APTER

Algebraic Expression & Inequalities

VARIABLE

An unknown quantity used in any equation may be constant known as variable. Variables are generally denoted by the last English alphabet x, y, z etc.

An equation is a statement of equality of two algebraic expressions, which involve one or more variables.

LINEAR EQUATION

An equation in which the highest power of variables is one, is called a linear equation. These equations are called linear because the graph of such equations on the x-y cartesian plane is a straight line.

Linear Equation in one variable

A linear equation which contains only one variable is called linear equation in one variable.

The general form of such equations is ax + b = c, where a, b and c are constants and $a \neq 0$.

All the values of x which satisfy this equation are called its solution(s).

NOTE : An equation satisfied by all values of the variable is called an identity. For example : 2x + x = 3x.

EXAMPLE 1. Solve
$$2x - 5 = 1$$

Sol. $2x - 5 = 1$
 $\Rightarrow 2x = 1 + 5$
 $\Rightarrow 2x = 6 \Rightarrow x = \frac{6}{2} = 3.$

EXAMPLE 2. Solve 7x - 5 = 4x + 11

Sol.
$$7x - 5 = 4x + 11$$

 \Rightarrow 7x-4x=11+5 (Bringing like terms together)

$$\Rightarrow 3x = 16 \Rightarrow x = \frac{16}{3} = 5\frac{1}{3}.$$

EXAMPLE 3. Solve
$$\frac{4}{x} - \frac{3}{2x} = 5$$

Sol.
$$\frac{4}{x} - \frac{3}{2x} = 5 \implies \frac{8-3}{2x} = 5$$

 $\implies \frac{5}{2x} = 5 \implies 10x = 5$
 $\implies x = \frac{5}{10} = \frac{1}{2}$

Application of linear equations with one variables

EXAMPLE 4. The sum of the digits of a two digit number is 16. If the number formed by reversing the digits is less than the original number by 18. Find the original number.

Sol. Let unit digit be x.

(

Then tens digit = 16 - x

Original number = $10 \times (16 - x) + x$ =160-9x

On reversing the digits, we have x at the tens place and (16-x) at the unit place.

:. New number = 10x + (16 - x) = 9x + 16

Original number - New number = 18

$$(160-9x)-(9x+16) = 18$$

 $160-18x-16 = 18$
 $-18x+144 = 18$
 $-18x = 18-144 \implies 18x = 126$
 $\implies x = 7$
. In the original number, we have unit

 \therefore In the original number, we have unit digit = 7 Ten's digit = (16-7)=9Thus, original number = 97

EXAMPLE 5. The denominator of a rational number is greater than its numerator by 4. If 4 is subtracted from the numerator and 2 is added to its denominator, the new number

becomes $\frac{1}{6}$. Find the original number.

Sol. Let the numerator be x. Then, denominator = x + 4

$$\therefore \quad \frac{x-4}{x+4+2} = \frac{1}{6}$$

$$\Rightarrow \quad \frac{x-4}{x+6} = \frac{1}{6}$$

$$\Rightarrow \quad 6(x-4) = x+6$$

$$\Rightarrow \quad 6x-24 = x+6 \Rightarrow \quad 5x = 30$$

$$\therefore \quad x=6$$
Thus, Numerator = 6, Denominator = 6+4 = 1
Hence the original number = $\frac{6}{10}$.

10

0.

EXAMPLE
$$\int 6.$$
 A man covers a distance of 33 km in $3\frac{1}{2}$ hours;

1

partly on foot at the rate of 4 km/hr and partly on bicycle at the rate of 10 km/hr. Find the distance covered on foot. Sol. Let the distance covered on foot be x km.

 \therefore Distance covered on bicycle = (33 – x) km

$$\therefore \quad \text{Time taken on foot} = \frac{\text{Distance}}{\text{Speed}} = \frac{x}{4} \text{ hr.}$$

 \therefore Time taken on bicycle = $\frac{33 - x}{10}$ hr.

The total time taken = $\frac{7}{2}$ hr.

$$\frac{x}{4} + \frac{33 - x}{10} = \frac{7}{2}$$

$$\frac{5x + 66 - 2x}{20} = \frac{7}{2}$$

$$\frac{7}{20} = \frac{7}{2}$$

$$\frac{7}{20} = \frac{7}{20}$$

: The distance covered on foot is 1.33 km.

Linear equation in two variables

General equation of a linear equation in two variables is ax + by + c = 0, where a, $b \neq 0$ and c is a constant, and x and y are the two variables.

The sets of values of x and y satisfying any equation are called its solution(s).

Consider the equation 2x + y = 4. Now, if we substitute x = -2 in the equation, we obtain $2 \cdot (-2) + y = 4$ or -4 + y = 4 or y = 8. Hence (-2, 8) is a solution. If we substitute x = 3 in the equation, we obtain $2 \cdot 3 + y = 4$ or 6 + y = 4 or y = -2Hence (3, -2) is a solution. The following table lists six possible values for x and the corresponding values for y, i.e. six solutions of the equation.

X	-2	-1	0	1	2	3
у	8	6	4	2	0	-2

Systems of Linear equation

Consistent System : A system (of 2 or 3 or more equations taken together) of linear equations is said to be consistent, if it has at least one solution.

Inconsistent System: A system of simultaneous linear equations is said to be inconsistent, if it has no solutions at all.

e.g.
$$X+Y=9;$$
 $3X+3Y=8$

Clearly there are no values of X & Y which simultaneously satisfy the given equations. So the system is inconsistent.

🖎 remember 🗕

- The system $a_1x + b_1y = c_1$ and $a_2x + b_2y = c_2$ has:
 - a unique solution, if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$.
 - Infinitely many solutions, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.

- No solution, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$.
- The homogeneous system $a_1x + b_1y = 0$ and

 $a_2x + b_2y = 0$ has the only solution x = y = 0 when $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$.

★ The homogeneous system $a_1x + b_1y = 0$ and

$$a_2x + b_2y = 0$$
 has a non-zero solution only when $\frac{a_1}{a_2} = \frac{b_1}{b_2}$

and in this case, the system has an infinite number of solutions.

EXAMPLE 7. Find k for which the system 3x - y = 4, kx + y = 3 has a infinitely many solution.

Sol. The given system will have inifinite solution,

if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2}$$
 i.e. $\frac{3}{k} = \frac{-1}{1}$ or $k = -3$.

EXAMPLE 8. Find k for which the system 6x - 2y = 3, kx - y = 2 has a unique solution.

Sol. The given system will have a unique solution,

if
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 i.e. $\frac{6}{k} \neq \frac{-2}{-1}$ or $k \neq 3$.

EXAMPLE 9. What is the value of k for which the system x+2y=3, 5x+ky=-7 is inconsistent?

Sol. The given system will be inconsistent if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

i.e. if
$$\frac{1}{5} = \frac{2}{k} \neq \frac{3}{-7}$$
 or $k = 10$.

EXAMPLE 10. Find k such that the system 3x + 5y = 0, kx + 10y = 0 has a non-zero solution.

Sol. The given system has a non zero solution,

if
$$\frac{3}{k} = \frac{5}{10}$$
 or $k = 6$

QUADRATIC EQUATION

An equation of the degree two of one variable is called quadratic equation.

General form : $ax^2 + bx + c = 0$(1) where a, b and c are all real number and $a \neq 0$.

For Example :

 $2x^2-5x+3=0; 2x^2-5=0; x^2+3x=0$

If $b^2 - 4ac \ge 0$, then the quadratic equation gives two and only two values (either same or different) of the unknown variable and both these values are called the roots of the equation.

