sqrt{t} dt \Rightarrow \int t^{\frac{3}{2}} dt + \int t^{\frac{1}{2}} dt$$

$$\Rightarrow \frac{t^{\frac{5}{2}}}{\frac{5}{2}} + \frac{t^{\frac{2}{2}}}{\frac{5}{2}} + c \Rightarrow \frac{2t^{\frac{5}{2}}}{5} + \frac{2t^{\frac{3}{2}}}{3} + c$$

$$\Rightarrow \frac{2(x-1)^{\frac{5}{2}}}{5} + \frac{2(x-1)^{\frac{3}{2}}}{3} + c$$

Question: 83

Mark (\checkmark) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \frac{1}{t\sqrt{t^2-1}} dt = \sec^{-1} t + c$

Therefore ,

$$\Rightarrow \int x \sqrt{x^2 - 1} dx$$

Put $x^2 - 1 = t \Rightarrow 2xdx = dt$

$$\Rightarrow \int \sqrt{t} \frac{dt}{2} \Rightarrow \frac{1}{2} \int \frac{t^{\frac{2}{2}}}{\frac{3}{2}} dt$$
$$\Rightarrow \frac{t^{\frac{2}{2}}}{3} + c \Rightarrow \frac{(x^2 - 1)^{\frac{2}{2}}}{3} + c$$
$$\Rightarrow \frac{1}{3} (x^2 - 1)^{\frac{3}{2}} + c$$

Mark ($\sqrt{}$) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \frac{1}{t \sqrt{t^2 - 1}} dt = \sec^{-1} t + c$

Therefore,

 $\Rightarrow \int \frac{1}{1+\sqrt{x}} dx$ Put $x = t^2 \Rightarrow dx = 2tdt$ $\Rightarrow \int \frac{2t}{1+t} dt \Rightarrow 2 \int \frac{t}{1+t} dt \Rightarrow 2 \int \frac{t+1-1}{1+t} dt \Rightarrow 2 \int dt - 2 \int \frac{1}{1+t} dt$ $\Rightarrow 2t - 2\log(1+t) + c \Rightarrow 2\sqrt{x} - 2\log(1+\sqrt{x}) + c$

Question: 85

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

Therefore,

$$\Rightarrow \int \sqrt{e^x - 1} dx$$
Put $e^x - 1 = t \Rightarrow e^x dx = dt$

$$\Rightarrow \int \sqrt{t} \frac{dt}{1+t} \Rightarrow \int \frac{\sqrt{t}}{1+t} dt$$
Put $t = z^2$ dt = 2z dz
$$\Rightarrow \int \frac{2z^2}{1+z^2} dz \Rightarrow \int \frac{2+2z^2-2}{1+z^2} dz \Rightarrow 2 \int \frac{1+z^2}{1+z^2} dz - 2 \int \frac{1}{1+z^2} dz$$

$$\Rightarrow 2 \int dz - 2 \int \frac{1}{1+z^2} dz \Rightarrow 2z - 2 \tan^{-1} z + c$$

$$\Rightarrow 2\sqrt{t} - 2 \tan^{-1} \sqrt{t} + c \Rightarrow 2\sqrt{e^x - 1} - 2 \tan^{-1} \sqrt{e^x - 1} + c$$

С

Question: 86

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int e^x dx = e^x + c$

Therefore,

We can write
$$\sin x = \frac{1}{2} \left[(\sin x - \cos x) + (\sin x + \cos x) \right]$$

$$\Rightarrow \int_{-\frac{1}{2} \frac{1}{2} \frac{1}{(\sin x - \cos x) + (\sin x + \cos x)]}{(\sin x - \cos x)} dx$$

$$\Rightarrow \frac{1}{2} \int \frac{(\sin x - \cos x)}{(\sin x - \cos x)} dx + \frac{1}{2} \int \frac{(\sin x + \cos x)}{(\sin x - \cos x)} dx$$
$$\Rightarrow \frac{1}{2} \int dx + \frac{1}{2} \int \frac{(\sin x + \cos x)}{(\sin x - \cos x)} dx \Rightarrow \frac{x}{2} + \frac{1}{2} \int \frac{(\sin x + \cos x)}{(\sin x - \cos x)} dx$$

 $Put (\sin x - \cos x) = t (\sin x + \cos x) dx = dt$

$$\Rightarrow \frac{x}{2} + \frac{1}{2} \int \frac{1}{t} dt \Rightarrow \frac{x}{2} + \frac{1}{2} \log t + c \Rightarrow \frac{1}{2} x + \frac{1}{2} \log |\sin x - \cos x| + c$$

Question: 87

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int e^x dx = e^x + c$

Therefore,

$$\Rightarrow \int \frac{1}{1 - \frac{\sin x}{\cos x}} dx \Rightarrow \int \frac{\cos x}{\cos x - \sin x} dx$$

We can write $\cos x = \frac{1}{2} [(\cos x - \sin x) + (\sin x + \cos x)]$

$$\Rightarrow \int \frac{\frac{1}{2} [(\cos x - \sin x) + (\sin x + \cos x)]}{(\cos x - \sin x)} dx$$

$$\Rightarrow \frac{1}{2} \int \frac{(\cos x - \sin x)}{\cos x - \sin x} dx + \frac{1}{2} \int \frac{(\sin x + \cos x)}{\cos x - \sin x} dx$$

$$\Rightarrow \frac{1}{2} \int dx + \frac{1}{2} \int \frac{(\sin x + \cos x)}{\cos x - \sin x} dx \Rightarrow \frac{x}{2} + \frac{1}{2} \int \frac{(\sin x + \cos x)}{\cos x - \sin x} dx$$

 $Put (\cos x - \sin x) = t (\sin x + \cos x) dx = -dt$

$$\Rightarrow \frac{x}{2} - \frac{1}{2} \int \frac{1}{t} dt \Rightarrow \frac{x}{2} - \frac{1}{2} \log t + c \Rightarrow \frac{1}{2} x - \frac{1}{2} \log |\cos x - \sin x| + c$$

Question: 88

Mark (\checkmark) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int e^x dx = e^x + c$

Therefore,

$$\Rightarrow \int \frac{1}{1 - \frac{\cos x}{\sin x}} dx \Rightarrow \int \frac{\sin x}{\sin x - \cos x} dx$$

We can write $\sin x = \frac{1}{2} \left[(\sin x - \cos x) + (\sin x + \cos x) \right]$

$$\Rightarrow \int \frac{\frac{1}{2} [(\sin x - \cos x) + (\sin x + \cos x)]}{(\sin x - \cos x)} dx$$

$$\Rightarrow \frac{1}{2} \int \frac{(\sin x - \cos x)}{(\sin x - \cos x)} dx + \frac{1}{2} \int \frac{(\sin x + \cos x)}{(\sin x - \cos x)} dx$$

$$\Rightarrow \frac{1}{2} \int dx + \frac{1}{2} \int \frac{(\sin x + \cos x)}{(\sin x - \cos x)} dx \Rightarrow \frac{x}{2} + \frac{1}{2} \int \frac{(\sin x + \cos x)}{(\sin x - \cos x)} dx$$

Put $(\sin x - \cos x) = t (\sin x + \cos x) dx = dt$

$$\Rightarrow \frac{x}{2} + \frac{1}{2} \int \frac{1}{t} dt \Rightarrow \frac{x}{2} + \frac{1}{2} \log t + c \Rightarrow \frac{1}{2} x + \frac{1}{2} \log |\sin x - \cos x| + c$$

Question: 89

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

Put $\tan x = t \Rightarrow sec^2 x \, dx = dt$

$$\Rightarrow \int \frac{1}{\sqrt{1-t^2}} dt \Rightarrow \sin^{-1} t + c$$

 $\Rightarrow \sin^{-1}(\tan x) + c$

Question: 90

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$

Therefore,

$$\Rightarrow \int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} dx \Rightarrow \int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} - 2 + 2} dx \Rightarrow \int \frac{1 + \frac{1}{x^2}}{(x - \frac{1}{x})^2 + 2} dx$$

$$Put \ x - \frac{1}{x} = t \Rightarrow (1 + \frac{1}{x^2}) \ dx = dt$$

$$\Rightarrow \int \frac{1}{t^2 + 2} dt \Rightarrow \frac{1}{\sqrt{2}} \tan^{-1} \frac{t}{\sqrt{2}} + c$$

$$\Rightarrow \frac{1}{\sqrt{2}} \tan^{-1} [\frac{1}{\sqrt{2}} (x - \frac{1}{x})] + c$$

Question: 91

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

$$\Rightarrow \int \frac{\sin^6 x}{\cos^6 x \cos^2 x} dx \Rightarrow \int \frac{\tan^6 x}{\cos^2 x} dx \Rightarrow \int \tan^6 x \sec^2 x dx$$

Put $\tan x = t \Rightarrow sec^2 x \, dx = dt$

$$\Rightarrow \int t^6 dt \Rightarrow \frac{t^7}{7} + c$$
$$\Rightarrow \frac{(\tan x)^7}{7} + c$$

Question: 92

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

 $\Rightarrow \int \sec^4 x \sec x \tan x \, dx$

 $\operatorname{Put} \sec x = t \Rightarrow \sec x \tan x \, dx = dt$

$$\Rightarrow \int t^4 dt \Rightarrow \frac{t^5}{5} + c$$
$$\Rightarrow \frac{(\sec x)^5}{5} + c$$

Mark (\checkmark) against

Solution:

Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

$$\Rightarrow \int \tan^3 x \tan^2 x dx \Rightarrow \int \tan^3 x (\sec^2 x - 1) dx$$

$$\Rightarrow \int \tan^3 x \sec^2 x dx - \int \tan^3 x dx \Rightarrow \int \tan^3 x \sec^2 x dx - \int \tan^1 x \tan^2 x dx$$

$$\Rightarrow \int \tan^3 x \sec^2 x dx - \int \tan x (\sec^2 x - 1) dx$$

$$\Rightarrow \int \tan^3 x \sec^2 x dx - \int \tan x \sec^2 x dx + \int \tan x dx$$

Put $\tan x = t \Rightarrow \sec^2 x dx = dt$

$$\Rightarrow \int t^3 dt - \int t^1 dt + \log|\sec x| \Rightarrow \frac{t^4}{4} - \frac{t^2}{2} + \log|\sec x| + c$$

$$\Rightarrow \frac{(\tan x)^4}{4} - \frac{(\tan x)^2}{2} + \log|\sec x| + c$$

Question: 94

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

$$\Rightarrow \int \cos x \, (\cos^2 x \sin^3 x) dx \Rightarrow \int \cos x \, ((1 - \sin^2 x) \sin^3 x) dx$$

$$\Rightarrow \int \cos x \, (\sin^3 x - \sin^5 x) dx \Rightarrow \int \sin^3 x \cos x dx - \int \sin^5 x \cos x \, dx$$

Put sin $x = t \Rightarrow \cos x \, dx = dt$

$$\Rightarrow \int t^3 dt - \int t^5 dt \Rightarrow \frac{t^4}{4} - \frac{t^6}{6} + c$$

$$\Rightarrow \frac{(\sin x)^4}{4} - \frac{(\sin x)^6}{6} + c$$

Question: 95

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

$$\Rightarrow \int \sec^2 x \sec^2 x \tan x \, dx \Rightarrow \int (1 + \tan^2 x) \sec^2 x \tan x \, dx$$

$$\Rightarrow \int \sec^2 x \tan x \, dx + \int \tan^3 x \sec^2 x \, dx$$

Put $\tan x = t \Rightarrow \sec^2 x \, dx = dt$

$$\Rightarrow \int t^1 dt + \int t^3 dt \Rightarrow \frac{t^2}{2} + \frac{t^4}{4} + c$$

$$\Rightarrow \frac{(\tan x)^2}{2} + \frac{(\tan x)^4}{4} + c$$

Question: 96

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$ Therefore, $\Rightarrow \int \sec^2 x \sec^2 x \tan x \, dx \Rightarrow \int (1 + \tan^2 x) \sec^2 x \tan x \, dx$ $\Rightarrow \int \sec^2 x \tan x \, dx + \int \tan^3 x \sec^2 x \, dx$ Put $\log(\tan x) = t \Rightarrow \frac{1}{\tan x} \sec^2 x \, dx = dt \Rightarrow \frac{1}{\sin x \cos x} \, dx = dt$ $\Rightarrow \int t^1 dt \Rightarrow \frac{t^2}{2} + c$ $\Rightarrow \frac{(\log|\tan x|)^2}{2} + c$

Question: 97

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

$$\Rightarrow \int \sin^2(2x+1)\sin(2x+1) \, dx \Rightarrow \int (1-\cos^2(2x+1))\sin(2x+1) \, dx$$

$$\Rightarrow \int \sin(2x+1) \, dx - \int \cos^2(2x+1)\sin(2x+1) \, dx$$

Put $\cos(2x+1) = t \Rightarrow -2\sin(2x+1) \, dx = dt$

$$\Rightarrow -\int \frac{dt}{2} - (-\frac{1}{2}) \int t^2 \, dt \Rightarrow -\frac{1}{2} \int dt + \frac{1}{2} \int t^2 \, dt$$

$$\Rightarrow -\frac{1}{2}t + \frac{1}{2}\frac{t^3}{3} + c \Rightarrow -\frac{1}{2}t + \frac{t^3}{6} + c$$

$$\Rightarrow -\frac{1}{2}\cos(2x+1) + \frac{[\cos(2x+1)]^3}{6} + c$$

Question: 98

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

$$\Rightarrow \int \frac{\sqrt{\tan x}}{\sin x \times \cos x} dx \Rightarrow \int \frac{\sqrt{\tan x}}{\frac{\tan x}{\sec x} \times \frac{1}{\sec x}} dx \Rightarrow \int \frac{\sec^2 x}{\sqrt{\tan x}} dx$$

Put $\tan x = t \Rightarrow sec^2 x dx = dt$

$$\Rightarrow \int \frac{dt}{\sqrt{t}} \Rightarrow \frac{\sqrt{t}}{\frac{1}{2}} + c \Rightarrow 2\sqrt{t} + c$$

 $\Rightarrow 2\sqrt{\tan x} + c$

Question: 99

Mark ($\sqrt{}$) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

Therefore,

$$\Rightarrow \int \frac{\cos x + \sin x}{\cos^2 x + \sin^2 x - \sin 2x} dx \Rightarrow \int \frac{\cos x + \sin x}{(\cos x - \sin x)^2} dx$$

 $\operatorname{Put} \cos x - \sin x = t \Rightarrow (\cos x + \sin x)dx = -dt$

$$\Rightarrow \int \frac{-dt}{t^2} \Rightarrow \frac{1}{t} + c \Rightarrow \frac{1}{\cos x - \sin x} + c$$

Question: 100

Mark (\checkmark) against

Solution:

Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

Therefore,

 $\Rightarrow \int \sqrt{e^x - 1} dx$

Put $e^x - 1 = t \Rightarrow e^x dx = dt$

$$\Rightarrow \int \sqrt{t} \, \frac{dt}{1+t} \Rightarrow \int \frac{\sqrt{t}}{1+t} dt$$

Put $t = z^2 dt = 2z dz$

$$\Rightarrow \int \frac{2z^2}{1+z^2} dz \Rightarrow \int \frac{2+2z^2-2}{1+z^2} dz \Rightarrow 2 \int \frac{1+z^2}{1+z^2} dz - 2 \int \frac{1}{1+z^2} dz$$
$$\Rightarrow 2 \int dz - 2 \int \frac{1}{1+z^2} dz \Rightarrow 2z - 2 \tan^{-1} z + c$$
$$\Rightarrow 2\sqrt{t} - 2 \tan^{-1} \sqrt{t} + c \Rightarrow 2\sqrt{e^x - 1} - 2 \tan^{-1} \sqrt{e^x - 1} + c$$

Question: 101

Mark ($\sqrt{}$) against

Solution:

Let $I=\int\!\frac{dx}{\sqrt{\sin^8x\cos x}}$

Now multiplying and dividing by $\cos^2 x$, we get,

$$\begin{split} I &= \int \frac{dx}{\sqrt{\sin^3 x \times \cos x}} \times \frac{1}{\cos^2 x} \times \cos^2 x \\ I &= \int \frac{(\sec^2 x)}{\sqrt{\frac{\sin^3 x}{\cos^3 x}}} dx \\ I &= \int \frac{\sec^2 x}{\sqrt{\tan^3 x}} dx \end{split}$$

Let $\tan x = t$

Differentiating both sides, we get,

 $\sec^2 x \, dx = dt$

Therefore,

$$I = \int \frac{dt}{t^{3/2}}$$

Integrating, we get,

$$I = \frac{t^{-\frac{3}{2}+1}}{-\frac{3}{2}+1} + C$$

$$I = \frac{t^{-\frac{1}{2}}}{-\frac{1}{2}} + C$$
$$I = -\frac{2}{\sqrt{t}} + C$$
$$I = -\frac{2}{\sqrt{tanx}} + C$$

Exercise : 13B

Question: 1

Evaluate the foll

Solution:

i)∫ sin² xdx

⇒∫ sin² xdx

Now, we know that $1 - \cos 2x = 2\sin^2 x$

So, applying this identity in the given integral, we get,

$$\int \sin^2 x dx = \int \frac{(1 - \cos 2x) dx}{2}$$

$$\Rightarrow \frac{1}{2} (\int dx - \int \cos 2x dx)$$

$$\Rightarrow \frac{x}{2} - \frac{\sin 2x}{2 \times 2} + c$$

$$\Rightarrow \frac{x}{2} - \frac{\sin 2x}{4} + c$$

Ans: $\int \sin^2 x dx = \frac{x}{2} - \frac{\sin 2x}{4} + c$
ii) $\int \cos^2 x dx$

$$\Rightarrow \int \cos^2 x dx$$

Now, we know that $1 + \cos 2x = 2\cos^2 x$

So, applying this identity in the given integral, we get,

$$\int \cos^2 x \, dx = \int \frac{(1 + \cos 2x) dx}{2}$$
$$\Rightarrow \frac{1}{2} (\int dx + \int \cos 2x dx)$$
$$\Rightarrow \frac{x}{2} + \frac{\sin 2x}{2 \times 2} + c$$
$$\Rightarrow \frac{x}{2} + \frac{\sin 2x}{4} + c$$

Ans: $\int \cos^2 x \, dx = \frac{x}{2} + \frac{\sin 2x}{4} + c$

Question: 2

Evaluate the foll

Solution:

(i)
$$\int \cos^2(x/2) dx$$

 $\Rightarrow \int \cos^2(\frac{x}{2}) dx$

Now, we know that $1 + \cos x = 2\cos^2 (x/2)$

So, applying this identity in the given integral, we get,

$$\int \cos^2\left(\frac{x}{2}\right) dx = \int \frac{(1+\cos x)dx}{2}$$
$$\Rightarrow \frac{1}{2} \left(\int dx + \int \cos x dx\right)$$
$$\Rightarrow \frac{x}{2} + \frac{\sin 2x}{2} + c$$
$$\Rightarrow \frac{x}{2} + \frac{\sin 2x}{2} + c$$
Ans: $\frac{x}{2} + \frac{\sin 2x}{2} + c$ ii) $\int \cot^2\left(\frac{x}{2}\right) dx$
$$\Rightarrow \int \cot^2\left(\frac{x}{2}\right) dx$$

Now, we know that $\csc^2 x \cdot \cot^2 x = 1$

So, applying this identity in the given integral we get,

$$\Rightarrow \int \cot^2\left(\frac{x}{2}\right) dx = \int (\csc^2\left(\frac{x}{2}\right) - 1) dx$$

$$\Rightarrow \int (\csc^2\left(\frac{x}{2}\right) - 1) dx = \int \csc^2\left(\frac{x}{2}\right) dx - \int 1 dx$$

$$\Rightarrow \int \csc^2\left(\frac{x}{2}\right) dx - \int 1 dx = \frac{-\cot x}{\frac{1}{2}} - x + c$$

⇒-2cotx-x+c

$$\Rightarrow \int \cot^2\left(\frac{x}{2}\right) dx = -2\cot x + c$$

Ans: -2cotx-x+c

Question: 3

Evaluate the foll

Solution:

i)∫ sín²nxdx

Now, we know that $1 - \cos 2nx = 2\sin^2 nx$

So, applying this identity in the given integral, we get,

$$\int \sin^2 nx \, dx = \int \frac{(1 - \cos 2nx) \, dx}{2}$$

$$\Rightarrow \frac{1}{2} (\int dx - \int \cos 2nx \, dx)$$

$$\Rightarrow \frac{x}{2} - \frac{\sin 2nx}{2n \times 2} + c$$

$$\Rightarrow \frac{x}{2} - \frac{\sin 2x}{4n} + c$$

Ans: $\int \sin^2 nx \, dx = \frac{x}{2} - \frac{\sin 2nx}{4n} + c$
(ii) $\int \sin^5 x \, dx$

We know that $1 - \cos^2 x = \sin^2 x$

$$\Rightarrow \int \sin^5 x dx = \int (1 - \cos^2 x)^2 \sin x dx$$

$$\Rightarrow \text{Put cosx=t}$$

$$\Rightarrow -\sin x dx = dt$$

$$\Rightarrow \int (1 - \cos^2 x)^2 \sin x dx = -\int (1 - t^2)^2 dt$$

$$= -\int (1 - t^2)^2 dt = -\int (1 + t^4 - 2t^2) dt$$
$$= -\int dt + \int 2t^2 dt - \int t^4 dt$$
$$= -t + \frac{2t^3}{3} - \frac{t^5}{5} + c$$

Resubstituting the value of t=cosx we get,

$$\Rightarrow -\cos x + \frac{2\cos^3 x}{3} - \frac{\cos^5 x}{5} + c$$

Ans: $-\cos x + \frac{2\cos^3 x}{3} - \frac{\cos^5 x}{5} + c$

Question: 4

Evaluate the foll

Solution:

Substitute 3x+5=u

⇒3dx=du

⇒dx=du/3

$$\Rightarrow \int \cos^3(3x+5)dx = \frac{1}{3}\int \cos^3(u)du$$

Now We know that $1 - \cos^2 x = \sin^2 x$,

$$= \frac{1}{3} \int \cos^3(u) du = \frac{1}{3} \int (1 - \sin^2(u)) \cos u \, du$$

⇒Substitute sinu=t

⇒cosu du=dt

$$= \frac{1}{3} \int (1 - \sin^2(u)) \cos u \, du = \frac{1}{3} \int (1 - t^2) \, dt$$
$$= \frac{1}{3} \int dt - \frac{1}{3} \int t^2 \, dt$$
$$= \frac{t}{3} - \frac{t^3}{3 \times 3} + c$$
$$= \frac{t}{3} - \frac{t^3}{9} + c$$

Resubstituting the value of t=sinu and u=3x+5 we get,

$$\Rightarrow \frac{\sin(3x+5)}{3} - \frac{\sin^3(3x+5)}{9} + c$$

Ans: $\frac{\sin(3x+5)}{3} - \frac{\sin^3(3x+5)}{9} + c$

Question: 5

Evaluate the foll

Solution:

 $\Rightarrow -\int sin^7(2x-3)dx$

Substitute 2x-3=u

⇒ 2dx=du ⇒dx=du/2 ⇒- $\left(\frac{1}{2}\right)\int sin^{7}(u)du$ ⇒ We know that 1-cos²x=sin²x ⇒- $\left(\frac{1}{2}\right)\int (1-cos^{2}(u))^{3}sinu du$ ⇒Put cosu=t ⇒-sinxdu=dt = $\left(\frac{1}{2}\right)\int (1-t^{2})^{3}dt$ = $\left(\frac{1}{2}\right)\int (1-t^{6}-3t^{2}+3t^{4})dt$ = $\left(\frac{1}{2}\right)\int (1-t^{6}dt-\int 3t^{2}dt+\int 3t^{4}dt]$ = $\left(\frac{1}{2}\right)\left[t-\frac{t^{7}}{7}-\frac{3t^{3}}{3}+\frac{3t^{5}}{5}\right]+c$ = $\left(\frac{1}{2}\right)\left[t-\frac{t^{7}}{7}-t^{3}+\frac{3t^{5}}{5}\right]+c$

Resubstituting the value of t=cosu and u=2x-3 we get

$$= \left(\frac{1}{2}\right) \left[\cos(2x-3) - \frac{\cos^{7}(2x-3)}{7} - \cos^{3}(2x-3) + \frac{3\cos^{5}(2x-3)}{5}\right] + c$$
$$= \frac{\cos(2x-3)}{2} - \frac{\cos^{7}(2x-3)}{14} - \frac{\cos^{3}(2x-3)}{2} + \frac{3\cos^{5}(2x-3)}{10} + c$$

Now as we know $\cos(-x) = \cos x$

$$= \frac{\cos(2x-3)}{2} - \frac{\cos^7(2x-3)}{14} - \frac{\cos^3(2x-3)}{2} + \frac{3\cos^5(2x-3)}{10} + c$$
$$= \frac{\cos(3-2x)}{2} - \frac{\cos^7(3-2x)}{14} - \frac{\cos^3(3-2x)}{2} + \frac{3\cos^5(3-2x)}{10} + c$$
Ans: $\frac{\cos(3-2x)}{2} - \frac{\cos^7(3-2x)}{14} - \frac{\cos^3(3-2x)}{2} + \frac{3\cos^5(3-2x)}{10} + c$

Question: 6

Evaluate the foll

Solution:

(i)
$$\left(\frac{1-\cos 2x}{1+\cos 2x}\right) dx$$

$$\Rightarrow \int \frac{1 - \cos 2x}{1 + \cos 2x} dx$$

 $1-\cos 2x=2\sin^2 x$ and $1+\cos 2x=2\cos^2 x$

$$\Rightarrow \int \frac{1 - \cos 2x}{1 + \cos 2x} dx = \int \frac{2 \sin^2 x}{2 \cos^2 x} dx$$
$$\Rightarrow \int \tan^2 x \, dx$$
Now sec²x-1=tan²x
$$\Rightarrow \int (\sec^2 x - 1) dx$$
$$\Rightarrow \int \sec^2 x \, dx - \int dx$$
$$\Rightarrow \tan x - x + c$$

Ans: tanx-x+c

(ii)
$$\left(\frac{1+\cos 2x}{1-\cos 2x}\right) dx$$

$$\Rightarrow \int \frac{1+\cos 2x}{1-\cos 2x} dx$$

 $1-\cos 2x=2\sin^2 x$ and $1+\cos 2x=2\cos^2 x$

$$\Rightarrow \int \frac{1 + \cos 2x}{1 - \cos 2x} dx = \int \frac{2 \cos^2 x}{2 \sin^2 x} dx$$
$$\Rightarrow \int \cot^2 x \, dx$$

Now $cosec^2x-1=cot^2x$

 $\Rightarrow \int (cosec^2 x - 1) dx$

 $\Rightarrow \int cosec^2 x dx - \int dx$

⇒-cotx-x+c

Ans: -cotx-x+c

Question: 7

Evaluate the foll

Solution:

i)
$$\int \frac{1 - \cos x}{1 + \cos x} dx$$

⇒ $\int \frac{1 - \cos x}{1 + \cos x} dx$

 $1-\cos x=2\sin^2 x/2$ and $1+\cos x=2\cos^2 x/2$

$$\Rightarrow \int \frac{1 - \cos x}{1 + \cos x} dx = \int \frac{2 \sin^2\left(\frac{x}{2}\right)}{2 \cos^2\left(\frac{x}{2}\right)} dx$$

$$\Rightarrow \int tan^2(\frac{x}{2}) dx$$

Now $\sec^2(x/2) - 1 = \tan^2(x/2)$

$$\Rightarrow \int \left(\sec^2\left(\frac{x}{2}\right) - 1 \right) dx$$

 $\Rightarrow \int \sec^2\left(\frac{x}{2}\right) dx - \int dx$

 \Rightarrow 2tan(x/2)-x+c

Ans: 2tan(x/2)-x+c

(ii)
$$\int \frac{1+\cos x}{1-\cos x} dx$$

$$\Rightarrow \int \frac{1}{1 - \cos x} dx$$

 $1-\cos x=2\sin^2 x/2$ and $1+\cos x=2\cos^2 x/2$

$$\Rightarrow \int \frac{1+\cos x}{1-\cos x} dx = \int \frac{2\cos^2\left(\frac{x}{2}\right)}{2\sin^2\left(\frac{x}{2}\right)} dx$$

$$\Rightarrow \int \cot^2\left(\frac{x}{2}\right) dx$$
Now $\operatorname{cosec}^2(x/2) \cdot 1 = \cot^2(x/2)$

$$\Rightarrow \int \left(\operatorname{cosec}^2\left(\frac{x}{2}\right) - 1\right) dx$$

$$\Rightarrow \int \operatorname{cosec}^2\left(\frac{x}{2}\right) dx - \int dx$$

 \Rightarrow -2cot(x/2)-x+c

Ans: \Rightarrow -2cot(x/2)-x+c

Question: 8

Evaluate the foll

Solution:

⇒∫ sin3x cos4x dx

Applying the formula: $sinx \times cosy = 1/2(sin(x+y)-sin(y-x))$

$$= \frac{1}{2} \int (\sin 7x - \sin x) dx$$

$$= \frac{1}{2} \int \sin 7x \, dx - \frac{1}{2} \int \sin x \, dx$$

$$= \frac{-\cos 7x}{14} + \frac{\cos x}{2} + c$$

Ans: $\frac{-\cos 7x}{14} + \frac{\cos x}{2} + c$

Question: 9

Evaluate the foll

Solution:

