Chapter : 20. SUMMATIVE ASSESSMENT I Exercise : SAMPLE PAPER I

Question: 1

Euclid's Division

Solution:

Euclid's division lemma :

Given positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 \leq r < b

Question: 2

In the given figu

Solution:

The zeroes of polynomial means that value of polynomial becomes zero.

In the above graph, the curve depicts the polynomial and it gets zero at two points, therefore $p(\boldsymbol{x})$ has two zeroes.

Question: 3

In $\triangle ABC$, it is gi

Solution:

In ΔADE and ΔABC

 $\angle ADE = \angle ABC$ [Corresponding angles as DE || BC]

 $\angle AED = \angle ACB$ [Corresponding angles as DE || BC]

 $\Delta ADE \sim \Delta ABC$ [By Angle-Angle Similarity criterion]

 $\Rightarrow \frac{AB}{AD} = \frac{BC}{DE}$ [Corresponding sides of similar triangles are in the same ratio]

Now,

Given, AD = 3 cm

DB = 2 cm

DE = 6 cm

 $\Rightarrow AB = AD + DB = 3 + 2 = 5 \text{ cm}$

Using this in above equation,

$$\Rightarrow \frac{5}{3} = \frac{BC}{6}$$

 \Rightarrow BC = 10 cm

Question: 4

If $\sin 3\theta = \cos ($

Solution:

Given, we know that $\sin \theta = \cos(90^\circ - \theta)$ Replacing θ by 3θ

 $\Rightarrow \sin(3\theta) = \cos(90^\circ - 3\theta)$

 $\Rightarrow \cos(\theta - 2^{\circ}) = \cos(90^{\circ} - 3\theta)$ [Given, sin $3\theta = \cos(\theta - 2^{\circ})$] $\Rightarrow \theta - 2^{\circ} = 90^{\circ} - 3\theta$ $\Rightarrow 4\theta = 92^{\circ}$ $\Rightarrow \theta = 23^{\circ}$ Question: 5 If tan $\theta = \sqrt{3}$, th Solution: Given, tan $\theta = \sqrt{3}$ $\Rightarrow \tan^{2}\theta = 3$ $\Rightarrow \sec^{2}\theta - 1 = 3 [As \tan^{2}\theta + 1 = \sec^{2}\theta]$ $\Rightarrow \sec^{2}\theta = 4 \dots [1]$

Also,

 $\cot \theta = \frac{1}{\tan \theta}$ $\Rightarrow \cot \theta = \frac{1}{\sqrt{3}} \text{ as } \tan \theta = \sqrt{3}$

Squaring both sides,

 $\Rightarrow \cot^2 \theta = \frac{1}{3}$ $\Rightarrow \csc^2 \theta - 1 = \frac{1}{3} [As \cot^2 \theta + 1 = \csc^2 \theta]$ $\Rightarrow \csc^2 \theta = \frac{4}{3} ... [2]$

Putting the values from [1] and [2] into given eqn

$$\frac{\sec^2\theta - \csc^2\theta}{\sec^2\theta + \csc^2\theta} = \frac{4 - \frac{4}{3}}{4 + \frac{4}{3}}$$
$$\Rightarrow \frac{\frac{12 - 4}{3}}{\frac{12 + 4}{3}} = \frac{8}{16} = \frac{1}{2}$$

Question: 6

The decimal expan

Solution:

 $\frac{49}{40} = \frac{49}{2 \times 2 \times 2 \times 5} = \frac{49}{2^3 5}$

We know that if $\frac{\mathbf{p}}{\mathbf{q}}$ is a rational number, such that p and q are co-prime and q has factors in the form of $2^{\mathrm{m}}.5^{\mathrm{n}}$, then, decimal expansion of $\frac{\mathbf{p}}{\mathbf{q}}$ will terminate after the highest power of 2 or 5 (whichever is greater).

Therefore, $\frac{49}{40}$ will terminate after 3 places of decimal.

Question: 7

The pair of linea

Solution:

Comparing the equation with the set of equations

 $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ we have, $a_1 = 6, a_2 = 2$ $b_1 = -3, b_2 = -1$ $c_1 = 10, c_2 = 9$ and we have,

$$\frac{a_1}{a_2} = \frac{b}{2} = 3$$
 and $\frac{b_1}{b_2} = -\frac{3}{-1} = 3$ and $\frac{c_1}{c_2} = \frac{10}{9}$

So, we have

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

and in this case, we know that equations have no solution.

Question: 8

For a given data

Solution:

As we know that, the x-coordinate of the point of intersection of the

more than ogive and less than ogive give us a median of the data.

So, the median of the data is 18.5

Question: 9

Is (7 x 5 x 3 X 2

Solution:

(7 x 5 x 3 x 2 + 3) = (210 + 3) = 213

And 213 = 71 x 3

As, this number is expressible as product of two no's other, the given number is composite.

[Composition no's are those no's which has factors other than 1 and itself]

Question: 10

When a polynomial

Solution:

No, because degree of remainder cannot be equal to the degree of divisor

And in this case degree of divisor, i.e. 2x + 1 = 1

And degree of remainder, i.e. x - 1 = 1 is equal.

Question: 11 A

If $3 \cos^2$

Solution:

Given,

 $3\cos^2\theta + 7\sin^2\theta = 4$

 $\Rightarrow 3\cos^2\theta + 3\sin^2\theta + 4\sin^2\theta = 4$ $\Rightarrow 3(\cos^2\theta + \sin^2\theta) + 4\sin^2\theta = 4$ \Rightarrow 3 + 4sin² θ = 4 $[as sin^2\theta + cos^2\theta = 1]$ $\Rightarrow 4\sin^2\theta = 1$ $\Rightarrow \sin^2 \theta = \frac{1}{4}$ $\Rightarrow \sin\theta = \frac{1}{2}$ $\Rightarrow \theta = 30^{\circ}$ $\left[\operatorname{as} \sin \theta = \frac{1}{2} \right]$ $\Rightarrow \cot \theta = \sqrt{3}$ [as cot $30^\circ = \sqrt{3}$] **Question: 11 B** If $\tan \theta = 8/15 e$ Solution: $\tan \theta = \frac{8}{15}$ Now, To find : $\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}$ $\Rightarrow \frac{2(1 + \sin \theta)(1 - \sin \theta)}{2(1 + \cos \theta)(1 - \cos \theta)}$ $\Rightarrow \frac{1 - \sin^2 \theta}{1 - \cos^2 \theta}$ $[As, (a + b)(a - b) = a^2 - b^2]$ $\Rightarrow \frac{\cos^2 \theta}{\sin^2 \theta}$ $[As \sin^2\theta + \cos^2\theta = 1]$ $\Rightarrow \cot^2 \theta = \frac{1}{\tan^2 \theta}$ $\left[\operatorname{as} \frac{\cos \theta}{\sin \theta} = \operatorname{cot} \theta = \frac{1}{\tan \theta} \right]$ $\Rightarrow \frac{1}{\left(\frac{8}{15}\right)^2} = \frac{1}{\frac{64}{225}} = \frac{225}{64}$

Question: 12

In the given figu

Solution:

DE || AC [Given]

And we know, By Basic Proportional Theorem

If a line is drawn parallel to the one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in same ratio

$$\Rightarrow \frac{BE}{EC} = \frac{BD}{AD} \dots [1]$$

And DF || AE

By Basic Proportional Theorem,

$$\Rightarrow \frac{BF}{FE} = \frac{BD}{AD}$$
$$\Rightarrow \frac{BF}{FE} = \frac{BE}{EC} [From [1]]$$
$$\Rightarrow \frac{EC}{BE} = \frac{FE}{BF}$$

Hence, Proved

Question: 13

In the given figu

Solution:

We have,

BC = BD + CD

$$BC = \frac{1}{3}CD + CD = \frac{4}{3}CD \left[AS BD = \frac{1}{3}CD\right]$$

$$\Rightarrow$$
 CD = $\frac{3}{4}$ BC [1]

As, AD \perp BC

 $\Rightarrow \Delta ADC$ is a right-angled triangle

By Pythagoras theorem, [i.e. hypotenuse² = perpendicular² + base²]

 $AD^2 + CD^2 = CA^2$

$$\Rightarrow AD^2 = CA^2 - CD^2 \dots [2]$$

Also, $\triangle ABD$ is a right-angled triangle

By Pythagoras theorem,

$$AD^2 + BD^2 = AB^2$$

 $\Rightarrow CA^2 - \frac{1}{2}BC^2 = AB^2$

From [2]

$$CA^{2} - CD^{2} + BD^{2} = AB^{2}$$

$$\Rightarrow CA^{2} - CD^{2} + \left(\frac{1}{3}CD\right)^{2} = AB^{2} \left[AS BD = \frac{1}{3}CD\right]$$

$$\Rightarrow CA^{2} - CD^{2} + \frac{1}{9}CD^{2} = AB^{2}$$

$$\Rightarrow CA^{2} - \frac{8}{9}CD^{2} = AB^{2}$$

$$\Rightarrow CA^{2} - \frac{8}{9}\left(\frac{3}{4}BC\right)^{2} = AB^{2} \left[From [1]\right]$$

$$\Rightarrow CA^{2} - \frac{8}{9} \times \frac{9}{16} \times BC^{2} = AB^{2}$$

 $\Rightarrow 2CA^2 - BC^2 = 2AB^2$

 $\Rightarrow 2CA^2 = 2AB^2 + BC^2$

Hence, Proved.