The roots of the quadratic equation (1) can be evaluated using the following formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \dots (2)$$

The above formula provides both the roots of the quadratic equation, which are generally denoted by α and β ,

say
$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

The expression inside the square root $b^2 - 4ac$ is called the DISCRIMINANT of the quadratic equation and denoted by D. Thus, Discriminant (D) = $b^2 - 4ac$.

📽 Shortcut Ápproach

Shortcut Approach to solve Quadratic equation $ax^2 + bx + c = 0$, if $b^2 - 4ac \ge 0$, $ax^2 + bx + c$

EXAMPLE 11. Which of the following is a quadratic equation?

- (a) $x^{\frac{1}{2}} + 2x + 3 = 0$
- (b) $(x-1)(x+4) = x^2+1$
- (c) $x^4 3x + 5 = 0$
- (d) $(2x+1)(3x-4) = 2x^2+3$
- Sol. (d) Equations in options (a) and (c) are not quadratic equations as in (a) max. power of x is fractional and in (c), it is not 2 in any of the terms.

For option (b), $(x-1)(x+4) = x^2 + 1$ or $x^2 + 4x - x - 4 = x^2 + 1$ or 3x-5=0which is not a quadratic equations but a linear.

For option (d), $(2x+1)(3x-4) = 2x^2 + 3$

or $6x^2 - 8x + 3x - 4 = 2x^2 + 3$

or
$$4x^2 - 5x - 7 = 0$$

which is clearly a quadratic equation.

EXAMPLE 12. Solve $2x^2 + 6 = 7x$ Sol. $2x^2 + 6 = 7x$

 $\Rightarrow 2x^2 - 7x + 6 = 0$

Nature of Roots

The nature of roots of the equation depends upon the nature of its discriminant D.

1. If D < 0, then the roots are non-real complex, Such roots are always conjugate to one another. That is, if one root is p + iq then other is p - iq, $q \neq 0$.

If D = 0, then the roots are real and equal. Each root of the 2. equation becomes $-\frac{b}{2a}$. Equal roots are referred as

repeated roots or double roots also.

3. If D > 0 then the roots are real and unequal.

Sign of Roots:

Let α , β are real roots of the quadratic equation

 $ax^2 + bx + c = 0$ that is $D = b^2 - 4ac \ge 0$. Then

- Both the roots are positive if a and c have the same sign 1. and the sign of b is opposite.
- 2. Both the roots are negative if a, b and c all have the same sign.
- The Roots have opposite sign if sign of a and c are opposite. 3.
- The Roots are equal in magnitude and opposite in sign if 4 b = 0 [that is its roots α and $-\alpha$]

[that

The roots are reciprocal if a = c. 5.

is the roots are
$$\alpha$$
 and $\frac{1}{\alpha}$

$25-x^2$	= x - 1 are :		
(a)	x = 3 and $x = 4$	(b)	x = 5 and $x = 1$
(c)	x = -3 and $x = 4$	(d)	x = 4 and $x = -3$

- **Sol.** (d) $\sqrt{25-x^2} = x-1$
 - or $25-x^2 = (x-1)^2$ or $25-x^2 = x^2+1-2x$ or $2x^2 - 2x - 24 = 0$ or $x^2 - x - 12 = 0$ or (x-4)(x+3) = 0 or x=4, x=-3

EXAMPLE 15. Which of the following equations has real roots?

(a) $3x^2 + 4x + 5 = 0$ (b) $x^2 + x + 4 = 0$

- (d) $2x^2 3x + 4 = 0$ (c) (x-1)(2x-5)=0
- Sol. (c) Roots of a quadratic equation

 $ax^{2} + bx + c = 0$ are real if $b^{2} - 4ac \ge 0$ Let us work with options as follows. Option (a): $2x^2 + 4x + 5 = 0$

Option (a):
$$3x^2 + 4x + 5 = 0$$

$$b^2 - 4ac = (4)^2 - 4(3)(5) = -44 < 0$$
.
Thus, roots are not real.

(b):
$$x^2 + x + 4 = 0$$

$$b^2 - 4ac = (1)^2 - 4(1)(4) = 1 - 16 = -15 < 0$$

Thus, roots are not real.

(c): $(x-1)(2x-5)=0 \implies 2x^2-7x+5=0$ $b^2 - 4ac = (-7)^2 - 4 \times 2 \times 5 = 49 - 40 = 9 > 0$ Thus roots are real.

or x = 1 and $x = \frac{5}{2} > 0$; Thus, equation has real roots. (d): $2x^2 - 3x + 4 = 0$ $b^2 - 4ac = (-3)^2 - 4(2)(4) = 9 - 32 = -23 < 0$ Thus, roots are not real. Hence, option (c) is correct.

EXAMPLE 16. If
$$2x^2 - 7xy + 3y^2 = 0$$
, then the value of x:
y is:
(a) 3:2 (b) 2:3
(c) 3:1 or 1:2 (d) 5:6
Sol. (c) $2x^2 - 7xy + 3y^2 = 0$
 $2\left(\frac{x}{y}\right)^2 - 7\left(\frac{x}{y}\right) + 3 = 0$
 $\frac{x}{y} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{49 - 24}}{2 \times 2} = \frac{7 \pm 5}{4} = 3, \frac{1}{2}$

$$\Rightarrow \frac{x}{y} = \frac{3}{1} \text{ or } \frac{x}{y} = \frac{1}{2}$$

EXAMPLE 17. If a + b + c = 0 and a, b, c, are rational numbers then the roots of the equation

- $(b+c-a)x^{2}+(c+a-b)x+(a+b-c)=0$ are
- (b) irrational (a) rational
- (c) non real (d) none of these.
- **Sol.** (a) The sum of coefficients

$$= (b+c-a)+(c+a-b)+(a+b-c) = a+b+c = 0$$
(given)

$$\therefore$$
 x = 1 is a root of the equation

$$\therefore$$
 The other root is $\frac{a+b-c}{b+c-a}$, which is rational as a,

b, c, are rational Hence, both the roots are rational.

OTHER METHOD :

$$D = (c + a - b)^{2} - 4(b + c - a)(a + b - c)$$

= (-2b)² - 4(-2a)(-2c) = 4b² - 16 a c
= 4(a + c)² - 16ac = 4[(a + c)² - 4ac] = [2(a - c)]^{2}
D is a perfect square. Hence, the roots of the equation

on are rational.

EXAMPLE / 18. Both the roots of the equation

$$(x-b)(x-c) + (x-c)(x-a) + (x-a)(x-b) = 0$$
 are

Sol. (c) The equation is

=

$$3x^{2} - 2(a + b + c)x + (bc + ca + ab) = 0$$

The discriminant
$$D = 4(a + b + c)^{2} - 4.3.(bc + ca + ab)$$
$$= 4[a^{2} + b^{2} + c^{2} - ab - bc - ca]$$
$$2[(a^{2} - 2ab + b^{2}) + (b^{2} - 2bc + c^{2}) + (c^{2} - 2ca + a^{2})]$$
$$= 2[(a - b)^{2} + (b - c)^{2} + (c - a)^{2}] \ge 0$$

∴ Roots are always real.

Symmetric Functions of Roots :

An expression in α , β is called a symmetric function of α , β if the function is not affected by interchanging α and β . If α , β are the

roots of the quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ then,

Sum of roots : $\alpha + \beta = -\frac{b}{a} = -\frac{\text{coefficien t of } x}{\text{coefficien t of } x^2}$

and Product of roots : $\alpha\beta = \frac{c}{a} = \frac{constant term}{coefficient of x^2}$

Formation of quadratic Equation with Given Roots :

- An equation whose roots are α and β can be written as $(x \alpha)(x \beta) = 0$ or $x^2 (\alpha + \beta)x + \alpha\beta = 0$ or $x^2 (\text{sum of the roots})x + \text{ product of the roots} = 0.$
- Further if α and β are the roots of a quadratic equation $ax^2 + bx + c = 0$, then
 - $ax^2 + bx + c = a(x \alpha) (x \beta)$ is an identity.