 $\Rightarrow \int \cos 4x \cos 3x \, dx$

Applying the formula: $\cos x \cos y = 1/2(\cos(x+y) + \cos(x-y))$

$$\Rightarrow \frac{1}{2} \int (\cos 7x + \cos x) dx$$
$$\Rightarrow \frac{1}{2} \int \cos 7x \, dx + \frac{1}{2} \int \cos x \, dx$$
$$\Rightarrow \frac{\sin 7x}{14} + \frac{\sin x}{2} + c$$

Ans: $\frac{\sin 7x}{14} + \frac{\sin x}{2} + c$

Question: 10

Evaluate the foll

Solution:

⇒∫ sin4x sin8x dx

Applying the formula: $sinx \times siny = 1/2(cos(y-x)-cos(y+x))$

$$\Rightarrow \frac{1}{2} \int (\cos 4x - \cos 12x) dx$$
$$\Rightarrow \frac{1}{2} \int \cos 4x \, dx - \frac{1}{2} \int \cos 12x \, dx$$
$$\Rightarrow \frac{\sin 4x}{8} - \frac{\sin 12x}{24} + c$$
Ans: $\frac{\sin 4x}{8} - \frac{\sin 12x}{24} + c$

Question: 11

Evaluate the foll

Solution:

⇒∫ sin6x cosx dx

Applying the formula: $sinx \times cosy = 1/2(sin(y+x)-sin(y-x))$

$$\Rightarrow \frac{1}{2} \int (\sin 7x - \sin(-5x)) dx$$

$$\Rightarrow \frac{1}{2} \int \sin 7x \, dx + \frac{1}{2} \int \sin 5x \, dx$$
$$\Rightarrow \frac{-\cos 7x}{14} - \frac{\cos x}{10} + c$$
$$\operatorname{Ans:} \frac{-\cos 7x}{14} - \frac{\cos x}{10} + c$$

Evaluate the foll

Solution:

we know that $1 + \cos 2x = 2\cos^2 x$

So, applying this identity in the given integral we get,

 $\Rightarrow \int \sin x \sqrt{1 + \cos 2x} dx$ $\Rightarrow \int \sin x \sqrt{(2\cos^2 x)} dx$ $\Rightarrow \sqrt{2} \int \sin x \cos x dx$ Let sinx =t $\Rightarrow \cos x dx = dt$ $\Rightarrow \sqrt{2} \int t dt$ $\Rightarrow \sqrt{2} \frac{t^2}{2} + c = \frac{t^2}{\sqrt{2}} + c$

Resubstituting the value of t=sinx we get

 $\Rightarrow \frac{\sin^2 x}{\sqrt{2}} + c$ Ans: $\frac{\sin^2 x}{\sqrt{2}} + c$

Question: 13

Evaluate the foll

Solution:

```
=\int \cos^{2} x \cos^{2} x dx

=\int (\frac{1+\cos 2x}{2})(\frac{1+\cos 2x}{2}) dx \dots (\frac{1+\cos 2x}{2}) = \cos^{2} x)

=\frac{1}{4}\int (1+\cos 2x)^{2} dx

=\frac{1}{4}\int (1+\cos^{2} 2x+2\cos 2x) dx

=\frac{1}{4}\left[\int 1 dx + \int \cos^{2} 2x dx + \int 2\cos 2x dx

=\frac{1}{4}\left[x + \int \frac{(1+\cos 4x) dx}{2} + 2\frac{\sin 2x}{2}\right] \dots (1+\cos 4x = 2\cos^{2} x)

=\frac{1}{4}\left[x + \frac{1}{2}\left(\int dx + \int \cos 4x dx\right) + \sin 2x\right] + c

=\left[\frac{x}{4} + \frac{1}{2} \times \frac{1}{4}\left(\int dx + \int \cos 4x dx\right) + \frac{\sin 2x}{4}\right] + c

=\left[\frac{x}{4} + \left(\frac{x}{8} + \frac{\sin 4x}{32}\right) + \frac{\sin 2x}{4}\right] + c

=\frac{3x}{8} + \frac{\sin 4x}{32} + \frac{\sin 2x}{4} + c

Ans: \frac{3x}{8} + \frac{\sin 4x}{32} + \frac{\sin 2x}{4} + c
```

Question: 14

Evaluate the foll

Solution:

$$\begin{aligned} \Rightarrow \int \cos 2x \cos 4x \cos 6x dx \\ \Rightarrow \frac{1}{2} \int (\cos 6x + \cos 2x) \cos 6x dx \\ \Rightarrow \frac{1}{2} \int \cos^2 6x dx + \frac{1}{2} \int \cos 2x \cos 6x dx \\ \Rightarrow \frac{1}{2} \int \cos^2 6x dx + \frac{1}{4} \int (\cos 8x + \cos 4x) dx \\ \Rightarrow \frac{1}{2} \int \cos^2 6x dx + \frac{1}{4} \int \cos 8x dx + \frac{1}{4} \int \cos 4x dx \\ \Rightarrow \frac{1}{2} \int \frac{(1 + \cos 12x) dx}{2} + \frac{1}{4} \frac{\sin 8x}{8} + \frac{1}{4} \frac{\sin 4x}{4} + c \\ \Rightarrow \frac{1}{4} \left(x + \frac{\sin 12x}{12}\right) + \frac{\sin 8x}{32} + \frac{\sin 4x}{16} + c \\ \Rightarrow \frac{x}{4} + \frac{\sin 12x}{48} + \frac{\sin 8x}{32} + \frac{\sin 4x}{16} + c \\ \text{Ans: } \frac{x}{4} + \frac{\sin 12x}{48} + \frac{\sin 8x}{32} + \frac{\sin 4x}{16} + c \end{aligned}$$

Question: 15

Evaluate the foll

Solution:

Let sinx =t

 $\Rightarrow \cos x \, dx = dt$

$$= \int \sin^3 x \cos x \, dx = \int t^3 dt$$
$$= \frac{t^4}{4} + c$$

Resubstituting the value of t=sinx we get

$$\Rightarrow \frac{\sin^4 x}{4} + c$$
Ans: $\frac{\sin^4 x}{4} + c$

Question: 16

Evaluate the foll

Solution:

 $\Rightarrow \int \sec^4 dx = \int \sec^2 x \sec^2 x dx$ $\Rightarrow \int \sec^2 x (1 + \tan^2 x) dx$ $\Rightarrow \operatorname{Put} \operatorname{tanx=t} \Rightarrow \sec^2 dx = dt$ $\Rightarrow \int (1 + t^2) dt$ $\Rightarrow t + \frac{t^3}{3} + c$

Resubstituting the value of t=tanx we get

 $\Rightarrow tanx + \frac{tan^3x}{3} + c$

Ans: $tanx + \frac{tan^3x}{3} + c$

Question: 17

Evaluate the foll

Solution:

 $= \int \cos^3 x \sin^4 x \, dx$ $= \int \cos x \sin^4 x \cos^2 x \, dx$ $= \int \cos x \sin^4 x (1 - \sin^2 x) \, dx$ Put sinx=t $= \cos x dx = dt$ $= \int t^4 (1 - t^2) \, dt$ $= \int t^4 dt - \int t^6 \, dt$

$$\Rightarrow \frac{t^5}{5} - \frac{t^7}{7} + c$$

Resubstituting the value of t=sinx we get,

$$\Rightarrow \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + c$$

Ans: $\frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + c$

Question: 18

Evaluate the foll

Solution:

- ⇒∫ cos⁴xsin³x dx
- ⇒∫ sinx sin² xcos⁴ xdx
- $\Rightarrow \int \sin x \cos^4 x (1 \cos^2 x) dx$
- Put cosx=t
- ⇒-sinxdx=dt
- $\Rightarrow \int t^4(t^2-1)dt$
- $\Rightarrow \int t^6 dt \int t^4 dt$

$$\Rightarrow \frac{t^7}{7} - \frac{t^5}{5} + c$$

Resubstituting the value of t=sinx we get,

 $\Rightarrow \frac{\cos^7 x}{7} - \frac{\cos^5 x}{5} + c$ Ans: $\frac{\cos^7 x}{7} - \frac{\cos^5 x}{5} + c$

Question: 19

Evaluate the foll

Solution:

 $\Rightarrow \int \cos^3 x \sin^2 x \, dx$ $\Rightarrow \int \cos x \cos^2 x \sin^2 x \, dx$

$$\stackrel{\Rightarrow}{\int} \cos x (1 - \sin^2 x) \sin^{\frac{2}{3}} x dx$$
Put sinx=t
$$\Rightarrow \cos x dx = dt$$

$$\stackrel{\Rightarrow}{\Rightarrow} \int t^{\frac{2}{3}} (1 - t^2) dt$$

$$\stackrel{\Rightarrow}{\Rightarrow} \int t^{\frac{2}{3}} dt - \int t^{\frac{8}{3}} dt$$

$$\Rightarrow \frac{t^{\frac{5}{3}}}{\frac{5}{3}} - \frac{t^{\frac{11}{3}}}{\frac{11}{3}} + c$$

Resubstituting the value of t=sinx we get

$$\Rightarrow \frac{3\sin^{\frac{5}{3}}x}{5} - \frac{3\sin^{\frac{11}{3}}x}{11} + c$$

Ans: $\frac{3\sin^{\frac{5}{3}}x}{5} - \frac{3\sin^{\frac{11}{3}}x}{11} + c$

Question: 20

Evaluate the foll

Solution:

 $= \int \sin^3 x \cos^{\frac{3}{5}} x \, dx$ $= \int \sin x \sin^2 x \cos^{\frac{3}{5}} x \, dx$ $= \int \sin x (1 - \cos^2 x) \cos^{\frac{3}{5}} x \, dx$ $Put \cos x = t$ $= -\sin x \, dx = dt$ $= \int t^{\frac{3}{5}} (t^2 - 1) \, dt$ $= \int t^{\frac{13}{5}} dt - \int t^{\frac{3}{5}} \, dt$ $\Rightarrow \frac{t^{\frac{18}{5}}}{\frac{18}{5}} - \frac{t^{\frac{8}{5}}}{\frac{8}{5}} + c$

Resubstituting the value of t=cosx we get

$$\Rightarrow \frac{5\cos^{\frac{18}{5}}x}{18} - \frac{5\cos^{\frac{8}{5}}x}{8} + c$$

Ans: $\frac{5\cos^{\frac{18}{5}}x}{18} - \frac{5\cos^{\frac{8}{5}}x}{8} + c$

Question: 21

Evaluate the foll

Solution:

$$\Rightarrow \int cosec^4 2x dx$$
$$\Rightarrow \int cosec^2 2x cosec^2 2x dx$$

 $\Rightarrow \int cosec^2 2x \, (1+cot^2 2x) dx$

 \Rightarrow cot2x=t \Rightarrow -2cosec² 2xdx=dt

$$\Rightarrow -1/2 \int (1+t^2) dt$$
$$\Rightarrow -1/2 \int dt - 1/2 \int t^2 dt$$
$$\Rightarrow -(\frac{1}{2})t - \frac{t^3}{6} + c$$

Resubstituting the value of t=cotx we get

$$\Rightarrow -\frac{\cot x}{2} - \frac{\cot^3 x}{6} + c$$
Ans: $-\frac{\cot x}{2} - \frac{\cot^3 x}{6} + c$

Question: 22

Evaluate the foll

Solution:

$$\Rightarrow \int \frac{\cos 2x}{\cos x} dx = \int \frac{2\cos^2 x - 1}{\cos x} dx$$
$$\Rightarrow \int \frac{2\cos^2 x}{\cos x} dx - \int \frac{1}{\cos x} dx$$
$$\Rightarrow \int 2\cos x dx - \int \sec x dx$$

 $\Rightarrow 2 \text{sinx} - \log|\text{secx} + \tan x| + c$

Ans: 2sinx-log|secx+tanx|+c

Question: 23

Evaluate the foll

Solution:

$$\Rightarrow \int \frac{\cos x}{\cos(x+\alpha)} dx = \int \frac{\cos((x+\alpha)-\alpha)}{\cos(x+\alpha)} dx$$
$$\Rightarrow \int \frac{\cos(x+\alpha)\cos\alpha + \sin(x+\alpha)\sin\alpha}{\cos(x+\alpha)} dx$$
$$\Rightarrow \int \cos\alpha dx + \int \tan(x+\alpha)\sin\alpha dx$$

Now $\boldsymbol{\alpha}$ is a constant

$$\Rightarrow x\cos\alpha - \sin\alpha \log |\cos(x + \alpha)| + c$$

Ans:xcos α -sin α log $|cos(x + \alpha)|+c$

Question: 24

Evaluate the foll

Solution:

$$\Rightarrow \int \sin 2x \cos^3 x dx$$
$$\Rightarrow \int 2 \sin x \cos^3 x dx$$

$$\Rightarrow \int 2sinx \cos^4 x dx$$

Now put cosx=t

 \Rightarrow -sinxdx=dt

$$\Rightarrow -2\int t^4 dt$$
$$\Rightarrow -2 \times \frac{t^5}{5} + c$$

Resubstituting the value of t= cosx we get,

$$\Rightarrow \frac{-2\cos^5 x}{5} + c$$
Ans: $\frac{-2\cos^5 x}{5} + c$

Question: 25

Evaluate the foll

Solution:

$$\Rightarrow \int \frac{\cos^9 x}{\sin x} dx$$
$$\Rightarrow \int \frac{\cos^9 x}{\sin^2 x} \sin x dx$$

$$\Rightarrow \int \frac{\cos^9 x}{1 - \cos^2 x} \sin x \, dx$$

Put cosx =t

 \Rightarrow -sinxdx=dt

$$\Rightarrow \int \frac{t^9}{t^2 - 1} dt$$

Now put $t^2-1=a$

⇒2tdt=da

And $t^8 = (a+1)^4$

$$\Rightarrow \frac{1}{2} \int \frac{(a+1)^4}{a} da$$

$$\Rightarrow \frac{1}{2} \int (a^3 + 4a^2 + 6a + \frac{1}{a} + 4) da$$

$$\Rightarrow \frac{1}{2} \left(\frac{a^4}{4} + \frac{4a^3}{3} + \frac{6a^2}{2} + \ln a + 4a \right) + c$$

$$\Rightarrow \left(\frac{a^4}{8} + \frac{2a^3}{3} + \frac{3a^2}{2} + \frac{\ln a}{2} + 2a \right) + c$$

Resubstituting the value of $a=t^2-1$ and $t=\cos x \Rightarrow a=\cos^2 x-1=-\sin^2 x$ we get

$$\Rightarrow \left(\frac{(-\sin^2 x)^4}{8} + \frac{2(-\sin^2 x)^3}{3} + \frac{3(-\sin^2 x)^2}{2} + \frac{\ln|(-\sin^2 x)|}{2} + 2(-\sin^2 x)\right) + c$$
$$\Rightarrow \left(\frac{\sin^8 x}{8} - \frac{2\sin^6 x}{3} + \frac{3\sin^4 x}{2} + \frac{2\ln|(-\sin x)|}{2} - 2\sin^2 x\right) + c$$

$$\Rightarrow \left(\frac{\sin^8 x}{8} - \frac{2\sin^6 x}{3} + \frac{3\sin^4 x}{2} + \ln(\sin x) - 2\sin^2 x\right) + c$$

Ans: $\left(\frac{\sin^8 x}{8} - \frac{2\sin^6 x}{3} + \frac{3\sin^4 x}{2} + \ln(\sin x) - 2\sin^2 x\right) + c$

Evaluate the foll

Solution:

 $=\int \cos^{2} 2x\cos^{2} 2xdx$ $=\int (\frac{1+\cos 4x}{2})(\frac{1+\cos 4x}{2})dx \dots (\frac{1+\cos 4x}{2}) = \cos^{2} 2x)$ $=\frac{1}{4}\int (1+\cos 4x)^{2}dx$ $=\frac{1}{4}\int (1+\cos^{2} 4x+2\cos 4x)dx$ $=\frac{1}{4}\int (1+\cos^{2} 4x+2\cos 4x)dx$ $=\frac{1}{4}\left[\int 1dx + \int \cos^{2} 4xdx + \int 2\cos 4x dx$ $=\frac{1}{4}\left[x + \int \frac{(1+\cos 8x)dx}{2} + 2\frac{\sin 4x}{4}\right] \dots (1+\cos 8x=2\cos^{2} 4x)$ $=\frac{1}{4}\left[x + \frac{1}{2}\left(\int dx + \int \cos 8xdx\right) + (\frac{\sin 4x}{2})\right] + c$ $=\int \frac{x}{4} + \frac{1}{2} \times \frac{1}{4}\left(\int dx + \int \cos 8xdx\right) + \frac{\sin 4x}{8}\right] + c$ $=\int \frac{x}{4} + (\frac{x}{8} + \frac{\sin 8x}{64}) + \frac{\sin 4x}{8}\right] + c$ $=\int \frac{x}{8} + \frac{\sin 8x}{64} + \frac{\sin 4x}{8} + c$ Ans: $\frac{3x}{8} + \frac{\sin 8x}{64} + \frac{\sin 4x}{8} + c$

Question: 27

Evaluate the foll

Solution:

Doing tangent half angle substitution we get,

$$\Rightarrow \int \frac{\sin^2 x}{(1+\cos^2 x)} dx = \int \frac{(\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}})}{[1+(\frac{1-\tan^2\frac{x}{2}}{1-\tan^2\frac{x}{2}})]^2}$$

Substitute u=tan(x/2)

 $\Rightarrow 2du = \sec^{2}(x/2)dx$ $\Rightarrow dx = \frac{2du}{u^{2}+1}$ $\Rightarrow 2\int \frac{u^{2}}{1+u^{2}}du$ $\Rightarrow 2\int \frac{1+u^{2}}{1+u^{2}}du - 2\int \frac{1}{1+u^{2}}du$ $\Rightarrow 2\int du - \tan^{-1}u + c$ $\Rightarrow 2u - \tan^{-1}u + c$

Resubstituting the values we get,

$$\Rightarrow 2 \tan \frac{x}{2} - \tan^{-1} \tan \frac{x}{2} +$$
$$\Rightarrow 2 \tan \frac{x}{2} - \frac{x}{2} + c$$
Ans: $2 \tan \frac{x}{2} - \frac{x}{2} + c$

С

Question: 28

Evaluate the foll

Solution:

$$\int \frac{dx}{3\cos x + 4\sin x} = \int \frac{dx}{3\left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right) + 4\left(\frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right)}$$

$$\Rightarrow \int \frac{\sec^2 \frac{x}{2} dx}{3 + 8\tan \frac{x}{2} - 3\tan^2 \frac{x}{2}}$$

Let $\tan \frac{x}{2} = t$

$$\Rightarrow \int \frac{2dt}{3 + 8t - 3t^2} = \frac{2}{3} \int \frac{dt}{1 + \frac{8}{3}t - t^2} = \frac{2}{3} \int \frac{dt}{1 - \left(t - \frac{4}{3}\right)^2 + \frac{16}{9}}$$

$$\Rightarrow \frac{2}{3} \int \frac{dt}{\frac{25}{9} - \left(t - \frac{4}{3}\right)^2} = \frac{2}{3} \int \frac{dt}{\left(\frac{5}{3}\right)^2 - \left(t - \frac{4}{3}\right)^2}$$

$$\Rightarrow \frac{2}{3} \times \frac{1}{2 \times \frac{5}{3}} \ln \left| \frac{\frac{5}{3} + \left(t - \frac{4}{3}\right)}{\frac{5}{3} - \left(t - \frac{4}{3}\right)} \right| + c = \frac{1}{5} \ln \left| \frac{1 + 3t}{9 - 3t} \right| + c$$

Resubstituting the value of t we get

$$\Rightarrow \frac{1}{5} \ln \left| \frac{1 + 3\tan \frac{x}{2}}{9 - 3\tan \frac{x}{2}} \right| + c$$

Ans: $\frac{1}{5} \ln \left| \frac{1 + 3\tan \frac{x}{2}}{9 - 3\tan \frac{x}{2}} \right| + c$

Question: 29

Evaluate the foll

Solution:

$$\int \frac{dx}{(acosx + bsinx)^2}$$

Taking bcosx common from the denominator we get,

$$\int \frac{dx}{b^2 \cos^2 x (\frac{a}{b} + \tan x)^2}$$
$$\Rightarrow \frac{1}{b^2} \int \frac{\sec^2 x dx}{(\frac{a}{b} + \tan x)^2}$$

Let (a/b)+tanx=t

 $\therefore sec^2 x dx = dt$

$$\Rightarrow \frac{1}{b^2} \int \frac{dt}{t^2} = \frac{-1}{b^2} \times \frac{1}{t} = \frac{-1}{b^2t} + c$$

Resubstituting the value of t = (a/b)+tanx we get

$$\Rightarrow \frac{-1}{b^2(\frac{a}{b} + tanx)} + c = \frac{-1}{ab + b^2 tanx} + c$$

Ans: $\frac{-1}{ab + b^2 tanx} + c$

Question: 30

Evaluate the foll

Solution:

$$\int \frac{dx}{\cos x - \sin x} = \int \frac{dx}{\left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right) - \left(\frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right)}$$
$$\Rightarrow \int \frac{\sec^2 \frac{x}{2} dx}{1 - 2\tan \frac{x}{2} - \tan^2 \frac{x}{2}}$$
Let $\tan \frac{x}{2} = t$
$$\therefore \frac{1}{2} \sec^2 \frac{x}{2} dx = dt$$
$$\Rightarrow \int \frac{2dt}{1 - 2t - t^2} = -2 \int \frac{dt}{t^2 + 2t - 1} = -2 \int \frac{dt}{(t + 1)^2 - 2}$$

$$\int 1 - 2t - t^2 \qquad \int t^2 + 2t - 1 \qquad \int (t+1)^2 = -2 \int \frac{dt}{(t+1)^2 - (\sqrt{2})^2}$$

 $\Rightarrow -2 \times \frac{1}{2 \times \sqrt{2}} \ln \left| \frac{t+1-\sqrt{2}}{t+1+\sqrt{2}} \right| + c \text{ resubstituting the value of t we get}$ $\Rightarrow \frac{-1}{\sqrt{2}} \ln \left| \frac{tan \frac{x}{2} + 1 - \sqrt{2}}{tan \frac{x}{2} + 1 + \sqrt{2}} \right| + c = \frac{-1}{\sqrt{2}} \ln \left| \tan \left(\frac{\pi}{8} - \frac{x}{2} \right) \right| + c$ $Ans: \frac{-1}{\sqrt{2}} \ln \left| \tan \left(\frac{\pi}{8} - \frac{x}{2} \right) \right| + c$

Question: 31

Evaluate the foll

Solution:

$$\int (2tanx - 3cotx)^2 dx$$

$$\Rightarrow \int (4tan^2x + 9cot^2x - 12tanxcotx) dx$$

$$\Rightarrow \int (4(sec^2x - 1) + 9(cosec^2x - 1) - 12) dx$$

$$\Rightarrow \int 4sec^2x dx + \int 9cosec^2x dx - \int 25 dx$$

$$\Rightarrow 4tanx - 9cotx - 25x + c$$

Ans: 4tanx-9cotx-25x+c
Question: 32

Evaluate the foll

Solution:

⇒∫ sinx sin2xsin3x dx

Applying the formula: $sinx \times siny = 1/2(cos(y-x)-cos(y+x))$

$$\Rightarrow \frac{1}{2} \int (\cos 2x - \cos 4x) \sin 2x dx$$

$$\Rightarrow \frac{1}{2} \int \sin 2x \cos 2x \, dx - \frac{1}{2} \int \sin 2x \cos 4x \, dx$$

$$\Rightarrow \frac{1}{4} \int \sin 4x \, dx - \frac{1}{4} \int (\sin 6x - \sin 2x) dx$$

$$\Rightarrow \frac{-\cos 4x}{16} + \frac{\cos 6x}{24} - \frac{\cos 2x}{8} + c$$

Ans: $\frac{-\cos 4x}{16} + \frac{\cos 6x}{24} - \frac{\cos 2x}{8} + c$

Question: 33

Evaluate the foll

Solution:

$$\Rightarrow \int \frac{1 - \cot x}{1 + \cot x} dx = \int \frac{1 - \frac{\cos x}{\sin x}}{1 + \frac{\cos x}{\sin x}} dx$$

$$\Rightarrow \int \frac{\sin x - \cos x}{\sin x + \cos x} dx = -\int \frac{\cos x - \sin x}{\sin x + \cos x} dx$$

$$\Rightarrow -\int \frac{d(\sin x + \cos x)}{\sin x + \cos x}$$

$$\Rightarrow -\log|\sin x + \cos x| + c$$

Ans: -log(sinx+cosx)+c

Question: 34

Evaluate the foll

Solution:

$$\int \frac{dx}{\cos x + 2\sin x + 3} = \int \frac{dx}{\left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right) + 2\left(\frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right) + 3}$$

$$\Rightarrow \int \frac{\sec^2 \frac{x}{2} dx}{3 + 1 + 3\tan^2 \frac{x}{2} + 4\tan \frac{x}{2} - \tan^2 \frac{x}{2}}$$

Let $\tan \frac{x}{2} = t$

$$\therefore \frac{1}{2}\sec^2 \frac{x}{2} dx = dt$$

$$\Rightarrow \int \frac{2dt}{4 + 4t + 2t^2} = \int \frac{dt}{2 + 2t + t^2} = \frac{2}{3} \int \frac{dt}{(t + 1)^2 + 2 - 1}$$

$$\Rightarrow \int \frac{dt}{(t + 1)^2 + 1} = \int \frac{dt}{(1)^2 + (t + 1)^2}$$

$$\Rightarrow \tan^{-1}(t + 1) + c$$

Resubstituting the value of \boldsymbol{t} we get

$$\Rightarrow \tan^{-1}(\tan\frac{x}{2}+1) + c$$

Ans: $\tan^{-1}(\tan\frac{x}{2}+1) + c$

Evaluate the foll

Solution:

Using BY PART METHOD.

Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x is the first function and e^x is the second function.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$
$$\int x.e^{x}dx = x \int e^{x} - \int \frac{dx}{dx} \cdot \int e^{x}dx$$
$$= xe^{x} - \int 1.e^{x}dx$$
$$= xe^{x} - e^{x} + c$$
$$= e^{x} (x - 1) + c$$

Question: 2

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here \boldsymbol{x} is the first function, and $\cos \boldsymbol{x}$ is the second function.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$
$$\Rightarrow \int x \cos x dx = x \int \cos x - \int \left[\frac{dx}{dx} \cdot \int \cos x dx \right] dx$$
$$= x \sin x - \int 1.\sin x dx$$
$$= x \sin x + \cos x + c$$

Question: 3

Evaluate the foll

Solution:

Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x is the first function and $e^{2x}\,$ is the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

$$\Rightarrow \int x e^{2x} dx = x \int e^{2x} dx - \int \left[\frac{dx}{dx} \cdot \int e^{2x} dx \right] dx$$
$$= x \frac{e^{2x}}{2} - \int 1 \cdot \frac{e^{2x}}{2} dx$$
$$= x \frac{e^{2x}}{2} - \frac{e^{2x}}{2 \times 2} + c$$
$$= x \frac{e^{2x}}{2} - \frac{e^{2x}}{4} + c$$

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x is the first function, and Sin 3x is the second function.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\Rightarrow \int x \sin 3x dx = x \int \sin 3x dx - \int \left[\frac{dx}{dx} \cdot \int \sin 3x dx \right] dx$$

$$= x \left(\frac{-\cos 3x}{3} \right) - \int 1 \cdot \left(\frac{-\cos 3x}{3} \right) dx$$

$$= x \left(\frac{-\cos 3x}{3} \right) + \left(\frac{\sin 3x}{3 \times 3} \right) + c$$

$$= x \left(\frac{-\cos 3x}{3} \right) + \left(\frac{\sin 3x}{9} \right) + c$$

Question: 5

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x is the first function, and Cos 2x is the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

$$\Rightarrow \int x \cos 2x dx = x \int \cos 2x dx - \int \left[\frac{dx}{dx} \cdot \int \cos 2x dx\right] dx$$
$$= x \left(\frac{\sin 2x}{2}\right) - \int 1 \cdot \left(\frac{\sin 2x}{2}\right) dx$$
$$= x \left(\frac{\sin 2x}{2}\right) + \left(\frac{\cos 2x}{2 \times 2}\right) + c$$
$$= x \left(\frac{\sin 2x}{2}\right) + \left(\frac{\cos 2x}{4}\right) + c$$

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here $\log 2x$ is the first function, and x is the second function.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\Rightarrow \int x \log 2x dx = \log 2x \int x dx - \int \left[\frac{d \log 2x}{dx} \cdot \int x dx \right] dx$$

$$= \log 2x \cdot \frac{x^2}{2} - \int \left[\frac{1 \times 2}{2x} \frac{x^2}{2} \right] dx$$

$$= \frac{x^2}{2} \log 2x - \int \frac{x}{2} dx$$

$$= \frac{x^2}{2} \log 2x - \frac{x^2}{2 \times 2} + c$$

$$= \frac{x^2}{2} \log 2x - \frac{x^2}{4} + c$$

Question: 7

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here \boldsymbol{x} is the first function, and $cosec^2\boldsymbol{x}$ is the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \int bdx\right] dx$$

$$\Rightarrow \int x \cos ec^2 x dx = x \int \cos ec^2 x - \int \left[\frac{dx}{dx} \cdot \int \cos ec^2 x dx \right] dx$$
$$= x (-\cot x) - \int 1 \cdot (-\cot x) dx$$
$$= -x \cot x + \int \cot x dx$$
$$= -x \cot x + \ln |\sin x| + c$$

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x^2 is the first function, and $\cos x$ is the second function.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\Rightarrow \int x^2 \cos x dx = x^2 \int \cos x dx - \int \left[\frac{dx^2}{dx} \cdot \int \cos x dx \right] dx$$

$$= x^2 \sin x - \int [2x \times \sin x] dx$$

$$= x^2 \sin x - 2 \left[\int x \sin x dx \right]$$

Again applying by the part method in the second half, we get

$$x^{2} \sin x - 2 \int x \sin x dx$$

= $x^{2} \sin x - 2 \left[x \int \sin x dx - \int \left(\frac{dx}{dx} \cdot \int \sin x dx \right) dx \right]$
= $x^{2} \sin x - 2 \left[x (-\cos x) - \int 1 \cdot (-\cos x) dx \right]$
= $x^{2} \sin x - 2 \left[-x \cos x + \sin x \right] + c$
= $x^{2} \sin x + 2x \cos x - 2 \sin x + c$

Question: 9

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \int bdx\right] dx$$

Writing Sin²x = $\frac{1 + \cos 2x}{2}$

We have

$$\int x \sin^2 x dx = \int x \left(\frac{1 - \cos 2x}{2}\right) dx$$
$$= \int \left(\frac{x}{2} - \frac{x \cos 2x}{2}\right) dx$$
$$= \int \frac{x}{2} dx - \int \frac{x \cos 2x}{2} dx$$
$$= \frac{x^2}{2 \times 2} - \frac{1}{2} \int x \cos 2x dx$$

Taking \boldsymbol{X} as first function and Cos $2\boldsymbol{x}$ as the second function.

$$= \frac{x^{2}}{4} - \frac{1}{2} \left\{ x \int \cos 2x dx - \int \left(\frac{dx}{dx} \cdot \int \cos 2x dx \right) dx \right\}$$

$$= \frac{x^{2}}{4} - \frac{1}{2} \left\{ x \cdot \frac{\sin 2x}{2} - \int \left(1 \cdot \frac{\sin 2x}{2} \right) dx \right\}$$

$$= \frac{x^{2}}{4} - \frac{1}{2} \left\{ \frac{x \sin 2x}{2} - \left(\frac{-\cos 2x}{2 \times 2} \right) \right\} + c$$

$$= \frac{x^{2}}{4} - \frac{1}{2} \left\{ \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \right\} + c$$

$$= \frac{x^{2}}{4} - \frac{x \sin 2x}{4} - \frac{\cos 2x}{8} + c$$

Question: 10

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

Writing $\tan^2 x = \sec^2 x - 1$

We have

$$\int x \tan^2 x dx = \int x (\sec^2 x - 1) dx$$
$$= \int x \sec^2 x dx - \int x dx$$

Using x as the first function and $\mbox{Sec}^2 x$ as the second function

$$\int x \sec^2 x dx - \int x dx$$

= $\left\{ x \int \sec^2 x dx - \int \left(\frac{dx}{dx} \cdot \int \sec^2 x dx \right) dx \right\} - \frac{x^2}{2}$
= $\left\{ x \cdot \tan x - \int 1 \cdot \tan x dx \right\} - \frac{x^2}{2}$
= $x \tan x - \ln |\sec x| - \frac{x^2}{2} + c$
= $x \tan x - \ln |\frac{1}{\cos x}| - \frac{x^2}{2} + c$
 $x \tan x + \ln |\cos x| - \frac{x^2}{2} + c$

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x^2 is the first function, and e^x is the second function.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\int x^2 e^x dx = \left[x^2 \int e^x dx - \int \left(\frac{dx^2}{dx} \cdot \int e^x dx \right) dx \right]$$

$$= x^2 e^x - \int 2x \cdot e^x dx$$

$$= x^2 e^x - 2 \int x e^x dx$$

$$= x^2 e^x - 2 \left[x \int e^x dx - \int \left(\frac{dx}{dx} \cdot \int e^x dx \right) dx \right]$$

$$= x^2 e^x - 2 \left[x e^x - \int 1 \cdot e^x dx \right]$$

$$= x^2 e^x - 2 \left[x e^x - e^x \right] + c$$

$$= x^2 e^x - 2 x e^x + 2e^x + c$$

$$= e^x \left(x^2 - 2x + 2 \right) + c$$

Question: 12

Evaluate the foll

Solution:

We know that $\cos 3x = 4\cos^3 x - 3\cos x$

$$\cos^3 x = \frac{\cos 3x + 3\cos x}{4}$$

$$\int x^{2} \cos^{3} x dx = \int x^{2} \left(\frac{\cos 3x + 3\cos x}{4} \right) dx$$
$$= \frac{1}{4} \left(\int x^{2} \cos 3x dx + 3 \int x^{2} \cos x dx \right)$$

Taking X^2 as the first function and $\cos\,3x$ and $\cos\,x$ as the second function and applying By part method.

$$\begin{split} &\frac{1}{4} \Big(\int x^2 \cos 3x \, dx + 3 \int x^2 \cos x \, dx \Big) \\ &= \frac{1}{4} \left\{ \left(x^2 \int \cos 3x \, dx - \int \left[\frac{dx^2}{dx} \cdot \int \cos 3x \, dx \right] dx \right) + 3 \left(x^2 \int \cos x \, dx - \int \left[\frac{dx^2}{dx} \cdot \int \cos x \, dx \right] dx \right) \right\} \\ &= \frac{1}{4} \left\{ \left(\frac{x^2 \sin 3x}{3} - \int 2x \cdot \frac{\sin 3x}{3} \, dx \right) + 3 \left(x^2 \sin x - \int 2x \cdot \sin x \, dx \right) \right\} \\ &= \frac{1}{4} \left\{ \left(\frac{x^2 \sin 3x}{3} - \frac{2}{3} \int x \sin 3x \, dx \right) + 3 \left(x^2 \sin x - 2 \int x \sin x \, dx \right) \right\} \\ &= \frac{1}{4} \left\{ \left(\frac{x^2 \sin 3x}{3} - \frac{2}{3} \int x \sin 3x \, dx \right) + 3 \left(x^2 \sin 3x \, dx \right) \, dx \right\} \right\} + 3 \left(x^2 \sin x - 2 \left[x \int \sin x \, dx - \int \left(\frac{dx}{dx} \cdot \int \sin x \, dx \right) \, dx \right] \right) \right\} \\ &= \frac{1}{4} \left\{ \left(\frac{x^2 \sin 3x}{3} - \frac{2}{3} \left[x \int \sin 3x \, dx - \int \left(\frac{dx}{dx} \cdot \int \sin 3x \, dx \right) \, dx \right] \right) + 3 \left(x^2 \sin x - 2 \left[x \int \sin x \, dx - \int \left(\frac{dx}{dx} \cdot \int \sin x \, dx \right) \, dx \right] \right) \right\} \\ &= \frac{1}{4} \left\{ \left(\frac{x^2 \sin 3x}{3} - \frac{2}{3} \left[x \frac{-\cos 3x}{3} - \int 1 \cdot \frac{-\cos 3x}{3} \, dx \right] \right) + 3 \left(x^2 \sin x - 2 \left[-x \cos x - \int -\cos x \, dx \right] \right) \right\} \\ &= \frac{1}{4} \left\{ \left(\frac{x^2 \sin 3x}{3} - \frac{2}{3} \left[\frac{-x \cos 3x}{3} + \frac{\sin 3x}{9} \right] \right) + 3 \left(x^2 \sin x + 2x \cos x - 2 \sin x \right) \right\} + c \\ &= \frac{1}{4} \left\{ \frac{x^2 \sin 3x}{3} + \frac{2x \cos 3x}{9} - \frac{2 \sin 3x}{27} + 3x^2 \sin x + 6x \cos x - 6 \sin x \right\} + c \\ &= \frac{x^2 \sin 3x}{12} + \frac{x \cos 3x}{18} - \frac{\sin 3x}{54} + \frac{3x^2 \sin x}{4} + \frac{3x \cos x}{2} - \frac{3}{2} \sin x + c \\ \end{split}$$

Question: 13

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x^2 is the first function, and e^{3x} is the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$
$$\int x^{2}e^{3x}dx = x^{2}\int e^{3x}dx - \int \left(\frac{dx^{2}}{dx} \int e^{3x}dx\right) dx$$

$$= x^{2}\frac{e^{3x}}{3} - \int 2x \cdot \frac{e^{3x}}{3} dx$$

$$= x^{2}\frac{e^{3x}}{3} - \frac{2}{3}\int xe^{3x}dx$$

$$= x^{2}\frac{e^{3x}}{3} - \frac{2}{3}\left(x\int e^{3x}dx - \int \left[\frac{dx}{dx} \int e^{3x}dx\right] dx\right)$$

$$= x^{2}\frac{e^{3x}}{3} - \frac{2}{3}\left(x\frac{e^{3x}}{3} - \int \frac{e^{3x}}{3} dx\right)$$

$$= x^{2}\frac{e^{3x}}{3} - \frac{2}{3}\left(x\frac{e^{3x}}{3} - \int \frac{e^{3x}}{3} dx\right)$$

$$= x^{2}\frac{e^{3x}}{3} - \frac{2}{3}\left(x\frac{e^{3x}}{3} - \frac{e^{3x}}{9}\right) + c$$

$$= x^{2}\frac{e^{3x}}{3} - \frac{2xe^{3x}}{9} + \frac{2e^{3x}}{27} + c$$

$$= e^{3x}\left(\frac{x^{2}}{3} - \frac{2x}{9} + \frac{2}{27}\right) + c$$

Evaluate the foll

Solution:

We can write
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

We have

$$\int x^{2} \left(\frac{1 - \cos 2x}{2} \right) dx = \int \frac{x^{2}}{2} - \frac{x^{2} \cos 2x}{2} dx$$
$$= \int \frac{x^{2}}{2} dx - \int \frac{x^{2} \cos 2x}{2} dx$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x^2 is the first function, and Cos 2x is the second function.

Using Integration by part

$$\int a.b.dx = a \int b dx - \int \left[\frac{da}{dx} \cdot \int b dx \right] dx$$

$$=\frac{x^{3}}{3\times 2} - \frac{1}{2}\int x^{2}\cos 2x dx$$

$$=\frac{x^{3}}{6} - \frac{1}{2}\left(x^{2}\int\cos 2x dx - \int \left[\frac{dx^{2}}{dx} \int \cos 2x dx\right] dx\right)$$

$$=\frac{x^{3}}{6} - \frac{1}{2}\left(x^{2} \cdot \frac{\sin 2x}{2} - \int 2x \cdot \frac{\sin 2x}{2} dx\right)$$

$$=\frac{x^{3}}{6} - \frac{1}{2}\left(x^{2} \cdot \frac{\sin 2x}{2} - \int x \cdot \sin 2x dx\right)$$

$$=\frac{x^{3}}{6} - \frac{1}{2}\left(x^{2} \cdot \frac{\sin 2x}{2} - \left[x \int \sin 2x dx - \int \left(\frac{dx}{dx} \cdot \int \sin 2x dx\right) dx\right]\right)$$

$$=\frac{x^{3}}{6} - \frac{1}{2}\left(x^{2} \cdot \frac{\sin 2x}{2} - \left[x \frac{-\cos 2x}{2} - \int 1 \cdot \frac{-\cos 2x}{2} dx\right]\right)$$

$$=\frac{x^{3}}{6} - \frac{1}{2}\left(x^{2} \cdot \frac{\sin 2x}{2} + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4}\right) + c$$

$$=\frac{x^{3}}{6} - \frac{x^{2}\sin 2x}{4} - \frac{x \cos 2x}{4} + \frac{\sin 2x}{8} + c$$

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here log2x is the first function, and x^3 is the second function.

Using Integration by part

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\int x^{3} \log 2x dx = \log 2x \int x^{3} dx - \int \left(\frac{d \log 2x}{dx} \cdot \int x^{3} dx \right) dx$$

$$= \log 2x \frac{x^{4}}{4} - \int \frac{1.2}{2x} \cdot \frac{x^{4}}{4} dx$$

$$= \log 2x \frac{x^{4}}{4} - \frac{1}{4} \int x^{3} dx$$

$$= \log 2x \frac{x^{4}}{4} - \frac{1}{4} \cdot \frac{x^{4}}{4} + c$$

$$= \log 2x \frac{x^{4}}{4} - \frac{x^{4}}{16} + c$$

Question: 16

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here log(x + 1) is first function and x is second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

$$\int x \log(x+1) = \log(x+1) \int xdx - \int \left(\frac{d \log(x+1)}{dx} \cdot \int xdx\right) dx$$

$$= \log(x+1) \frac{x^2}{2} - \int \frac{1}{x+1} \times \frac{x^2}{2} dx$$

$$= \log(x+1) \frac{x^2}{2} - \frac{1}{2} \int \frac{x^2 - 1 + 1}{x+1} dx$$

Adding and subtracting 1 in the numerator,

$$= \log (x+1)\frac{x^2}{2} - \frac{1}{2} \left[\left(\int \frac{x^2 - 1}{x+1} + \frac{1}{x+1} \right) dx \right]$$

$$= \log (x+1)\frac{x^2}{2} - \frac{1}{2} \left[\left(\int \frac{(x+1)(x-1)}{x+1} + \frac{1}{x+1} \right) dx \right]$$

$$= \log (x+1)\frac{x^2}{2} - \frac{1}{2} \left[\left(\int (x-1) + \frac{1}{x+1} \right) dx \right]$$

$$= \log (x+1)\frac{x^2}{2} - \frac{1}{2} \left[\frac{x^2}{2} - x + \log (x+1) \right] + c$$

$$= \log (x+1)\frac{x^2}{2} - \frac{x^2}{4} + \frac{x}{2} - \frac{\log (x+1)}{2} + c$$

$$= \log (x+1)\frac{x^2 - 1}{2} - \frac{x^2}{4} + \frac{x}{2} + c$$

Question: 17

Evaluate the foll

Solution:

We can write it as $\int x^{-n} \cdot \log x dx$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here logx is the first function, and x^{-n} is the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

$$\Rightarrow \int x^{-n} \log x \, dx = \log x \int x^{-n} \, dx - \int \left(\frac{d \log x}{dx} \cdot \int x^{-n} \, dx\right) \, dx$$

$$= \log x \left(\frac{x^{-n+1}}{-n+1}\right) - \int \frac{1}{x} \cdot \frac{x^{-n+1}}{-n+1} \, dx$$

$$= \frac{x^{-n+1} \log x}{1-n} + \frac{1}{1-n} \int \frac{x^{-n} \cdot x}{x} \, dx$$

$$= \frac{x^{-n+1} \log x}{1-n} + \frac{1}{1-n} \times \frac{x^{-n+1}}{-n+1} + c$$

$$= \frac{x^{-n+1} \log x}{1-n} - \frac{x^{-n+1}}{(1-n)^2} + c$$

Evaluate the foll

Solution:

We can write it as $\int 2.x.x^2.e^{x^2}dx$

Let $x^2 = t$

$$2xdx = dt$$

Using the relation in the above condition, we get

$$\int 2x \cdot x^2 \cdot e^{x^2} dx = \int t \cdot e^t dt$$

Integrating with respect to t

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here t is the first function, and e^t is the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$
$$\int te^{t}dt = t \int e^{t}dt - \int \left(\frac{dt}{dt} \cdot \int e^{t}dt \right) dt$$
$$= te^{t} - \int 1.e^{t}dt$$
$$= te^{t} - e^{t} + c$$

Replacing t with x^2 , we get

$$x^{2}e^{x^{2}} - e^{x^{2}} + c$$

= $e^{x^{2}}(x^{2} - 1) + c$

Question: 19

Evaluate the foll

Solution:

We know that $\sin 3x = 3\sin x - 4\sin^3 x$

 $\sin^3 x = (3\sin x - \sin 3x)/4$

$$\int x \sin^3 x \, dx = \int x \left(\frac{3 \sin x - \sin 3x}{4} \right) dx$$
$$= \frac{1}{4} \int 3x \sin x - x \sin 3x \, dx$$
$$= \frac{3}{4} \int x \sin x \, dx - \frac{1}{4} \int x \sin 3x \, dx$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x is first function and sinx and sin3x as the second function.

$$\begin{aligned} \int a.b.dx &= a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx \\ &= \frac{3}{4} \int x \sin x dx - \frac{1}{4} \int x \sin 3x dx \\ &= \frac{3}{4} \left(x \int \sin x dx - \int \left[\frac{dx}{dx} \cdot \int \sin x dx \right] dx \right) - \frac{1}{4} \left(s \int \sin 3x dx - \int \left[\frac{dx}{dx} \cdot \int \sin 3x dx \right] dx \right] \\ &= \frac{3}{4} \left(-x \cos x + \int \cos x dx \right) - \frac{1}{4} \left(\frac{-x \cos 3x}{3} + \int \frac{\cos 3x}{3} dx \right) \\ &= \frac{3}{4} \left(-x \cos x + \sin x \right) - \frac{1}{4} \left(\frac{-x \cos 3x}{3} + \frac{\sin 3x}{9} \right) + c \\ &= \frac{-3x \cos x}{4} + \frac{3 \sin x}{4} + \frac{x \cos 3x}{12} - \frac{\sin 3x}{36} + c \end{aligned}$$

Question: 20

Evaluate the foll

Solution:

We can write $\cos^3 x = (\cos 3x + 3\cos x)/4$, we have

$$\int x \cos^3 x dx = \int x \left(\frac{\cos 3x + 3\cos x}{4} \right) dx$$
$$= \frac{1}{4} \int x \cos 3x dx + \frac{3}{4} \int x \cos x dx$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x is first function and $\cos 3x$ as the second function.

$$\begin{aligned} \int a.b.dx &= a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx \\ &= \frac{1}{4} \left(x \int \cos 3x dx - \int \left[\frac{dx}{dx} \cdot \int \cos 3x dx \right] dx \right) + \frac{3}{4} \left(x \int \cos x dx - \int \left[\frac{dx}{dx} \cdot \int \cos x dx \right] dx \right) \\ &= \frac{1}{4} \left(x \frac{\sin 3x}{3} - \int \frac{\sin 3x}{3} dx \right) + \frac{3}{4} \left(x \sin x - \int \sin x dx \right) \\ &= \frac{1}{4} \left(\frac{x \sin 3x}{3} + \frac{\cos 3x}{9} \right) + \frac{3}{4} \left(x \sin x + \cos x \right) + c \\ &= \frac{x \sin 3x}{12} + \frac{\cos 3x}{36} + \frac{3x \sin x}{4} + \frac{3 \cos x}{4} + c \end{aligned}$$

Evaluate the foll

Solution:

We can write it as

$$\int x \cdot x^2 \cos x^2 dx$$

Now let $x^2 = t$ 2xdx = dt

$$Xdx = dt/2$$

Now

$$\frac{1}{2}\int t\cos tdt$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here t is the first function and cost as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$
$$\frac{1}{2} \int t \cos t dt = \frac{1}{2} \left(t \int \cos t dt - \int \left[\frac{dt}{dt} \cdot \int \cos t dt \right] dt \right)$$
$$= \frac{1}{2} \left(t \sin t - \int \sin t dt \right)$$
$$= \frac{1}{2} \left(t \sin t + \cos t \right) + c$$

Replacing t with x^2

$= \frac{1}{2}x^2 \sin x^2 + \frac{1}{2}\cos x^2 + c$

Question: 22

Evaluate the foll

Solution:

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here log(cosx) is the first function and sinx as the second function.

$$\begin{aligned} \int a.b.dx &= a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx \\ \int \sin x \log (\cos x) dx &= \log (\cos x) \int \sin x dx - \int \left(\frac{d \log (\cos x)}{dx} \cdot \int \sin x dx \right) dx \\ &= -\cos x \log (\cos x) + \int \frac{-\sin x}{\cos x} \cdot \cos x dx \\ &= -\cos x \log (\cos x) - \int \sin x dx \\ &= -\cos x \log (\cos x) + \cos x + c \end{aligned}$$

Evaluate the foll

Solution:

We know that Sin2x = 2Sinxcosx

$$\int x \sin x \cos x dx = \frac{1}{2} \int x \sin 2x dx$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here x is first function and sin2x as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$
$$\frac{1}{2} \int x \sin 2x dx = \frac{1}{2} \left(x \int \sin 2x dx - \int \left[\frac{dx}{dx} \cdot \int \sin 2x dx \right] dx \right)$$
$$= \frac{1}{2} \left(x \frac{-\cos 2x}{2} + \int \frac{\cos 2x}{2} dx \right)$$
$$= \frac{1}{2} \left(\frac{-x \cos 2x}{2} + \frac{\sin 2x}{4} \right) + c$$
$$= \frac{-x \cos 2x}{4} + \frac{\sin 2x}{8} + c$$

Question: 24

Evaluate the foll

Solution:

Let
$$\sqrt{x} = t$$

 $\frac{1}{2\sqrt{x}} dx = dt$
 $\Rightarrow dx = 2\sqrt{x} dt$

 \Rightarrow dx = 2tdt

We can write it as

$$\int \cos \sqrt{x} dx = 2 \int t \cos t dt$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here $t\ is\ first\ function\ and\ cos\ t\ as\ the\ second\ function.$

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\Rightarrow 2 \int t \cos t dt = 2 \left(t \int \cos t dt - \int \left[\frac{dt}{dt} \right] \int \cos t dt \right) dt$$

$$= 2 \left(t \sin t - \int \sin t dt \right)$$

$$= 2t \sin t + 2 \cos t + c$$

Replacing t with \sqrt{x}

 $= 2\sqrt{x\sin\sqrt{x}} + 2\cos\sqrt{x} + c$

 $= 2(\cos\sqrt{x} + \sqrt{x}\sin\sqrt{x}) + c$

Question: 25

Evaluate the foll

Solution:

We can write it as $\int \csc^3 dx = \int \csc \csc^2 x dx$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here cosecx is first function and $\operatorname{cosec}^2 x$ as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\int \cos ecx.\cos ec^2 x dx = \cos ecx \int \cdot \cos ec^2 x dx - \int \left(\frac{d \csc ecx}{dx} \cdot \int \cdot \csc ec^2 x dx \right) dx$$

$$= \cos ecx (-\cot x) - \int (-\cos ecx. \cot x) (-\cot x) dx$$

$$= -\cos ecx. \cot x - \int \cos ecx. \cot^2 x dx$$

We know that
$$\cot^2 x = \operatorname{Cosec}^2 x - 1$$

- $\cos \operatorname{ecx.cot} x - \int \cos \operatorname{ecx} (\cos \operatorname{ec}^2 x - 1) dx$
= $-\operatorname{cosecx.cot} x - \int \operatorname{cosec}^3 x dx + \int \cos \operatorname{ecx} dx$

We can write
$$\int \cos ec^3 x dx = I$$

$$\Rightarrow \int \cos ec^{3}x dx - \csc x \cdot \cot x - \int \csc^{3}x dx + \int \csc x dx$$
$$\Rightarrow 2 \int \csc x^{3}x dx = -\csc x \cdot \cot x + \int \csc x dx$$
$$\Rightarrow 2 \int \csc x^{3}x dx = -\csc x \cdot \cot x + \ln|\sec x + \tan x| + c_{1}$$
$$\Rightarrow \int \csc x^{3}x dx = \frac{-\cos x \cdot \cot x + \ln|\sec x + \tan x|}{2} + c$$

Question: 26

Evaluate the foll

Solution:

We can write it as $\int x \sin^2 x \sin x \cos x dx$ We also know that $2\sin x \cos x = \sin 2x$ $\int x \sin^2 x \sin x \cos x dx = \frac{1}{2} \int x \sin^2 x \sin 2x dx$ We also know that $\sin^2 x = \frac{1 - \cos 2x}{2}$

$$\frac{1}{2}\int x\sin^2 x\sin 2x dx = \frac{1}{2}\int x \cdot \left(\frac{1-\cos 2x}{2}\right)\sin 2x dx$$
$$= \frac{1}{2}\left[\left(\int \frac{x\sin 2x}{2} dx - \int \frac{x\cos 2x\sin 2x}{2} dx\right)\right]$$

Here Sin4x = 2sin2x.cos2x

$$=\frac{1}{2}\left[\left(\int\frac{x\sin 2x}{2}dx-\frac{1}{4}\int x\sin 4xdx\right)\right]$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here \boldsymbol{x} is first function and Sin2x and sin4x as the second function.

$$\begin{split} \int a.b.dx &= a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx \\ &= \frac{1}{2} \left[\left(\frac{1}{2} \left\{ x \int \sin 2x dx - \int \left(\frac{dx}{dx} \cdot \int \sin 2x dx \right) dx \right\} \right) - \left(\frac{1}{4} \left\{ x \int \sin 4x - \int \left(\frac{dx}{dx} \cdot \int \sin 4x dx \right) dx \right\} \right) \right] \\ &= \frac{1}{2} \left[\left(\frac{1}{2} \left\{ -x \frac{\cos 2x}{2} + \int \frac{\cos 2x}{2} dx \right\} \right) - \left(\frac{1}{4} \left\{ -x \frac{\cos 4x}{4} + \int \frac{\cos 4x}{4} dx \right\} \right) \right] \\ &= \frac{1}{2} \left[\left(\frac{1}{2} \left\{ -x \frac{\cos 2x}{2} + \frac{\sin 2x}{4} \right\} \right) - \left(\frac{1}{4} \left\{ -x \frac{\cos 4x}{4} + \frac{\sin 4x}{16} \right\} \right) \right] + c \\ &= \frac{-x \cos 2x}{8} + \frac{\sin 2x}{16} + \frac{x \cos 4x}{32} - \frac{\sin 4x}{128} + c \end{split}$$

Question: 27

Evaluate the foll

Solution:

Let $\cos x = t$

- sinxdx = dt

Now the integral we have is

$$\int \sin x \log (\cos x) dx = -\int \log t dt$$
$$= -\int 1.\log t dt$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here logt is first function and 1 as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

$$\begin{split} &-\int 1.\log t dt = \log t \int 1 dt - \int \left(\frac{d\log t}{dt} \cdot \int 1.dt\right) dt \\ &= -\log t \cdot t + \int \frac{1}{t} \cdot t dt \\ &= -t\log t + t + c \end{split}$$

Replacing t with cosx

$$t(-\log t + 1) + c$$

= cos x (1 - log(cos x)) + c

Question: 28

Evaluate the foll

Solution:

Let $\log x = t$

1/x dx = dt

$$\int \frac{\log(\log x)}{x} dx = \int \log t dt = \int 1.\log t dt$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here logt is first function and 1 as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$
$$\int 1.\log t dt = \log t \int 1 dt - \int \left(\frac{d \log t}{dt} \cdot \int 1.dt \right) dt$$
$$= t.\log t - \int \frac{1}{t} t dt$$
$$= t \log t - t + c$$

Now replacing \boldsymbol{t} with logx

log x.log(log x) - log x + c= log x(log(log x) - 1) + c

Question: 29

Evaluate the foll

Solution:

$$= \int 1.\log(2+x^2) dx$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here $log(2 + x^2)$ is the first function and 1 as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

$$\begin{split} &\int 1.\log(2+x^2) dx = \log(2+x^2) \int 1 dx - \int \left(\frac{d \log(2+x^2)}{dx} \cdot \int 1 dx\right) \\ &= \log(2+x^2) \cdot x - \int \frac{1.2x}{2+x^2} \cdot x dx \\ &= x \log(2+x^2) - \int \frac{2x^2}{2+x^2} dx \\ &= x \log(2+x^2) - 2 \int \frac{x^2+2-2}{2+x^2} dx \\ &= x \log(2+x^2) - 2 \left[\left(\int 1 dx \right) - \int \frac{2}{2+x^2} dx \right] \\ &= x \log(2+x^2) - 2 \left[x - \left(2 \int \frac{1}{2+x} \right) dx \right] \\ &= x \log(2+x^2) - 2 \left[x - \left(2 \int \frac{1}{\sqrt{2}} \tan^{-1} \frac{x}{\sqrt{2}} \right) \right] + c \\ &= x \log(2+x^2) - 2 \left[x - 2 \left(\frac{1}{\sqrt{2}} \tan^{-1} \frac{x}{\sqrt{2}} \right) \right] + c \end{split}$$

dx

Question: 30

Evaluate the foll

Solution:

$$\int \frac{x}{1+\sin x} dx = \int \frac{x(1-\sin x)}{(1+\sin x).(1-\sin x)} dx$$

We can write it as
$$= \int \frac{x(1-\sin x)}{1-\sin^2 x} dx$$
$$= \int \frac{x(1-\sin x)}{\cos^2 x} dx$$
$$= \int x \sec^2 x dx - \int x \tan x \sec x dx$$