Question: 14

Find the mode of

Solution:

In the given data,

The maximum class frequency is 32. So, the modal class is 30-40.

Lower limit(l) of modal class = 30

Class size(h) = 40 - 30 = 10

Frequency(f_1) of modal class = 32

Frequency(f_0) of class preceding the modal class = 12

 $Frequency(f_2)$ of class succeeding the modal class = 20

And we know,

 $\text{Mode} = 1 + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$

Substituting values, we get

Mode = 30 + $\left(\frac{32-12}{2(32)-12-20}\right)(10) = 30 + \frac{200}{32}$ ⇒ Mode = $\frac{960 + 200}{32} = \frac{1160}{32} = 36.25$

Question: 15

Show that any pos

Solution:

Let a be an positive odd integer, and let b = 4

By, using Euclid's division lemma,

a = 4q + r, where r is an integer such that, $0 \le r < 4$

So, only four cases are possible

- a = 4q or
- a = 4q + 1 or

a = 4q + 2 or

$$a = 4q + 3$$

But 4q and 4q + 2 are divisible by 2, therefore these cases are not possible, as a is an odd integer. Therefore,

a = 4q + 1 or a = 4q + 3.

Question: 16 A

Prove that (5 - \checkmark

Solution:

Let 5 - $\sqrt{3}$ be rational,

Then, 5 - $\sqrt{3}$ can be expressed as $\frac{p}{q}$ where, p and q are co-prime integers and

 $\mathbf{q}\neq \mathbf{0},$

we have,

$$5 - \sqrt{3} = \frac{p}{q}$$
$$\Rightarrow 5 - \frac{p}{q} = \sqrt{3}$$
$$\Rightarrow \frac{5q - p}{q} = \sqrt{3}$$

As p and q are integers, 5q - p is also an integer

 $\Rightarrow \frac{5q-p}{q}$ is a rational number.

But $\sqrt{3}$ is an irrational number, so the equality is not possible.

This contradicts our assumption, that 5 - $\sqrt{3}$ is a rational number.

Therefore, 5 - $\sqrt{3}$ is an irrational number.

Question: 16 B

Prove that

Solution:

Let $\frac{3\sqrt{3}}{5}$ be rational,

Then, $\frac{3\sqrt{3}}{5}$ can be expressed as $\frac{p}{q}$ where p and q are co-prime integers and

 $q \neq 0$,

we have,

$$\frac{3\sqrt{3}}{5} = \frac{p}{q}$$
$$\Rightarrow \frac{5p}{3q} = \sqrt{3}$$

As p and q are integers, 5p and 3q are also integers

 $\Rightarrow \frac{5p}{3q}$ is a rational number.

But $\sqrt{3}$ is an irrational number, so the equality is not possible.

This contradicts our assumption, that $\frac{3\sqrt{3}}{5}$ is a rational number.

Therefore, $\frac{3\sqrt{3}}{5}$ is an irrational number.

Question: 17 A

A man can row a b

Solution:

Speed of boat in still water = 4 km/h

Let the speed of stream be 'x'

Therefore,

Speed of the boat upstream = Speed of boat in still water - Speed of stream = 4 - x

Speed of the boat downstream = Speed of boat in still water + Speed of stream = 4 + x

Time taken to go upstream = $\frac{distance}{speed} = \frac{30}{4-x}$ hours

Time taken to go downstream = $\frac{distance}{speed} = \frac{30}{4 + x}$ hours

Given, time taken in upstream is thrice as in downstream

$$\Rightarrow \frac{30}{4-x} = 3\left(\frac{30}{4+x}\right)$$
$$\Rightarrow \frac{30}{4-x} = \frac{90}{4+x}$$
$$\Rightarrow \frac{1}{4-x} = \frac{3}{4+x}$$
$$\Rightarrow 4+x = 12 - 3x$$
$$\Rightarrow 4x = 8$$
$$\Rightarrow x = 2$$

i.e. the speed of stream = x is 2 km/hour.

Question: 17 B

In a competitive

Solution:

Let the number of correct answers = xLet the number of wrong answers = yTotal no of questions attempted = x + y = 120 \Rightarrow y = 120 - x[1] Marks for each correct answer = 5Marks for x correct answers = 5xAs 2 marks are deducted for each wrong question, Marks deducted for y wrong answers = 2yTotal marks obtained by student will be 5x - 2y, \Rightarrow 5x - 2y = 348 $\Rightarrow 5x - 2(120 - x) = 348$ $\Rightarrow 5x - 240 + 2x = 348$ $\Rightarrow 7x = 588$ $\Rightarrow x = 84$ Hence, no of correct answers = x = 84**Question: 18** If α and β are th Solution: We know that, for a quadratic equation $ax^2 + box + c$

Sum of zeroes = $-\frac{b}{a}$ Product of zeroes = $\frac{c}{a}$ Given equation = $2x^2 + x - 6$ and zeroes are α and β

Therefore,

$$\alpha + \beta = -\frac{1}{2}\dots[1]$$
 and
 $\alpha\beta = -\frac{6}{2} = -3\dots[2]$

Now, any quadratic equation having α and β as zeroes will have the form

 $p(x) = x^2 - (\alpha + \beta)x + \alpha\beta$

 \Rightarrow equation having α and β as zeroes will have the form

 $\mathbf{p}(\mathbf{x}) = \mathbf{x}^2 \cdot (2\alpha + 2\beta)\mathbf{x} + (2\alpha)(2\beta)$

 $\Rightarrow p(x) = x^2 - 2(\alpha + \beta)x + 4\alpha\beta$

From [1] and [2]

$$\Rightarrow p(x) = x^{2} - 2\left(-\frac{1}{2}\right)x + 4(-3) = x^{2} + x - 12$$

Hence required equation is $x^2 + x - 12$.

Question: 19

Prove that: (cose

Solution:

Taking L.H.S

 $= (\csc\theta - \sin\theta)(\sec\theta - \cos\theta)$

$$= \left(\frac{1}{\sin\theta} - \sin\theta\right) \left(\frac{1}{\cos\theta} - \cos\theta\right)$$
$$= \left(\frac{1 - \sin^2\theta}{\sin\theta}\right) \left(\frac{1 - \cos^2\theta}{\cos\theta}\right)$$

We know, $\sin^2\theta + \cos^2\theta = 1$

Therefore,

 $= \frac{\cos^2\theta}{\sin\theta} \times \frac{\sin^2\theta}{\cos\theta} = \cos\theta \,\sin\theta$

Taking R.H.S

$$= \frac{1}{\tan \theta + \cot \theta}$$
$$= \frac{1}{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}}$$
$$= \frac{1}{\frac{1}{\left(\frac{(\sin^2 \theta + \cos^2 \theta)}{\sin \theta \cos \theta}\right)}}$$

= sin θ cos θ [as sin² θ + cos² θ = 1]

LHS = RHS

Hence, Proved.

Question: 20

If $\cos\theta + \sin\theta =$

Solution:

Given,

 $\cos\theta + \sin\theta = \sqrt{2}\cos\theta \dots [1]$

Squaring both side,

 $(\cos\theta + \sin\theta)^2 = 2\cos^2\theta$

 $\Rightarrow \cos^2\theta + \sin^2\theta + 2\cos\theta\sin\theta = 2\cos^2\theta$

 $\Rightarrow 2\cos\theta\sin\theta = 2\cos^2\theta - \cos^2\theta - \sin^2\theta$

 $\Rightarrow 2\cos\theta\sin\theta = \cos^2\theta - \sin^2\theta$

- $\Rightarrow 2\cos\theta \sin\theta = (\cos\theta \sin\theta)(\cos\theta + \sin\theta)$
- $\Rightarrow 2\cos\theta \sin\theta = (\cos\theta \sin\theta)(\sqrt{2} \cos\theta) \text{ [From [1]]}$

$$\Rightarrow \cos\theta - \sin\theta = \frac{2\cos\theta\sin\theta}{\sqrt{2}\cos\theta} = \sqrt{2}\sin\theta$$

Hence, Proved.

Question: 21

 ΔABC and ΔDBC are

Solution:

Given: $\triangle ABC$ and $\triangle DBC$ with common base BC.