EXAMPLE 19. Of the following quadratic equations, which is the one whose roots are 2 and -15?

- (a) $x^2 2x + 15 = 0$ (b) $x^2 + 15x 2 = 0$
- (c) $x^2 + 13x 30 = 0$ (d) $x^2 30 = 0$
- Sol. (c) Sum of roots = 2 15 = -13Product of roots $= 2 \times (-15) = -30$ Required equation

$$= x^{2} - x$$
 (sum of roots) + product of roots = 0

$$\Rightarrow$$
 x²+13x-30 = 0

EXAMPLE 20. If a and b are the roots of the equation

- $x^2-6x+6=0$, then the value of a^2+b^2 is :
- (a) 36 (b) 24 (c) 17 (d) 6 Sol. (b) The sum of roots = a + b = 6

EXAMPLE 21. If a, b are the two roots of a quadratic equation such that a + b = 24 and a - b = 8, then the quadratic equation having a and b as its roots is :

(a) $x^2 + 2x + 8 = 0$ (b) $x^2 - 4x + 8 = 0$

(c)
$$x^2 - 24x + 128 = 0$$
 (d) $2x^2 + 8x + 9 = 0$

Sol. (c)
$$a+b=24$$
 and $a-b=8$

 \Rightarrow a = 16 and b = 8 \Rightarrow ab = 16 × 8 = 128 A quadratic equation with roots a and b is

$$x^{2} - (a+b)x + ab = 0$$
 or $x^{2} - 24x + 128 = 0$

INEQUATIONS:

A statement or equation which states that one thing is not equal to another, is called an inequation.

Symbols :

- '<' means "is less than"
- '>' means "is greater than"

- ' \leq ' means "is less than or equal to"
- $' \geq$ 'means "is greater than or equal to"

For example :

- (a) x < 3 means x is less than 3.
- (b) $y \ge 9$ means y is greater than or equal to 9.

Properties

- 1. Adding the same number to each side of an inequation does not effect the sign of inequality, i.e. if x > y then, x + a > y + a.
- 2. Subtracting the same number to each side of an inequation does not effect the sign of inequality, i.e., if x < y then, x-a < y-a.
- 3. Multiplying each side of an inequality with same positive number does not effect the sign of inequality, i.e., if $x \le y$ then $ax \le ay$ (where, a > 0).
- 4. Multiplying each side of an inequality with a negative number reverse the sign of inequality i.e., if x < y then ax > ay (where a < 0).
- 5. Dividing each side of an inequation by a positive number does not effect the sign of inequality, i.e., if $x \le y$ then

$$\frac{x}{a} \le \frac{y}{a}$$
 (where $a > 0$).

- 6. Dividing each side of an inequation by a negative number
 - reverses the sign of inequality, i.e., if x > y then $\frac{x}{a} < \frac{y}{a}$ (where a < 0).

🖎 REMEMBER _____

★ If a > b and a, b, n are positive, then $a^n > b^n$ but $a^{-n} < b^{-n}$. For example 5>4; then $5^3 > 4^3$ or 125 > 64, but

$$5^{-3} < 4^{-3} \text{ or } \frac{1}{125} < \frac{1}{64}$$

- ★ If a > b and c > d, then (a + c) > (b + d).
- $\star \quad \text{If } a > b > 0 \text{ and } c > d > 0, \text{ then } ac > bd.$
- ★ If the signs of all the terms of an inequality are changed, then the sign of the inequality will also be reversed.

MODULUS :

$$|\mathbf{x}| = \begin{cases} \mathbf{x}, \ \mathbf{x} \ge \mathbf{0} \\ -\mathbf{x}, \ \mathbf{x} < \mathbf{0} \end{cases}$$

1. If a is positive real number, x and y be the fixed real numbers, then

 $\begin{array}{l} (i) |x-y| < a \iff y-a < x < y+a \\ (ii) |x-y| \le a \iff y-a \le x \le y+a \\ (iii) |x-y| > a \iff x > y+a \text{ or } x < y-a \\ (iv) |x-y| \ge a \iff x \ge y+a \text{ or } x \le y-a \end{array}$

2. Triangle inequality :

 $(i)\mid x+y\mid \,\leq \, \mid x\mid \,+\mid y\mid, \ \forall \ x,y\in R$

(ii) $|x - y| \ge |x| - |y|, \forall x, y \in R$

EXAMPLE \checkmark 22. If a - 8 = b, then determine the value of

 $|\mathbf{a}-\mathbf{b}| - |\mathbf{b}-\mathbf{a}|$.

(a) 16 (b) 0 (c) 4 (d) 2 Sol. (b) |a-b|=|8|=8 $\Rightarrow |b-a|=|-8|=8$ $\Rightarrow |a-b|-|b-a|=8-8=0$ EXAMPLE 23. Solve: $3x + 4 \le 19, x \in \mathbb{N}$

Sol. $3x + 4 \le 19$

 $3x + 4 - 4 \le 19 - 4$ [Subtracting 4 from both the sides] $3x \le 15$ $\frac{3x}{3} \le \frac{15}{3}$ [Dividing both the sides by 3] $x \le 5; x \in \mathbb{N}$ $\therefore x = \{1, 2, 3, 4, 5\}.$

EXAMPLE \checkmark 24. Solve $5 \le 2x - 1 \le 11$

Sol. $5 \le 2x - 1 \le 11$ $5+1 \le 2x - 1 + 1 \le 11 + 1$ [Adding 1 to each sides] $6 \le 2x \le 12$ $\frac{6}{2} \le \frac{2x}{2} \le \frac{12}{2}$ [Dividing each side by 2] $3 \le x \le 6$ $\Rightarrow x = \{3, 4, 5, 6\}.$

Applications Formulation of Equations/ Expressions :

A formula is an equation, which represents the relations between two or more quantities.

For example :

Area of parallelogram (A) is equal to the product of its base (b) and height (h), which is given by

$$A = b \times h$$

or A = bh.

Perimeter of triangle (P),

P = a + b + c, where a, b and c are length of three sides.

- **EXAMPLE** 25. Form the expression for each of the following:
- (a) 5 less than a number is 7.
- (b) Monika's salary is 1500 less than thrice the salary of Surbhi.

Sol. (a) Expression is given by

- x-5=7, where x is any number
- (b) Let the salary of Surbhi be Rs. x and salary of Monika be Rs. y.

Now, according to the question

y = 3x - 1500

More Applications of Equations :

Problems on Ages can be solved by linear equations in one variable, linear equations in two variables, and quadratic equations.

EXAMPLE 26. Kareem is three times as old as his son. After ten

- **Sol.** Let the present age of Kareem's son be x years.
 - Then, Kareem's age = 3x years After 10 years, Kareem's age = 3x + 10 years and Kareem's son's age = x + 10 years $\therefore (3x+10)+(x+10)=76$ $\Rightarrow 4x=56 \Rightarrow x=14$
 - $\therefore \quad \text{Kareem's present age} = 3x = 3 \times 14 = 42 \text{ years} \\ \text{Kareem's son's age} = x = 14 \text{ years}.$

EXAMPLE 27. The present ages of Vikas and Vishal are in the ratio 15 : 8. After ten years, their ages will be in the ratio 5 : 3. Find their present ages.