Using by part and ILATE

Taking x as first function and $\sec^2 x$ and secxtanx as the second function, we have

$$\int x \sec^2 x dx - \int x \sec x \tan x dx = \left(x \int \sec^2 x dx - \int \left(\frac{dx}{dx} \cdot \int \sec^2 x dx\right) dx\right)$$
$$-\left(x \int \sec x \tan x dx - \int \left(\frac{dx}{dx} \cdot \int \sec x \tan x dx\right) dx\right)$$
$$= \left(x \tan x - \int 1 \cdot \tan x dx\right) - \left(x \cdot \sec x - \int 1 \cdot \sec x dx\right)$$
$$= x \tan x - \ln |\sec x| - x \sec x + \ln |\sec x + \tan x| + c$$
$$= x \left(\tan x - \sec x\right) + \ln \left|\frac{\sec x + \tan x}{\sec x}\right| + c$$
$$= x \left(\tan x - \sec x\right) + \ln |1 + \sin x| + c$$

Question: 31

Evaluate the foll

Solution:

Let us assume $\log x = t$

 $X = e^t$

 $dx = e^t dt$

Now we have

$$\int \left(\frac{1}{\log x} - \frac{1}{\left(\log x\right)^2}\right) dx = \int \left(\frac{1}{t} - \frac{1}{t^2}\right) e^t dt$$

Considering f(x) = 1/t; $f'(x) = -1/t^2$

$$\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{1}{\mathrm{t}}\right) = -\frac{1}{\mathrm{t}^2}$$

By the integral property of $\int \{f(x) + f'(x)\}e^x dx = e^x f(x) + c$

So the solution of the integral is

$$\int \left(\frac{1}{\log x} - \frac{1}{\left(\log x\right)^2}\right) dx = e^t \times \frac{1}{t} + c$$

Substituting the value of \boldsymbol{t} as logx

$$= e^{\log x} \times \frac{1}{\log x} + c$$
$$= \frac{x}{\log x} + c$$

Question: 32

Evaluate the foll

Solution:

$$\cos A . \cos B = \frac{1}{2} \left[\cos \left(A + B\right) + \cos \left(A - B\right) \right]$$

We know that $\Rightarrow \cos 4x . \cos 2x = \frac{1}{2} \left[\cos \left(4x + 2x\right) + \cos \left(4x - 2x\right) \right]$
$$= \frac{1}{2} \left[\cos 6x + \cos 2x \right]$$

$$=\frac{1}{2}\left[\cos 6x + \cos 2x\right]$$

Putting in the original equation

$$\int e^{-x} \cos 2x \cdot \cos 4x \, dx = \int e^{-x} \left(\frac{1}{2} \left[\cos 6x + \cos 2x \right] \right)$$
$$= \frac{1}{2} \left[\left(\int e^{-x} \cos 6x \, dx \right) + \left(\int e^{-x} \cos 2x \, dx \right) \right]$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here $\cos 6x$ and $\cos 2x$ is first function and e^{-x} as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \int bdx\right] dx$$

Solving both parts individually

$$I = \int e^{-x} \cos 6x \, dx = \cos 6x \int e^{-x} \, dx - \int \left(\frac{d \cos 6x}{dx} \cdot \int e^{-x} dx\right) dx$$

$$I = \cos 6x \cdot (-e^{-x}) - \int (-6 \sin 6x) \cdot (-e^{-x}) \, dt$$

$$I = -\cos 6x \cdot e^{-x} - 6 \int \sin 6x \cdot e^{-x} \, dx$$

$$I = -e^{-x} \cos 6x - 6 \left[\sin 6x \int e^{-x} \, dx - \int \left(\frac{d \sin 6x}{dx} \cdot \int e^{-x} \, dx\right) dx\right]$$

$$I = -e^{-x} \cos 6x - 6 \left[\sin 6x \left(-e^{-x}\right) - \int (6 \cos 6x) \cdot (-e^{-x}) \, dt\right]$$

$$I = -e^{-x} \cos 6x - 6 \left[-e^{-x} \sin 6x + 6 \int e^{-x} \cos 6x \, dx\right]$$

$$I = -e^{-x} \cos 6x - 6 \left[-e^{-x} \sin 6x + 6 \int e^{-x} \cos 6x \, dx\right]$$

$$I = -e^{-x} \cos 6x + 6e^{-x} \sin 6x - 36I$$

$$37I = e^{-x} (6 \sin 6x - \cos 6x)$$

$$I = \frac{e^{-x} (6 \sin 6x - \cos 6x)}{37}$$

Solving the second part,

$$I = \int e^{-x} \cos 2x \, dx = \cos 2x \int e^{-x} \, dx - \int \left(\frac{d \cos 2x}{dx} \cdot \int e^{-x} dx\right) dx$$

$$J = \cos 2x \cdot (-e^{-x}) - \int (-2 \sin 2x) \cdot (-e^{-x}) dt$$

$$J = -\cos 2x \cdot e^{-x} - 2 \int \sin 2x \cdot e^{-x} dx$$

$$J = -e^{-x} \cos 2x - 2 \left[\sin 2x \int e^{-x} dx - \int \left(\frac{d \sin 2x}{dx} \cdot \int e^{-x} dx\right) dx \right]$$

$$J = -e^{-x} \cos 2x - 2 \left[\sin 2x (-e^{-x}) - \int (2 \cos 2x) \cdot (-e^{-x}) dt \right]$$

$$J = -e^{-x} \cos 2x - 2 \left[-e^{-x} \sin 2x + 2 \int e^{-x} \cos 2x \, dx \right]$$

$$J = -e^{-x} \cos 2x - 2 \left[-e^{-x} \sin 2x + 2 \int e^{-x} \cos 2x \, dx \right]$$

$$J = -e^{-x} \cos 2x - 2 \left[-e^{-x} \sin 2x - 4 J \right]$$

$$J = -e^{-x} (2 \sin 2x - \cos 2x)$$

$$J = \frac{e^{-x} (2 \sin 2x - \cos 2x)}{5}$$

Putting in the obtained equation

$$= \frac{1}{2} \left[\frac{e^{-x} \left(6\sin 6x - \cos 6x \right)}{37} + \frac{e^{-x} \left(2\sin 2x - \cos 2x \right)}{5} \right] + c$$
$$= \frac{e^{-x} \left(6\sin 6x - \cos 6x \right)}{74} + \frac{e^{-x} \left(2\sin 2x - \cos 2x \right)}{10} + c$$
$$= e^{-x} \left(\frac{\left(6\sin 6x - \cos 6x \right)}{74} + \frac{\left(2\sin 2x - \cos 2x \right)}{10} \right) + c$$

Question: 33

Evaluate the foll

Solution:

Let $\sqrt{x} = t$

$$\frac{1}{2\sqrt{x}} dx = dt$$
$$dx = 2\sqrt{x} dt$$
$$\Rightarrow dx = 2t dt$$

Replacing in the original equation , we get

$$\int e^{\sqrt{x}} dx = \int e^t . 2t dt$$
$$= 2 \int t e^t dt$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here t is the first function and e^t as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$
$$2 \int te^{t}dt = 2 \left[t \int e^{t}dt - \int \left(\frac{dt}{dt} \cdot \int e^{t}dt \right) dt \right]$$
$$= 2 \left[te^{t} - \int 1.e^{t}dt \right]$$
$$= 2 \left[te^{t} - e^{t} \right] + c$$
$$= 2e^{t}(t-1) + c$$

Replacing $t \text{ with } \sqrt{x}$

 $= 2e\sqrt{x}(\sqrt{x} - 1) + c$

Question: 34

Evaluate the foll

Solution:

We can write Sin2x = 2sinx.cosx

$$\int e^{\sin x} \sin 2x dx = 2 \int e^{\sin x} . \sin x \cos x dx$$

Let Sinx = t

Cosxdx = dt

$$2\int e^{\sin x} \sin x \cos x dx = 2\int e^{t} dx dx$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here t is the first function and e^t as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

$$2\int e^{t} dt = 2\left[t\int e^{t} dt - \int \left(\frac{dt}{dt} \int e^{t} dt\right) dt\right]$$
$$= 2\left[t \cdot e^{t} - \int 1 \cdot e^{t} dt\right]$$
$$= 2\left[t \cdot e^{t} - e^{t}\right] + c$$
$$= 2e^{t}(t-1) + c$$

Replacing t with $\sin x$

 $= 2e^{\sin x}(\sin x - 1) + c$

Question: 35

Evaluate the foll

Solution:

Let $\sin^{-1}x = t$

X = sint

$$\frac{1}{\sqrt{1-x^2}}\,\mathrm{d}x=\mathrm{d}t$$

Putting this in the original equation, we get

$$\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx = \int t \cdot \sin t dt$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here $t\ is\ the\ first\ function\ and\ sin\ t\ as\ the\ second\ function.$

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\int t.\sin tdt = t \int \sin tdt - \int \left(\frac{dt}{dt} \cdot \int \sin tdt \right) dt$$

$$= t (-\cos t) - \int 1 \cdot (-\cos t) dt$$

$$= -t \cos t + \sin t + c$$

We can write cos t = $\sqrt{1} \cdot \sin^2 t$
$$= -t (\sqrt{1} \cdot \sin^2 t) + \sin t + c$$

Now replacing sin $\cdot x = t$
$$= -\sin^{-1} x (\sqrt{1} - x^2) + x + c$$

Question: 36

Evaluate the foll

Solution:

Let $\tan^{-1} x = t$ and x = tan t

Differentiating both sides, we get

$$\frac{1}{1+x^2}dx = dt$$

Now we have

~

$$\int \frac{x^2 \tan^{-1} x}{(1+x^2)} dx = \int \tan^2 t dt$$
$$\int t \tan^2 t dt = \int t (\sec^2 t - 1) dt$$
$$= \int t \sec^2 t dt - \int t dt$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here t is the first function and $\sec^2 t$ as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\int t \sec^2 t dt - \int t dt = t \int \sec^2 t dt - \int \left(\frac{dt}{dt} \cdot \int \sec^2 t dt \right) dt - \frac{t^2}{2}$$

$$= t. \tan t - \int \tan t dt - \frac{t^2}{2}$$

$$= t. \tan t - \ln | \sec t | - \frac{t^2}{2} + c$$

We know that sec $t = \sqrt{\tan^2 t} + 1$

$$= \tan^{-1} x \cdot x - \ln |\sqrt{\tan^2 t + 1}| - \frac{\tan^2 x}{2} + c$$
$$= x \tan^{-1} x - \ln |\sqrt{x^2 + 1}| - \frac{\tan^2 x}{2} + c$$

Question: 37

Evaluate the foll

Solution:

We can write it as
$$\int \log(x+2) \cdot \frac{1}{(x+2)^2} dx$$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here log(x + 2) is first function and $(x + 2)^{-2}$ as second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx\right] dx$$

$$\int \log(x+2) \cdot \frac{1}{(x+2)^2} dx = \log(x+2)$$
$$\int \frac{1}{(x+2)^2} dx - \int \left(\frac{d\log(x+2)}{dx} \cdot \int \frac{1}{(x+2)^2} dx\right) dx$$
$$= \log(x+2) \cdot \frac{-1}{(x+2)} - \int \frac{1}{x+2} \cdot \frac{-1}{(x+2)} dx$$
$$= -\log(x+2) \frac{1}{(x+2)} + \int \frac{1}{(x+2)^2} dx$$
$$= -\log(x+2) \frac{1}{(x+2)} - \frac{1}{(x+2)} + c$$

Evaluate the foll

Solution:

Let $x = \sin t$; $t = \sin^{-1}x$ $dx = \cos t dt$ $\Rightarrow \int x \sin^{-1} x dx = \int \sin t . \sin^{-1} (\sin t) \cos t dt$ $= \int \sin t . t . \cos t dt$

We know that $\sin 2t = 2 \operatorname{sint} \times \operatorname{cost}$

We have $\int t \cos t \sin t dt = \frac{1}{2} \int t \sin 2t dt$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here $t\ is\ the\ first\ function\ and\ sin\ 2t\ as\ the\ second\ function.$

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$
$$\frac{1}{2} \int t\sin 2t dt = \frac{1}{2} \left(t \int \sin 2t dt - \int \left[\frac{dt}{dt} \cdot \int \sin 2t dt \right] dt \right)$$
$$= \frac{1}{2} \left(t \cdot \frac{-\cos 2t}{2} + \int \frac{\cos 2t}{2} dt \right)$$
$$= \frac{1}{2} \left(\frac{-t\cos 2t}{2} + \frac{\sin 2t}{4} \right) + c$$
$$= \frac{-t\cos 2t}{4} + \frac{\sin 2t}{8} + c$$

We know that cos2t = 1 - $2sin^2t$, sin2t = $2sint\times cost$ and $cos\ t$ = $\sqrt{1}$ - sin^2t Replacing in above equation

$$= \frac{-t(1-2\sin^2 t)}{4} + \frac{2\sin t \times \cos t}{8} + c$$

$$= \frac{-t(1-2\sin^2 t)}{4} + \frac{\sqrt{1-\sin^2 t}}{4} \cdot \sin t + c$$

$$= \frac{-\sin^{-1} x(1-2x^2)}{4} + \frac{x\sqrt{1-x^2}}{4} + c$$

$$= \frac{1}{2}x^2 \sin^{-1} x - \frac{\sin^{-1} x}{4} + \frac{1}{4}x\sqrt{1-x^2} + c$$

$$= \frac{1}{2}x^2 \sin^{-1} x - \frac{\sin^{-1} x}{4} + \frac{1}{4}x\sqrt{1-x^2} + c$$

Evaluate the foll

Solution:

Let $x = \cos t$; $t = \cos^{-1}x$ $dx = -\sin t dt$ $\int x \cos^{-1} x dx = -\int \cos t \cdot \cos^{-1} (\cos t) \sin t dt$ $= -\int \cos t \cdot t \cdot \sin t \cdot dt$

We know that $\sin 2t = 2 \operatorname{sint} \times \operatorname{cost}$

We have $-\int t \cos t \sin t dt = \frac{-1}{2} \int t \sin 2t dt$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking first function to the one which comes first in the list.

Here t is first function and sin 2t as second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$= \frac{-1}{2} \int t\sin 2t dt = \frac{-1}{2} \left(t \int \sin 2t dt - \int \left[\frac{dt}{dt} \cdot \int \sin 2t dt \right] dt \right)$$

$$= \frac{-1}{2} \left(t \cdot \frac{-\cos 2t}{2} + \int \frac{\cos 2t}{2} dt \right)$$

$$= \frac{-1}{2} \left(\frac{-t\cos 2t}{2} + \frac{\sin 2t}{4} \right) + c$$

$$= \frac{t\cos 2t}{4} - \frac{\sin 2t}{8} + c$$

We know that $\cos 2t = 2\cos^2 t - 1$ and $\sin 2t = 2\sin t \times \cos t$ and $\sin t = \sqrt{1 - \cos^2 t}$ Replacing in above equation

$$=\frac{t(2\cos^{2}t-1)}{4} - \frac{2\sin t \times \cos t}{8} + c$$

$$=\frac{t(2\cos^{2}t-1)}{4} - \frac{\sqrt{1-\cos^{2}t}}{4} \cdot \cos t + c$$

$$=\frac{\cos^{-1}x(2x^{2}-1)}{4} - \frac{x\sqrt{1-x^{2}}}{4} + c$$

$$=\frac{1}{2}x^{2}\cos^{-1}x - \frac{\cos^{-1}x}{4} - \frac{1}{4}x\sqrt{1-x^{2}} + c$$

$$=\frac{1}{2}x^{2}\cos^{-1}x + \frac{\sin^{-1}x}{4} - \frac{1}{4}x\sqrt{1-x^{2}} + c$$

Evaluate the foll

Solution:

We can write it as $\int \cot^{-1} x.1 dx$

Using BY PART METHOD. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.

Here $\cot^{-1}x$ is first function and 1 as the second function.

$$\int a.b.dx = a \int bdx - \int \left[\frac{da}{dx} \cdot \int bdx \right] dx$$

$$\int \cot^{-1} x. 1dx = \cot^{-1} x \int 1dx - \int \left(\frac{d \cot^{-1} x}{dx} \cdot \int 1dx \right) dx$$

$$= \cot^{-1} x.x - \int \frac{-1}{1+x^2} \cdot x.dx$$

$$= x \cot^{-1} x + \int \frac{x}{1+x^2} dx$$

Let $1 + x^2 = t$
 $2xdx = dt$
 $Xdx = dt/2$
$$\Rightarrow \int \cot^{-1} x dx = x \cot^{-1} x + \int \frac{dt}{2t}$$

$$= x \cot^{-1} x + \frac{\log t}{2} + c$$

Now replacing t with $1 + x^2$

 $= x \cot^{-1}x + \log(1 + x^2)/2 + c$

Question: 41

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking
$$f_1(x) = \cot^{-1}x$$
 and $f_2(x) = x$,

$$\therefore \int x \cot^{-1}x \, dx$$

$$= \cot^{-1}x \int x \, dx - \int \left\{ \frac{d}{dx} (\cot^{-1}x) \int x \, dx \right\} \, dx$$

$$= \frac{x^2 \cot^{-1}x}{2} - \int \frac{1}{(1+x^2)} \times \frac{x^2}{2} \, dx$$

$$= \frac{x^2 \cot^{-1}x}{2} - \frac{1}{2} \int \frac{x^2}{(1+x^2)} \, dx$$

$$= \frac{x^2 \cot^{-1}x}{2} - \frac{1}{2} \int \frac{1+x^2-x^2}{(1+x^2)} \, dx$$

$$= \frac{x^2 \cot^{-1}x}{2} - \frac{1}{2} \int 1 - \frac{1}{(1+x^2)} \, dx$$

 $=\!\frac{x^2 \cot^{-1} x}{2}\!-\!\frac{1}{2}[x-tan^{-1}\,x]+c$, where c is the integrating constant

Question: 42

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \cot^{-1}x$ and $f_2(x) = x^2$,

$$\therefore \int x^{2} \cot^{-1} x \, dx$$

= $\cot^{-1} x \int x^{2} \, dx - \int \left\{ \frac{d}{dx} (\cot^{-1} x) \int x^{2} \, dx \right\} \, dx$
= $\frac{x^{3} \cot^{-1} x}{3} - \int \frac{1}{(1+x^{2})} \times \frac{x^{3}}{3} \, dx$
= $\frac{x^{3} \cot^{-1} x}{3} - \frac{1}{3} \int \frac{x^{3}}{(1+x^{2})} \, dx$

Taking $(1+x^2)=a$,

2xdx=da i.e. xdx=da/2

Again, $x^2=a-1$

$$\therefore \frac{1}{3} \int \frac{x^2 \times x dx}{(1+x^2)}$$
$$= \frac{1}{3} \int \frac{(a-1)da}{2a}$$
$$= \frac{1}{6} \int \left(1 - \frac{1}{a}\right) da$$
$$= \frac{1}{6} (a - \ln a)$$

Replacing the value of a, we get,

$$\frac{1}{6}(a - \ln a)$$

$$= \frac{1}{6}[(1 + x^2) - \ln|x^2 + 1| + c_1]$$

$$= \frac{x^2}{6} - \frac{\ln|x^2 + 1|}{6} + (c_1 + \frac{1}{6})$$

$$= \frac{x^2}{6} - \frac{\ln|x^2 + 1|}{6} + c$$

The total integration yields as

$$=\frac{x^3 \cot^{-1} x}{3}+\frac{x^2}{6}-\frac{\ln |x^2+1|}{6}+c$$
 , where c is the integrating constant

Question: 43

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \sin^{-1}\sqrt{x}$ and $f_2(x) = 1$,

$$\therefore \int \sin^{-1} \sqrt{x} \, dx$$

$$= \sin^{-1} \sqrt{x} \int dx - \int \left\{ \frac{d}{dx} \left(\sin^{-1} \sqrt{x} \right) \int dx \right\} dx$$

$$= x \sin^{-1} \sqrt{x} - \int \frac{1}{2\sqrt{x}\sqrt{1-x}} \times x \, dx$$

$$= x \sin^{-1} \sqrt{x} - \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1-x}} \, dx$$
Taking $(1-x) = a^2$,
 $-dx = 2ada \text{ i.e. } dx = -2ada$
Again, $x = 1 - a^2$

$$\therefore \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1-x}} \, dx$$

$$= \frac{1}{2} \int \frac{\sqrt{1-a^2}}{a} (-2ada)$$

$$= -\int \sqrt{1-a^2} da$$

$$= -\left[\frac{1}{2}a\sqrt{1-a^{2}} + \frac{1}{2}\sin^{-1}a\right]$$

Replacing the value of a, we get,

$$\therefore -\left[\frac{1}{2}a\sqrt{1-a^2} + \frac{1}{2}\sin^{-1}a\right]$$
$$= -\left[\frac{1}{2}x\sqrt{1-x} + \frac{1}{2}\sin^{-1}\sqrt{1-x}\right] + c$$

The total integration yields as

$$=x\sin^{-1}\sqrt{x} + \left[\frac{1}{2}x\sqrt{1-x} + \frac{1}{2}\sin^{-1}\sqrt{1-x}\right] + c \text{ , where } c \text{ is the integrating constant}$$

Question: 44

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \cos^{-1}\sqrt{x}$ and $f_2(x) = 1$,

$$\therefore \int \cos^{-1} \sqrt{x} \, dx$$

= $\cos^{-1} \sqrt{x} \int dx - \int \left\{ \frac{d}{dx} \left(\cos^{-1} \sqrt{x} \right) \int dx \right\} dx$
= $x \cos^{-1} \sqrt{x} - \int \frac{-1}{2\sqrt{x}\sqrt{1-x}} \times x dx$
= $x \cos^{-1} \sqrt{x} + \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1-x}} dx$

Taking $(1-x)=a^2$,

-dx=2ada i.e. dx=-2ada

Again, x=1-a²

$$\therefore \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1-x}} dx$$
$$= \frac{1}{2} \int \frac{\sqrt{1-a^2}}{a} (-2ada)$$
$$= -\int \sqrt{1-a^2} da$$
$$= -\left[\frac{1}{2}a\sqrt{1-a^2} + \frac{1}{2}\sin^{-1}a\right]$$

Replacing the value of a, we get,

$$\dot{\cdot} - \left[\frac{1}{2}a\sqrt{1-a^2} + \frac{1}{2}\sin^{-1}a\right]$$
$$= -\left[\frac{1}{2}x\sqrt{1-x} + \frac{1}{2}\sin^{-1}\sqrt{1-x}\right] + c$$

The total integration yields as

 $=x\cos^{-1}\sqrt{x}-\left[\frac{1}{2}x\sqrt{1-x}+\frac{1}{2}sin^{-1}\sqrt{1-x}\right]+c$, where c is the integrating constant

Question: 45

Evaluate the foll

Solution:

Formula to be used - We know , $\cos 3x = 4\cos^3 x \cdot 3\cos x$

$$\therefore \int \cos^{-1}(4x^3 - 3x) \, dx$$

Assuming $x = \cos a$, $4\cos^3 a \cdot 3\cos a = \cos 3a$

And, dx = -sinada Hence, a=cos⁻¹x Again, sina= $\sqrt{(1-x^2)}$ $\therefore \int \cos^{-1}(4x^3 - 3x) dx$ $= \int \cos^{-1}(\cos 3a) \{-\sin ada\}$ $= -3 \int asinada$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = a$ and $f_2(x) = sina$,

$$\therefore -3\int asinada$$

= -3 \left[a \int sinada - \int \left\{ \frac{d}{dx} a \int sinada \right\} da \right]
= 3acosa - \int cosada

= 3acosa — sina + c

Replacing the value of a we get,

∴ 3acosa – sina + c

 $= 3x \cos^{-1}x - \sqrt{1-x^2} + c$, where c is the integrating constant

Question: 46

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking
$$f_1(x) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
 and $f_2(x) = 1$,

$$\int \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) dx$$

$$= \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \int dx - \int \left[\frac{d}{dx}\left\{\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right\} \int dx\right] dx$$

$$= x\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + \int \left[\frac{\frac{(1+x^2)(-2x) - (1-x^2)(2x)}{(1+x^2)^2}}{\sqrt{1-\left(\frac{1-x^2}{1+x^2}\right)^2}}\right] dx$$

$$= x \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) + \int \frac{-4x^2 dx}{(1 + x^2)^2 \times \frac{1}{1 + x^2} \times 2x}$$
$$= x \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) - \int \frac{2x dx}{1 + x^2}$$

Now,

$$\int \frac{2xdx}{1+x^2}$$
$$= \int \frac{d(1+x^2)}{1+x^2}$$
$$= \ln(1+x^2) + c$$

Again, we know,

$$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$
$$\Rightarrow 2x = \cos^{-1} \left(\frac{1 - \tan^2 x}{1 + \tan^2 x} \right)$$

Replacing x by tanx, it is obtained that,

$$2\tan x = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

So, the final integral yielded is

 $2xtanx - ln(1+x^2) + c$, where c is the integrating constant

Question: 47

Evaluate the foll

Solution:

Formula to be used - We know, $\tan 2x = \frac{2\tan x}{1-\tan^2 x}$

$$\therefore \int \tan^{-1}\left(\frac{2x}{1-x^2}\right) dx$$

Assuming x = tana,

$$\frac{2\tan a}{1-\tan^2 a} = \tan^2 a$$

And, $dx = \sec^2 a da$

Hence, $a = tan^{-1}x$

Now, $\sec^2 a \cdot \tan^2 a = 1$, $\operatorname{so}, \sec a = \sqrt{1 + x^2}$

$$\therefore \int \tan^{-1} \left(\frac{2x}{1-x^2}\right) dx$$
$$= \int \tan^{-1}(\tan 2a) \{\sec^2 a da\}$$
$$= 2 \int \operatorname{asec}^2 a da$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = a$ and $f_2(x) = \sec^2 a$,

∴ 2
$$\int \operatorname{asec}^2 \operatorname{ada}$$

= 2 $\left[a \int \operatorname{sec}^2 \operatorname{ada} - \int \left\{ \frac{d}{dx} a \int \operatorname{sec}^2 \operatorname{ada} \right\} da \right]$
= 2atana - $\int \operatorname{tanada}$

= 2atana – ln |seca| + c

Replacing the value of a we get,

∴ 2atana – ln|seca| + c

 $= 2x \tan^{-1} x - ln \sqrt{1+x^2} + c$, where c is the integrating constant

Question: 48

Evaluate the foll

Solution:

Formula to be used - We know, $tan3x = \frac{3tanx - tan^3x}{1 - 3tan^2x}$

$$\therefore \int \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right) dx$$

Assuming x = tana,

 $\frac{3\tan - \tan^3 a}{1 - 3\tan^2 a} = \tan 3a$ And, dx = sec²ada Hence, a=tan⁻¹x Now, sec²a-tan²a=1, so, seca= $\sqrt{(1+x^2)}$ $\therefore \int \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) dx$ = $\int \tan^{-1}(\tan 3a) \{\sec^2 ada\}$ = $3\int \operatorname{asec^2} ada$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = a$ and $f_2(x) = \sec^2 a$, $\therefore 3 \int \operatorname{asec}^2 a da$ $= 3 \left[a \int \sec^2 a da - \int \left\{ \frac{d}{dx} a \int \sec^2 a da \right\} da \right]$ $= 3a \tan a - \frac{3}{2} \int \tan a da$ $= 3a \tan a - \frac{3}{2} \ln |\operatorname{seca}| + c$ Replacing the value of a we get,

$$\therefore 3 \text{atana} - \frac{3}{2} \ln|\text{seca}| + c$$
$$= 3x \tan^{-1} x - \frac{3}{2} \ln \sqrt{1 + x^2} + c \text{, where } c \text{ is the integrating constant}$$

Question: 49

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \sin^{-1}x$ and $f_2(x) = 1/x^2$,

$$\therefore \int \frac{\sin^{-1} x}{x^2} dx$$

$$= \sin^{-1} x \int \frac{1}{x^2} dx - \int \left\{ \frac{d}{dx} (\sin^{-1} x) \int \frac{1}{x^2} dx \right\} dx$$

$$= \frac{-\sin^{-1} x}{x} - \int \frac{1}{\sqrt{1 - x^2}} \times (-\frac{1}{x}) dx$$

$$= \frac{-\sin^{-1} x}{x} + \int \frac{1}{x\sqrt{1 - x^2}} dx$$

Taking x = sina, dx = cosada

Hence, coseca=1/x

Now, $\csc^2 a \cdot \cot^2 a = 1$ so $\cot a = \sqrt{(1-x^2)/x}$

$$\therefore \int \frac{1}{x\sqrt{1-x^2}} dx$$
$$= \int \frac{1}{\sin a \cos a} (\cos a da)$$
$$= \int \csc a da$$

Replacing the value of a, we get,

 $\therefore \ln|\cos e ca - \cot a| + c$

$$= \ln \left| \frac{1}{x} - \frac{\sqrt{1 - x^2}}{x} \right| + c$$

The total integration yields as

$$=\frac{-\sin^{-1}x}{x}+ln\left|\frac{1}{x}-\frac{\sqrt{1-x^2}}{x}\right|+c$$
 , where c is the integrating constant

Question: 50

Evaluate the foll

Solution:

Say, tanx = a

Hence, $\sec^2 x dx = da$

$$\therefore \int \frac{\tan x \sec^2 x}{1 - \tan^2 x} dx$$
$$= \int \frac{a da}{1 - a^2}$$