To Prove: $\frac{ar(\Delta ABC)}{ar(\Delta DBC)} = \frac{AO}{DO}$

Construction: Draw AM \perp BC and DN \perp BC

Proof:

In ΔAMO and ΔDNO

 $\angle AOM = \angle DON$ [Vertically opposite angle]

 $\angle AMO = \angle DNO \text{ [Both 90°]}$

 $\Delta AMO \sim \Delta DNO$ [By Angle-Angle sum criterion]

 $\Rightarrow \frac{AM}{DN} = \frac{AO}{DO} [Corresponding sides of similar triangles are in the same ratio] [1]$

Now, we know that

Area of a triangle = $\frac{1}{2} \times Base \times Height$

Therefore,

$$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DBC)} = \frac{\frac{1}{2} \times BC \times AM}{\frac{1}{2} \times BC \times DN} = \frac{BC}{DN}$$

 $\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DBC)} = \frac{A0}{D0} [From [1]]$

Hence, Proved

Question: 22

In Δ ABC, the AD

Solution:

Proof:

Given: In $\triangle ABC$, the AD is a median and E is mid-point of the AD and BE is produced to meet AC in F.

To Prove: AF = $\frac{1}{3}$ AC

Construction: Draw DG || BF as shown in figure

Proof: Now, In $\triangle BFC$ DG || BF [By construction] As AD is a median on BC, D is a mid-point of BC Therefore, G is a mid-point of CF [By mid-point theorem] \Rightarrow CG = FG ...[1] Now, In $\triangle ADG$ EF || DG [By Construction] As E is a mid-point of AD [Given] Therefore, F is a mid-point of AG [By mid-point theorem] \Rightarrow FG = AF ...[2] From [1] and [2] $AF = CG = FG \dots [3]$ And AC = AF + FG + CG \Rightarrow AC = AF + AF + AF [From 3] $\Rightarrow AC = 3AF$

$$\Rightarrow AF = \frac{1}{3}AC$$

Hence Proved

Question: 23 A

Find the mean of

Solution:

Let us first calculate the mid-values (x_i) for each class-interval, By using the formula

 $x_i = \frac{\text{Upper limit} + \text{Lower limit}}{2}$

Class- interval	Frequency fi	Mid-Values x _i	$u_i = \frac{x_i - a}{h}$ $u_i = \frac{x_i - 75}{50}$	fiUi
0-50	17	25	-1	-17
50-100	35	75	0	0
100-150	43	125	1	43
150-200	40	175	2	80
200-250	21	225	3	63
250-300	24	275	4	96
Total	$\sum f_i = 180$			$\sum f_i u_i = 265$

Let us assume the assumed mean(a) = 75

and from that, we get the data as shown in above table.

And we know, By step-deviation method

$$mean(\bar{x}) = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h$$

Where, a = assumed mean

h = class size

$$\Rightarrow \overline{\mathbf{x}} = 75 + \left(\frac{265}{180}\right)(50)$$

 $\Rightarrow \bar{x} = 75 + 73.61 = 148.61$

Question: 23 B

The mean of the f

Solution:

Let us first calculate the mid-values (x_i) for each class-interval, By using the formula

 $x_i \, = \frac{\text{Upper limit} \, + \, \text{Lower limit}}{2}$

By which, we get the following data

Class-interval	Frequency (f _i)	Mid-values(x _i)	fiXi
0-10	15	5	75
10-20	20	15	300
20-30	35	25	875
30-40	р	35	35p
40-50	10	45	450
	$\sum f_i = 80 + p$		$\sum f_i x_i = 1700 + 35p$

We know, that

 $mean(\overline{x})\,=\,\frac{\sum f_i x_i}{\sum f_i}$

Given, mean = 24

$$\Rightarrow 24 = \frac{1700 + 35p}{80 + p}$$

 $\Rightarrow 1920 + 24p = 1700 + 35p$

 $\Rightarrow 11p = 220$

 $\Rightarrow p = 20$

Question: 24

Find the median o

Solution:

First, let us make a cumulative frequency distribution of less than type.

Class Interval	Frequency(f)	Cumulative
Class Interval	requency(I)	Frequency(cf)
0-10	5	5
10-20	3	8
20-30	4	12
30-40	3	15
40-50	3	18
50-60	4	22
60-70	7	29
70-80	9	38
80-90	7	45
90-100	8	53
	Total: 53	

In this case,

Sum of all frequencies, n = 53

$$\Rightarrow \frac{n}{2} = \frac{53}{2} = 26.5$$

Now, we know the median class is whose cumulative frequency is greater than and nearest to $\frac{n}{2}$.

As, a Cumulative frequency greater than and nearest to 26.5 is 29, the median class is 60 - 70.

$$Median = 1 + \binom{\frac{n}{2} - cf}{f} \times h$$

where l = lower limit of median class,

n = number of observations,

cf = cumulative frequency of class preceding the median class,

f = frequency of median class,

h = class size

In this case,

1 = 60

n = 53

cf = 22

$$h = 10$$

Putting values, we get,

Median = $60 + \left(\frac{26.5-22}{7}\right)(10)$

$$= 60 + \frac{45}{7} = 66.4$$

Question: 25

Let p(x) = 2x

Solution:

Two zeroes are $\sqrt{3}$ and $\sqrt{3}$,

Therefore $(x - \sqrt{3})(x - (-\sqrt{3}) = (x - \sqrt{3})(x + \sqrt{3})$ is a factor of p(x).

Let us divide p(x) by $(x - \sqrt{3})(x + \sqrt{3}) = (x^2 - 3)$

$$x^{2} - 3 \underbrace{) \begin{array}{c} 2x^{2} - 3x + 1 \\ 2x^{4} - 3x^{3} - 5x^{2} + 9x - 3 \\ 2x^{4} & -6x^{2} \\ (-) & (+) \\ \hline \\ - 3x^{3} + x^{2} + 9x - 3 \\ - 3x^{3} & + 9x \\ (+) & (-) \\ \hline \\ x^{2} - 3 \\ x^{2} - 3 \\ (-) & (+) \\ \hline \\ 0 \\ \end{array}}$$

 $\Rightarrow (2x^4 - 3x^3 - 5x^2 + 9x - 3) = (x^2 - 3)(2x^2 - 3x + 1)$ $= (x - \sqrt{3})(x + \sqrt{3})(2x^2 - 2x - x + 1)$ $= (x - \sqrt{3})(x + \sqrt{3})(2x(x - 1) - 1(x - 1))$ $= (x - \sqrt{3})(x + \sqrt{3})(2x - 1)(x - 1)$

Hence,

$$2x - 1 = 0 \text{ or } x - 1 = 0$$
$$\Rightarrow x = \frac{1}{2} \text{ or } x = 1$$

Hence, other two zeroes are $\frac{1}{2}$ or 1.

Question: 26 A

Prove that the ra

Solution:

Let ΔPQR and ΔABC be two similar triangles,

 $\Rightarrow \frac{PQ}{AB} = \frac{QR}{BC} = \frac{PR}{AC}$ [Corresponding sides of similar triangles are in the same ratio] [1]

And as corresponding angles of similar triangles are equal

 $\angle A = \angle P$

 $\angle B = \angle Q$

$$\angle C = \angle R$$

Construction: Draw PM \perp QR and AN \perp BC

In ΔPQR and ΔABC

 $\angle PMR = \angle ANC \text{ [Both 90°]}$

 $\angle R = \angle C$ [Shown above]

 $\Delta PQR \sim \Delta ABC$ [By Angle-Angle Similarity]

 $\Rightarrow \frac{PM}{AN} = \frac{PR}{AC} [Corresponding sides of similar triangles are in the same ratio] [2]$

Now, we know that

Area of a triangle = $\frac{1}{2} \times \text{Base} \times \text{Height}$

Therefore,

 $\frac{\operatorname{ar}(\Delta PQR)}{\operatorname{ar}(\Delta ABC)} = \frac{\frac{1}{2} \times PQ \times PM}{\frac{1}{2} \times AB \times AN} = \frac{PQ \times PM}{AB \times AN}$ $\Rightarrow \frac{\operatorname{ar}(\Delta PQR)}{\operatorname{ar}(\Delta ABC)} = \frac{PQ}{AB} \times \frac{PR}{AC} [From 2]$ $\Rightarrow \frac{\operatorname{ar}(\Delta PQR)}{\operatorname{ar}(\Delta ABC)} = \frac{PQ}{AB} \times \frac{PQ}{AB} = \left(\frac{PQ}{AB}\right)^2 [From 1]$ $\Rightarrow \frac{\operatorname{ar}(\Delta PQR)}{\operatorname{ar}(\Delta ABC)} = \left(\frac{PQ}{AB}\right)^2 = \left(\frac{PR}{AC}\right)^2 = \left(\frac{QR}{BC}\right)^2 [From 1]$

Hence, Proved.