Sol. Let the present ages of Vikas and Vishal be 15x years and 8x years. After 10 years,

Vikas's age = 15x + 10 and Vishal's age = 8x + 10

$$\therefore \quad \frac{15x+10}{8x+10} = \frac{5}{3}$$

- \Rightarrow 3(15x+10)=5(8x+10)
- $\Rightarrow 45x+30=40x+50$

$$\Rightarrow$$
 5x=20 \Rightarrow x= $\frac{20}{5}$ =4

:. Present age of Vikas = $15x = 15 \times 4 = 60$ years Present age of Vishal = $8x = 8 \times 4 = 32$ years.

SHORTCUT METHOD

	(Ratio of)	(After 10)
	present	years,
	age of	ratio of age
	vikas and	of vikash
	vishal)	and vishal
	15	5 Difference
	8	$3 \xrightarrow{1} 10 \times 2 = 20$
_		

Difference = $15 \times 3 - 8 \times 5 = 5$

$$Common part = \frac{20}{5} = 4$$

Vikas Present age = $15 \times 4 = 60$ years Vishal Present age = $8 \times 4 = 32$ years

EXAMPLE 28. Father's age is 4 less than five times the age of his son and the product of their ages is 288. Find the father's age.

- **Sol.** Let the son's age be x years.
 - So, father's age = 5x 4 years.

$$\therefore \quad x(5x-4) = 288$$

 $\Rightarrow 5x^2 - 4x - 288 = 0 \Rightarrow 5x^2 - 40x + 36x - 288 = 0$

$$\Rightarrow 5x(x-8)+36(x-8)=0$$

$$\Rightarrow (5x+36)(x-8)=0$$

x cannot be negative; therefore, x = 8 is the solution.

 \therefore Son's age = 8 years and Father's age = 5x - 4 = 36 years.

Shortcut Approach

If present age of the father is F times the age of his son. T years hence, the father's age become Z times the age of

son then present age of his son is given by $\frac{(Z-1)T}{(F-Z)}$

EXAMPLE 29. Present age of the father is 9 times the age of his son. One year later, father's age become 7 times the age of his son. What are the present ages of the father and his son. Sol. By the formula

Son's age =
$$\frac{(7-1)}{(9-7)} \times 1 = \frac{6}{2} \times 1 = 3$$
 years

So, father's age = $9 \times \text{son's age} = 9 \times 3 = 27$ years.

SHORTCUT METHOD

Difference = $9 \times 1 - 1 \times 7 = 2$

Common part = $\frac{6}{2}$ = 3

Present age of father = $9 \times 3 = 27$ years Present age of son = $1 \times 3 = 3$ years

Shortcut Approach

If T₁ years earlier the age of the father was n times the age of his son, T₂ years hence, the age of the father becomes m times the age of his son then his son's age is given by

Son's age =
$$\frac{T_2(n-1) + T_1(m-1)}{n-m}$$

EXAMPLE 30. 10 years ago, Shakti's mother was 4 times older than her. After 10 years, the mother will be twice older than the daughter. What is the present age of Shakti? Sol. By using formula,

Shakti's age =
$$\frac{10(4-1)+10(2-1)}{4-2} = 20$$
 years.

SHORTCUT METHOD

Comparisons of ages is given 10 years before the present time and 10 years after the present time.

Therefore time gap = 10 + 10 = 20 years.

(10 years	(10 years
before ratio	after, ratio
of age of	of age of
mother and	mother and
daughter)	daughter

$$\frac{4}{1} \xrightarrow{2} 1 \xrightarrow{\text{Difference}} 1 \xrightarrow{\text{Difference}} 20 \times 1 = 20$$

Difference = $4 \times 1 - 1 \times 2 = 2$

$$Common part = \frac{20}{2} = 10$$

Present age of Shakti's mother = $4 \times 10 + 10 = 50$ years Present age fo Shakti = 10 + 10 = 20 years

🔊 Shortcut Åpproach

Present age of Father : Son = a : b
After / Before T years = m : n
Then son's age = b ×
$$\frac{T(m-n)}{an-bm}$$

and Father's age = a × $\frac{T(m-n)}{an-bm}$

EXAMPLE 31. The ratio of the ages of the father and the son at present is 3 : 1. Four years earliar, the ratio was 4 : 1. What are the present ages of the son and the father?

Sol. Ratio of present age of Father and Son = 3 : 14 years before = 4 : 1

Son's age =
$$1 \times \frac{4(4-1)}{4 \times 1 - 3 \times 1} = 12$$
 years

Father's age =
$$3 \times \frac{4(4-1)}{4 \times 1 - 3 \times 1} = 36$$
 years

SHORTCUT METHOD

$$\begin{pmatrix} \text{Ratio of} \\ \text{present age} \\ \text{of father} \\ \text{and son} \end{pmatrix} \begin{pmatrix} 4 \text{ years} \\ \text{before, ratio} \\ \text{of age of} \\ \text{father and} \\ \text{son} \end{pmatrix}$$

$$\frac{3}{1} \underbrace{4}_{1} \underbrace{1}_{2} \underbrace{1}_{3} \underbrace{1}_{3}$$

Present age of father = $3 \times 12 = 36$ years Present age of son = $1 \times 12 = 12$ years

EXERCISE

Directions (Qs. 1-5): In each question one/two equations are provided. On the basis of these you have to find out the relation between p and q.

Give answer (a) if p = qGive answer (b) if p > qGive answer (c) if q > pGive answer (d) if $p \ge q$, and Give answer (e) if q > n

1. **I**
$$pq + 30 = 6p + 5q$$

2. **I**.
$$2p^2 + 12p + 16 = 0$$

II.
$$2q^2 + 14q + 24 = 0$$

3. **I.**
$$2p^2 + 48 = 20p$$

II.
$$2q^2 + 18 = 12$$

A I $a^2 + a = 2$

II.
$$p^2 + 7p + 10 = 0$$

5. **I.**
$$p^2 + 36 = 12p$$

II.
$$4q^2 + 144 = 48q$$

Directions (Qs.6-10): For the two given equations I and II give answer

(a) if p is greater than q

- (b) if p is smaller than q
- (c) if p is equal to q.
- (d) if p is either equal to or greater than q
- (e) if p is either equal to or smaller than q.

6. **I.** $6p^2 + 5p + 1 = 0$

II.
$$20q^2 + 9q = -1$$

7. **I.**
$$3p^2 + 2p - 1 = 0$$

II. $2q^2 + 7q + 6 = 0$

8. **I.**
$$3p^2 + 15p = -18$$

II.
$$q^2 + 7q + 12 = 0$$

9. **L**
$$p = \frac{\sqrt{4}}{\sqrt{9}}$$

IL $9q^2 - 12q + 4 = 0$
10. **L** $p^2 + 13p + 42 = 0$

II.
$$q^2 = 36$$

Directions (Qs. 11 - 14): In each of the following questions, one or two equation(s) is/are given. On their basis you have to determine the relation between x and y and then give answer

	(a)	if x < y	(b)	if x > y	
	(c)	if <i>x≤y</i>	(d)	$if x \ge y$	
	(e)	if x = y			
11.	Ι	$x^2 + 3x + 2 = 0$	II.	$2y^2 = 5y$	
12.	I.	$2x^2 + 5x + 2 = 0$	II.	$4y^2 = 1$	
13.	I.	$y^2 + 2y - 3 = 0$	II.	$2x^2 - 7x + 6 = 0$	
14.	I.	$x^2 - 5x + 6 = 0$	II.	$y^2 + y - 6 = 0$	
Directions (Os. 15.18). In each of the following question					

Directions (Qs. 15-18): In each of the following questions two equations are given. You have to solve them and Give answer