Now, taking $1-a^2 = k$, -2ada=dk i.e. ada=-dk/2

Replacing the value of k,

$$-\frac{1}{2}\ln|k| + c$$

= $-\frac{1}{2}\ln|1 - a^2| + c$

Replacing the value of a,

$$-\frac{1}{2}\ln|1-a^2|+c$$

 $= -\frac{1}{2}ln\big|1-tan^2x\big|+c$, where c is the integrating constant

Question: 51

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \sin 4x$ and $f_2(x) = e^{3x}$,

$$: \int e^{3x} \sin 4x \, dx$$

$$= \sin 4x \int e^{3x} dx - \int \left\{ \frac{d}{dx} (\sin 4x) \int e^{3x} dx \right\} dx$$

$$= \frac{e^{3x} \sin 4x}{3} - \int 4\cos 4x \times \frac{e^{3x}}{3} \, dx$$

$$= \frac{e^{3x} \sin 4x}{3} - \frac{4}{3} \int e^{3x} \cos 4x \, dx$$

$$= \frac{e^{3x} \sin 4x}{3} - \frac{4}{3} \left[\cos 4x \int e^{3x} dx - \int \left\{ \frac{d}{dx} (\cos 4x) \int e^{3x} dx \right\} dx \right]$$

$$= \frac{e^{3x} \sin 4x}{3} - \frac{4e^{3x} \cos 4x}{9} - \frac{4}{3} \int 4\sin 4x \times \frac{e^{3x}}{3} \, dx$$

$$= \frac{e^{3x} \sin 4x}{3} - \frac{4e^{3x} \cos 4x}{9} - \frac{16}{9} \int e^{3x} \sin 4x \, dx$$

$$\therefore \left(1 + \frac{16}{9}\right) \int e^{3x} \sin 4x dx = \frac{e^{3x} \sin 4x}{3} - \frac{4e^{3x} \cos 4x}{9} + c_1$$

$$\Rightarrow \frac{25}{9} \int e^{3x} \sin 4x dx = \frac{3e^{3x} \sin 4x - 4e^{3x} \cos 4x}{9} + c_1$$

$$\Rightarrow \int e^{3x} \sin 4x dx = \frac{e^{3x}}{25} (3\sin 4x - 4\cos 4x) + c_1$$
where c is the integrating constant

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = sinx$ and $f_2(x) = e^{2x}$,

$$\begin{split} \therefore \int e^{2x} \sin x dx \\ &= \sin x \int e^{2x} dx - \int \left\{ \frac{d}{dx} (\sin x) \int e^{2x} dx \right\} dx \\ &= \frac{e^{2x} \sin x}{2} - \int \cos x \times \frac{e^{2x}}{2} dx \\ &= \frac{e^{2x} \sin x}{2} - \frac{1}{2} \int e^{2x} \cos x dx \\ &= \frac{e^{2x} \sin x}{2} - \frac{1}{2} \int e^{2x} \cos x dx \\ &= \frac{e^{2x} \sin x}{2} - \frac{1}{2} \left[\cos x \int e^{2x} dx - \int \left\{ \frac{d}{dx} (\cos x) \int e^{2x} dx \right\} dx \right] \\ &= \frac{e^{2x} \sin x}{2} - \frac{e^{2x} \cos x}{4} - \frac{1}{2} \int \sin x \times \frac{e^{2x}}{2} dx \\ &= \frac{e^{2x} \sin x}{2} - \frac{e^{2x} \cos x}{4} - \frac{1}{4} \int e^{2x} \sin x dx \\ &\therefore \left(1 + \frac{1}{4} \right) \int e^{2x} \sin x dx = \frac{e^{2x} \sin x - e^{2x} \cos x}{4} + c_1 \\ &\Rightarrow \frac{5}{4} \int e^{2x} \sin x dx = \frac{2e^{2x} \sin x - e^{2x} \cos x}{4} + c_1 \end{split}$$

Question: 53

Evaluate the foll

Solution:

$$\int e^{2x} \sin x \cos x dx$$
$$= \frac{1}{2} \int e^{2x} \times 2 \sin x \cos x dx$$
$$= \frac{1}{2} \int e^{2x} \sin 2x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking
$$f_1(x) = \sin 2x$$
 and $f_2(x) = e^{2x}$,

$$\therefore \int e^{2x} \sin 2x dx$$

$$= \sin 2x \int e^{2x} dx - \int \left\{ \frac{d}{dx} (\sin 2x) \int e^{2x} dx \right\} dx$$

$$= \frac{e^{2x} \sin 2x}{2} - \int 2\cos 2x \times \frac{e^{2x}}{2} dx$$

$$= \frac{e^{2x} \sin 2x}{2} - \int e^{2x} \cos 2x dx$$

$$= \frac{e^{2x} \sin 2x}{2} - \left[\cos 2x \int e^{2x} dx - \int \left\{ \frac{d}{dx} (\cos 2x) \int e^{2x} dx \right\} dx \right]$$

$$= \frac{e^{2x} \sin 2x}{2} - \frac{e^{2x} \cos 2x}{2} - \int 2\sin 2x \times \frac{e^{2x}}{2} dx$$

$$= \frac{e^{2x} \sin 2x}{2} - \frac{e^{2x} \cos 2x}{2} - \int e^{2x} \sin 2x \times \frac{e^{2x}}{2} dx$$

$$= \frac{e^{2x} \sin 2x}{2} - \frac{e^{2x} \cos 2x}{2} - \int e^{2x} \sin 2x \times \frac{e^{2x}}{2} dx$$

$$= \frac{e^{2x} \sin 2x}{2} - \frac{e^{2x} \cos 2x}{2} - \int e^{2x} \sin 2x dx$$

$$\Rightarrow 2 \int e^{2x} \sin 2x dx = \frac{e^{2x} \sin 2x - e^{2x} \cos 2x}{2} + c_1$$

$$\Rightarrow \int e^{2x} \sin 2x dx = \frac{e^{2x}}{4} (\sin 2x - \cos 2x) + c'$$

$$\therefore \frac{1}{2} \int e^{2x} \sin 2x dx$$

$$= \frac{1}{2} \times \left[\frac{e^{2x}}{4} (\sin 2x - \cos 2x) + c' \right]$$

$$= \frac{e^{2x}}{8} (\sin 2x - \cos 2x) + c , \text{ where } c \text{ is the integrating constant}$$

Question: 54

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \cos(3x+4)$ and $f_2(x) = e^{2x}$,

$$= \frac{e^{2x}\cos(3x+4)}{2} + \frac{3}{2}\int e^{2x}\sin(3x+4)dx$$

$$= \frac{e^{2x}\cos(3x+4)}{2} + \frac{3}{2}\left[\sin(3x+4)\int e^{2x}dx - \int \left\{\frac{d}{dx}\sin(3x+4)\int e^{2x}dx\right\}dx\right]$$

$$= \frac{e^{2x}\cos(3x+4)}{2} + \frac{3e^{2x}\sin(3x+4)}{4} - \frac{3}{2}\int 3\cos(3x+4) \times \frac{e^{2x}}{2}dx$$

$$= \frac{e^{2x}\cos(3x+4)}{2} + \frac{3e^{2x}\sin(3x+4)}{4} - \frac{9}{4}\int e^{2x}\cos(3x+4)dx$$

$$\therefore \left(1 + \frac{9}{4}\right)\int e^{2x}\cos(3x+4)dx = \frac{e^{2x}\cos(3x+4)}{2} + \frac{3e^{2x}\sin(3x+4)}{4} + c_1$$

$$\Rightarrow \frac{13}{4}\int e^{2x}\cos(3x+4)dx = \frac{2e^{2x}\cos(3x+4) + 3e^{2x}\sin(3x+4)}{4} + c_1$$

 $\Rightarrow \int e^{2x} \cos(3x+4) \, dx = \frac{e^{2x}}{13} \left(2\cos(3x+4) + 3\sin(3x+4) \right) + c \text{ , where } c \text{ is the integrating constant}$

Question: 55

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \cos x$ and $f_2(x) = e^{-x}$,

$$\begin{split} & : \int e^{-x} \cos x \, dx \\ &= \cos x \int e^{-x} dx - \int \left\{ \frac{d}{dx} \cos x \int e^{-x} dx \right\} dx \\ &= -e^{-x} \cos x - \int e^{-x} \sin x \, dx \\ &= -e^{-x} \cos x - \left[\sin x \int e^{-x} dx - \int \left\{ \frac{d}{dx} \sin x \int e^{-x} dx \right\} dx \right] \\ &= -e^{-x} \cos x - \left[-e^{-x} \sin x + \int e^{-x} \cos x dx \right] \\ &= -e^{-x} \cos x + e^{-x} \sin x - \int e^{-x} \cos x dx \\ &: (1+1) \int e^{-x} \cos x dx = -e^{-x} \cos x + e^{-x} \sin x + c_1 \\ &\Rightarrow 2 \int e^{-x} \cos x dx = -e^{-x} \cos x + e^{-x} \sin x + c_1 \\ &\Rightarrow \int e^{-x} \cos x dx = \frac{e^{-x}}{2} (\sin x - \cos x) + c \text{, where c is the integrating constant} \end{split}$$

Question: 56

Evaluate the foll

Solution:

 $\int e^{x}(\sin x + \cos x)dx$

$$=\int e^{x} \sin x dx + \int e^{x} \cos x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = sinx$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int e^{x} \sin x dx + \int e^{x} \cos x dx$$

= $\sin x \int e^{x} dx - \int \left[\frac{d}{dx}(\sin x) \int e^{x} dx\right] dx + \int e^{x} \cos x dx$
= $e^{x} \sin x - \int e^{x} \cos x dx + \int e^{x} \cos x dx + c$

 $= e^x sinx + c$, where c is the integrating constant

Question: 57

Evaluate the foll

Solution:

$$\int e^{x}(\cot x - \csc^{2}x)dx$$
$$= \int e^{x}\cot xdx + \int e^{x}\csc^{2}xdx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \cot x$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int e^{x} \cot x dx + \int e^{x} \csc^{2} x dx$$

= $\cot x \int e^{x} dx - \int \left[\frac{d}{dx}(\cot x)\int e^{x} dx\right] dx + \int e^{x} \csc^{2} x dx$
= $e^{x} \cot x - \int e^{x} \csc^{2} x dx + \int e^{x} \csc^{2} x dx + c$

 $= e^{x} cotx + c$, where c is the integrating constant

Question: 58

Evaluate the foll

Solution:

$$\int e^{x} \sec(1 + \tan x) dx$$
$$= \int e^{x} \sec(x) dx + \int e^{x} \sec(x) dx dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = secx$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int e^{x} \sec x dx + \int e^{x} \sec x \tan x dx$$

= $\sec x \int e^{x} dx - \int \left[\frac{d}{dx}(\sec x) \int e^{x} dx\right] dx + \int e^{x} \sec x \tan x dx$
= $e^{x} \sec x - \int e^{x} \sec x \tan x dx + \int e^{x} \sec x \tan x dx + c$

 $= e^x secx + c$, where c is the integrating constant

Question: 59

Evaluate the foll

Solution:

$$\int e^{x} \left(\tan^{-1} x + \frac{1}{1+x^{2}} \right) dx$$
$$= \int e^{x} \tan^{-1} x dx + \int \frac{e^{x}}{1+x^{2}} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \tan^{-1}x$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int e^{x} \tan^{-1} x \, dx + \int \frac{e^{x}}{1+x^{2}} dx$$

= $\tan^{-1} x \int e^{x} dx - \int \left[\frac{d}{dx} (\tan^{-1} x) \int e^{x} dx\right] dx + \int \frac{e^{x}}{1+x^{2}} dx$
= $e^{x} \tan^{-1} x - \int \frac{e^{x}}{1+x^{2}} dx + \int \frac{e^{x}}{1+x^{2}} dx + c$

 $= e^x \tan^{-1} x + c$, where c is the integrating constant

Question: 60

Evaluate the foll

Solution:

$$\int e^{x}(\cot x + \log \sin x)dx$$
$$= \int e^{x}\cot x \, dx + \int e^{x}\log \sin x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \log \sin x$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\int e^x \cot x \, dx + \int e^x \log \sin x \, dx$$

$$= \int e^{x} \cot x \, dx + \log \sin x \int e^{x} dx - \int \left[\frac{d}{dx} (\log \sin x) \int e^{x} dx \right]$$
$$= \int e^{x} \cot x \, dx + e^{x} \log \sin x - \int e^{x} \cot x \, dx + c$$

 $= e^{x} log|sinx| + c$, where c is the integrating constant

Question: 61

Evaluate the foll

Solution:

$$\int e^{x}(\tan x + \log \cos x)dx$$
$$= \int e^{x} \tan x \, dx + \int e^{x} \log \cos x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \log \cos x$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\int e^{x} \tan x \, dx - \int e^{x} \log \cos x \, dx$$
$$= \int e^{x} \tan x \, dx - \log \cos x \int e^{x} \, dx + \int \left[\frac{d}{dx}(\log \cos x) \int e^{x} \, dx\right]$$
$$= \int e^{x} \tan x \, dx - e^{x} \log \cos x - \int e^{x} \tan x \, dx + c$$

 $= e^{x} log |secx| + c$, where c is the integrating constant

Question: 62

Evaluate the foll

Solution:

$$\int e^{x} [\sec x + \log(\sec x + \tan x)] dx$$
$$= \int e^{x} \sec x \, dx + \int e^{x} \log(\sec x + \tan x) dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \log \cos x$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\begin{split} &\int e^{x} \sec x \, dx + \int e^{x} \log(\sec x + \tan x) \, dx \\ &= \int e^{x} \sec x \, dx + \log(\sec x + \tan x) \int e^{x} \, dx \\ &\quad - \int \left[\frac{d}{dx} (\log(\sec x + \tan x)) \int e^{x} \, dx \right] \end{split}$$

$$= \int e^{x} \sec x \, dx + e^{x} \log(\sec x + \tan x)$$
$$-\int \frac{e^{x} \tan x \times (\sec^{2} x + \sec x \tan x) \, dx}{\sec x + \tan x} + c$$
$$= \int e^{x} \sec x \, dx + e^{x} \log(\sec x + \tan x) - \int e^{x} \sec x \, dx + c$$

 $= e^{x} log|secx + tanx| + c$, where c is the integrating constant

Question: 63

Evaluate the foll

Solution:

$$\int e^{x} \left(\frac{1 + \sin x \cos x}{\cos^{2} x}\right) dx$$
$$= \int e^{x} (\sec^{2} x + \tan x) dx$$
$$= \int e^{x} \sec^{2} x dx + \int e^{x} \tan x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = tanx$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\int e^{x} \sec^{2} x dx + \int e^{x} \tan x dx$$
$$= \int e^{x} \sec^{2} x dx + \tan x \int e^{x} dx - \int \left[\frac{d}{dx}(\tan x) \int e^{x} dx\right]$$
$$= \int e^{x} \sec^{2} x dx + e^{x} \tan x - \int e^{x} \sec^{2} x dx + c$$

 $= e^{x}tanx + c$, where c is the integrating constant

Question: 64

Evaluate the foll

Solution:

$$\int e^{x} \left(\frac{\sin x \cos x - 1}{\sin^{2} x}\right) dx$$
$$= \int e^{x} (\cot x - \csc^{2} x) dx$$
$$= \int e^{x} \cot x dx - \int e^{x} \csc^{2} x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \cot x$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int e^{x} \cot x dx - \int e^{x} \csc^{2} x dx$$

$$= \cot x \int e^{x} dx - \int \left\{ \frac{d}{dx} (\cot x) \int e^{x} dx \right\} dx - \int e^{x} \csc^{2} x dx$$
$$= e^{x} \cot x + \int e^{x} \csc^{2} x dx - \int e^{x} \csc^{2} x dx + c$$

 $= e^{x} cotx + c$, where c is the integrating constant

Question: 65

Evaluate the foll

Solution:

$$\int e^{x} \left(\frac{\cos x + \sin x}{\cos^{2} x}\right) dx$$
$$= \int e^{x} (\sec x + \sec x \tan x) dx$$
$$= \int e^{x} \sec x dx + \int e^{x} \sec x \tan x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = secx$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int e^{x} \sec x dx + \int e^{x} \sec x \tan x dx$$

= $\sec x \int e^{x} dx - \int \left[\frac{d}{dx}(\sec x) \int e^{x} dx\right] dx + \int e^{x} \sec x \tan x dx$
= $e^{x} \sec x - \int e^{x} \sec x \tan x dx + \int e^{x} \sec x \tan x dx + c$

 $= e^{x}secx + c$, where c is the integrating constant

Question: 66

Evaluate the foll

Solution:

$$\int e^{x} \left(\frac{2 - \sin 2x}{1 - \cos 2x}\right) dx$$
$$= \int e^{x} \left(\frac{1 - \sin x \cos x}{\sin^{2} x}\right) dx$$
$$= \int e^{x} (\csc^{2} x - \cot x) dx$$
$$= \int e^{x} \csc^{2} x dx - \int e^{x} \cot x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \cot x$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\int e^{x} cosec^{2}x dx - \int e^{x} cotx dx$$

$$\begin{split} &= \int e^{x} cosec^{2}x dx - cotx \int e^{x} dx + \int \left\{ \frac{d}{dx} (cotx) \int e^{x} dx \right\} dx \\ &= \int e^{x} cosec^{2}x dx - e^{x} cotx - \int e^{x} cosec^{2}x dx \end{split}$$

 $= -e^{x}cotx + c$, where c is the integrating constant

Question: 67

Evaluate the foll

Solution:

$$\begin{aligned} &\left(\frac{1+\sin x}{1+\cos x}\right) \\ = \left(\frac{1+\frac{2\tan x/2}{1+\tan^2(x/2)}}{1+\frac{1-\tan^2(x/2)}{1+\tan^2(x/2)}}\right) \\ &= \left(\frac{1+\tan x/2}{2}\right)^2 \\ &= \frac{\left(1+\tan x/2\right)^2}{2} \\ &\therefore \int e^x \left(\frac{1+\sin x}{1+\cos x}\right) dx \\ &= \int e^x \times \frac{\left(1+\tan x/2\right)^2}{2} \\ &= \int \frac{e^x \left(1+\tan^2 x/2+2\tan x/2\right)}{2} dx \\ &= \int \frac{e^x (\sec^2 x/2+2\tan x/2)}{2} dx \\ &= \int \frac{e^x \sec^2 x/2}{2} dx + \int e^x \tan^x/2 dx \end{aligned}$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \tan(x/2)$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\int \frac{e^{x} \sec^{2x}/2 \, dx}{2} + \int e^{x} \tan^{x}/2 \, dx$$

$$= \int \frac{e^{x} \sec^{2x}/2 \, dx}{2} + \tan^{x}/2 \int e^{x} dx - \int \left[\frac{d}{dx} (\tan^{x}/2) \int e^{x} dx\right] dx$$

$$= \int \frac{e^{x} \sec^{2x}/2 \, dx}{2} + e^{x} \tan^{x}/2 - \int \frac{e^{x} \sec^{2x}/2 \, dx}{2} + c$$

 $= e^x tan \frac{x}{2} + c$, where c is the integrating constant

Question: 68

Evaluate the foll

Solution:

$$\int e^{x} \left(\frac{\sin 4x - 1}{1 - \cos 4x} \right) dx$$
$$= \int e^{x} \left(\frac{2\sin 2x \cos 2x - 4}{2\sin^{2} 2x}\right) dx$$
$$= \int e^{x} (\cot 2x - 2 \csc^{2} 2x) dx$$
$$= \int e^{x} \cot 2x dx - \int 2e^{x} \csc^{2} 2x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \cot 2x$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int e^{x} \cot 2x dx - \int 2e^{x} \csc^{2} 2x dx$$

= $\cot 2x \int e^{x} dx - \int \left\{ \frac{d}{dx} (\cot 2x) \int e^{x} dx \right\} dx - \int 2e^{x} \csc^{2} 2x dx$
= $e^{x} \cot 2x + \int 2e^{x} \csc^{2} 2x dx - \int 2e^{x} \csc^{2} 2x dx + c$

 $= e^{x} cot2x + c$, where c is the integrating constant

Question: 69

Evaluate the foll

Solution:

$$\int \frac{e^x \left[\sqrt{1-x^2} \sin^{-1} x + 1\right]}{\sqrt{1-x^2}} dx$$
$$= \int e^x \left(\sin^{-1} x + \frac{1}{\sqrt{1-x^2}}\right) dx$$
$$= \int e^x \sin^{-1} x dx + \int \frac{e^x}{\sqrt{1-x^2}} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \sin^{-1}x$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int e^{x} \sin^{-1} x \, dx + \int \frac{e^{x}}{\sqrt{1 - x^{2}}} \, dx$$

= $\sin^{-1} x \int e^{x} dx - \int \left\{ \frac{d}{dx} (\sin^{-1} x) \int e^{x} dx \right\} dx + \int \frac{e^{x}}{\sqrt{1 - x^{2}}} \, dx$
= $e^{x} \sin^{-1} x - \int \frac{e^{x}}{\sqrt{1 - x^{2}}} \, dx + \int \frac{e^{x}}{\sqrt{1 - x^{2}}} \, dx + c$

 $= e^x \, sin^{-1} \, x + c$, where c is the integrating constant

Question: 70

Evaluate the foll

$$\int e^{x} \left(\frac{1 + x \log x}{x}\right) dx$$
$$= \int e^{x} \left(\frac{1}{x} + \log x\right) dx$$
$$= \int \frac{e^{x}}{x} dx + \int e^{x} \log x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \log x$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\int \frac{e^{x}}{x} dx + \int e^{x} \log x dx$$
$$= \int \frac{e^{x}}{x} dx + \log x \int e^{x} dx - \int \left[\frac{d}{dx}(\log x) \int e^{x} dx\right] dx$$
$$= \int \frac{e^{x}}{x} dx + e^{x} \log x - \int \frac{e^{x}}{x} dx + c$$

 $= e^{x} log x + c$, where c is the integrating constant

Question: 71

Evaluate the foll

Solution:

$$\frac{x}{(1+x)^2} = \frac{A}{(1+x)} + \frac{B}{(1+x)^2}$$

$$\Rightarrow x = A(1+x) + B$$

For x=-1, equation: -1 = B i.e. B = -1
For x=0, equation: 0 = A-1 i.e. A = 1

$$\frac{x}{(1+x)^2} = \frac{x}{(1+x)^2}$$

$$\frac{1}{(1+x)^2} = \frac{1}{(1+x)} - \frac{1}{(1+x)^2}$$

The given equation becomes

$$\int e^{x} \left[\frac{1}{(1+x)} - \frac{1}{(1+x)^{2}} \right] dx$$
$$= \int e^{x} \times \frac{1}{(1+x)} dx - \int e^{x} \times \frac{1}{(1+x)^{2}} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/(1+x)$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int \frac{e^x}{(1+x)} dx - \int \frac{e^x}{(1+x)^2} dx$$
$$= \frac{1}{(1+x)} \int e^x dx - \int \left[\frac{d}{dx} \left(\frac{1}{1+x}\right) \int e^x dx\right] dx - \int \frac{e^x}{(1+x)^2} dx$$

 $= \frac{e^x}{(1+x)} + \int \frac{e^x}{(1+x)^2} dx - \int \frac{e^x}{(1+x)^2} dx + c$ $= \frac{e^x}{(1+x)} + c$, where c is the integrating constant

Question: 72

Evaluate the foll

Solution:

 $\frac{x-1}{(x+1)^3} = \frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3}$ $\Rightarrow x - 1 = A(x+1)^2 + B(x+1) + C$ For x=-1, equation: -2 = C i.e. C = -2 For x=0, equation: -1 = A+B-2 i.e. A+B = 1 For x=1, equation: 0 = 4A+2B-2 i.e. 2(A+B+A) = 2 $\Rightarrow 1+A = 1$ $\Rightarrow A = 0$ And, B = 1 $\therefore \frac{x-1}{(x+1)^3}$ $= \frac{1}{(x+1)^2} - \frac{2}{(x+1)^3}$

The given equation becomes

$$\int e^{x} \left[\frac{1}{(x+1)^{2}} - \frac{2}{(x+1)^{3}} \right] dx$$
$$= \int e^{x} \times \frac{1}{(x+1)^{2}} dx - \int e^{x} \times \frac{2}{(x+1)^{3}} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/(1+x)^2$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int \frac{e^{x}}{(x+1)^{2}} dx - \int \frac{2e^{x}}{(x+1)^{3}} dx$$

$$= \frac{1}{(x+1)^{2}} \int e^{x} dx - \int \left[\frac{d}{dx} \left(\frac{1}{(x+1)^{2}}\right) \int e^{x} dx\right] dx - \int \frac{2e^{x}}{(x+1)^{3}} dx$$

$$= \frac{e^{x}}{(x+1)^{2}} + \int \frac{2e^{x}}{(x+1)^{3}} dx - \int \frac{2e^{x}}{(x+1)^{3}} dx + c$$

 $= \frac{e^x}{(x+1)^2} + c$, where c is the integrating constant

Question: 73

Evaluate the foll

 $\frac{2-x}{(1-x)^2} = \frac{A}{(1-x)} + \frac{B}{(1-x)^2}$ $\Rightarrow 2-x = A(1-x) + B$ For x=1, equation: 1 = B i.e. B = 1 For x=2, equation: 0 = -A+1 i.e. A = 1 $\therefore \frac{2-x}{(1-x)^2}$

$$=\frac{1}{(1-x)^2} + \frac{1}{(1-x)^2}$$

The given equation becomes

$$\int e^{x} \left[\frac{1}{(1-x)} + \frac{1}{(1-x)^{2}} \right] dx$$
$$= \int e^{x} \times \frac{1}{(1-x)^{2}} dx + \int e^{x} \times \frac{1}{1-x} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/(1-x)$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\int \frac{e^{x}}{(1-x)^{2}} dx + \int \frac{e^{x}}{1-x} dx$$

= $\int \frac{e^{x}}{(1-x)^{2}} dx + \frac{1}{1-x} \int e^{x} dx - \int \left[\frac{d}{dx}\left(\frac{1}{1-x}\right)\int e^{x} dx\right] dx$
= $\int \frac{e^{x}}{(1-x)^{2}} dx + \frac{e^{x}}{1-x} - \int \frac{e^{x}}{(1-x)^{2}} dx + c$

 $= \frac{e^x}{1-x} + c$, where c is the integrating constant

Question: 74

Evaluate the foll

$$\frac{x-3}{(x-1)^3} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3}$$

$$\Rightarrow x-3 = A(x-1)^2 + B(x-1) + C$$

For x=1, equation: -2 = C i.e. C = -2
For x=0, equation: -3 = A-B-2 i.e. B = A+1
For x=3, equation: 0 = 4A+2B-2
i.e. 2(A+B+A) = 2

$$\Rightarrow 1+3A = 1$$

$$\Rightarrow A = 0$$

And, B = 1

$$\therefore \frac{x-3}{(x-1)^3}$$

$$=\frac{1}{(x-1)^2}-\frac{2}{(x-1)^3}$$

The given equation becomes

$$\int e^{x} \left[\frac{1}{(x-1)^{2}} - \frac{2}{(x-1)^{3}} \right] dx$$
$$= \int e^{x} \times \frac{1}{(x-1)^{2}} dx - \int e^{x} \times \frac{2}{(x-1)^{3}} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/(1-x)^2$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\int \frac{e^{x}}{(x-1)^{2}} dx - \int \frac{2e^{x}}{(x-1)^{3}} dx$$

$$= \frac{1}{(x-1)^{2}} \int e^{x} dx - \int \left[\frac{d}{dx} \left(\frac{1}{(x-1)^{2}} \right) \int e^{x} dx \right] dx - \int \frac{2e^{x}}{(x-1)^{3}} dx$$

$$= \frac{e^{x}}{(x-1)^{2}} + \int \frac{2e^{x}}{(x-1)^{3}} dx - \int \frac{2e^{x}}{(x-1)^{3}} dx + c$$

 $= \frac{e^{x}}{(x-1)^2} + c$, where c is the integrating constant

Question: 75

Evaluate the foll

Solution:

$$\int e^{3x} \left(\frac{3x-1}{9x^2}\right) dx$$
$$= \int \frac{e^{3x}}{3x} dx - \int \frac{e^{3x}}{9x^2} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/3x$ and $f_2(x) = e^{3x}$ in the first integral and keeping the second integral intact,

$$\begin{split} &\int \frac{e^{3x}}{3x} dx - \int \frac{e^{3x}}{9x^2} dx \\ &= \frac{1}{3x} \int e^{3x} dx - \int \left[\frac{d}{dx} \left(\frac{1}{3x} \right) \int e^{3x} dx \right] dx - \int \frac{e^{3x}}{9x^2} dx \\ &= \frac{e^{3x}}{9x} + \int \frac{e^{3x}}{9x^2} dx - \int \frac{e^{3x}}{9x^2} dx + c \\ &= \frac{e^{3x}}{9x} + c \text{, where } c \text{ is the integrating constant} \end{split}$$

Question: 76

Evaluate the foll

 $\frac{x+1}{(x+2)^2} = \frac{A}{(x+2)} + \frac{B}{(x+2)^2}$ $\Rightarrow x+1 = A(x+2) + B$ For x=-2, equation: -1 = B i.e. B = -1 For x=-1, equation: 0 = A-1 i.e. A = 1 $\therefore \frac{x+1}{(x+2)^2}$ 1 1

$$=\frac{1}{(x+2)}-\frac{1}{(x+2)^2}$$

The given equation becomes

$$\int e^{x} \left[\frac{1}{(x+2)} - \frac{1}{(x+2)^2} \right] dx$$
$$= \int e^{x} \times \frac{1}{x+2} dx - \int e^{x} \times \frac{1}{(x+2)^2} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/(x+2)$ and $f_2(x) = e^x$ in the second integral and keeping the first integral intact,

$$\int \frac{e^{x}}{x+2} dx - \int \frac{e^{x}}{(x+2)^{2}} dx$$

= $\frac{1}{x+2} \int e^{x} dx - \int \left[\frac{d}{dx} \left(\frac{1}{x+2} \right) \int e^{x} dx \right] dx - \int \frac{e^{x}}{(x+2)^{2}} dx$
= $\frac{e^{x}}{x+2} + \int \frac{e^{x}}{(x+2)^{2}} dx - \int \frac{e^{x}}{(x+2)^{2}} dx + c$