Question: 26 B

In a triangle, if

Solution:

Let us consider a triangle ABC, in which

 $\mathbf{A}\mathbf{C}^2 = \mathbf{B}\mathbf{C}^2 + \mathbf{A}\mathbf{B}^2 \dots [1]$

To Prove: Angle opposite to the first side i.e. AC is right angle or

 $\angle ABC = 90^{\circ}$

Construction:

Let us draw another right-angled triangle PQR right-angled at Q, with

AB = PQ

BC = QR

Now, By Pythagoras theorem, In Δ PQR

$$PR^2 = QR^2 + PQ^2$$

But
$$QR = BC$$
 and $PQ = AB$

$$\Rightarrow PR^2 = BC^2 + AB^2$$

But From [1] we have,

$$AC^2 = PR^2$$

 $\Rightarrow AC = PR$

In ΔABC and ΔPQR

AB = PQ [Assumed]

BC = QR [Assumed]

AC = PR [Proved above]

- ⇒ $\triangle ABC \cong \triangle PQR$ [By Side-Side Criterion]
- $\Rightarrow \angle ABC = \angle PQR$ [Corresponding parts of congruent triangles are equal]

But, $\angle PQR = 90^{\circ}$

 $\Rightarrow \angle ABC = 90^{\circ}$

Hence, Proved !

Question: 27 A

Prove that

Solution:

Taking LHS

 $=\frac{\sin\theta-\cos\theta+1}{\sin\theta+\cos\theta-1}$

Dividing by $\cos\theta$ in numerator and denominator

$$= \frac{\left(\frac{\sin\theta}{\cos\theta} - \frac{\cos\theta}{\cos\theta} + \frac{1}{\cos\theta}\right)}{\left(\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\cos\theta} - \frac{1}{\cos\theta}\right)}$$
Using $\frac{\sin\theta}{\cos\theta} = \tan\theta$ and $\frac{1}{\cos\theta} = \sec\theta$

$$= \frac{\tan\theta - 1 + \sec\theta}{\tan\theta + 1 - \sec\theta}$$
Putting $1 = \sec^{2}\theta - \tan^{2}\theta$ in numerator

$$= \frac{\tan\theta - (\sec^{2}\theta - \tan^{2}\theta) + \sec\theta}{\tan\theta - \sec\theta + 1}$$
Using $a^{2} - b^{2} = (a + b)(a - b)$

$$= \frac{(\tan\theta + \sec\theta) + (\tan^{2}\theta - \sec^{2}\theta)}{\tan\theta - \sec\theta + 1}$$
Using $a^{2} - b^{2} = (a + b)(a - b)$

$$= \frac{(\tan\theta + \sec\theta) + (\tan\theta + \sec\theta)(\tan\theta - \sec\theta)}{1 + \tan\theta - \sec\theta}$$

$$= \tan\theta + \sec\theta$$
Now, taking RHS

$$= \frac{1}{\sec\theta - \tan\theta}$$
Multiplying and dividing by $\sec\theta + \tan\theta = 1$

$$= \frac{\sec\theta + \tan\theta}{\sec^{2}\theta - \tan^{2}\theta}$$

$$= \tan\theta + \sec\theta [As \sec^{2}\theta - \tan^{2}\theta]$$

$$= \tan\theta + \sec\theta [As \sec^{2}\theta - \tan^{2}\theta]$$
Evaluate:

Solution:

Using cosec(90° - θ) = secθ and cot(90° - θ) = tanθ we have, $\frac{\sec\theta \csc(90 - \theta) - \tan\theta \cot(90 - \theta) + \sin^2 65° + \sin^2 25°}{\tan 10° \tan 20° \tan 60° \tan 70° \tan 80°}$ $= \frac{\sec\theta \sec\theta - \tan\theta \tan\theta + \sin^2(90 - 25) + \sin^2 25°}{\tan 10° \tan 20° \tan 60° \tan(90 - 20) \tan(90 - 10)}$ Now, sin(90 - θ) = cos θ and tan(90 - θ) = cot θ we have $= \frac{\sec^2 \theta - \tan^2 \theta + \cos^2 25° + \sin^2 25°}{\tan 10° \tan 20° \tan 60° \cot 20° \cot 10°}$ $= \frac{1 + 1}{\tan 10° \tan 20° \tan 60° (\frac{1}{\tan 20°}) (\frac{1}{\tan 10°})} = \frac{2}{\tan 60°} = \frac{2}{\sqrt{3}}$ [Since,

 $\tan^2\theta - \sec^2\theta = 1$

 $\sin^2\theta + \cos^2\theta = 1$

 $\tan\,60^\circ=\sqrt{3}]$

Question: 28

If $\sec\theta + \tan\theta =$

Solution:

Taking RHS

$$\frac{x^{2}-1}{x^{2}+1} = \frac{(\sec\theta + \tan\theta)^{2}-1}{(\sec\theta + \tan\theta)^{2}+1}$$
Now, $\sec^{2}\theta - \tan^{2}\theta = 1$ and $(a + b)^{2} = a^{2} + b^{2} + 2ab$

$$= \frac{\sec^{2}\theta + \tan^{2}\theta + 2 \sec\theta \tan\theta - (\sec^{2}\theta - \tan^{2}\theta)}{\sec^{2}\theta + \tan^{2}\theta + 2 \sec\theta \tan\theta + (\sec^{2}\theta - \tan^{2}\theta)}$$

$$= \frac{2\tan^{2}\theta + 2 \sec\theta \tan\theta}{2 \sec^{2}\theta + 2 \sec\theta \tan\theta}$$

$$= \frac{2\tan\theta(\tan\theta + \sec\theta)}{2 \sec\theta(\sec\theta + \tan\theta)} = \frac{\tan\theta}{\sec\theta}$$
Now, $\tan\theta = \frac{\sin\theta}{\cos\theta}$ and $\frac{1}{\sec\theta} = \cos\theta$, using these we have
$$= \frac{\tan\theta}{\sec\theta} = \frac{\sin\theta}{\cos\theta} \times \cos\theta = \sin\theta$$

$$= LHS$$
Hence, Proved !
Question: 29
Solve the followi
Solution:

Equation 1:

2x - y = 1

x	0	1	
Y	-1	1	

Plot the line with equation 1 on graph.

Equation 2:

x - y = -1

Plot the line with equation 2 on graph.

From the graph We observe point of intersection of two lines is (2, 3) Region bound by these lines and y-axis is shaded in the graph.

Question: 30

The following tab

Solution:

Let us draw cumulative frequency with table for the above data

Yield	Number of farms	Yield	Cumulative
(in kg/hectare)	Or frequency(f)	[More than	frequency
		or equal to]	(cf)
50-55	2	50	100
55-60	8	55	98
60-65	12	60	90
65-70	24	65	78
70-75	38	70	54
75-80	16	75	16

Taking Yield as x-axis and Cumulative frequencies as y-axis, we draw its more than 'ogive'

Question: 31

Solve for x and y

Solution:

Eqn1 : ax + by - a + b = 0 $\Rightarrow ax + by = a - b$ Multiplying both side by b $\Rightarrow abx + b^2y = ab - b^2 \dots [1]$ Eqn2 : bx - ay - a - b = 0 $\Rightarrow bx - ay = a + b$ Multiplying both side by a $\Rightarrow abx - a^2y = a^2 + ab \dots [2]$ Subtracting [2] from [1] $abx - a^2y - (abx + b^2y) = a^2 + ab - (ab - b^2)$ $\Rightarrow abx - a^2y - abx - b^2y = a^2 + ab - ab + b^2$ $\Rightarrow -y(a^2 + b^2) = a^2 + b^2$ $\Rightarrow -y = 1$ $\Rightarrow y = 1$ Putting value of y in eqn1, we get ax + b(-1) - a + b = 0 $\Rightarrow ax - b - a + b = 0$ $\Rightarrow ax = a$ $\Rightarrow x = 1$ So, x = 1 and y = -1

Question: 32

Prove that:

Solution:

Taking LHS

 $\frac{1-\cos\theta}{1+\cos\theta}$

Multiplying and dividing by (1 - $\cos\,\theta)$

$$= \frac{(1 - \cos\theta)(1 - \cos\theta)}{(1 + \cos\theta)(1 - \cos\theta)}$$
$$= \frac{(1 - \cos\theta)^2}{1 - \cos^2\theta}$$
As $\sin^2\theta + \cos^2\theta = 1$
$$= \frac{(1 - \cos\theta)^2}{\sin^2\theta}$$
$$= \left(\frac{1 - \cos\theta}{\sin\theta}\right)^2$$
$$= \left(\frac{1 - \cos\theta}{\sin\theta}\right)^2$$
$$= (\csc\theta - \cot\theta)^2$$
Hence Proved.

Question: 33

 Δ ABC is right an

Solution:

Given: A \triangle ABC right-angled at B, and D is the mid-point of BC, i.e. BD = CD

To Prove:
$$AC^2 = (4AD^2 - 3AB^2)$$

Proof:

In $\triangle ABD$,

By Pythagoras theorem, [i.e. Hypotenuse² = $Base^{2}$ + Perpendicular²]

$$AD^2 = AB^2 + BD^2$$

[as D is mid-point of BC, therefore, $BC = \frac{1}{2}BD$]

$$\Rightarrow AD^{2} = AB^{2} + \left(\frac{1}{2}BC\right)^{2} = AB^{2} + \frac{BD^{2}}{4}$$
$$\Rightarrow 4AD^{2} = 4AB^{2} + BC^{2}$$
$$\Rightarrow BC^{2} = 4AD^{2} - 4AB^{2} [1]$$
Now, In $\triangle ABC$, again By Pythagoras theorem
$$AC^{2} = AB^{2} + BC^{2}$$
$$AC^{2} = AB^{2} + 4AD^{2} - 4AB^{2} [From 1]$$

 $AC^2 = 4AD^2 - 3AB^2$

Hence Proved !