(a) if
$$p < q$$
 (b) if $p > q$
(c) if $p \le q$ (d) if $p \ge q$

(e) if
$$p = q$$

I. $p^2 - 7p = -12$ 15. **II.** $q^2 - 3q + 2 = 0$ **I.** $12p^2 - 7p = -1$ 16. **II.** $6q^2 - 7q + 2 = 0$ 17. **I.** $p^2 - 8p + 15 = 0$ **II.** $q^2 - 5q = -6$ $2p^2 + 20p + 50 = 0$ 18 L $a^2 - 25$ II. Directions (Os.19-23): In each of these questions two equations are given. You have to solve these equations and Give answer (a) if x < v(b) if x > v(c) if x = y(d) if x > y(e) if $x \leq y$ **L** $x^2 - 6x = 7$ 19. **II.** $2y^2 + 13y + 15 = 0$ L $3x^2 - 7x + 20$ 20. **II.** $2v^2 - 11v + 15 = 0$ $I. \quad 10x^2 - 7x + 1 = 0$ 21. **II.** $35y^2 - 12y + 1 = 0$ **I.** $4x^2 = 25$ 22 **II.** $2v^2 - 13v + 21 = 0$ **I.** $3x^2 + 7x = 6$ 23.

II. $6(2y^2+1)=17y$

Directions (Qs. 24-26): In each question below one or more equation(s) is /are given. On the basis of these, you have to find out the relationship between p and q.

Give answer (a) if
$$p = q$$

Give answer (b) if $p > q$
Give answer (c) if $p < q$
Give answer (d) if $p \le q$
Give answer (e) if $p \ge q$

24. I.
$$2p^2 = 23p - 63$$

II. $2q (q^{-8}) = q^{-36}$
25. I. $p (p^{-1}) = (p^{-1})$
II. $q^2 = 4q^{-1}$

26. I.
$$2p(p-4) = 8(p+5)$$

II. $q^2 + 12 + 7q$

Directions (Qs. 27-30): In each of the following questions two equations I and II are given. You have to solve both the equations and give answer

	(a)	if <i>a</i> < <i>b</i>	(b)	if $a \leq b$
	(c)	if $a \ge b$	(d)	if a = b
	(e)	if $a > b$		
27.	I.	$a^2 - 5a + 6 = 0$		
	II.	$b^2 - 3b + 2 = 0$		
28.	I.	2a + 3b = 31		
	II.	3a = 2b + 1		
29.	I.	$2a^2 + 5a + 3 = 0$		
	II.	$2b^2 - 5b + 3 = 0$		

30.	I.	$4a^2 = 1$						
	II.	$4b^2 - 12b + 5 = 0$						
Dire	Directions (Os. 31-35) : In each of the following questions there							
are	are two equations. Solve them and choose the correct option							
	(a)	IfP <q< td=""><td>(b)</td><td>If P>Q</td></q<>	(b)	If P>Q				
	(c)	IfP<0	(d)	IfP>0				
	(e)	If $P = O$	(4)	x				
31	I	$4P^2 - 8P + 3 = 0$	π	$2\Omega^2 - 13\Omega + 15 = 0$				
32	I	$P^2 + 3P - 4 = 0$	П	2Q = 15Q + 15 = 0 $3Q^2 - 10Q + 8 = 0$				
32. 22	ь Т	$3P^2 + 3P = 7 = 0$	п.	3Q = 10Q + 8 = 0 $15\Omega^2 = 22\Omega + 8 = 0$				
23. 24	ь т	31 - 101 + 7 = 0 $200^2 - 170 + 2 = 0$	ц. п	15Q = 22Q + 8 = 0 $20Q^2 = 0Q + 1 = 0$				
54. 25	L T	$20P^2 - 1/P + 3 = 0$ $20P^2 + 21P + 12 = 0$	Ц. П	$20Q^{-}-9Q^{+}1=0$				
33. D'	ь. 	$20P^2 + 31P + 12 = 0$	Ш.	$21Q^2 + 23Q + 6 = 0$				
Dire	tions	(Qs. 36-40): For the two g	ven e	quations I and II, give answer				
	(a)	if <i>a</i> is greater than <i>b</i>						
	(b)	if a is smaller than b						
	(c)	If a is equal to b						
	(d)	if <i>a</i> is either equal to o	r grea	ater than b				
	(e)	if a is either equal to or	r sma	ller than b				
36.	I.	$\sqrt{2304} = a$						
	_	2						
	II.	$b^2 = 2304$						
27	т	12 2 7 1 0						
37.	I.	12a - 7a + 1 = 0						
	II.	$15b^2 - 16b + 4 = 0$						
20	т	2						
38.	I.	$a^2 + 9a + 20 = 0$						
	II.	$2b^2 - 10b + 12 = 0$						
39.	I.	3a + 2b = 14						
	II.	a + 4b - 13 = 0						
40.	L	$a^2 - 7a + 12 = 0$						
	II.	$b^2 - 9b + 20 = 0$						
Dire	ection	15 (Os. 41-45) : In each o	nesti	on one or more equation(s)				
is (a	re) n	rovided On the basis of	fthes	e vou have				
Give	ansv ansv	wer (a) if $n = a$	t thes	e jou nave				
GIW	Giv	we answer (b) if $n > a$						
	Giv	e answer(c) if a > n						
	Giv	callswer (c) if $q > p$						
	Giv	The answer (d) if $p \ge q$ and $p \ge q$ and	L					
	GIV	$q = answer(e) \prod q \ge p$						
44	0	5 9 15 13						
41.	(1)	$\overline{28} \times \overline{8} p = \overline{14} \times \overline{16} q$						
42	ம்	n - 7 = 0	(ii)	$3a^2 - 10a + 7 = 0$				
-⊤∠. ⊿२	(1) (i)	$P^{-7} = 16$	(11) (ji)	$a^2 - 10q + 25 = 0$				
43. 11	u) ©	-p = 10 $4n^2 - 5n + 1 = 0$	(II) (ii)	q = 10q + 25 = 0 $a^2 = 2a + 1 = 0$				
44. 15	(I) ©	$4p^{-} - 3p + 1 = 0$	(II) (::)	q - 2q + 1 = 0 $2m^2 - 7m + 6 = 0$				
43. D'	(1)	$q^{-11}q + 30 = 0$	(11)	$2p^{-} - p + 6 = 0$				
Dire	Directions (Qs. 46-48) : In each question below one or more							
equa	ation((s) is/are provided. On the	the b	asis of these, you have to				
nna	outr	ciation between p and q						

Give answer (a) if p = q, Give answer (b) if p > q, Give answer (c) if q > p, Give answer (d) if $p \ge q$ and Give answers (e) if $q \ge p$. I. $4q^2 + 8q = 4q + 8$ 46. $p^2 + 9p = 2p - 12$ II. 47. L $2p^2 + 40 = 18p$

II.
$$q^2 = 13q - 42$$

48. I. $6q^2 + \frac{1}{2} = \frac{7}{2}q$ II. $12p^2 + 2 = 10p$

Directions (Qs. 49-53): In each of the following questions two equations are given. You have to solve them and give answer