 $=\frac{e^{x}}{x+2}+c$, where c is the integrating constant

Question: 77

Evaluate the foll

Solution:

 $\frac{x}{(1+2x)^2} = \frac{A}{(1+2x)} + \frac{B}{(1+2x)^2}$ $\Rightarrow x = A(1+2x) + B$ For x=-1/2, equation: -1/2 = B i.e. B = -1/2 For x=0, equation: 0 = A-1/2 i.e. A = 1/2 $\therefore \frac{x}{(1+2x)^2}$

$$=\frac{1}{2(1+2x)^2} - \frac{1}{2(1+2x)^2}$$

The given equation becomes

$$\int e^{2x} \left[\frac{1}{2(1+2x)} - \frac{1}{2(1+2x)^2} \right] dx$$
$$= \int e^{2x} \times \frac{1}{2(1+2x)} dx - \int e^{2x} \times \frac{1}{2(1+2x)^2} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/(1+2x)$ and $f_2(x) = e^{2x}$ in the second integral and keeping the first integral intact,

$$\int e^{2x} \times \frac{1}{2(1+2x)} dx - \int e^{2x} \times \frac{1}{2(1+2x)^2} dx$$

= $\frac{1}{2} \left[\frac{1}{1+2x} \int e^{2x} dx - \int \left[\frac{d}{dx} \left(\frac{1}{1+2x} \right) \int e^{2x} dx \right] dx - \int \frac{e^{2x}}{(1+2x)^2} dx \right]$
= $\frac{1}{2} \left[\frac{e^{2x}}{2(2x+1)} + \int \frac{e^{2x}}{(2x+1)^2} dx - \int \frac{e^{2x}}{(2x+1)^2} dx \right]$

 $=\frac{e^{2x}}{4(2x+1)}+c$, where c is the integrating constant

Question: 78

Evaluate the foll

Solution:

$$\int e^{2x} \left(\frac{2x-1}{4x^2}\right) dx$$
$$= \int \frac{e^{2x}}{2x} dx - \int \frac{e^{2x}}{4x^2} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/2x$ and $f_2(x) = e^{2x}$ in the first integral and keeping the second integral intact,

$$\begin{split} &\int \frac{e^{2x}}{2x} dx - \int \frac{e^{2x}}{4x^2} dx \\ &= \frac{1}{2x} \int e^{2x} dx - \int \left[\frac{d}{dx} \left(\frac{1}{2x} \right) \int e^{2x} dx \right] dx - \int \frac{e^{2x}}{4x^2} dx \\ &= \frac{e^{2x}}{4x} + \int \frac{e^{2x}}{4x^2} dx - \int \frac{e^{2x}}{4x^2} dx + c \\ &= \frac{e^{2x}}{4x} + c \text{, where } c \text{ is the integrating constant} \end{split}$$

Question: 79

Evaluate the foll

Solution:

$$\int e^{x} \left(\log x + \frac{1}{x^{2}} \right) dx$$
$$= \int e^{x} \log x dx - \int \frac{e^{x}}{x^{2}} dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \log x$ and $f_2(x) = e^x$ in the first integral and keeping the second integral intact,

$$\begin{split} &\int e^{x} log x dx - \int \frac{e^{x}}{x^{2}} dx \\ &= log x \int e^{x} dx - \int \left[\frac{d}{dx} (log x) \int e^{x} dx \right] dx - \int \frac{e^{x}}{x^{2}} dx \\ &= e^{x} log x - \int \frac{e^{x}}{x} dx - \int \frac{e^{x}}{x^{2}} dx \\ &= e^{x} log x - \left[\frac{1}{x} \int e^{x} dx - \int \left[\frac{d}{dx} \left(\frac{1}{x} \right) \int e^{x} dx \right] dx \right] - \int \frac{e^{x}}{x^{2}} dx \\ &= e^{x} log x - \frac{e^{x}}{x} + \int \frac{e^{x}}{x^{2}} dx - \int \frac{e^{x}}{x^{2}} dx + c \\ &= e^{x} \left(log x - \frac{1}{x} \right) + c \text{, where } c \text{ is the integrating constant} \end{split}$$

Question: 80

Evaluate the foll

Solution:

 $\frac{\log x}{(1+\log x)^2} = \frac{A}{(1+\log x)} + \frac{B}{(1+\log x)^2}$ $\Rightarrow \log x = A(1+\log x) + B$ For x=1, equation: 0 = A+B For x=1/e, equation: -1 = B i.e. B = -1 So, A = 1 $\therefore \frac{\log x}{(1+\log x)^2}$ $= \frac{1}{(1+\log x)} - \frac{1}{(1+\log x)^2}$

The given equation becomes

$$\int \left[\frac{1}{(1+\log x)} - \frac{1}{(1+\log x)^2}\right] dx$$

= $\int \frac{1}{(1+\log x)} dx - \int \frac{1}{(1+\log x)^2} dx$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/(1 + \log x)$ and $f_2(x) = 1$ in the second integral and keeping the first integral intact,

$$\int \frac{1}{(1+\log x)} dx - \int \frac{1}{(1+\log x)^2} dx$$

= $\frac{1}{(1+\log x)} \int dx - \int \left[\frac{d}{dx} \left(\frac{1}{(1+\log x)} \right) \int dx \right] dx - \int \frac{1}{(1+\log x)^2} dx$
= $\frac{x}{(1+\log x)} + \int \frac{1}{(1+\log x)^2} dx - \int \frac{1}{(1+\log x)^2} dx + c$

 $=\frac{x}{(1+logx)}+c$, where c is the integrating constant

Evaluate the foll

Solution:

r

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = sin(logx)$ and $f_2(x) = 1$ in the first integral and keeping the second integral intact,

$$\int \sin(\log x) dx + \int \cos(\log x) dx$$

= $\sin(\log x) \int dx - \int \left[\frac{d}{dx}(\sin(\log x)) \int dx\right] dx + \int \cos(\log x) dx$
= $x \sin(\log x) - \int \cos(\log x) dx + \int \cos(\log x) dx + c$

 $= e^{logx}sin(logx) + c$, where c is the integrating constant

Question: 82

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = 1/(\log x)$ and $f_2(x) = 1$ in the first integral and keeping the second integral intact,

$$\begin{split} &\int \frac{1}{\log x} dx - \int \frac{1}{(\log x)^2} dx \\ &= \frac{1}{\log x} \int dx - \int \left[\frac{d}{dx} \left(\frac{1}{\log x} \right) \int dx \right] dx - \int \frac{1}{(\log x)^2} dx \\ &= \frac{x}{\log x} + \int \frac{1}{(\log x)^2} dx - \int \frac{1}{(\log x)^2} dx + c \\ &= \frac{x}{\log x} + c \text{ , where } c \text{ is the integrating constant} \end{split}$$

Question: 83

Evaluate the foll

Solution:

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \log(\log x)$ and $f_2(x) = 1$ in the first integral and keeping the second integral intact,

$$\int \log(\log x) dx + \int \frac{1}{(\log x)^2} dx$$
$$= \log(\log x) \int dx - \int \left[\frac{d}{dx}(\log(\log x)) \int dx\right] dx + \int \frac{1}{(\log x)^2} dx$$

$$= x\log(\log x) - \int \frac{1}{\log x} dx + \int \frac{1}{(\log x)^2} dx$$

$$= x\log(\log x) - \left[\frac{1}{\log x} \int dx - \int \left[\frac{d}{dx} \left(\frac{1}{\log x}\right) \int dx\right] dx\right] + \int \frac{1}{(\log x)^2} dx$$

$$= x\log(\log x) - \frac{x}{\log x} - \int \frac{1}{(\log x)^2} dx + \int \frac{1}{(\log x)^2} dx + c$$

$$= x \left[\log(\log x) - \frac{1}{\log x}\right] + c, \text{ where } c \text{ is the integrating constant}$$

Evaluate the foll

Solution:

It is know that $\sin^{-1}x + \cos^{-1}x = \pi/2$

$$\therefore \left(\frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} \right)$$
$$= \frac{2}{\pi} \left(\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x} \right)$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions , then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Now, for the first term,

Taking $f_1(x) = \sin^{-1}\sqrt{x}$ and $f_2(x) = 1$,

$$\therefore \int \sin^{-1} \sqrt{x} \, dx$$

$$= \sin^{-1} \sqrt{x} \int dx - \int \left\{ \frac{d}{dx} (\sin^{-1} \sqrt{x}) \int dx \right\} dx$$

$$= x \sin^{-1} \sqrt{x} - \int \frac{1}{2\sqrt{x}\sqrt{1-x}} \times x \, dx$$

$$= x \sin^{-1} \sqrt{x} - \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1-x}} \, dx$$
Taking (1-x)=a²,
-dx=2ada i.e. dx=-2ada
Again, x=1-a²

$$\therefore \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1-x}} \, dx$$

$$= \frac{1}{2} \int \frac{\sqrt{1-a^2}}{a} (-2ada)$$

$$= -\int \sqrt{1-a^2} \, da$$

$$= -\int \sqrt{1-a^2} \, da$$

Replacing the value of a, we get,

$$\dot{\cdot} - \left[\frac{1}{2}a\sqrt{1-a^2} + \frac{1}{2}\sin^{-1}a\right]$$
$$= -\left[\frac{1}{2}x\sqrt{1-x} + \frac{1}{2}\sin^{-1}\sqrt{1-x}\right] + c$$

The total integration yields as

= $x \sin^{-1} \sqrt{x} + \left[\frac{1}{2}x\sqrt{1-x} + \frac{1}{2}\sin^{-1} \sqrt{1-x}\right] + c'$, where c' is the integrating constant

For the second term,

Taking $f_1(x) = \cos^{-1}\sqrt{x}$ and $f_2(x) = 1$,

$$\therefore \int \cos^{-1} \sqrt{x} \, dx$$

$$= \cos^{-1} \sqrt{x} \int dx - \int \left\{ \frac{d}{dx} \left(\cos^{-1} \sqrt{x} \right) \int dx \right\} dx$$

$$= x \cos^{-1} \sqrt{x} - \int \frac{-1}{2\sqrt{x}\sqrt{1-x}} \times x \, dx$$

$$= x \cos^{-1} \sqrt{x} + \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1-x}} \, dx$$
Taking (1-x)=a²,
-dx=2ada i.e. dx=-2ada
Again, x=1-a²

$$\therefore \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1-x}} \, dx$$

$$= \frac{1}{2} \int \frac{\sqrt{1-a^2}}{a} (-2ada)$$

$$= -\int \sqrt{1-a^2} \, da$$

 $= - \left[\frac{1}{2} a \sqrt{1 - a^2} + \frac{1}{2} \sin^{-1} a \right]$

Replacing the value of a, we get,

$$\dot{-} - \left[\frac{1}{2}a\sqrt{1-a^2} + \frac{1}{2}\sin^{-1}a\right]$$
$$= -\left[\frac{1}{2}x\sqrt{1-x} + \frac{1}{2}\sin^{-1}\sqrt{1-x}\right] + c$$

The total integration yields as

$$\begin{split} &= x \cos^{-1} \sqrt{x} - \left[\frac{1}{2} x \sqrt{1-x} + \frac{1}{2} \sin^{-1} \sqrt{1-x}\right] + c'' \text{, where } c'' \text{ is the integrating constant} \\ &\therefore \int \left(\frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}}\right) dx \\ &= \frac{2}{\pi} \int \left(\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}\right) dx \\ &= \frac{2}{\pi} \left[x \sin^{-1} \sqrt{x} + \left[\frac{1}{2} x \sqrt{1-x} + \frac{1}{2} \sin^{-1} \sqrt{1-x}\right] - x \cos^{-1} \sqrt{x} \right. \\ &\qquad \left. + \left[\frac{1}{2} x \sqrt{1-x} + \frac{1}{2} \sin^{-1} \sqrt{1-x}\right]\right] + c \end{split}$$

$$=\frac{2}{\pi}\left[\sqrt{x-x^{2}}+x\left(\sin^{-1}\sqrt{x}-\cos^{-1}\sqrt{x}\right)+\sin^{-1}\sqrt{1-x}\right]+c \text{ where } c \text{ is the integrating constant}$$

Evaluate the foll

Solution:

Tip - 5^x is to be replaced by a

 \Rightarrow 5^xlog5dx = da

$$\Rightarrow 5^{x}dx = \frac{da}{log5}$$

The equation becomes as follows:

 $\int 5^{5^{a}} \times 5^{a} \times \frac{1}{\log 5} da$

 $\ensuremath{\text{Tip}}$ - 5^a is to be replaced by k

⇒ 5^alog5da = dk

$$\Rightarrow 5^a da = \frac{dk}{\log 5}$$

The equation becomes as follows:

$$\int 5^{k} \times \frac{1}{(\log 5)^{2}} dk$$
$$= \frac{1}{(\log 5)^{2}} \int 5^{k} dk$$
$$= \frac{5^{k}}{(\log 5)^{3}} + c$$

Re-replacing the value of k,

 $\frac{5^{5^a}}{(log5)^3} + c$

Re-replacing the value of a,

 $\frac{{{{5^5}^{{5^x}}}}}{{{\left({{\log 5}} \right)}^3}} + c$, where c is the integrating constant

)dx

Question: 86

Evaluate the foll

$$\left(\frac{1+\sin 2x}{1+\cos 2x}\right)$$
$$=\left(\frac{1+\frac{2\tan x}{1+\tan^2 x}}{1+\frac{1-\tan^2 x}{1+\tan^2 x}}\right)$$
$$=\frac{(1+\tan x)^2}{2}$$
$$\therefore \int e^{2x} \left(\frac{1+\sin 2x}{1+\cos 2x}\right)$$

$$= \int e^{2x} \times \frac{(1 + \tan x)^2}{2}$$
$$= \int \frac{e^{2x}(1 + \tan^2 x + 2\tan x)}{2} dx$$
$$= \int \frac{e^{2x}(\sec^2 x + 2\tan x)}{2} dx$$
$$= \int \frac{e^{2x}\sec^2 x dx}{2} + \int e^{2x}\tan x dx$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x)f_2(x)dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = \tan x$ and $f_2(x) = e^{2x}$ in the second integral and keeping the first integral intact,

$$\int \frac{e^{2x} \sec^2 x dx}{2} + \int e^{2x} \tan x dx$$

$$= \int \frac{e^{2x} \sec^2 x dx}{2} + \tan x \int e^{2x} dx - \int \left[\frac{d}{dx}(\tan x)\int e^{2x} dx\right] dx$$

$$= \int \frac{e^{2x} \sec^2 x dx}{2} + \frac{1}{2}e^{2x} \tan x - \int \frac{e^{2x} \sec^2 x dx}{2} + c$$

 $=\frac{1}{2}e^{x}\tan \frac{x}{2}+c$, where c is the integrating constant

Question: 87

Evaluate the foll

Solution:

$$\begin{aligned} \left(\frac{1-\sin 2x}{1-\cos 2x}\right) \\ &= \left(\frac{1-\frac{2\tan x}{1+\tan^2 x}}{1-\frac{1-\tan^2 x}{1+\tan^2 x}}\right) \\ &= \frac{\left(1-\tan x\right)^2}{2} \\ &\therefore \int e^{2x} \left(\frac{1-\sin 2x}{1-\cos 2x}\right) dx \\ &= \int e^{2x} \left(\frac{1-\sin 2x}{1-\cos 2x}\right) dx \\ &= \int e^{2x} \left(\frac{1-\tan x}{2}\right)^2 \\ &= \int \frac{e^{2x} (1+\tan^2 x-2\tan x)}{2} dx \\ &= \int \frac{e^{2x} (\sec^2 x-2\tan x)}{2} dx \\ &= \int \frac{e^{2x} \sec^2 x dx}{2} - \int e^{2x} \tan x dx \end{aligned}$$

Tip - If $f_1(x)$ and $f_2(x)$ are two functions, then an integral of the form $\int f_1(x) f_2(x) dx$ can be INTEGRATED BY PARTS as

 $f_1(x) \int f_2(x) dx - \int \left\{ \frac{d}{dx} f_1(x) \int f_2(x) dx \right\} dx$ where $f_1(x)$ and $f_2(x)$ are the first and second functions respectively.

Taking $f_1(x) = tanx$ and $f_2(x) = e^{2x}$ in the second integral and keeping the first integral intact,

$$\begin{split} &\int \frac{e^{2x} \sec^2 x dx}{2} - \int e^{2x} tanx dx \\ &= \int \frac{e^{2x} \sec^2 x dx}{2} - tanx \int e^{2x} dx + \int \left[\frac{d}{dx}(tanx) \int e^{2x} dx\right] dx \\ &= \int \frac{e^{2x} \sec^2 x dx}{2} - \frac{1}{2} e^{2x} tanx + \int \frac{e^{2x} \sec^2 x dx}{2} + c \\ &= -\frac{1}{2} e^x tan \frac{x}{2} + c \text{, where } c \text{ is the integrating constant} \end{split}$$

Exercise : OBJECTIVE QUESTIONS II

Question: 1

Mark (\checkmark) against

Solution:

To find: Value of $\int x e^x dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $\mathbf{I} = \int \mathbf{x} \, \mathbf{e}^{\mathbf{x}} \mathbf{dx} \, \dots \, (\mathbf{i})$

$$I = \int x e^{x} dx$$

$$\Rightarrow x \int e^{x} dx - \int \left[\frac{d(x)}{x} \int e^{x} dx\right] dx$$

$$\Rightarrow I = x e^{x} - \int 1 \cdot e^{x} dx$$

$$\Rightarrow I = x e^{x} - e^{x} + c$$

$$\therefore I = e^{x} (x - 1) + c$$

Ans) c e^x (x - 1) + c
Question: 2

Mark (\checkmark) against

Solution:

To find: Value of ∫ x e^{2x}dx

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $\mathbf{I} = \int \mathbf{x} \, \mathbf{e}^{2\mathbf{x}} \mathbf{d} \mathbf{x} \, \dots \, (\mathbf{i})$

$$I = \int x e^{2x} dx$$

$$\Rightarrow x \int e^{2x} dx - \int \left[\frac{d(x)}{x} \int e^{2x} dx\right] dx$$

$$\Rightarrow I = x \frac{e^{2x}}{2} - \int 1 \cdot \frac{e^{2x}}{2} dx$$

$$\Rightarrow I = x \frac{e^{2x}}{2} - \frac{1}{2} \int \frac{e^{2x}}{2} dx$$

$$\Rightarrow I = \frac{x}{2} e^{2x} - \frac{1}{2} \int e^{2x} dx$$

$$\Rightarrow I = \frac{x}{2} e^{2x} - \frac{1}{2} \int e^{2x} dx$$

$$\Rightarrow I = \frac{x}{2} e^{2x} - \frac{1}{2} \frac{e^{2x}}{2} + c$$

$$\Rightarrow I = \frac{x}{2} e^{2x} - \frac{e^{2x}}{4} + c$$

Ans) $B \frac{x}{2} e^{2x} - \frac{e^{2x}}{4} + c$

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int x\cos 2x dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int [f'(x)\int g(x)dx]dx$$

We have, $I = \int x\cos 2x dx \dots (i)$
Let $2x = t$
 $\Rightarrow x = \frac{t}{2}$
 $\Rightarrow 2 = \frac{dt}{dx}$
 $\Rightarrow dx = \frac{dt}{2}$
 $I = \int \frac{t}{2} \cos t \frac{dt}{2}$
 $I = \frac{1}{4}\int t\cos t dt$

Taking 1^{st} function as **t** and second function as **cost**

$$\Rightarrow I = \frac{1}{4} \left[t \int \cot dt - \int \left(\frac{dt}{dt} \int \cot dt \right) dt \right]$$
$$\Rightarrow I = \frac{1}{4} \left[t(\sinh) - \int (1 (\sinh)) dt \right]$$
$$\Rightarrow I = \frac{1}{4} \left[t(\sinh) - (-\cosh) \right] + c$$
$$\Rightarrow I = \frac{1}{4} \left[t \sinh + \cosh \right] + c$$

$$\Rightarrow I = \frac{1}{4} [2x \sin 2x + \cos 2x] + c$$
$$\Rightarrow I = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + c$$
$$Ans) A \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + c$$

Mark (\checkmark) against

Solution:

To find: Value of $\int x \sec^2 x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $\mathbf{I} = \int \mathbf{x} \sec^2 \mathbf{x} \, d\mathbf{x} \dots$ (i)

Taking 1^{st} function as **x** and second function as $\sec^2 x$

$$\Rightarrow I = \left[x \int \sec^2 x \, dx - \int \left(\frac{dx}{dx} \int \sec^2 x \, dx \right) dx \right]$$

$$\Rightarrow I = \left[x \tan x - \int (1 \tan x) dx \right]$$

$$\Rightarrow I = \left[x \tan x - \int \tan x dx \right]$$

$$\Rightarrow I = \left[x \tan x - (-\log|\cos x|) \right] + c$$

$$\Rightarrow I = x \tan x + \log|\cos x| + c$$

Ans) B x tanx + log|cosx|+c

Question: 5

Mark (\checkmark) against

Solution:

To find: Value of ∫ xsin2xdx

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int x \sin 2x dx \dots (i)$

Let 2x = t

$$\Rightarrow x = \frac{t}{2}$$
$$\Rightarrow 2 = \frac{dt}{dx}$$
$$\Rightarrow dx = \frac{dt}{2}$$
$$I = \int \frac{t}{2} \operatorname{sint} \frac{dt}{2}$$

$$I = \frac{1}{4} \int t sint \, dt$$

Taking 1^{st} function as **t** and second function as **sint**

$$\Rightarrow I = \frac{1}{4} \left[t \int \sin t \, dt - \int \left(\frac{dt}{dt} \int \sin t \, dt \right) dt \right]$$

$$\Rightarrow I = \frac{1}{4} \left[t(-\cos t) - \int (1 (-\cos t)) \, dt \right]$$

$$\Rightarrow I = \frac{1}{4} \left[-t \cos t - \int -\cos t \, dt \right]$$

$$\Rightarrow I = \frac{1}{4} \left[-t \cos t + \sin t \right] + c$$

$$\Rightarrow I = \frac{1}{4} \left[-2x \cos 2x + \sin 2x \right] + c$$

$$\Rightarrow I = -\frac{1}{2}x \cos 2x + \frac{1}{4} \sin 2x + c$$

Ans) C $-\frac{1}{2}x \cos 2x + \frac{1}{4} \sin 2x + c$

Question: 6

Mark (\checkmark) against

Solution:

To find: Value of ∫ xlogx dx

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x)\int g(x)dx\right]dx$$

We have,
$$I = \int x \log x \, dx \dots$$
 (i)

Taking $1^{\rm st}$ function as logx and second function as x

$$\Rightarrow I = \left[\log x \int x \, dx - \int \left(\frac{d\log x}{dx} \int x \, dx \right) dx \right]$$

$$\Rightarrow I = \left[\log x \frac{x^2}{2} - \int \left(\frac{1}{x} \frac{x^2}{2} \right) dx \right]$$

$$\Rightarrow I = \left[\log x \frac{x^2}{2} - \int \left(\frac{x}{2} \right) dx \right]$$

$$\Rightarrow I = \left[\log x \frac{x^2}{2} - \frac{1}{2} \int x dx \right]$$

$$\Rightarrow I = \left[\log x \frac{x^2}{2} - \frac{1}{2} \frac{x^2}{2} \right] + c$$

$$\Rightarrow I = \frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + c$$

Ans) C $\frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + c$

Question: 7

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int x \csc^2 x dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int x \csc^2 x dx \dots (i)$

$$I = \int x \operatorname{cosec}^2 x dx$$

$$\Rightarrow x \int \operatorname{cosec}^2 x dx - \int \left[\frac{d(x)}{x} \int \operatorname{cosec}^2 x dx \right] dx$$

$$\Rightarrow I = x (-\operatorname{cot} x) - \int 1 \cdot (-\operatorname{cot} x) dx$$

$$\Rightarrow$$
 I = -x(cotx)+log|sinx|+c

Ans) D None of these

Question: 8

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int x \sin x \cos x dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int x \sin x \cos x dx \dots (i)$

$$I = \frac{1}{2} \int x 2\sin x \cos x dx$$

$$I = \frac{1}{2} \int x \sin 2x dx$$

$$\Rightarrow \frac{1}{2} \left[x \int \sin 2x dx - \int \left[\frac{d(x)}{x} \int \sin 2x dx \right] dx \right]$$

$$\Rightarrow \frac{1}{2} \left[\frac{-x \cos 2x}{2} - \int \left[1 \frac{-\cos 2x}{2} \right] dx \right]$$

$$\Rightarrow \frac{1}{2} \left[\frac{-x \cos 2x}{2} + \frac{\sin 2x}{4} \right] + c$$

$$\Rightarrow \frac{-x \cos 2x}{4} + \frac{\sin 2x}{8} + c$$
Ans) D $\frac{-x \cos 2x}{4} + \frac{\sin 2x}{8} + c$

Question: 9

Mark (\checkmark) against

Solution:

To find: Value of $\int x \cos^2 x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x) \int g(x)dx - \int \left[f'(x) \int g(x)dx \right] dx$$

We have, $I = \int x \cos^2 x \, dx \dots$ (i)
 $I = \int x \frac{1}{2} (1 + \cos 2x) dx$
 $I = \frac{1}{2} \int x \, dx + \frac{1}{2} \int x \cos 2x dx$
 $I = \frac{1}{2} \frac{x^2}{2} + \frac{1}{2} \left[x \int \cos 2x dx - \int \left[\frac{d(x)}{x} \int \cos 2x dx \right] dx \right]$
 $I = \frac{1}{2} \frac{x^2}{2} + \frac{1}{2} \left[x \frac{\sin 2x}{2} - \int 1 \cdot \frac{\sin 2x}{2} dx \right]$
 $I = \frac{1}{2} \frac{x^2}{2} + \frac{1}{2} \left[x \frac{\sin 2x}{2} - \frac{1}{2} \int \sin 2x dx \right]$
 $I = \frac{1}{2} \frac{x^2}{2} + \frac{1}{2} \left[x \frac{\sin 2x}{2} - \frac{1}{2} \int \sin 2x dx \right]$
 $I = \frac{1}{2} \frac{x^2}{2} + \frac{1}{2} \left[x \frac{\sin 2x}{2} - \frac{1}{2} \left(- \frac{\cos 2x}{2} \right) + c \right]$
 $I = \frac{1}{2} \frac{x^2}{4} + \frac{1}{2} \left[\frac{x \sin 2x}{2} + \frac{\cos 2x}{4} + c \right]$
 $I = \frac{x^2}{4} + \frac{x \sin 2x}{4} + \frac{\cos 2x}{8} + c$
Ans) D $\frac{x^2}{4} + \frac{x \sin 2x}{4} + \frac{\cos 2x}{8} + c$

Mark (\checkmark) against

Solution:

To find: Value of $\int \frac{\log x}{x^2} dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int \frac{\log x}{x^2}dx$... (i)
 $I = \int x^{-2}\log x dx$
 $\Rightarrow \log x \int x^{-2}dx - \int \left[\frac{d(\log x)}{x}\int x^{-2}dx\right]dx$
 $\Rightarrow \log x \frac{x^{-1}}{-1} - \int \left(\frac{1}{-x^2}\right)dx$
 $\Rightarrow -\frac{\log x}{x} + \left(-\frac{1}{x}\right) + c$
 $\Rightarrow -\frac{1}{x}(\log x + 1) + c$
Ans $A - \frac{1}{x}(\log x + 1) + c$

Mark (\checkmark) against

Solution:

To find: Value of **∫ logxdx**

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int log x \cdot 1 \cdot dx \dots (i)$

Taking 1^{st} function as $\ensuremath{\text{logx}}$ and second function as 1

$$\Rightarrow I = \left[\log x \int 1 \, dx - \int \left(\frac{d\log x}{dx} \int 1 \, dx \right) dx \right]$$

$$\Rightarrow I = \left[\log x \cdot x - \int \left(\frac{1}{x} \int 1 \, dx \right) dx \right]$$

$$\Rightarrow I = \left[\log x \cdot x - \int \left(\frac{1}{x} x \right) dx \right]$$

$$\Rightarrow I = \left[\log x \cdot x - \int 1 dx \right]$$

$$\Rightarrow I = \left[\log x \cdot x - x \right] + c$$

$$\Rightarrow I = x(\log x - 1) + c$$

Ans) D x(logx-1)+c

Question: 12

Mark (\checkmark) against

Solution:

To find: Value of $\int \log_{10} x \, dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int \log_{10} x \, dx \dots$ (i) $I = \int \log_{10} x \, dx = \int \frac{\log x}{\log 10} \, dx$ $I = \frac{1}{\log_{0} 10} \int \log x \cdot 1 \, dx$

