Arithmetic Progressions

- \blacktriangleright Look at the list of numbers 1, 3, 5, 7.....
- \blacktriangleright Each of the numbers in the list is called a term.
- An arithmetic progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.
- This fixed number is called the common difference of the AP. It can be positive, negative or zero
- > The general form of an AP is: $a, a + d, a + 2d, a + 3d, \ldots$
- > An AP with finite number of terms is a finite AP. That means the AP has a last term.
- An AP which does not have finite number of terms is an infinite AP. That means the AP does not have a last term. nth term of an AP:

Let a_1, a_2, a_3, \dots Be an AP whose first term a_1 is a and the common difference is d. Then,

The Second term	$a_2 = a + d = a + (2 - 1) d$
The third term	$a_3 = a_2 + d = (a + d) + d = a + 2d = a + (3 - 1) d$
The fourth term	$a_4 = a_3 + d = (a + 2d) + d = a + 3d = a + (4 - 1) d$

Looking at the pattern, we can say that the n^{th} term $a_n = a + (n - 1) d$.

So, the n^{th} term a_n of the AP with first term a and common difference d is given by $a_n = a + (n-1) d$.

Sum on n terms in an AP:

The sum of the first *n* terms of an AP is given by $S = \frac{n}{2} [2a + (n-1)d]$