- (a) if x > y; (b) if x < v; (c) if x = y; (d) if x > y; (e) if $x \le y$; **L** $y^2 - 6y + 9 = 0$ **L** $x^2 - 5x + 6 = 0$ **II.** $x^2 + 2x - 3 = 0$ **II.** $2y^2 + 3y - 5 = 0$ 49 50. L 51. **L** $x = \sqrt{256}$ 52. **L** $x^2 - 6x + 5 = 0$ 53. **L** $x^2 + 3x + 2 = 0$ **II.** $y = (-4)^2$ **II.** $y^2 - 13y + 42 = 0$ **II.** $y^2 - 4y + 1 = 0$ If 3x - 5y = 5 and $\frac{x}{x + y} = \frac{5}{7}$, then what is the value of x - y? 54. (a) 9 (b) 6 (c) 4(e) None of these (d) 3 $\frac{5}{7}$ of $\frac{4}{15}$ of a number is 8 more than $\frac{2}{5}$ of $\frac{4}{9}$ of the same 55. number. What is half of that number? (a) 630 (b) 315 (c) 210 (d) 105 (e) None of these 56. The difference between a two-digit number obtained by interchanging the positions of its digits is 36. What is the difference between the two digits of that number? (b) 9 (a) 4 (c) 3 (d) Cannot be determined (e) None of theses 57. By the how much is two-fifth of 200 greater than three fifths of 125? (a) 15 (b) 3 (c) 5 (d) 30 (e) None of these If $\frac{x^2 - 1}{x + 1} = 2$, then, x = ?58. (b) 0 (a) (c) 2 (d) Can't be determined (e) None of these 59. The difference between a number and its one-third is double of its one-third. What is the number? (a) 60 (b) 18 (c) 30 (d) Cannot be determined (e) None of these 60. Two pens and three pencils cost ₹ 86. Four pens and a pencil cost ₹ 112. What is the difference between the cost of a pen and that of a pencil? (a) ₹25 (b) ₹13 (c) ₹19 (d) Cannot be determined (e) None of these The difference between a two-digit number and the number 61. after interchanging the position of the two digits is 36. What is the difference between the two digits of the number? (a) 4 (b) 6
 - (c) 3

- (d) Cannot be determined
- (e) None of these

A-28			Algebraic Expression & Inequalities
62. If the and the obtain the di (a)	digit in the unit's place of a two-digit number is halved he digit in the ten's place is doubled, the number thus, ned is equal to the number obtained by interchanging igits. Which of the following is definitely true ? Digits in the unit's place and the ten's place are equal.	69.	Free notebooks were distributed equally among children of a class. The number of notebooks each child got was one- eighth of the number of children. Had the number of children been half, each child would have got 16 notebooks. How many notebooks were distributed in all?
(b) (c) (c)	Sum of the digits is a two-digit number. Digit in the unit's place is half of the digit in the ten's		(a) 432 (b) 640 (c) 256 (d) 512
(d)	place. Digit in the unit's place is twice the digit in the ten's	70.	(e) None of these Twenty times a positive integer is less than its square by 96 What is the integer?
(e)	place. None of these		(a) 24 (b) 20
63. If <i>A</i> a	nd <i>B</i> are positive integers such that $9A^2 = 12A + 96$ and		(c) 30 (d) Cannot be determined (e) None of these
$B^2 = 2^2 + 7B?$	2B + 3, then which of the following is the value of $5A$	71.	The digit in the units place of a number is equal to the digit in the tens place of half of that number and the digit in the
(a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	31 (b) 41 36 (d) 43 27		tens place of that number is less than the digit in units place of half of the number by 1. If the sum of the digits of the number is seven, then what is the number?
64. On C amon	children's Day, sweets were to be equally distributed ag 175 children in a school. Actually on the Children's		(a) 52(b) 16(c) 34(d) Data inadequate
Day 3 sweet distri	ts extra. How many sweets were available in all for bution?	72.	The difference between a two-digit number and the number obtained by interchanging the digits is 9. What is the difference between the two digits of the number?
(a) 2	2480 (b) 2680		(a) 8 (b) 2
(c) 2	2/50 (d) 2400		(c) 7 (d) Cannot be determined
(e)	None of these digit number is seven times the sum of its digits. If		(e) None of these
each	digit is increased by 2, the number thus obtained is 4 than six times the sum of its digits. Find the number	73.	The difference between a number and its three-fifths is 50. What is the number?
(a) 4	42 (b) 24		(a) 75 (b) 100 (c) 125 (d) Connect he determined
(c) 4	48 (d) Data inadequate		(c) 125 (d) Cannot be determined (e) None of these
(e) 1	None of these	74.	If the numerator of a fraction is increased by 2 and the
66. One- Certi	third of Ramani's savings in National Savings ficate is equal to one-half of his savings in Public		denominator is increased by 1, the fraction becomes $\frac{5}{8}$ and
much	the saved in Public Provident Fund?		if the numerator of the same fraction is increased by 3 and
(a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	₹90000 (d) ₹30000		the denominator is increased by I the fraction becomes $\frac{3}{4}$.
(e) 1	None of these		What is the original fraction?
67. $\frac{1}{5}$ of	a number is equal to $\frac{5}{8}$ of the second number. If 35 is		(a) Data inadequate (b) $\frac{2}{7}$
addeo	d to the first number then it becomes 4 times of second ber. What is the value of the second number?		(c) $\frac{4}{7}$ (d) $\frac{3}{7}$
(a)	125 (b) 70 40 (d) 25		(e) None of these
(c) 4 (e)	40 (d) 25 None of these	75.	If $2x + 3y = 26$; $2y + z = 19$ and $x + 2z = 29$, what is the value of $x + y + z^2$
68. Inat	wo-digit number, the digit at unit place is 1 more than		(a) 18 (b) 32
twice	of the digit at tens place. If the digit at unit and tens		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
place	be interchanged, then the difference between the new		(e) None of these
numb numb	ber and original number is less than 1 to that of original ber. What is the original number?	76.	If the sum of a number and its square is 182, what is the number?
(a) :	52 (b) 73		(a) 15 (b) 26
(c) 2	25 (d) 49		(c) 28 (d) 91
(e) (37		(e) None of these

Algebraic Expression & Inequalities

77.	A certain number of ten	nis balls were purchased for \gtrless 450.	84.	If $2x + y = 15$, $2y + z^2$
	amount if each hall was	have been purchased for the same 15 Find the number of		Z!
	halla murch and	cheaper by C 13. Find the number of		(a) 4
	balls purchased.	(1) 20		(c) 9 (a) None of the
	(a) 15	(b) 20 (b) 25	85	Which of the foll
	(c) 10	(d) 25	65.	P(P-3) < AP-1
	(e) None of these			(a) $P > 4$ or $P < 1$
78.	What will be the value	of $n^4 - 10n^3 + 36n^2 - 49n + 24$, if		(c) $P > 13 \cdot P < 5$
	n = 1?			(e) $P=4$ $P=+7$
	(a) 21	(b) 2	86	If the ages of P at
	(c) 1	(d) 22	00.	total becomes 59
	(e) None of these			the age of P the
79.	Out of total number of	of students in a college 12% are		added to thrice the
	interested in sports. $\frac{3}{4}$	th of the total number of students		becomes 108 Wh
	are interested in dancing	. 10% of the total number of students		(a) 15 years
	are interested in singing	and the remaining 15 students are		(c) 17 years
	not interested in any o	f the activities. What is the total		(e) None of the
	number of students in t	he college?	87.	The product of the
	(a) 450	(b) 500		the age of Seema
	(c) 600	(d) Cannot be determined		is Seema's age in
	(c) 000 (a) None of these	(u) Califier be determined		(a) 12 years
20	(c) None of four numb	are is 64. If you add 2 to the first		(c) 10 years
80.	The sum of four numb	ers is 64. If you add 3 to the first		(e) Data inadeq
	number, 5 is subtracted	fourth is divided by 2, then all the	88.	What would be th
	multiplied by 5 and the	iourth is divided by 3, then all the		equation? $5P9 + 3$
	results are equal. what i	s the difference between the largest		(a) 8
	and the smallest of the o	original numbers?		(c) 5
	(a) 32	(b) 27		(e) None of the
	(c) 21	(d) Cannot be determined	89.	Two-fifths of one
	(e) None of these			15. What is half o
81.	A classroom has equal n	umber of boys and girls. Eight girls		(a) 96
	left to play Kho-kho, le	aving twice as many boy as girls in		(c) 94
	the classroom. What wa	s the total number of girls and boys		(e) None of the
	present initially?		90.	The sum of the di
	(a) Cannot be determi	ned (b) 16		sum of the nu
	(c) 24	(d) 32		interchanging th
	(e) None of these			difference betwee
82.	The difference between	the digits of a two-digit number is		(a) 3
	one-ninth of the different	ence between the original number		$\begin{array}{ccc} (c) & 0 \\ (a) & \text{Non a of the} \end{array}$
	and the number obtaine	d by interchanging positions of the	01	(e) None of the
	digits. What definitely	s the sum of digits of that number?	91.	II a machon s i
	(a) 5	(b) 14		denominator is in
	(c) 12	(d) Data inadequate		denominator is in
	(e) None of these			But when the r
83.	The denominator of a	fraction is 2 more than thrice its		denominator is in
	numerator. If the num	erator as well as denominator is		5
	increased by one, the fr	action becomes $1/3$. What was the		$\frac{1}{4}$. What is the va
	original fraction?			
	(a) $\frac{4}{2}$	(b) $\frac{3}{3}$		(a) $\frac{3}{-}$
	^(a) 13	11		7
	5	5		5
	(c) $\frac{3}{12}$	(d) $\frac{3}{11}$	1	(c) $\frac{1}{7}$