Taking 1^{st} function as $\ensuremath{\text{logx}}$ and second function as 1

$$\Rightarrow I = \frac{1}{\log_e 10} \left[\log x \int 1 \, dx - \int \left(\frac{d\log x}{dx} \int 1 \, dx \right) dx \right]$$
$$\Rightarrow I = \frac{1}{\log_e 10} \left[\log x \cdot x - \int \left(\frac{1}{x} \int 1 \, dx \right) dx \right]$$
$$\Rightarrow I = \frac{1}{\log_e 10} \left[\log x \cdot x - \int \left(\frac{1}{x} x \right) dx \right]$$
$$\Rightarrow I = \frac{1}{\log_e 10} \left[\log x \cdot x - \int \left(\frac{1}{x} x \right) dx \right]$$

$$\Rightarrow I = \frac{1}{\log_e 10} [\log x \cdot x - x] + c$$

 \Rightarrow I = x(logx-1) log₁₀ e +c

Ans) D x(logx-1)log₁₀ e +c

Question: 13

Mark (\checkmark) against

Solution:

To find: Value of ∫(logx)² dx

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x)\int g(x)dx\right]dx$$

We have, $I = \int (log x)^2 \cdot 1 \cdot dx \dots (i)$

Taking 1^{st} function as (logx)² and second function as 1

$$\Rightarrow I = \left[(\log x)^2 \int 1 \, dx - \int \left(\frac{d(\log x)^2}{dx} \int 1 \, dx \right) dx \right]$$

$$\Rightarrow I = \left[(\log x)^2 \int 1 \, dx - \int \left(\frac{2(\log x)}{x} \int 1 \, dx \right) dx \right]$$

$$\Rightarrow I = \left[(\log x)^2 \cdot x - 2 \int \log x \, dx \right]$$

$$\Rightarrow I = \left[(\log x)^2 \cdot x - 2(x \log x - x) \right] + c$$

$$\Rightarrow I = \left[(\log x)^2 \cdot x - 2(x \log x - x) \right] + c$$

$$\Rightarrow I = \left[(\log x)^2 \cdot x - 2(x \log x - x) \right] + c$$

$$\Rightarrow I = \left[(\log x)^2 \cdot x - 2(x \log x - x) \right] + c$$

$$\Rightarrow I = x(\log x)^2 - 2x \log x + 2x + c$$

Ans) C x(log x)^2 - 2x \log x + 2x + c
Ans) C x(log x)^2 - 2x \log x + 2x + c
Question: 14
Mark (\checkmark) against
Solution:
To find: Value of $\int e^{\sqrt{x}} dx$
Formula used: $\int \frac{1}{x} dx = \log |x| + c$
We have, I = $\int e^{\sqrt{x}} dx \dots (i)$
Putting $\sqrt{x} = t$

$$\Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}$$

$$\Rightarrow dx = 2\sqrt{x} \, dt$$

$$\Rightarrow dx = 2\sqrt{x} \, dt$$

$$\Rightarrow I = 2 \int t \cdot e^t \, dt$$

$$\Rightarrow I = 2 \left[t \int e^t \, dt - \int \left[\frac{d(t)}{dt} \int e^t \, dt \right] dt \right]$$

$$\Rightarrow I = 2\left[te^{t} - \int [1 e^{t}]dt\right]$$
$$\Rightarrow I = 2\left[te^{t} - e^{t}\right]$$
$$\Rightarrow I = e^{t} \cdot 2(t-1) + c$$
$$\therefore I = 2 e^{\sqrt{x}} (\sqrt{x} - 1) + c$$
Ans) C 2 $e^{\sqrt{x}} (\sqrt{x} - 1) + c$

Mark (\checkmark) against

Solution:

To find: Value of $\int \cos \sqrt{x} \, dx$

Formula used:
(i)
$$\int f(x)g(x)dx = f(x) \int g(x)dx - \int \left[f'(x) \int g(x)dx \right] dx$$

We have, $I = \int \cos \sqrt{x} dx \dots (i)$
Putting $\sqrt{x} = t$
 $\Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}$
 $\Rightarrow dx = 2\sqrt{x} dt$
 $\Rightarrow dx = 2\sqrt{x} dt$
 $\Rightarrow I = \int \cot t \cdot 2t dt$
 $\Rightarrow I = 2 \int t \cdot \cot t dt$
 $\Rightarrow I = 2 \left[t \int \cot t dt - \int \left[\frac{d(t)}{dt} \int \cot t dt \right] dt \right]$
 $\Rightarrow I = 2 \left[te^{t} - \int [1 e^{t}] dt \right]$
 $\Rightarrow I = 2 [te^{t} - e^{t}]$
 $\Rightarrow I = 2e^{\sqrt{x}} (\sqrt{x} - 1) + c$
Ans $C = e^{\sqrt{x}} (\sqrt{x} - 1) + c$

Question: 16

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int \cos(\log x) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int \cos(\log x) dx \dots (i)$

$$I = \int 1. \cos(\log x) dx$$

Taking $\cos(\log x)$ as first function and 1 as second function.

$$\Rightarrow I = \left[\cos \log x \int 1 \, dx - \int \left[\frac{d[\cos(\log x)]}{dx} \int 1 \, dx \right] dx \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) - \int \left[-\sin(\log x) \frac{1}{x} x \right] dx \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \int [\sin(\log x)] dx \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \int [1. \sin(\log x)] dx \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \left\{ \sin(\log x) \int 1 \, dx - \left(\frac{d\sin(\log x)}{dx} \int 1. dx \right) dx \right\} \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \left\{ x. \sin(\log x) - \left(\cos(\log x) \frac{1}{x} x \right) dx \right\} \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \left\{ x. \sin(\log x) - \left(\cos(\log x) \frac{1}{x} x \right) dx \right\} \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \left\{ x. \sin(\log x) - \left(\cos(\log x) \frac{1}{x} x \right) dx \right\} \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \left\{ x. \sin(\log x) - \left(\cos(\log x) \frac{1}{x} x \right) dx \right\} \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \left\{ x. \sin(\log x) - \left(\cos(\log x) \frac{1}{x} x \right) dx \right\} \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + \left\{ x. \sin(\log x) - \left(\cos(\log x) \frac{1}{x} x \right) dx \right\} \right]$$

$$\Rightarrow I = \left[x. \cos(\log x) + x. \sin(\log x) - (\cos(\log x) \frac{1}{x} x) dx \right\}$$

$$\Rightarrow I = \left[x. \cos(\log x) + x. \sin(\log x) - 1 \right]$$

$$\Rightarrow 2I = \left[x. \cos(\log x) + x. \sin(\log x) \right]$$

$$\Rightarrow I = \frac{x}{2} [\cos(\log x) + \sin(\log x)] + c$$

$$Ans \right) B \frac{x}{2} [\cos(\log x) + \sin(\log x)] + c$$

Question: 17

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int \sec^3 x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $\mathbf{I} = \int \sec^3 x \, dx \, \dots (i)$

$$I = \int \sec x \sec^2 x \, dx$$

Taking secx as first function and $\sec^2\!x$ as second function.

$$\Rightarrow I = \left[\sec x \int \sec^2 x \, dx - \int \left[\frac{d[\sec x]}{dx} \int \sec^2 x \, dx \right] dx \right]$$
$$\Rightarrow I = \left[\sec x \tan x - \int [\sec x \tan x \tan x] dx \right]$$
$$\Rightarrow I = \left[\sec x \tan x - \int [\sec x \tan^2 x] dx \right]$$

$$\Rightarrow I = \left[\sec x \tan x - \int [\sec x(\sec^2 x - 1)] dx \right]$$

$$\Rightarrow I = \left[\sec x \tan x - \int (\sec^3 x - \sec x) dx \right]$$

$$\Rightarrow I = \left[\sec x \tan x - \int \sec^3 x dx + \int \sec x dx \right]$$

$$\Rightarrow I = \left[\sec x \tan x - I + \log |\sec x + \tan x| + c \right]$$

$$\Rightarrow 2I = \left[\sec x \tan x + \log |\sec x + \tan x| + c \right]$$

$$\Rightarrow I = \frac{1}{2} \left[\sec x \tan x + \log |\sec x + \tan x| + c \right]$$

Ans) B $\frac{1}{2} \left[\sec x \tan x + \log |\sec x + \tan x| + c \right]$

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int \left\{ \frac{1}{(logx)} - \frac{1}{(logx)^2} \right\} dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int \left\{\frac{1}{(\log x)} - \frac{1}{(\log x)^2}\right\}dx \dots (i)$
Put $t = \log x$
 $e^t = e^{\log x} = x$
 $\frac{dx}{dt} = e^t$
 $\Rightarrow dx = e^t dt$
 $\Rightarrow I = \int \left\{\frac{1}{t} - \frac{1}{t^2}\right\}dx$
We know $\int e^x (f(x) + f'(x)) dx = e^x f(x)$
 $\Rightarrow I = \int \left\{\frac{1}{t} - \frac{1}{t^2}\right\}dx = e^t \frac{1}{t}$
 $\Rightarrow \frac{x}{\log x} + c$
Ans) B $\frac{x}{\log x} + c$
Question: 19

Mark (\checkmark) against

Solution:

To find: Value of
$$\int \left\{ \frac{1}{(logx)} - \frac{1}{(logx)^2} \right\} dx$$

Formula used:

(i) $\int f(x)g(x)dx = f(x) \int g(x)dx - \int \left[f'(x) \int g(x)dx \right] dx$ We have, $I = \int \left\{ \frac{1}{(\log x)} - \frac{1}{(\log x)^2} \right\} dx \dots$ (i) Put $t = \log x$ $e^t = e^{\log x} = x$ $\frac{dx}{dt} = e^t$ $\Rightarrow dx = e^t dt$ $\Rightarrow I = \int \left\{ \frac{1}{t} - \frac{1}{t^2} \right\} dx$ We know $\int e^x \left(f(x) + f'(x) \right) dx = e^x f(x)$ $\Rightarrow I = \int \left\{ \frac{1}{t} - \frac{1}{t^2} \right\} dx = e^t \frac{1}{t}$ $\Rightarrow \frac{x}{\log x} + c$ Ans) B $\frac{x}{\log x} + c$

Question: 20

Mark (\checkmark) against

Solution:

To find: Value of $\int (x2^x) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x)\int g(x)dx \right] dx$$

We have, $I = \int (x2^x)dx \dots (i)$
 $\Rightarrow I = x \int 2^x dx - \int \left(\frac{dx}{dx}\int 2^x dx\right) dx$
 $\Rightarrow I = x \frac{2^x}{\log 2} - \int \left(\frac{2^x}{\log 2}\right) dx$
 $\Rightarrow I = x \frac{2^x}{\log 2} - \frac{1}{\log 2} \int 2^x dx$
 $\Rightarrow I = x \frac{2^x}{\log 2} - \frac{1}{\log 2} \frac{2^x}{\log 2}$
 $\Rightarrow I = \frac{x \cdot 2^x}{\log 2} - \frac{2^x}{(\log 2)^2} + c$
 $\Rightarrow I = \frac{2^x}{(\log 2)^2} (x\log 2 - 1) + c$

Ans) D

Question: 21

Mark (\checkmark) against

Solution:

To find: Value of $\int x \cot^2 x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x) \int g(x)dx - \int \left[f'(x) \int g(x)dx \right] dx$$

We have, $I = \int x \cot^2 x \, dx \cdots (i)$
 $\Rightarrow I = x \int \cot^2 x \, dx - \int \left(\frac{dx}{dx} \int \cot^2 x \, dx \right) dx$
 $\Rightarrow I = x \int (\csc^2 x - 1) \, dx - \int \left(1. \int (\csc^2 x - 1) dx \right) dx$
 $\Rightarrow I = x(-\cot x - x) - \int (-\cot x - x) dx$
 $\Rightarrow I = -x \cot x - x^2 + \log |\sin x| + \frac{x^2}{2}$
 $\Rightarrow I = -x \cot x - \frac{x^2}{2} + \log |\sin x| + c$
Ans) B -x $\cot x - \frac{x^2}{2} + \log |\sin x| + c$
Question: 22
Mark (\checkmark) against
Solution:
To find: Value of $\int \sin \sqrt{x} \, dx$
Formula used: $\int \frac{1}{x} dx = \log |x| + c$
We have, $I = \int \sin \sqrt{x} \, dx \cdots (i)$
 $\sqrt{x} = t$
 $\Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}$
 $\Rightarrow dx = 2\sqrt{x} dt$
 $\Rightarrow dx = 2\sqrt{x} dt$
 $I = \int \sin t. 2t \, dt$
 $I = 2 \int t. \sin t \, dt$
 $\Rightarrow I = 2t (-\cosh t) - \int 1 (-\cosh t) dt$
 $\Rightarrow I = 2t (-\cosh t) + \int \cosh t$

 \Rightarrow I = -2 \sqrt{x} cos \sqrt{x} +sin \sqrt{x} +c

Ans) C 2√x cos√x+sin√x+c

Question: 23

Mark (\checkmark) against

Solution:

To find: Value of $\int e^{\sin x} \sin 2x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int [f(x)\int g(x)dx]dx$$

We have, $I = \int e^{\sin x} \sin 2x \, dx \dots (i)$
 $I = \int e^{\sin x} 2 \sin x \cos x \, dx$
Put sinx = t
 $\cos x = \frac{dt}{dx}$
 $\Rightarrow \cos x \, dx = dt$
 $I = 2\int e^t \cdot t \cdot dt$
 $\Rightarrow I = 2\left[t\int e^t dt - \int \left(\frac{dt}{dt}\int e^t dt\right)dt\right]$
 $\Rightarrow I = 2\left[te^t - \int 1e^t dt\right]$
 $\Rightarrow I = 2te^t - 2e^t + c$
 $\Rightarrow I = 2e^t (t-1) + c$
 $\Rightarrow I = 2e^{\sin x} (\sin x - 1) + c$
Ans) D 2 $e^{\sin x} (\sin x - 1) + c$

Question: 24

Mark (\checkmark) against

Solution:

To find: Value of
$$\int \frac{\sin^{-1} x}{(1-x^2)^{\frac{3}{2}}} dx$$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x)\int g(x)dx\right]dx$$

We have, $I = \int \frac{\sin^{-1}x}{(1-x^2)^{\frac{3}{2}}}dx$... (i)
 $I = \int \frac{\sin^{-1}x}{(1-x^2)^{\frac{3}{2}}}dx$

$$I = \int \frac{\sin^{-1}x}{\sqrt{1-x^{2}} (1-x^{2})} dx$$

Putting $\sin^{-1}x = t$, $x = \sin t$
 $\Rightarrow \cos t = \sqrt{1-x^{2}}$
 $\Rightarrow tant = \frac{x}{\sqrt{1-x^{2}}}$
 $\frac{1}{\sqrt{1-x^{2}}} dx = dt$
 $I = \int \frac{t}{(1-\sin^{2}t)} dt$
 $I = \int \frac{t}{\cos^{2}t} dt$
 $I = \int t \cdot \sec^{2} t dt$
 $\Rightarrow I = \left[t \int \sec^{2} t dt - \int \left(\frac{dt}{dt} \int \sec^{2} t dt \right) dt \right]$
 $\Rightarrow I = \left[t tant - \int 1 tant dt \right]$
 $\Rightarrow I = \left[tant - \int 1 tant dt \right]$
 $\Rightarrow I = \left[tant - \log |\cos t| + c \right]$
 $\Rightarrow I = 2 e^{t} (t-1) + c$
 $\Rightarrow I = 2 e^{\sin x} (\sin x - 1) + c$

Mark (\checkmark) against

Solution:

To find: Value of
$$\int \frac{x \tan^{-1} x}{(1-x^2)^{\frac{3}{2}}} dx$$

Formula used: $\int \frac{1}{x} dx = \log |x| + c$

We have,
$$I = \int \frac{x \tan^{-1} x}{(1+x^2)^{\frac{3}{2}}} dx \dots (i)$$

 $I = \int \frac{x \tan^{-1} x}{\sqrt{1+x^2} (1+x^2)} dx$
Putting $\tan^{-1} x = t$, $x = t$

 $dx = \sec^2 t dt$

When x = tant

$$\Rightarrow 1+x^{2} = 1+\tan^{2} t$$

$$\Rightarrow 1+x^{2} = \sec^{2} t$$

$$\Rightarrow \sqrt{1+x^{2}} = \sec t$$

$$\Rightarrow \sqrt{1+x^{2}} = \sec t$$

$$\Rightarrow \frac{1}{\sqrt{1+x^{2}}} = \cosh t$$

$$\Rightarrow \frac{1}{\sqrt{1+x^{2}}} = \cos^{2} t$$

$$\Rightarrow \frac{1}{\sqrt{1+x^{2}}} = 1 - \cos^{2} t$$

$$\Rightarrow \frac{1+x^{2}-1}{1+x^{2}} = \sin^{2} t$$

$$\Rightarrow \frac{x}{\sqrt{1+x^{2}}} = \sin t$$

$$I = \int \frac{\tan t}{\sec t \sec^{2} t} \sec^{2} t dt$$

$$I = \int t \sinh t dt$$

Taking 1^{st} function as **t** and second function as **sint**

$$\Rightarrow I = \left[t \int \sin t \, dt - \int \left(\frac{dt}{dt} \int \sin t \, dt \right) dt \right]$$

$$\Rightarrow I = \left[t(-\cos t) - \int (1 (-\cos t)) dt \right]$$

$$\Rightarrow I = \left[t(-\cos t) + \int \cos t dt \right]$$

$$\Rightarrow I = -t\cos t + \sin t + c$$

$$\Rightarrow I = -\tan^{-1} x \frac{1}{\sqrt{1+x^2}} + \frac{x}{\sqrt{1+x^2}} + c$$

$$\Rightarrow I = \frac{-\tan^{-1} x 1}{\sqrt{1+x^2}} + \frac{x}{\sqrt{1+x^2}} + c$$

Ans) B $\frac{-\tan^{-1} x 1}{\sqrt{1+x^2}} + \frac{x}{\sqrt{1+x^2}} + c$
Question: 26

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int x \tan^{-1} x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $\mathbf{I} = \int \mathbf{x} \, \mathbf{tan}^{-1} \mathbf{x} \, \mathbf{dx} \dots (\mathbf{i})$

Taking 1^{st} function as $\tan^{-1} x$ and second function as x

$$\Rightarrow I = \left[\tan^{-1} x \int x \, dx - \int \left(\frac{d(\tan^{-1} x)}{dx} \int x \, dx \right) dx \right]$$

$$\Rightarrow I = \left[\tan^{-1} x \frac{x^2}{2} - \int \left(\frac{1}{1+x^2} \frac{x^2}{2} \right) dx \right]$$

$$\Rightarrow I = \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(\frac{x^2+1-1}{1+x^2} \right) dx \right]$$

$$\Rightarrow I = \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left[\int 1 dx - \int \frac{1}{1+x^2} dx \right] \right]$$

$$\Rightarrow I = \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left[x - \tan^{-1} x \right] \right] + c$$

$$\Rightarrow I = \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} x + \frac{1}{2} \tan^{-1} x \right] + c$$

$$\Rightarrow I = \frac{1}{2} (1+x^2) \tan^{-1} x - \frac{1}{2} x + c$$

Ans) C $\frac{1}{2} (1+x^2) \tan^{-1} x - \frac{1}{2} x + c$

Question: 27

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int \tan^{-1} \sqrt{x} \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $\mathbf{I} = \int \tan^{-1} \sqrt{\mathbf{x}} \, d\mathbf{x} \dots$ (i)

Let√x=t,

$$\Rightarrow \frac{1}{2\sqrt{x}} dx = dt$$

$$\Rightarrow dx = 2t dt$$

$$I = \int tan^{-1} \sqrt{x} dx$$

$$\Rightarrow I = \int tan^{-1} t 2t dt$$

$$\Rightarrow I = 2 \int tan^{-1} t t dt$$

Taking 1^{st} function as $\tan^{-1} t$ and second function as t

$$\Rightarrow I = 2 \left[\tan^{-1} t \int t \, dt - \int \left(\frac{d(\tan^{-1} t)}{dt} \int t \, dt \right) dt \right]$$

$$\Rightarrow I = 2\left[\tan^{-1}t\frac{t^2}{2} - \int\left(\frac{1}{1+t^2}\frac{t^2}{2}\right)dt\right]$$

$$\Rightarrow I = 2\left[\frac{t^2}{2}\tan^{-1}t - \frac{1}{2}\int\left(\frac{t^2+1-1}{1+t^2}\right)dt\right]$$

$$\Rightarrow I = 2\left[\frac{t^2}{2}\tan^{-1}t - \frac{1}{2}\left[\int 1dt - \int\frac{1}{1+t^2}dt\right]\right]$$

$$\Rightarrow I = 2\left[\frac{t^2}{2}\tan^{-1}t - \frac{1}{2}\left[t - \tan^{-1}t\right]\right] + c$$

$$\Rightarrow I = 2\left[\frac{x}{2}\tan^{-1}\sqrt{x} - \frac{1}{2}\sqrt{x} + \frac{1}{2}\tan^{-1}\sqrt{x}\right] + c$$

$$\Rightarrow I = x\tan^{-1}\sqrt{x} - \sqrt{x} + \tan^{-1}\sqrt{x} + c$$

$$\Rightarrow I = (x+1)\tan^{-1}\sqrt{x} - \sqrt{x} + c$$

Ans) B (x+1)tan⁻¹ \sqrt{x} - \sqrt{x} +c

Question: 28

Mark (\checkmark) against

Solution:

To find: Value of $\int \cos^{-1} x \ dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have,
$$I = \int \cos^{-1} x \, dx \dots (i)$$

Let $\cos^{-1} x = \theta$, $\Rightarrow x = \cos\theta$
 $\Rightarrow dx = -\sin\theta \, d\theta$
If $x = \cos\theta$,
Then $\sqrt{1 - x^2} = \sin\theta$
 $I = \int \cos^{-1} x \, dx$
 $\Rightarrow I = -\int \theta \sin\theta \, d\theta$

Taking $\mathbf{1}^{st}$ function as $\pmb{\theta}$ and second function as $\textbf{sin}\pmb{\theta}$

$$\Rightarrow I = -\left[\theta \int \sin\theta \, d\theta - \int \left(\frac{d\theta}{d\theta} \int \sin\theta \, d\theta\right) d\theta\right]$$
$$\Rightarrow I = -\left[\theta(-\cos\theta) - \int (-\cos\theta) d\theta\right] + c$$
$$\Rightarrow I = -\left[\theta(-\cos\theta) - (-\sin\theta)\right] + c$$
$$\Rightarrow I = -\left[\theta(-\cos\theta) + \sin\theta\right] + c$$
$$\Rightarrow I = \theta\cos\theta - \sin\theta + c$$

 \Rightarrow I = x.cos⁻¹x - $\sqrt{1-x^2}+c$

Ans) A x . $\cos^{-1}x - \sqrt{1-x^2} + c$

Question: 29

Mark (\checkmark) against

Solution:

To find: Value of $\int \tan^{-1} x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x)\int g(x)dx\right]dx$$

We have, $I = \int \tan^{-1} x \, dx \dots (i)$ Let $\tan^{-1} x = \theta$, $\Rightarrow x = \tan \theta$ $\Rightarrow dx = \sec^2 \theta \, d\theta$ If $x = \tan \theta$, Then $1 + x^2 = \sec^2 \theta$ $\Rightarrow \theta = \sec^{-1} \sqrt{1 + x^2}$ $I = \int \tan^{-1} x \, dx$ $\Rightarrow I = \int \theta \sec^2 \theta \, d\theta$

Taking 1^{st} function as $\pmb{\theta}$ and second function as $\textbf{sec}^2\,\pmb{\theta}$

$$\Rightarrow I = \left[\theta \int \sec^2 \theta \ d\theta - \int \left(\frac{d\theta}{d\theta} \int \sec^2 \theta \ d\theta\right) d\theta\right]$$

$$\Rightarrow I = \left[\theta(\tan\theta) - \int (1 \ (\tan\theta)) d\theta\right] + c$$

$$\Rightarrow I = \left[\theta(\tan\theta) - (\log|\sec\theta|)\right] + c$$

$$\Rightarrow I = \left[\tan^{-1}x \ (x) - \log\left|\sec\left(\sec^{-1}\sqrt{1+x^2}\right)\right|\right] + c$$

$$\Rightarrow I = \left[x \cdot \tan^{-1}x - (\log\left|\sqrt{1+x^2}\right|)\right] + c$$

$$\Rightarrow I = x \cdot \tan^{-1}x - \frac{1}{2}\log|1+x^2| + c$$

Ans) B x \cdot tan^{-1}x - \frac{1}{2}\log|1+x^2| + c

Question: 30

Mark (\checkmark) against

Solution:

To find: Value of $\int \sec^{-1} x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int \sec^{-1} x \, dx \dots (i)$ Let $\sec^{-1} x = \theta$, $\Rightarrow x = \sec\theta$ $\Rightarrow dx = \sec\theta \tan\theta \, d\theta$ If $x = \sec\theta$, Then $\sqrt{x^2 - 1} = \tan\theta$ $I = \int \sec^{-1} x \, dx$ $\Rightarrow I = \int \theta \sec\theta \tan\theta \, d\theta$

Taking 1^{st} function as $\pmb{\theta}$ and second function as $\textbf{sec} \pmb{\theta} \, \textbf{tan} \pmb{\theta}$

$$\Rightarrow I = \left[\theta \int \sec\theta \tan\theta \, d\theta - \int \left(\frac{d\theta}{d\theta} \int \sec\theta \tan\theta \, d\theta\right) d\theta\right]$$
$$\Rightarrow I = \left[\theta(\sec\theta) - \int (1 (\sec\theta)) d\theta\right] + c$$
$$\Rightarrow I = \left[\theta(\sec\theta) - (\log|\sec\theta + \tan\theta|)\right] + c$$
$$\Rightarrow I = \left[\sec^{-1}x (x) - (\log|x + \sqrt{x^2 - 1}|)\right] + c$$
$$\Rightarrow I = x \cdot \sec^{-1}x - \log|x + \sqrt{x^2 - 1}| + c$$

Ans) B x . sec⁻¹x - log
$$x + \sqrt{x^2 - 1} + c$$

Question: 31

Mark (\checkmark) against

Solution:

To find: Value of $\int \sin^{-1}(3x - 4x^3) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int [f'(x)\int g(x)dx]dx$$

We have, $I = \int \sin^{-1}(3x-4x^3) dx \dots$ (i)
Let $x = \sin\theta$, $\Rightarrow \theta = \sin^{-1}x$
 $\Rightarrow dx = \cos\theta d\theta$
If $x = \sin\theta$,
Then $\sqrt{1-x^2} = \cos\theta$
 $I = \int \sin^{-1}(3x-4x^3) dx$
 $\Rightarrow I = \int \sin^{-1}(3\sin\theta-4\sin^3\theta)\cos\theta d\theta$
 $\Rightarrow I = \int \sin^{-1}(\sin3\theta)\cos\theta d\theta$
 $\Rightarrow I = \int 3\theta\cos\theta d\theta$

$$\Rightarrow$$
 I = 3 $\int \theta \cos\theta \, d\theta$

Taking $\mathbf{1}^{\text{st}}$ function as $\pmb{\theta}$ and second function as $\textbf{cos}\pmb{\theta}$

$$\Rightarrow I = 3 \left[\theta \int \cos\theta \, d\theta - \int \left(\frac{d\theta}{d\theta} \int \cos\theta \, d\theta \right) d\theta \right]$$

$$\Rightarrow I = 3 \left[\theta (\sin\theta) - \int (1 (\sin\theta)) d\theta \right]$$

$$\Rightarrow I = 3 [\theta (\sin\theta) - (-\cos\theta)] + c$$

$$\Rightarrow I = 3 [\theta (\sin\theta) + \cos\theta] + c$$

$$\Rightarrow I = 3 \sin^{-1} x (x) + 3\sqrt{1 - x^{2}} + c$$

$$\Rightarrow I = 3 x \sin^{-1} x + 3\sqrt{1 - x^{2}} + c$$

$$\Rightarrow I = 3 \left[x \sin^{-1} x + \sqrt{1 - x^{2}} \right] + c$$

Ans) A 3 $\left[x \sin^{-1} x + \sqrt{1 - x^{2}} \right] + c$

Question: 32

Mark (\checkmark) against

Solution:

To find: Value of $\int \sin^{-1} \frac{2x}{1+x^2} dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x) \int g(x)dx \right] dx$$

We have, $I = \int \sin^{-1} \frac{2x}{1+x^2} dx \dots (i)$
Let $x = \tan\theta$, $\Rightarrow \theta = \tan^{-1}x$
 $\Rightarrow dx = \sec^{2}\theta d\theta$
If $x = \tan\theta$,
Then $1 + x^2 = \sec^{2}\theta$
 $\Rightarrow \theta = \sec^{-1}\sqrt{1+x^2}$
 $I = \int \sin^{-1} \frac{2x}{1+x^2} dx$
 $\Rightarrow I = \int \sin^{-1} \left(\frac{2\tan\theta}{1+\tan^{2}\theta} \right) \sec^{2}\theta d\theta$
 $\Rightarrow I = \int \sin^{-1} (\sin2\theta) \sec^{2}\theta d\theta$
 $\Rightarrow I = \int 2\theta \sec^{2}\theta d\theta$
 $\Rightarrow I = 2\int \theta \sec^{2}\theta d\theta$