Question: 34

Find the mean, mo

Solution:

Let us make the table for above data and containing cumulative frequency and mid-values for each data

Class	Frequency(f _i)	Mid-values (x _i)	f _i x _i	Cumulative Frequency (cf)
0-10	5	5	25	5
10-20	10	15	150	15
20-30	18	25	450	33
30-40	30	35	1050	63
40-50	20	45	900	83
50-60	12	55	660	95
60-70	5	65	325	100
	$\sum f_i = 100$		$\sum_{i=1}^{\infty} f_i x_i$	

MEAN

We know, that

$$mean(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$$
$$\Rightarrow \bar{x} = \frac{3560}{100}$$
$$\Rightarrow \bar{x} = 35.6$$

MODE

In the given data,

The maximum class frequency is 30. So, the modal class is 30-40.

Lower limit(l) of modal class = 30

Class size(h) = 40 - 30 = 10

 $Frequency(f_1) \text{ of modal class} = 30$

Frequency(f_0) of class preceding the modal class = 18

Frequency(f_2) of class succeeding the modal class = 20

And we know,

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

Substituting values, we get

Mode = 30 +
$$\left(\frac{30 - 18}{2(30) - 18 - 20}\right)(10) = 30 + \frac{120}{22}$$

⇒ Mode = 30 + $\frac{60}{11} = 30 + 5.45 = 35.45$

MEDIAN

In this case,

Sum of all frequencies, n = 100

$$\Rightarrow \frac{n}{2} = \frac{100}{2} = 50$$

Now, we know the median class is whose cumulative frequency is greater than and nearest to $\frac{n}{2}$.

As, Cumulative frequency greater than and nearest to 50 is 63, the median class is 30 - 40.

$$Median = 1 + \binom{\frac{n}{2}-cf}{f} \times h$$

where l = lower limit of median class,

n = number of observations,

cf = cumulative frequency of class preceding the median class,

f = frequency of median class,

h = class size

In this case,

1 = 30

n = 100

cf = 33

f = 30

$$h = 10$$

Putting values, we get,

Median =
$$30 + \left(\frac{50-33}{30}\right)(10)$$

= $30 + \frac{17}{3} = 30 + 5.67 = 35.67$

Exercise : SAMPLE PAPER II

Question: 1

What is the large

Solution:

We know that Dividend = Divisor \times Quotient + Remainder

According to the problem :

Dividend 1 = 245

Dividend 2 = 1029

Dividend - Remainder = Divisor \times Quotient

So Dividend 1- Remainder = 240 = Divisor × Quotient 1

Prime Factor of $240 = 2^4 \times 3 \times 5$

Dividend 2 - Remainder = 1024 = Divisor × Quotient 2

Prime Factor of $1024 = 2^4 \times 2^6$

Since, the Divisor is common for both the numbers we need to find the Highest Common Factor between both the numbers. From the Prime factors, we find the

<u>Highest Common Factor between the two numbers is $2^{4} = 16$ </u>

Question: 2

If the product of

Solution:

Given Equation $:ax^2 - 6x - 6 = 0$

which is of the form $ax^2 + bx + c = 0$ (General Form)

The product of the roots of the general form of equation =

So according to the given Equation Product of the roots = $-\frac{6}{3}$

$$\Rightarrow -\frac{6}{a} = 4$$

The Value Of a for which the equation has product of root $4 = a = -\frac{3}{2}$

Question: 3

The areas of two

Solution:

Given :

Area of $\triangle ABC = 25 \text{ cm}^2$

Area of $\triangle PQR = 49 \text{ cm}^2$

Length of QR = 9.8 cm.

Since both the triangles are similar so according to the Area -Length relations of similar triangle we can write

 $\frac{\text{Area of } \Delta \text{ABC}}{\text{Area of } \Delta \text{PQR}} = \frac{\text{BC}^2}{\text{QR}^2}$

 $\frac{25}{49} = \frac{BC^2}{QR^2}$ $\Rightarrow \frac{BC}{QR} = \sqrt{\frac{25}{49}}$ $\Rightarrow BC = \frac{5 \times 9.8}{7}$

The length Of The side BC is 7 cm.

Question: 4

If sin (θ + 34°)

Solution:

Given sin $(\theta + 34^0) = \cos \theta$... Equation 1

Since $\sin\theta$ & $\cos\theta$ are complementary to each other

so sin $\theta = \cos (90^0 - \theta)$

Using the above relations in Equation 1 we get

 $\cos\left(90^0 - \theta - 34^0\right) = \cos\theta$

Since both L.H.S. and R.H.S. are functions of cosine and θ + 34⁰ is acute so we can write

 $90^0 - \theta - 34^0 = \theta$

 $\Rightarrow 2\theta = 56^0$

 $\Rightarrow \theta = 28^0$

Question: 5

lf cos θ = 0.6, t

Solution:

Given $\cos \theta = 0.6$ $\sin \theta = \sqrt{1 - \cos^2 \theta}$ $\Rightarrow \sin \theta = 0.8$ $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\Rightarrow \tan \theta = \frac{4}{3}$

According to the question, the required problem needs us to find

5 sin θ - 3 tan θ

 \Rightarrow 5 × 0.8 - 3 × $\frac{4}{3}$

The value of the expression is 0

Question: 6

The simplest form

Solution:

Prime factorization of $1095 = 5 \times 3 \times 73$

Prime factorization of $1168 = 2^4 \times 73$

 $\operatorname{So}\frac{1095}{1168} = \frac{5 \times 3 \times 73}{2^4 \times 73}$

Since 73 is a common factor for both numerator and denominator so it cancels out

<u>The Simplest form is $\frac{15}{16}$ </u>

Question: 7

The pair of linea

Solution:

Equation 1: 4x - 5y = 20

Equation 2: 3x + 5y = 15

Both the equations are in the form of :

 $a_1x + b_1y = c_1 \& a_2x + b_2y = c_2$ where

According to the problem:

 $a_1 = 4$ $a_2 = 3$ $b_1 = -5$ $b_2 = 5$ $c_1 = 20$

We compare the ratios $\frac{a_1}{a_2}, \frac{b_1}{b_2} \& \frac{c_1}{c_2}$

 $\frac{a_1}{a_2} = \frac{4}{3}$ $\frac{b_1}{b_2} = \frac{-1}{1}$ $\frac{c_1}{c_2} = \frac{4}{3}$

Since $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, So

It has a Unique solution

Question: 8

If mode = x(media

Solution:

Given: mode = x(median) - y(mean)

According to an empirical relation, the relation between Mean, Median & Mode is given by

Mode = 3 Median - 2 Mean ... Eq(1)

This empirical relation is very much close to the actual value of mode which is calculated. So this relation is valid.

Comparing the Relation given with equation 1 we find

$$x = 3 \& y = 2$$

Question: 9 Check whether 6"

Solution:

When a number ends with 0 it has to be divisible by the factors of 10 which are 5 and 2

Now $6^n = (3 \times 2)^n$... Equation 1

From Equation 1 We can see the factors of 6 are only 3 & 2.

There are no factors as powers of 5 in the factorization of $\mathbf{6}$

<u>Hence $6^{\underline{n}}$ cannot end with 0</u>

Question: 10

Find the zeros of

Solution:

Given Equation : $9x^2 - 5 = 0$

which is of the form $ax^2 + bx + c = 0$ (General Form)

For finding the zeroes of the polynomial we use the method of Factorization

$$9x^2 - 5 = 0$$

 $\Rightarrow 9x^2 = 5$

$$\Rightarrow x^2 = \frac{5}{9}$$

$$\Rightarrow x = \pm \frac{\sqrt{5}}{3}$$

The zeroes of the polynomial expression are $\frac{\sqrt{5}}{3}$ & $-\frac{\sqrt{5}}{3}$

Question: 11 A

If 2 sin $2\theta = \sqrt{3}$

Solution:

Given 2 sin $2\theta = \sqrt{3}$

 $\Rightarrow \sin 2\theta = \frac{\sqrt{3}}{2}$

 $\Rightarrow \sin 2\theta = \sin 60^{\circ}$

 $\Rightarrow 2\theta = 60^0$

 $\Rightarrow \theta = 30^0$

Question: 11 B

If 7 \sin^2

Solution:

Given: $7 \sin^2 \theta + 3 \cos^2 \theta = 4$

Since $\sin^2 \theta + \cos^2 \theta = 1$... Equation 1

So the equation becomes

 $4\sin^2\theta = 1$

$$\Rightarrow \sin^2 \theta = \frac{1}{4}$$

From Equation 1 we get

 $\cos^2 \theta = \frac{3}{4}$

Since $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\tan^2 \theta = \frac{1}{3}$ $\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$ Hence Proved In $\triangle ABC$, D and E Solution: AD = 5 cmDB = 8 cmAC = 6.5 cmDE ||BC In $\triangle ABC \& \triangle ADE$

Question: 12

Given :

 $\angle ADE = \angle ABC$ (Corresponding Angles)

 $\angle AED = \angle ACB$ (Corresponding Angles)

So \triangle ABC & \triangle ADE are similar by the A.A. (Angle-Angle) axiom of Similarity

AB = AD + BD = 13 cm.