- (d) 13 11
- (e) None of these

z = 25 and 2z + x = 26, what is the value of (b) 7

:)	9	(d)	12
e)	None of these		

lowing values of P satisfy the inequality 2?

- 3 (b) 24 < P < 71 1 (d) 3 < P < 4
- 3
- nd R are added to twice the age of Q, the If the ages of Q and R are added to thrice total becomes 68. And if the age of P is e age of Q and thrice the age of R, the total hat is the age of P?
 - (b) 19 years
 - (d) 12 years

se

- e ages of Harish and Seema is 240. If twice is more than Harish's age by 4 years, what years?
 - (b) 20 years
 - (d) 14 years

uate

- he maximum value of Q in the following 3R7 + 2Q8 = 1114
 - (b) 7 (d) 4

 - above
- -fourth of three-sevenths of a number is of that number?
 - (b) 196 (d) 188

 - se
- gits of a two-digit number is 1/11 of the mber and the number obtained by he position of the'digits. What is the en the digits of that number?
 - (b) 2
 - (d) Data inadequate
 - se

numerator is increased by 1 and the

creased by 2 then the fraction becomes $\frac{2}{3}$.

numerator is increased by 5 and the ncreased by 1 then the fraction becomes

alue of the original fraction?

- (b) 8
- 6 (d) (\mathbf{U}) 7
- (e) None of these

A-30)					Alge	ebraic E	xpression & Inequalities
92.	In a	two-digit number the c	ligit i	n the unit's place is more	100.	Two-fifths of one-fourth	of five-	eighths of a number is 6.
	than	the digit in the ten's pla	ce by	2. If the difference between		What is 50 per cent of the	at numb	per?
	the n	number and the number	r obta	ined by interchanging the		(a) 96	(b)	32
	digit	s is 18 what is the origi	nal n	umber?		(c) 24	(d)	48
	(a)	46	(b)	68		(e) None of these		
	(c)	24	(d)	Data inadequate				1
~	(e)	None of these			101.	The sum of the digits of	f a two-	digit number is $\frac{1}{5}$ of the
93.	If $2x$	+y=17y, 2z=15 and y	x + z =	9 then what is the value of		difference between the n	umber	and the number obtained
	4x + (x)	3y + z?	(1.)	12		by interchanging the posi	tions of	the digits. What definitely
	(a)	41	(D)	43		is the difference between	the dig	its of that number?
	(\mathbf{c})	SS None of these	(u)	43		(a) 5	(b)	9
04	(C) If th	none of these	oction	is increased by 2 and		(c) 7	(d)	Data inadequate
74.	dono	minetar is increased h		the fraction becomes $7/0$:		(e) None of these		1
	andi	if numerator as well as	Jy 5, denor	nin ator are decreased by 1	102.	Ashok gave 40 per cent	of the a	amount he had to Javant.
	tho f	$\frac{11}{1000} = \frac{1}{1000} = $	Zhot i	a the original fraction?		Javant in turn gave one-	fourth	of what he received from
	the h	raction becomes 4/3. W	mat 1	s the original fraction?		Ashok to Prakash. After p	aving₹	200 to the taxi-driver out
	()	13	(1)	9		of the amount he got	from Ja	avant. Prakash now has
	(a)	16	(b)	11		₹ 600 left with him. How	mucha	amount did Ashok have?
						(a) ₹1.200	(b)	₹4,000
	(c)	5	(d)	<u>17</u>		(c) ₹8.000	(d)	Data inadequate
	(0)	6	(u)	21		(e) None of these		
	(e)	None of these			103.	What should be the maxi	mum v	alue of O in the following
95.	The	inequality $3n^2 - 18n + 2$	24 > 0	gets satisfied for which of		equation?		2 · · · · · · · · · · · · · · · · · · ·
	the f	following values of n?				5P9 - 7O2 + 9R6 = 823		
	(a)	<i>n</i> < 2 & <i>n</i> > 4	(b)	2< <i>n</i> <4		(a) 7	(b)	5
	(c)	n > 2	(d)	n > 4		(c) 9	(d)	6
	(e)	None of these				(e) None of these	()	
96.	A su	m is divided among Ra	kesh,	Suresh and Mohan. If the	104.	The difference between a	two-dia	it number and the number
	diffe	rence between the sha	ares o	of Rakesh and Mohan is		obtained by interchangin	g the po	osition of the digits of that
	₹700	00 and between those o	f Sur	esh and Mohan is ₹ 3000,		number is 54. What is the	sum of	the digits of that number?
	what	t was the sum?		,		(a) 6	(b)	9
	(a)	₹30,000	(h)	₹13,000		(c) 15	(d)	Data inadequate
	(\mathbf{a})	₹10,000	(d)	Cannot be determined		(e) None of these		1
	(\mathbf{c})	None of these	(u)	Califier be determined	105.	The product of two num	bers is	192 and the sum of these
07	(C) These	Set a se annu han is '	20	we then 50 men court of the t		two numbers is 28. Wl	nat is t	he smaller of these two
97.	Inre	te-infins of a number is :	50 mC	bre than 50 per cent of that		numbers?		
	num	ber. What is 80 per cen	t of th	nat number?		(a) 16	(b)	14
	(a)	300	(b)	60		(c) 12	(d)	18
	(c)	240	(d)	Cannot be determined		(e) None of these	()	
	(e)	None of these			106.	The age of Mr. Ramesh	is four	times the age of his son.
98.	The	difference between a tw	o-dig	it number and the number		After ten years the age of	Mr. Rar	nesh will be only twice the
	obtai	ined by interchanging	the p	osition of the digits of the		age of his son. Find the r	resent a	age of Mr. Ramesh's, son.
	num	ber is 27. What is the c	liffer	ence between the digits of		(a) 10 years	(b)	11 years
	that	number?		C		(c) 12 years	(d)	Cannot be determined
	(a)	2	(b)	3		(e) None of these	()	
	(c)	4	(d)	Cannot be determined	107.	In an exercise room some	e discs c	of denominations 2 kg and
	(e)	None of these	(u)	Culliot de déterminée		5 kg are kept for weightlif	ting. If	the total number of discs is
00	(C) Tha	sum of the ages of a f	than	and his con is 1 times the		21 and the weight of all	the dis	cs of 5 kg is equal to the
77.	1 ne	sum of the ages of a fa		and fins som is 4 times the		weight of all the discs of 2	kg, find	the weight of all the discs
	age	of the son. If the average	ge age	e of the father and the son		together.		0
	1s 28	years, what is the son	s age	?? 		(a) 80 kg	(b)	90 kg
	(a)	14 years	(b)	16 years		(c) 56 kg	(d)	Cannot be determined
	(c)	12 years	(d)	Data inadequate		(e) None of these	()	
	(e)	None of these						

approximate value of 39 such pencils'?