Taking 1st function as $\boldsymbol{\theta}$ and second function as $\operatorname{sec}^2 \boldsymbol{\theta}$

$$\Rightarrow I = 2 \left[\theta \int \sec^2 \theta \ d\theta - \int \left(\frac{d\theta}{d\theta} \int \sec^2 \theta \ d\theta \right) d\theta \right]$$

$$\Rightarrow I = 2 \left[\theta(\tan\theta) - \int (1 \ (\tan\theta)) d\theta \right]$$

$$\Rightarrow I = 2 \left[\theta(\tan\theta) - (\log(\sec\theta)) + c$$

$$\Rightarrow I = 2 \left[\tan^{-1} x \ (x) - (\log(\sec(\sec^{-1} \sqrt{1 + x^2}))) \right] + c$$

$$\Rightarrow I = 2 \left[\tan^{-1} x \ (x) - (\log\sqrt{1 + x^2}) \right] + c$$

$$\Rightarrow I = 2 \left[x \ \tan^{-1} x \ - \frac{1}{2} (\log 1 + x^2) \right] + c$$

$$\Rightarrow I = 2 x \ \tan^{-1} x \ - (\log 1 + x^2) + c$$

Ans) B 2x \ \tan^{-1} x \ - (\log 1 + x^2) + c

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int tan^{-1} \sqrt{\frac{1-x}{1+x}} dx$

Formula used: $\int \frac{1}{x} dx = \log |x| + c$

We have,
$$I = \int \tan^{-1} \sqrt{\frac{1-x}{1+x}} \, dx \dots (i)$$

- Let $\mathbf{x}=\cos\theta$, $\Rightarrow \theta=\cos^{-1}\mathbf{x}$
- \Rightarrow dx = -sin θ d θ

If
$$x = \cos\theta$$
 ,

Then $\sqrt{1-x^2} = \sin\theta$

$$I = \int \tan^{-1} \sqrt{\frac{1-x}{1+x}} \, dx$$

$$\Rightarrow I = \int \tan^{-1} \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} \cdot -\sin\theta \, d\theta$$

$$\Rightarrow I = \int \tan^{-1} \sqrt{\frac{2\sin^2\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}} \cdot -\sin\theta \, d\theta$$

$$\Rightarrow I = \int \tan^{-1} \sqrt{\tan^2\frac{\theta}{2}} \cdot -\sin\theta \, d\theta$$

$$\Rightarrow I = \int \tan^{-1} \left(\tan^2\frac{\theta}{2}\right) \cdot -\sin\theta \, d\theta$$

$$\Rightarrow I = \int \frac{\theta}{2} \cdot -\sin\theta \, d\theta$$
$$\Rightarrow I = -\frac{1}{2} \int \theta \cdot \sin\theta \, d\theta$$

Taking $\mathbf{1}^{st}$ function as $\pmb{\theta}$ and second function as $\textbf{sin}\pmb{\theta}$

$$\Rightarrow I = -\frac{1}{2} \left[\theta \int \sin\theta \, d\theta - \int \left(\frac{d\theta}{d\theta} \int \sin\theta \, d\theta \right) d\theta \right]$$

$$\Rightarrow I = -\frac{1}{2} \left[\theta (-\cos\theta) - \int (1 (-\cos\theta)) d\theta \right]$$

$$\Rightarrow I = -\frac{1}{2} \left[\theta (-\cos\theta) + \int (\cos\theta) d\theta \right]$$

$$\Rightarrow I = -\frac{1}{2} \left[\theta (-\cos\theta) + \sin\theta \right] + c$$

$$\Rightarrow I = \frac{1}{2} \cos^{-1} x (x) - \frac{1}{2} \sqrt{1 - x^{2}} + c$$

$$\Rightarrow I = \frac{1}{2} x \cdot \cos^{-1} x - \frac{1}{2} \sqrt{1 - x^{2}} + c$$

Ans) C $\frac{1}{2} x \cdot \cos^{-1} x - \frac{1}{2} \sqrt{1 - x^{2}} + c$

Question: 34

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2}\right) dx$ Formula used: $\int \frac{1}{x} dx = \log|x| + c$ We have, $I = \int \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2}\right) dx \dots (i)$ Let $x = \tan\theta$, $\Rightarrow \theta = \tan^{-1}x$ $\Rightarrow dx = \sec^{2}\theta d\theta$ If $x = \tan\theta$, Then $1 + x^2 = \sec^{2}\theta$ $\Rightarrow \theta = \sec^{-1}\sqrt{1 + x^2}$ $I = \int \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2}\right) dx$ $\Rightarrow I = \int \tan^{-1} \left(\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}\right) \sec^2\theta d\theta$ $\Rightarrow I = \int \tan^{-1} (\tan 3\theta) \sec^2\theta d\theta$ $\Rightarrow I = \int 3\theta \sec^2\theta d\theta$
$$\Rightarrow$$
 I = 3 $\int \theta \sec^2 \theta \ d\theta$

Taking 1st function as $\boldsymbol{\theta}$ and second function as $\operatorname{sec}^2 \boldsymbol{\theta}$

$$\Rightarrow I = 3 \left[\theta \int \sec^2 \theta \ d\theta - \int \left(\frac{d\theta}{d\theta} \int \sec^2 \theta \ d\theta \right) d\theta \right]$$

$$\Rightarrow I = 3 \left[\theta \tan \theta - \int (\tan \theta) d\theta \right]$$

$$\Rightarrow I = 3 \left[\theta \tan \theta - (\log \sec \theta) \right] + c$$

$$\Rightarrow I = 3 \theta \tan \theta - 3 \log(\sec \theta) + c$$

$$\Rightarrow I = 3 \tan^{-1} x \tan(\tan^{-1} x) - 3 \log\left\{ \sec\left(\sec^{-1} \sqrt{1 + x^2} \right) \right\} + c$$

$$\Rightarrow I = 3x. \tan^{-1} x - 3 \log\left\{ \sqrt{1 + x^2} \right\} + c$$

$$\Rightarrow I = 3x. \tan^{-1} x - \frac{3}{2} \log\{1 + x^2\} + c$$

Ans) B 3x. $\tan^{-1} x - \frac{3}{2} \log\{1 + x^2\} + c$

Question: 35

Mark (\checkmark) against

Solution:

To find: Value of $\int x^2 \cos x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x)\int g(x)dx\right]dx$$

We have, $\mathbf{I} = \int x^2 \mathbf{cosx} \, d\mathbf{x} \dots (\mathbf{i})$

Taking 1^{st} function as χ^2 and second function as $\ensuremath{\text{cosx}}$

$$\Rightarrow I = \left[x^{2} \int \cos x \, dx - \int \left(\frac{dx^{2}}{dx} \int \cos x \, dx \right) dx \right]$$
$$\Rightarrow I = \left[x^{2} \sin x - \int (2x \sin x) dx \right]$$
$$\Rightarrow I = \left[x^{2} \sin x - 2 \int (x \sin x) dx \right]$$

Taking 1^{st} function as **x** and second function as **sinx**

$$\Rightarrow I = x^{2} \sin x - 2 \left[x \int \sin x \, dx - \int \left(\frac{dx}{dx} \int \sin x \, dx \right) dx \right]$$

$$\Rightarrow I = x^{2} \sin x - 2 \left[x(-\cos x) - \int (1 (-\cos x) dx \right]$$

$$\Rightarrow I = x^{2} \sin x - 2 [x(-\cos x) - (-\sin x)] + c$$

$$\Rightarrow I = x^{2} \sin x - 2 [x(-\cos x) + \sin x] + c$$

$$\Rightarrow I = x^{2} \sin x + 2x \cos x - 2 \sin x + c$$

Ans) **A** $x^{2} \sin x + 2x \cos x - 2 \sin x + c$

Question: 36

Mark (\checkmark) against

Solution:

To find: Value of $\int sinx \log(cosx) dx$

Formula used:

(i) $\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x) \int g(x)dx \right] dx$ We have, $I = \int \sin x \log (\cos x) dx \dots (i)$ Let $\cos x = t$ -sinx dx = dt $I = \int \sin x \log (\cos x) dx$ $I = -\int \log t dt$ $I = -\int \log t \dots dt$

Taking 1^{st} function as $\log t$ and second function as 1

 $\Rightarrow I = -\left[\log t \int 1 \, dt - \int \left(\frac{d\log t}{dt} \int 1 \, dt\right) dt\right]$ $\Rightarrow I = -\left[\log t \cdot t - \int \left(\frac{1}{t}t\right)dt\right]$ \Rightarrow I = - $\left[\log t \cdot t - \int 1 dt \right]$ \Rightarrow I = -[log t.t-t]+c \Rightarrow I = -log t.t+t+c \Rightarrow I = -cosx . log (cosx) + cosx+c Ans) B -cosx . log (cosx) + cosx+c **Question: 37** Mark ($\sqrt{}$) against Solution: To find: Value of $\int x \sin x \cos x dx$ Formula used: $\int \frac{1}{x} dx = \log |x| + c$ We have, $I = \int x \sin x \cos x \, dx \dots$ (i) $I = \frac{1}{2} \int x 2 \sin x \cos x dx$ $I = \frac{1}{2} \int x \sin 2x \, dx$ Let 2x = t2dx = dt

$$dx = \frac{dt}{2}$$
$$I = \frac{1}{2} \int \frac{t}{2} \operatorname{sint} \frac{dt}{2}$$
$$I = \frac{1}{8} \int t \operatorname{sint} dt$$

Taking $\mathbf{1}^{st}$ function as \boldsymbol{t} and second function as sint

$$\Rightarrow I = \frac{1}{8} \left[t \int \sin t \, dt - \int \left(\frac{dt}{dt} \int \sin t \, dt \right) dt \right]$$

$$\Rightarrow I = \frac{1}{8} \left[t \cdot (-\cos t) - \int (-\cos t) \, dt \right]$$

$$\Rightarrow I = \frac{1}{8} \left[-t \cdot \cos t - (-\sin t) \right] + c$$

$$\Rightarrow I = \frac{1}{8} \left[-t \cdot \cos t + \sin t \right] + c$$

$$\Rightarrow I = -\frac{1}{8} 2x \cdot \cos 2x + \frac{1}{8} \sin 2x + c$$

$$\Rightarrow I = -\frac{1}{4} x \cdot \cos 2x + \frac{1}{8} \sin 2x + c$$

Ans) A $-\frac{1}{4} x \cdot \cos 2x + \frac{1}{8} \sin 2x + c$

Question: 38

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int x^3 \cos^2 dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x) \int g(x)dx \right] dx$$

We have, $I = \int x^3 \cos x^2 dx \dots$ (i)
Let $x^2 = t$
 $\Rightarrow xdx = \frac{1}{2}dt$
 $I = \int x^3 \cos x^2 dx$
 $I = \int x \cdot x^2 \cos x^2 dx$
 $I = \int t \cos t \frac{1}{2} dt$
 $I = \frac{1}{2}\int t \cos t dt$

Taking 1^{st} function as **t** and second function as **cos t**

$$\Rightarrow I = \frac{1}{2} \left[t \int \cot dt - \int \left(\frac{dt}{dt} \int \cot dt \right) \right]$$

$$\Rightarrow I = \frac{1}{2} \left[t \cdot \sin t - \int \sin t \, dt \right]$$

$$\Rightarrow I = \frac{1}{2} \left[t \cdot \sin t - (-\cos t) + c \right]$$

$$\Rightarrow I = \frac{1}{2} \left[t \cdot \sin t + \cos t + c \right]$$

$$\Rightarrow I = \frac{1}{2} x^{2} \cdot \sin x^{2} + \frac{1}{2} \cos x^{2} + c$$

Ans) B $\frac{1}{2} x^{2} \cdot \sin x^{2} + \frac{1}{2} \cos x^{2} + c$

dt

Question: 39

Mark (\checkmark) against

Solution:

To find: Value of $\int \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) dx$

Formula used:
(i)
$$\int f(x)g(x)dx = f(x) \int g(x)dx - \int \left[f'(x) \int g(x)dx \right] dx$$

We have, $I = \int \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) dx \dots (i)$
Let $x = \tan t$, $t = \tan^{-1}x$
 $\Rightarrow dx = \sec^2 t dt$
If $\tan t = x$,
sec $t = 1 + x^2$
 $I = \int \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) dx$
 $I = \int \cos^{-1} \left(\frac{1-\tan^2 t}{1+\tan^2 t} \right) \sec^2 t dt$
 $I = \int \cos^{-1} (\cos 2t) \sec^2 t dt$
 $I = \int 2t \sec^2 t dt$
 $I = 2 \int t \sec^2 t dt$
Taking 1st function as t and second function as $\sec^2 t$
 $\Rightarrow I = 2 \left[t \int \sec^2 t dt - \int \left(\frac{dt}{dt} \int \sec^2 t dt \right) dt \right]$

$$\Rightarrow I = 2 \left[t \int \sec^2 t \, dt - \int \left(\frac{dt}{dt} \int \sec^2 t \, dt \right)$$
$$\Rightarrow I = 2 \left[t \tan t - \int t \operatorname{ant} dt \right]$$
$$\Rightarrow I = 2 \left[t \tan t - \log|\operatorname{sect}| + c \right]$$

 $\Rightarrow I = 2[tan^{-1}x \ x - log|1 + x^2| + c]$

 $\Rightarrow I = 2x \tan^{-1} x - 2 \log |1 + x^2| + c$

Ans) D None of these

Question: 40

Mark (\checkmark) against

Solution:

To find: Value of $\int x \tan^{-1} x \, dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $\mathbf{I} = \int \mathbf{x} \tan^{-1} \mathbf{x} \, d\mathbf{x} \dots$ (i)

Taking $1^{\rm st}$ function as ${{\tt tan}^{-1}\, {\tt x}}$ and second function as ${\tt x}$

$$\Rightarrow I = \left[\tan^{-1} x \int x \, dx - \int \left(\frac{d \tan^{-1} x}{dx} \int x \, dx \right) dx \right]$$

$$\Rightarrow I = \left[\tan^{-1} x \frac{x^2}{2} - \int \left(\frac{1}{(1+x^2)} \frac{x^2}{2} \right) dx \right]$$

$$\Rightarrow I = \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(\frac{x^2}{(1+x^2)} \right) dx \right]$$

$$\Rightarrow I = \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{(1+x^2)} \right) dx \right]$$

$$\Rightarrow I = \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int 1 \cdot dx + \frac{1}{2} \int \frac{1}{(1+x^2)} \cdot dx \right]$$

$$\Rightarrow I = \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} x + \frac{1}{2} \tan^{-1} x \right] + c$$

$$\Rightarrow I = \left[\frac{1}{2} (x^2 + 1) \tan^{-1} x - \frac{1}{2} x \right] + c$$

$$\Rightarrow I = \frac{1}{2} (x^2 + 1) \tan^{-1} x - \frac{1}{2} x + c$$

Ans) A $\frac{1}{2} (x^2 + 1) \tan^{-1} x - \frac{1}{2} x + c$

Question: 41

Mark (\checkmark) against

Solution:

To find: Value of $\int \sin(\log x) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int \sin(\log x) dx \dots (i)$

 $I = \int sin(logx) . 1.dx$

Taking 1st function as sin(logx) and second function as 1

$$\Rightarrow I = \left[\sin(\log x) \int 1 \, dx - \int \left(\frac{d \sin(\log x)}{dx} \int 1 \, dx \right) dx \right]$$
$$\Rightarrow I = \left[\sin(\log x) \cdot x - \int \frac{\cos(\log x) \cdot x}{x} \, dx \right]$$
$$\Rightarrow I = \left[\sin(\log x) \cdot x - \int \cos(\log x) \, dx \right]$$

Taking 1st function as cos(logx) and second function as 1

$$\Rightarrow I = \sin(\log x) \cdot x - \left[\cos(\log x) \int 1 \, dx - \int \left(\frac{d\cos(\log x)}{dx} \int 1 \, dx\right) dx\right]$$

$$\Rightarrow I = \sin(\log x) \cdot x - \left[\cos(\log x) \cdot x - \int -\frac{\sin(\log x) \cdot x}{x} dx\right]$$

$$\Rightarrow I = \sin(\log x) \cdot x - \left[\cos(\log x) \cdot x + \int \sin(\log x) dx\right]$$

$$\Rightarrow I = \sin(\log x) \cdot x - \left[\cos(\log x) \cdot x + I\right] + c$$

$$\Rightarrow I = \sin(\log x) \cdot x - \cos(\log x) \cdot x - I + c$$

$$\Rightarrow 2I = \sin(\log x) \cdot x - \cos(\log x) \cdot x + c$$

$$\Rightarrow I = \frac{\sin(\log x) \cdot x - \cos(\log x) \cdot x}{2} + c$$

$$\Rightarrow I = \frac{1}{2}x \cdot \sin(\log x) - x \cdot \frac{1}{2}\cos(\log x) + c$$

Ans) B $\frac{1}{2}x \cdot \sin(\log x) - x \cdot \frac{1}{2}\cos(\log x) + c$
Question: 42

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int (\sin^{-1} x)^2 dx$

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int [f'(x)\int g(x)dx]dx$$

We have, $I = \int (\sin^{-1}x)^2 dx \dots (i)$
Putting sint = $x, \Rightarrow t = \sin^{-1}x$
 $\Rightarrow dx = \cot dt$
When $x = \sin t$ then $\sqrt{1-x^2} = \cot t$
 $I = \int (\sin^{-1}x)^2 dx$
 $\Rightarrow I = \int (\sin^{-1}(\sin t))^2 \cot t t$

 $\Rightarrow I = \int t^2 \cot dt$

Taking 1^{st} function as t^2 and second function as cost

$$\Rightarrow I = \left[t^{2} \int \cot dt - \int \left(\frac{dt^{2}}{dt} \int \cot dt\right) dt\right]$$
$$\Rightarrow I = \left[t^{2} \sinh - \int (2t \sin t) dt\right]$$
$$\Rightarrow I = \left[t^{2} \sinh - 2 \int (t \sin t) dt\right]$$

Taking 1st function as t and second function as sint

$$\Rightarrow I = t^{2} \sin t - 2 \left[\int (t \sin t) dt \right]$$

$$\Rightarrow I = t^{2} \sin t - 2 \left[t \int \sin t \, dt - \int \left(\frac{dt}{dt} \int \sin t \, dt \right) dt \right]$$

$$\Rightarrow I = t^{2} \sin t - 2 \left[t(-\cos t) - \int (-\cos t) dt \right]$$

$$\Rightarrow I = t^{2} \sin t - 2 \left[-t \cosh t - (-\sin t) + c \right]$$

$$\Rightarrow I = t^{2} \sin t - 2 \left[-t \cosh t - (-\sin t) + c \right]$$

$$\Rightarrow I = t^{2} \sin t + 2 t \cosh t - 2 \sin t + c$$

$$\Rightarrow I = t^{2} \sin t + 2 t \cosh t - 2 \sin t + c$$

$$\Rightarrow I = x \left(\sin^{-1} x \right)^{2} + 2 \sin^{-1} x \sqrt{1 - x^{2}} - 2x + c$$

Ans) D x (sin^{-1} x)^{2} + 2 sin^{-1} x \sqrt{1 - x^{2}} - 2x + c

Ans) D x (sin⁻¹ x) + 2 sin⁻¹ x
$$\sqrt{1-x^2-x^2}$$

Question: 43

Mark (\checkmark) against

Solution:

To find: Value of $\int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right)dx \dots (i)$
Here $f(x) = \frac{1}{x}$
 $\Rightarrow f'(x) = -\frac{1}{x^2}$
 $\Rightarrow I = \int e^x \left(f(x) + f'(x)\right)dx$
 $\Rightarrow I = e^x f(x) + c$
 $\Rightarrow I = e^x \frac{1}{x} + c$
Ans) $C e^x \frac{1}{x} + c$

Question: 44

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int e^x \left(\frac{1}{x^2} - \frac{2}{x^3}\right) dx$ Formula used: (i) $\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x)\int g(x)dx\right]dx$ We have, $I = \int e^{x} \left(\frac{1}{x^{2}} - \frac{2}{x^{3}}\right) dx \dots (i)$ Here $f(x) = \frac{1}{x^2}$ $\Rightarrow \dot{f}(x) = -\frac{2}{x^3}$ \Rightarrow I= $\int e^{x} (f(x)+\dot{f}(x)) dx$ \Rightarrow I=e^x f(x)+c \Rightarrow I = e^x $\frac{1}{x^2}$ +c Ans) B $e^x \frac{1}{x^2} + c$

Question: 45

Mark ($\sqrt{}$) against

Solution:

To find: Value of
$$\int e^x \left(\sin^{-1} x + \frac{1}{\sqrt{1-x^2}} \right) dx$$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[\dot{f}(x)\int g(x)dx\right]dx$$

We have, $I = \int e^x \left(\sin^{-1}x + \frac{1}{\sqrt{1-x^2}}\right)dx \dots (i)$
Here $f(x) = \sin^{-1}x$
 $\Rightarrow \dot{f}(x) = \frac{1}{\sqrt{1-x^2}}$
 $\Rightarrow I = \int e^x \left(f(x) + \dot{f}(x)\right)dx$
 $\Rightarrow I = e^x f(x) + c$
 $\Rightarrow I = e^x \sin^{-1}x + c$
Ans) B $e^x \sin^{-1}x + c$
Question: 46
Mark (\checkmark) against
Solution:

To find: Value of $\int e^{x} (tanx+log(secx)) dx$

Formula used:

(i) $\int f(x)g(x)dx = f(x) \int g(x)dx - \int \left[\dot{f}(x) \int g(x)dx \right] dx$ We have, $I = \int e^x(\tan x + \log(\sec x)) dx \dots (i)$ $\Rightarrow I = \int e^x(\tan x - \log(\cos x)) dx$ Here $f(x) = -\log(\cos x)$ $\Rightarrow \dot{f}(x) = \tan x$ $\Rightarrow I = \int e^x (f(x) + \dot{f}(x)) dx$ $\Rightarrow I = e^x f(x) + c$ $\Rightarrow I = -e^x \log(\sec x) + c$ $Ans) A e^x \log(\sec x) + c$ Question: 47 Mark (\checkmark) against Solution:

To find: Value of $\int e^x (tanx + log(secx)) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x) \int g(x)dx - \int \left[\dot{f}(x) \int g(x)dx \right] dx$$

We have, $I = \int e^x(\tan x + \log(\sec x)) dx \dots (i)$
 $\Rightarrow I = \int e^x(\tan x - \log(\cos x)) dx$
Here $f(x) = -\log(\cos x)$
 $\Rightarrow \dot{f}(x) = \tan x$
 $\Rightarrow I = \int e^x (f(x) + \dot{f}(x)) dx$
 $\Rightarrow I = e^x f(x) + c$
 $\Rightarrow I = -e^x \log(\sec x) + c$
 $\Rightarrow I = e^x \log(\sec x) + c$
Ans) A $e^x \log(\sec x) + c$
Question: 48
Mark (\checkmark) against
Solution:

To find: Value of $\int e^x (cotx + log(sinx)) dx$

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int e^{x} (\cot x + \log(\sin x)) dx \dots (i)$

Here f(x) = log(sinx)

⇒f['](x)=cotx

$$\Rightarrow I = \int e^{x} \left(f(x) + \dot{f}(x) \right) dx$$

 \Rightarrow I=e^x f(x)+c

 \Rightarrow I = e^xlog(sinx)+c

Ans) D None of these

Question: 49

Mark (\checkmark) against

Solution:

To find: Value of $\int e^{x} \left(\tan^{-1} x + \frac{1}{(1+x)^{2}} \right) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int e^x \left(\tan^{-1}x + \frac{1}{(1+x)^2}\right)dx \dots$ (i)
Here $f(x) = \tan^{-1}x$
 $\Rightarrow f'(x) = \frac{1}{(1+x)^2}$
 $\Rightarrow I = \int e^x \left(f(x) + f'(x)\right)dx$
 $\Rightarrow I = e^x f(x) + c$
 $\Rightarrow I = e^x (\tan^{-1}x) + c$
Ans) B $e^x (\tan^{-1}x) + c$
Question: 50
Mark (\checkmark) against
Solution:

To find: Value of $\int e^x (tanx - \log(cosx)) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[\dot{f}(x)\int g(x)dx\right]dx$$

We have, $I = \int e^{x}(tanx-log(cosx))dx \dots (i)$
Here $f(x) = -log(cosx)$
 $\Rightarrow \dot{f}(x) = tanx$
 $\Rightarrow I = \int e^{x} \left(f(x) + \dot{f}(x)\right)dx$

 \Rightarrow I=e^x f(x)+c

 \Rightarrow I = -e^xlog(cosx)+c

 \Rightarrow I = e^xlog(secx)+c

Ans) C e^xlog(secx)+c

Question: 51

Mark (\checkmark) against

Solution:

To find: Value of $\int e^x (\cot x - \csc^2 x) dx$

Formula used:

(i) $\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[\dot{f}(x)\int g(x)dx\right]dx$

We have, $I = \int e^{x} (\cot x \cdot \csc^{2} x) dx \dots (i)$

Here $f(x) = \cot x$

⇒f'(x)=-cosec²x

$$\Rightarrow I = \int e^{x} \left(f(x) + \dot{f}(x) \right) dx$$

 \Rightarrow I=e^x f(x)+c

 \Rightarrow I = e^xcotx+c

Ans) B e^xcotx+c

Question: 52

Mark (\checkmark) against

Solution:

To find: Value of $\int e^x (sinx + cosx) dx$

Formula used:

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f'(x)\int g(x)dx\right]dx$$

We have, $I = \int e^{x}(sinx+cosx)dx \dots (i)$

Here f(x) = sinx

⇒f['](x)=cosx

$$\Rightarrow I = \int e^{x} \left(f(x) + \dot{f}(x) \right) dx$$

 \Rightarrow I=e^x f(x)+c

⇒I= e[×]sinx+c

Ans) A e^xsinx+c

Question: 53

Mark (\checkmark) against

Solution:

To find: Value of $\int e^x \sec x (1 + \tan x) dx$

(i) $\int f(x)g(x)dx = f(x)\int g(x)dx - \int \int f(x)\int g(x)dx dx$ We have, $I = \int e^x \sec x (1 + \tan x) dx \dots (i)$ $I = \int e^{x}(\sec x + \sec x \tan x) dx$ Here $f(x) = \sec x$ $\Rightarrow f'(x) = secxtanx$ \Rightarrow I= $\int e^{x} (f(x)+f'(x)) dx$ \Rightarrow I=e^x f(x)+c \Rightarrow I = e^xsecx+c Ans) B exsecx+c **Question: 54** Mark ($\sqrt{}$) against Solution: **To find:** Value of $\int e^x \left(\frac{1 + x \log x}{x}\right) dx$ Formula used: (i) $\int f(x)g(x)dx = f(x)\int g(x)dx - \int \int f(x)\int g(x)dx dx$ We have, $I = \int e^{x} \left(\frac{1 + x \log x}{x}\right) dx$... (i) $I = \int e^{x} \left(\frac{1}{x} + \log x\right) dx$ Here $f(x) = \log x$ $\Rightarrow f'(x) = \frac{1}{v}$

 \Rightarrow I= $\int e^{x} (f(x)+f'(x)) dx$

⇒I=e^x f(x)+c

 \Rightarrow I = e[×]logx+c

Ans) B exlogx+c

Question: 55

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int e^x \frac{x}{(1+x)^2} dx$

(i)
$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int \left[f(x)\int g(x)dx\right]dx$$

We have, $I = \int e^x \frac{x}{(1+x)^2}dx$... (i)

$$I = \int e^{x} \left(\frac{x+1-1}{(1+x)^{2}}\right) dx$$

$$\Rightarrow I = \int e^{x} \left(\frac{1}{(1+x)} - \frac{1}{(1+x)^{2}}\right) dx$$

Here $f(x) = \frac{1}{(1+x)}$

$$\Rightarrow f'(x) = -\frac{1}{(1+x)^{2}}$$

$$\Rightarrow I = \int e^{x} \left(f(x) + f'(x)\right) dx$$

$$\Rightarrow I = e^{x} f(x) + c$$

$$\Rightarrow I = e^{x} \frac{1}{(1+x)} + c$$

Ans) A $e^{x} \frac{1}{(1+x)} + c$

Question: 56

Mark ($\sqrt{}$) against

Solution:

To find: Value of $\int e^x \left(\frac{1+sinx}{1+cosx}\right) dx$

Formula used:
(i)
$$\int f(x)g(x)dx = f(x) \int g(x)dx - \int \left[f'(x) \int g(x)dx \right] dx$$

We have, $I = \int e^x \left(\frac{1+\sin x}{1+\cos x} \right) dx$... (i)
 $I = \int e^x \left(\frac{1+\sin x}{1+\cos x} \right) dx$
 $\Rightarrow I = \int e^x \left(\frac{1}{1+\cos x} + \frac{\sin x}{1+\cos x} \right) dx$
 $\Rightarrow I = \int e^x \left(\frac{1}{2\cos^2 \frac{x}{2}} + \frac{2\sin \frac{x}{2}\cos \frac{x}{2}}{2\cos^2 \frac{x}{2}} \right) dx$
 $\Rightarrow I = \int e^x \left(\frac{1}{2}\sec^2 \frac{x}{2} + \tan \frac{x}{2} \right) dx$
Here $f(x) = \tan \frac{x}{2}$
 $\Rightarrow f'(x) = \frac{1}{2}\sec^2 \frac{x}{2}$
 $\Rightarrow I = \int e^x \left(f(x) + f'(x) \right) dx$
 $\Rightarrow I = e^x f(x) + c$