Since the two triangles are similar so their lengths of sides must be in proportion.

 $\Rightarrow \frac{AD}{AB} = \frac{AE}{AC}$ $\Rightarrow AE = \frac{6.5 \times 5}{13}$

AE = 2.5 cm.

Question: 13

D is a point on t

Solution:

Given:

 $\angle ADC = \angle BAC$

D is a point on the side BC

 $\angle ACB = \angle ACD$ (Common Angle)

So \triangle ABC & \triangle ADC are similar by the A.A. (Angle-Angle) axiom of Similarity

Since the two triangles are similar so their lengths of sides must be in proportion

 $\frac{CB}{CA} = \frac{CA}{DC}$

Cross Multiplying We Get

 $CA^2 = DC \times CB$

Which is the required expression

Hence Proved

Question: 14

Calculate the mod

Solution:

Class corresponding to maximum frequency = (4-8)

 f_1 (Frequency of the modal class) = 8

 f_0 (Frequency of the class preceding the modal class) = 4

 f_2 (Frequency of the succeeding modal class) = 5

l(lower limit) = 4

h(width of class) = 4

 $Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$

$$\Rightarrow Mode = 4 + \left(\frac{8-4}{2 \times 8-4-5}\right) \times 4$$

 $\underline{Mode} = 6.29$

Question: 15

Show that any pos

Solution:

According to Euclid's algorithm p = 6q + r

where r is any whole number 0 < = r < 6 and p is a positive integer

Since 6q is divisible by 2 so the value of r will decide whether it is odd or even.

Also since r<6 so only 6 cases are possible

For r = 1 , 3, 5 we get three odd numbers and for r = 0 , 2 , 4 we get three even numbers

So (6q + 1), (6q + 3) & (6q + 5) represents positive odd integers.

Hence Proved

Question: 16 A

Prove that (3 - $\sqrt{1}$

Solution:

Let us assume (3 - $\sqrt{15}$) is rational

$$3 - \sqrt{15} = \frac{a}{b}$$
 (Assume)

where a & b are integers $(b \neq 0)$

$$\Rightarrow 3 - \frac{a}{b} = \sqrt{15}$$
$$\Rightarrow \frac{3b-a}{b} = \sqrt{15}$$

Now let's solve the R.H.S. Of the above equation

Let
$$\sqrt{15} = \frac{p}{q}$$

Squaring we get

$$15 = \frac{p^2}{q^2}$$

$$15q^2 = p^2$$

In The above equation since 15 divides $p^2 \mbox{ so it must also divide } p$

so p is a multiple of 15

let p = 15k where k is an integer

Putting in Equation 1 the value of p we get

 $15q^2 = 225k^2$

$$\Rightarrow q^2 = 15k^2$$

Since 15 divides q^2 so it must also divide q

so q is a multiple of 15

But this contradicts our previously assumed data since we had considered p &~q has been resolved in their simplest form and they shouldn't have any common factors.

So $\sqrt{15}$ is irrational and hence

 $(3 - \sqrt{15})$ is also irrational

Hence Proved

Question: 16 B

Prove that

Solution:

Let us consider $\frac{2\sqrt{2}}{3}$ to be rational

 $\frac{2\sqrt{2}}{3} = \frac{a}{b}$ where a & b are integers (b≠0)

Rearranging we get

$$\sqrt{2} = \frac{3a}{2b}$$

The R.H.S of the above expression is a rational number since it can be expressed as a numerator by a denominator $% \mathcal{A} = \mathcal{A} = \mathcal{A}$

Let L.H.S = $\frac{\mathbf{p}}{\mathbf{q}}$ where p and q are integers (q $\neq 0$)

$$\Rightarrow \sqrt{2} = \frac{p}{q}$$

$$\Rightarrow q\sqrt{2} = p$$

Squaring both sides we get

$$2q^2 = p^2...Equation 1$$

Since 2 divides p^2 so it must also divide p

so p is a multiple of 2

let p = 2k where k is an integer

Putting in Equation 1 the value of p we get

$$2q^2 = 4k^2$$

$$\Rightarrow q^2 = 2k^2$$

Since 2 divides q^2 so it must also divide q

But this contradicts our previously assumed data since we had considered p $\&\ q$ has been resolved in their simplest form and they shouldn't have any common factors.

So $\sqrt{2}$ is irrational and hence

 $\frac{2\sqrt{2}}{3}$ is also irrational

Hence Proved

Question: 17 A

What number must

Solution:

Let the number added to each of the numbers to make them in proportion be \boldsymbol{x}

When any four numbers (a, b, c, d)are in proportion then

$$\frac{a}{b} = \frac{c}{d}$$

Applying the above equation for our problem we get

$$\frac{5 + x}{9 + x} = \frac{17 + x}{27 + x}$$

$$\Rightarrow (5 + x)(27 + x) = (17 + x)(9 + x)$$

$$\Rightarrow 135 + 32x + x^{2} = 153 + 26x + x^{2}$$

$$\Rightarrow 6x = 18$$

The number added should be 3

Question: 17 B

The sum of two nu

Solution:

Let the two numbers be $x \And Y$

$$x + y = 18$$
 (Given) ...Equation 1
 $\frac{1}{x} + \frac{1}{y} = \frac{1}{4}$ (Given) ...Equation 2

Solving Equation 2 We get

$$\Rightarrow \frac{x+y}{xy} = \frac{1}{4}$$

Putting the value from Equation 1 we get

⇒ xy = 72 ⇒ y = $\frac{72}{x}$...Equation 3

Putting the value of Equation 3 in Equation 1 We get

$$\Rightarrow x + \frac{72}{x} = 18$$
$$\Rightarrow x^{2} + 72 = 18x$$
$$\Rightarrow x^{2} - 18x + 72 = 0$$
$$\Rightarrow (x-6)^{2} = 0$$
$$\Rightarrow x = 6$$

Putting the value of x in Equation 1 we get y = 12

The two numbers are 6 & 12

Question: 18

If α , β are the z

Solution:

Given Equation : $x^2 - x - 12 = 0$

which is of the form $ax^2 + bx + c = 0$ (General Form)

The product of the roots of the general form of equation $=\frac{c}{2}$

Sum of Roots of the general equation = $-\frac{b}{a}$

 $So \alpha + \beta = -\frac{b}{a}$

 $\Rightarrow \alpha + \beta = 1$

 $\Rightarrow 2(\alpha + \beta) = 2$ Equation 1

Similarly

 $\alpha \times \beta = -12$

 $\Rightarrow 2\alpha \times 2\beta = -48$... Equation 2

The new equation will be formed by combining the results of Equation 1 & 2

The New Polynomial Formed from the new roots is x² -2x-48

Question: 19

Prove that (sin θ

Solution:

Given L.H.S. = $(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2$

We know

```
\sin \theta = \frac{1}{\cos e c \theta}
\cos \theta = \frac{1}{\sec \theta}
\Rightarrow \sin^2 \theta + \csc^2 \theta + 2 + \cos^2 \theta + \sec^2 \theta + 2
Also From the Trigonometrical identities
\sin^2 \theta + \cos^2 \theta = 1
\csc^2 \theta = 1 + \cot^2 \theta
\sec^2 \theta = 1 + \tan^2 \theta
\Rightarrow 1 + 1 + \cot^2 \theta + 2 + 1 + \tan^2 \theta + 2
\Rightarrow 7 + \cot^2 \theta + \tan^2 \theta
So, L.H.S = R.H.S
Hence Proved
Question: 20
If sec \theta + tan \theta
Solution:
```

Given sec θ + tan θ = m

 $sec\theta = \frac{1}{\cos\theta} \& \frac{sin\theta}{\cos\theta} = tan\theta$

So, we can write

$$\frac{1 + \sin \theta}{\cos \theta} = m$$

Squaring both sides we get

$$\frac{(1 + \sin \theta)^2}{\cos^2 \theta} = m^2$$

Since $\cos^2 \theta = 1 - \sin^2 \theta$

$$\Rightarrow \frac{(1 + \sin \theta)^2}{1 - \sin^2 \theta} = m^2$$
$$\Rightarrow \frac{1 + \sin^2 \theta + 2\sin \theta}{1 - \sin^2 \theta} = m^2$$

Applying Componendo & Dividendo i.e.

$$\frac{a}{b} = \frac{c}{d}$$

is equivalent to $\frac{a-b}{a+b} = \frac{c-d}{c+d}$

we get

$$\Rightarrow \frac{\sin^2 \theta + \sin \theta}{1 + \sin \theta} = \frac{m^2 - 1}{m^2 + 1}$$
$$\Rightarrow \frac{\sin \theta (1 + \sin \theta)}{1 + \sin \theta} = \frac{m^2 - 1}{m^2 + 1}$$

$$\Rightarrow \sin\theta = \frac{1}{m^2 + 1}$$

Hence Proved

Question: 21

In a trapezium AB

Solution:

Given :

AB|| CD

 $AB = 2 \times CD$

$$\Rightarrow \frac{AB}{CD} = 2$$

 $\angle AOB = \angle COD$ (Vertically Opposite angles)

 $\angle DCO = \angle OAB$ (Alternate Angles)

So ΔAOB & ΔDOC are similar by the A.A. (Angle Angle) axiom of Similarity

Since both the triangles are similar so according to the Area –Length relations of similar triangle we can write

$$\frac{\text{Area of } \Delta \text{AOB}}{\text{Area of } \Delta \text{DOC}} = \frac{\text{AB}^2}{\text{CD}^2}$$
$$\Rightarrow \frac{\text{84}}{\text{Area of } \Delta \text{DOC}} = 4$$
$$\frac{\text{Area of } \Delta \text{DOC} = 21 \text{cm}^2}{\text{Area of } \Delta \text{DOC}} = 21 \text{cm}^2$$

Question: 22

In the given figu

Solution:

Given:

AB⊥ BC

 $GF \perp BC$

 $\text{DE} \perp \text{AC}$

Since AB \perp BC so \angle DAE & \angle GCF are complementary angles i.e.

 $\angle DAE + \angle GCF = 90^0 \dots Equation 1$

Similarly since GF \perp BC so ∠CFG & ∠GCF are complementary angles i.e.

 $\angle CGF + \angle GCF = 90^0 \dots Equation 2$

Combining Equation 1 & 2 We can say that

 $\angle CGF = \angle DAE$

Also $\angle CFG = \angle DEA$ (Perpendicular Angles)

So ΔCGF is similar to ΔADE By A.A. (Angle Angle)axiom of similarity

Hence Proved

Question: 23 A

Find the mean of

Solution:

Class	Frequency(f _i)	Class Mark(x _i)	$u_i = \frac{x_i - a}{h}$	f _i u _i
0-10	7	5	-2	-14
10-20	12	15	-1	-12
20-30	13	25	0	0
30-40	10	35	1	10
40-50	8	45	2	16
	$\Sigma f_i = 50$			$\Sigma f_i u_i = 0$

h (Represents the class width) = 10

a (Assumed mean) = 25

So Mean according to Step Deviation method:

Mean = a + h ×
$$\left(\frac{\sum f_i u_i}{\sum f_i}\right)$$

10 × 0

$$\Rightarrow 25 + \frac{10 \times 6}{50}$$

Mean = 25

Question: 23 B

The mean of the f

Solution:

Class Interval	Frequency(f _i)	Class Mark(x _i)	f _i x _i
50-60	8	55	440
60-70	6	65	390
70-80	12	75	900
80-90	11	85	935
90-100	p	95	95p
	$\Sigma f_i = 37 + p$		$\Sigma f_i x_i = 2665 + 95p$

Mean = 78 (Given)

According to the direct method

$$\begin{split} \text{Mean} &= \frac{\sum f_i x_i}{\sum f_i} \\ \Rightarrow & 78 \ = \ \frac{2665 \ + \ 95p}{37 \ + \ p} \end{split}$$

 $\Rightarrow 2886 + 78p = 2665 + 95p$

 $\Rightarrow 17p = 221$

Value of p is 13

Question: 24

Find the median o

Solution:

Weight	Number of	Weight Less	Cumulative
(in kg)	students	than(Kg)	Frequency
40-45	2	45	2
45-50	3	50	5
50-55	8	55	13
55-60	6	60	19
60-65	6	65	25
65-70	3	70	28
70-75	2	75	30

Total frequency(n) = 30

$$\frac{n}{2} = 15$$

15 lies in the interval $55{\text -}60$

so l (lower limit) = 55

 c_f (Cumulative frequency of the preceding class of median class) = 13

f (frequency of median class) = 6

h (class size) = 5

Median =
$$l + \left(\frac{n}{2} - c_f\right) \times h$$

Median = 55 + $\frac{15 - 13}{6} \times 5$
Median = 56.67Kg
Question: 25

If two zeroes of

Solution:

Given: $p(x) = 2x^4 + 7x^3 - 19x^2 - 14x + 30$ Since $x = \sqrt{2}$ & $-\sqrt{2}$ is a solution so $x - \sqrt{2}$ & $x + \sqrt{2}$ are two factors of p(x)Multiplying the two factors we get $x^2 - 2$...Equation 1 which is also a factor of p(x)To get the other two factors we need to perform long division On performing long division we will get $2x^2 + 7x - 15$...Equation 2 Equation 2 is also a factor of p(x)

To find the other two zeroes of the polynomial we need to solve Equation 2

We use the method of factorization for solving Equation 2

$$2x^2 + 7x - 15 = 0$$

$$\Rightarrow 2x^2 + 10x - 3x - 15 = 0$$

$$\Rightarrow 2x(x+5) - 3(x+5) = 0$$

$$\Rightarrow (2x-3)(x+5) = 0$$

<u>The two roots are $\frac{3}{2}$ and -5</u>

Question: 26 A

Prove that the ar

Solution:

Let us assume BFEC is a square , ΔABF is an equilateral triangle described on the side of the square & Δ CFD is an equilateral triangle describes on diagonal of the square

Now since ΔABF & Δ CFD are equilateral so they are similar

Let side CE = a,

So EF = a

 $CF^2 = a^2 + a^2$

$$CF^2 = 2a^2$$

Since both the triangles are similar so according to the Area -Length relations of similar triangle we can write

 $\frac{\text{Area of } \Delta \text{AFB}}{\text{Area of } \Delta \text{DFC}} = \frac{\text{BF}^2}{\text{CF}^2}$

 $\Rightarrow \frac{\text{Area of } \Delta \text{AFB}}{\text{Area of } \Delta \text{DFC}} = \frac{1}{2}$

So Area Of Δ CFD = 2 Δ ABF

Hence Proved

Question: 26 B

Prove that the ra

Solution:

Let us assume ΔABC & ΔPQR are similar

Area of $\triangle ABC = 0.5 \times AD \times BC$

Area of $\triangle PQR = 0.5 \times PS \times QR$

Now since the two triangles are similar so the length of sides and perpendiculars will also be in proportion

 $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RS} = \frac{AD}{PS}$...Equation 1

 $\frac{\text{Area of } \Delta \text{ABC}}{\text{Area of } \Delta \text{PQR}} = \frac{0.5 \times \text{AD} \times \text{BC}}{0.5 \times \text{PS} \times \text{QR}} \dots \text{Equation } 2$

From Equation 1 We get

 $\frac{AD}{PS} = \frac{BC}{QR}$

Putting in Equation 2 we get

Area of ∆ABC	_	0.5	$\times BC$	$\times BC$
Area of ∆PQR	-	0.5	×QR	×QR
Area of AABC		BC ²		

 $\Rightarrow \frac{1}{\text{Area of } \Delta PQR} = \frac{1}{QR^2}$

So we can see ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides

Hence Proved

Question: 27 A

Prove that:

Solution:

Given: L.H.S. = $\frac{\sec \theta + \tan \theta - 1}{\tan \theta - \sec \theta + 1}$

Since we know $\sec \theta = \frac{1}{\cos \theta} \& \tan \theta = \frac{\sin \theta}{\cos \theta}$

So L.H.S. =
$$\frac{\frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta} - 1}{\frac{\sin\theta}{\cos\theta} - \frac{1}{\cos\theta} + 1} = \frac{1 + \sin\theta - \cos\theta}{\sin\theta - 1 + \cos\theta}$$

Multiplying Numerator & Denominator with $\sin \theta - (1 - \cos \theta)$ we get

L.H.S. = $\frac{\sin^2\theta - (1 - \cos\theta)^2}{(\sin\theta - 1 + \cos\theta)^2}$

 $\sin^2\theta - 1 + 2\cos\theta - \cos^2\theta$

 $= \frac{\sin^2 \theta}{\sin^2 \theta + \cos^2 \theta + 1 - 2\sin \theta - 2\cos \theta + 2\sin \theta \cos \theta}$

Since $\sin^2 \theta + \cos^2 \theta = 1$

 $= \frac{-\cos^2\theta + 2\cos\theta - \cos^2\theta}{1 + 1 - 2\sin\theta - 2\cos\theta + 2\sin\theta\cos\theta}$ Taking 2 common out of numerator and denominator

 $= \frac{\cos \theta - \cos^2 \theta}{1 - \sin \theta - \cos \theta + \sin \theta \cos \theta}$ $= \frac{\cos \theta (1 - \cos \theta)}{1 (1 - \sin \theta) - \cos \theta (1 - \sin \theta)}$ $= \frac{\cos \theta (1 - \cos \theta)}{(1 - \sin \theta) (1 - \cos \theta)}$ $= \frac{\cos \theta}{(1 - \sin \theta)}$ L.H.S. = R.H.S.

Hence Proved

Question: 27 B

Evaluate:

Solution:

Given:
$$\frac{\sec\theta\csc(90^\circ-\theta)-\tan\theta\cot(90^\circ-\theta)+\sin^255^\circ+\sin^235^\circ}{\tan 10^\circ\tan 20^\circ\tan 60^\circ\tan 70^\circ\tan 80^\circ}$$
...Equation 1

We know

 $\sec \theta = \csc (90^0 - \theta)$

 $\tan \theta = \cot \left(90^0 - \theta\right)$

 $\sin \theta = \cos \left(90^0 - \theta\right)$

Using the above three relations in Equation 1 we get

 $\frac{\sec^2\theta - \tan^2\theta + \sin^2 55^0 + \cos^2 55^0}{\tan 10^0 \tan 20^0 \tan 60^0 \cot 20^0 \cot 10^0}$ We also know $\sin^2 \theta + \cos^2 \theta = 1$ $\Rightarrow \sin^2 55 + \cos^2 55 = 1$ And, $\tan \theta = \frac{1}{\cot \theta}$ $\therefore \tan 10^\circ = \frac{1}{\cot 20^\circ}$ $\Rightarrow \frac{1+1}{\tan 10^0 \times \tan 20^\circ \times \tan 60^0 \times \frac{1}{\tan(10^0)} \times \frac{1}{\tan(20^0)}}$ $\Rightarrow \frac{2}{\tan 60^\circ}$ $\Rightarrow \frac{2}{\sqrt{3}}$

Question: 28

If sec θ + tan θ

Solution:

Given sec θ + tan θ = m

 $\sec\theta\,=\,\frac{1}{\cos\theta}\,\&\,\frac{\sin\theta}{\cos\theta}\,=\,\tan\theta$ So we can write

$$\frac{1 + \sin \theta}{\cos \theta} = m$$

Squaring both sides we get

$$\frac{(1 + \sin \theta)^2}{\cos^2 \theta} = m^2$$

Since $\cos^2 \theta = 1 - \sin^2 \theta$

$$\Rightarrow \frac{(1 + \sin \theta)^2}{1 - \sin^2 \theta} = m^2$$
$$\Rightarrow \frac{1 + \sin^2 \theta + 2\sin \theta}{1 - \sin^2 \theta} = m^2$$

Applying Componendo & Dividendo i.e.

$$\frac{a}{b} = \frac{c}{d}$$

is equivalent to $\frac{a-b}{a+b} = \frac{c-d}{c+d}$

we get

$$\Rightarrow \frac{\sin^2 \theta + \sin \theta}{1 + \sin \theta} = \frac{m^2 - 1}{m^2 + 1}$$
$$\Rightarrow \frac{\sin \theta (1 + \sin \theta)}{1 + \sin \theta} = \frac{m^2 - 1}{m^2 + 1}$$
$$\Rightarrow \sin \theta = \frac{m^2 - 1}{m^2 + 1}$$

Hence Proved

Question: 29

Draw the graph of

Solution:

Given: The equations 3x + y - 11 = 0 and x-y- 1 = 0.**To find:** the region bounded by these lines and the y-axis.**Solution:** For 3x + y - 11 = 0y = 11 - 3xNow for x = 0 y = 11 - 3(0)y = 11For x = 3y = 11 - 3(3)y = 11 - 9y = 2Table for equation 3x + y - 11 = 0 is

х	0	3	Plot the points (0.11) (3.2)
у	11	2	

For x-y- 1 = 0y = x - 1

Now for x = 0 y = 0 - 1y = -1For x = 3y = 3 - 1y = 2Table for equation x-y- 1 = 0 is

x	0	3
у	-1	2

Plot the points (0,-1),(3,2)The graph is shown below:

Question: 30

The table given b

Solution:

Scores	No. Of	Score Less	Cumulative
	Candidates	Than	Frequency
200-250	30	250	30
250-300	15	300	45
300-350	45	350	90
350-400	20	400	110
400-450	25	450	135
450-500	40	500	175
500-550	10	550	185
550-600	15	600	200

Question: 31

For what value of

Solution:

Given:

Equation 1: 2x - 3y = 7

Equation 2: (k + 1)x + (1 - 2k)y = (5k - 4)

Both the equations are in the form of :

 $a_1x + b_1y = c_1 \& a_2x + b_2y = c_2$ where

For the system of linear equations to have infinitely many solutions, we must have

According to the problem:

 $a_1 = 2$ $a_2 = k + 1$ $b_1 = -3$ $b_2 = 1-2k$ $c_1 = 7$ $c_2 = 5k-4$

Putting the above values in equation (i) we get:

$$\frac{2}{k+1} = \frac{-3}{1-2k}$$

$$\Rightarrow 2(1-2k) = -3(k+1)$$

$$\Rightarrow 2-4k = -3k-3$$

$$\Rightarrow k = 5$$

The value of k for which the system of equations has infinitely many solutions
is $k = 5$

Question: 32

Prove that: (sin

Solution:

To Prove: $(\sin\theta - \csc\theta)(\cos\theta - \sec\theta) = \frac{1}{(\tan\theta + \cot\theta)}$

L.H.S. = $(\sin \theta - \csc \theta)(\cos \theta - \sec \theta)$

$$\Rightarrow (\sin\theta - \frac{1}{\sin\theta}) \times (\cos\theta - \frac{1}{\cos\theta})$$
$$\Rightarrow \frac{(\sin^2\theta - 1)}{\sin\theta} \times \frac{(\cos^2\theta - 1)}{\cos\theta}$$

Since $\sin^2\theta + \cos^2\theta = 1$, So

$$\Rightarrow \frac{\cos^2\theta}{\sin\theta} \times \frac{\sin^2\theta}{\cos\theta}$$

After Cancellation we get

L.H.S. = sin $\theta \cos \theta$

Dividing the numerator and denominator with $\cos\theta$ we get

$$\Rightarrow \frac{\sin\theta}{\cos\theta} \times \cos^2\theta$$
We know $\frac{\sin\theta}{\cos\theta} = \tan\theta \& \cos^2\theta = \frac{1}{\sec^2\theta}$

$$\Rightarrow \frac{\tan\theta}{\sec^2\theta}$$

Since $\sec^2\theta = 1 + \tan^2\theta$

 $\Rightarrow \frac{\tan\theta}{1 + \tan^2\theta}$

Dividing The Numerator and denominator by $\tan\theta$ we get

$$\Rightarrow \frac{1}{\frac{1}{\tan \theta} + \tan \theta}$$

 $Since \frac{1}{tan\theta} = \ cot \, \theta$

$$\Rightarrow \frac{1}{\cot \theta + \tan \theta} = \text{R.H.S}$$

Since L.H.S. = R.H.S

Hence Proved

Question: 33

 ΔABC is an isosce

Solution:

Given:

 $AB^2 = 2AC^2 \dots (Equation 1)$

Equation 1 can be rewritten as

$$AB^2 = AC^2 + AC^2$$

Since AC = BC we can write

 $AB^2 = AC^2 + BC^2$... Equation 2

Equation 2 represents the Pythagoras theorem which states that

 $Hypotenuse^2 = Base^2 + Perpendicular^2$

Since Pythagoras theorem is valid only for right-angled triangle so

So $\mathop{\Delta} ABC$ is a right angled triangle right angled at C

Hence Proved

Question: 34

The table given **b**

Solution:

Daily Expenditure	Number of	Class Mark	f _i x _i	Daily	Cumulative
(Rs.)	households	(X _i)		expenditure	frequency
	(f _i)			Less than(Rs.)	
100-150	6	125	750	150	6
150-200	7	175	1225	200	13
200-250	12	225	2700	250	25
250-300	3	275	825	300	28
300-350	2	325	650	350	30
	$\Sigma f_i = 30$		$\Sigma f_i x_i = 6150$		

According to the direct method

$$Mean = \frac{\sum f_i x_i}{\sum f_i}$$
$$\Rightarrow Mean = \frac{6150}{20}$$

 \Rightarrow Mean = 205

Total frequency(n) = 30

$$\frac{n}{2} = 15$$

15 lies in the interval 200-250

so l (lower limit) = 200

 c_f (Cumulative frequency of the preceding class 200-250) = 13

f (frequency of median class) = 12

h (class size) = 50

Median = $l + {\binom{n}{2}-cf}{f} \times h$ Median = 200 + $\frac{15-13}{12} \times 50$

Median = 208.33