108.	If the number of barrels of oil consumed doubles in a	(a) ₹650 (b) ₹550
	10-year period and if <i>B</i> barrels were consumed in the year	(c) ₹450 (d) ₹700
	1940, what multiple of <i>B</i> will be consumed in the year 2000?	(e) ₹750
	(a) 64 (b) 60	112. Sundari, Kusu and Jyoti took two tests each. Sundari
	(c) 12 (d) 32	24 32
	(e) None of these	secured $\frac{1}{60}$ marks in the first test and $\frac{3}{40}$ marks in the
109.	The sum of three consecutive even numbers is 14 less than	
	one-fourth of 176. What is the middle number?	second test. Kusu secured $\frac{35}{35}$ marks in the first test and
	(a) 8 (b) 10	70
	(c) 6 (d) Data inadequate	54 27
	(e) None of these	$\frac{51}{60}$ marks in the second test. Jyoti secured $\frac{27}{20}$ marks in
110.	The price of four tables and seven chairs is ₹ 12,090.	90
	Approximately, what will be the price of twelve tables and	the first test and $\frac{45}{}$ marks in the second test. Who among
	twenty-one chairs?	50 marks in the second test. Who among
	(a) ₹32,000 (b) ₹46,000	them did register maximum progress?
	(c) ₹38,000 (d) ₹36,000	(a) Only Sundari (b) Only Kusu
	(e) ₹39,000	(c) Only Jyoti (d) Both Sundari and Kusu
111.	If the price of 253 pencils is ₹ 4263.05, what will be the	(e) Both Kusu and Jyoti

								AN	SW]	ER I	KEY	-							
1	(c)	13	(b)	25	(c)	37	(b)	49	(b)	61	(a)	73	(c)	85	(d)	97	(c)	109	(b)
2	(b)	14	(d)	26	(b)	38	(b)	50	(a)	62	(d)	74	(d)	86	(d)	98	(b)	110	(d)
3	(b)	15	(b)	27	(c)	39	(a)	51	(c)	63	(b)	75	(d)	87	(a)	99	(a)	111	(a)
4	(e)	16	(a)	28	(a)	40	(e)	52	(b)	64	(e)	76	(e)	88	(e)	100	(d)	112	(c)
5	(a)	17	(d)	29	(a)	41	(b)	53	(b)	65	(a)	77	(c)	89	(e)	101	(a)		
6	(b)	18	(c)	30	(b)	42	(b)	54	(d)	66	(a)	78	(b)	90	(d)	102	(c)		
7	(a)	19	(b)	31	(c)	43	(c)	55	(d)	68	(c)	79	(b)	91	(c)	103	(a)		
8	(d)	20	(a)	32	(a)	44	(e)	56	(a)	68	(e)	80	(a)	92	(d)	104	(d)		
9	(c)	21	(d)	33	(b)	45	(c)	57	(c)	69	(d)	81	(d)	93	(d)	105	(c)		
10	(e)	22	(a)	34	(d)	46	(c)	58	(e)	70	(a)	82	(d)	94	(c)	106	(e)		
11	(a)	23	(e)	35	(a)	47	(c)	59	(d)	71	(a)	83	(b)	95	(a)	107	(e)		
12	(c)	24	(b)	36	(c)	48	(d)	60	(b)	72	(e)	84	(e)	96	(d)	108	(a)		

Hints & Explanations

1.	(c)	I.	pq+30=6p+5q
		or,	(6p-30) + (5q-pq) = 0
		or.	6(n-5)-a(n-5)=0
		or	(n-5)(6-a)=0
		n =	5
	or	p	6
	ы,	y – Uar	
2	(h -)	T	$2r^2 - 12r + 16 = 0$
Ζ.	(D)	і. п	$2p^2 - 12p + 16 = 0$
		11.	$2q^2 + 14q + 24 = 0$
		or,	$p^2 - 6p + 8 = 0$
		or,	(p-4)(p-2) = 0
		or,	$q^2 + 7/q + 12 = 0$
		or,	(q+4)(q+3)=0
		p =	+4 or, +2
	<i>.</i> `.	q =	-3 or, -4
	Wh	en p	=+2, q=-3, then, p>q
	Wh	en p	=+4, q=-4, then, p > q
	Wh	en p	=+4, q=-3, then, p>q
	Hen	ice p	> q
3.	(b)	I.	$2p^2 - 20p + 48 = 0$
			$p^2 - 10p + 24 = 0$
			(p-4)(p-6)=0
		or	p = 4; $p = 6$
		II.	$2q^2 - 12q + 18 = 0$
			$q^2 - 6q + 9 = 0$
			(q-3)(q-3)=0
		or q	= 3 ; q=3
		hen	$\operatorname{ce} p > q$
4.	(e)	I.	$q^2 + q = 2$
		or,	$q^2 + q - 2 = 0$
		II.	$p^2 + 7p + 10 = 0$
		or,	$p^2 + 5p + 2p + 10 = 0$
		or,	(q+2)(q-1)=0
		or.	(q+5)(p+2) = 0
		•,	a = -2 or 1
			n = -5 or -2
		 Her	p = 5 of 2
5	(2)	I	$n^2 + 36 = 12n$
5.	(a)	ı.	$p^{2} + 30 + 12p$ $n^{2} - 12n + 26 = 0$
		ы, п	p = 12p + 30 = 0
		Ш. ал	4q + 144 - 48q
		01,	$(p-0)^2 = 0$
		or,	$q^{2} - 12q + 30 = 0$
		÷	p = 0
		or,	$(q-6)^2 = 0$
			q = 6
		Her	ice, $p = q$

```
(b) I. 6p^2 + 5p + 1 = 0
6.
           or, 6p^2 + 3p + 2p + 1 = 0
           or, 3p(2p+1)+1(2p+1)=0
           or, (3p+1)(2p+1)=0
          Hence, p = \frac{-1}{3}, \frac{-1}{2}
           II. 20q^2 + 9q + 1 = 0
           or, 20q^2 + 5q + 4q + 1 = 0
           or, 5q(4q+1)+1(4q+1)=0
           or, (5q+1)(4q+1) = 0
           Hence, q = \frac{-1}{5}, \frac{-1}{4} Thus, p < q.
      (a) I. 3p^2 + 2p - 1 = 0
7.
           or, 3p^2 + 3p - p - 1 = 0
           or, 3p(p+1) - 1(p+1) = 0
           or, (3p-1)(p+1) = 0
           Therefore, p = \frac{1}{3}, -1
           II. 2q^2 + 7q + 6 = 0
           or, 2q^2 + 4q + 3q + 6 = 0
           or, 2q(q+2)+3(q+2)=0
           or, (2q+3)(q+2)=0
           Therefore, q = \frac{-3}{2}, -2 Thus p > q
8.
      (d) I. 3p^2 + 15p + 18 = 0
           or, 3p^2 + 9p + 6p + 18 = 0
           or, 3p(p+3)+6(p+3)=0
           or, (3p+6)(p+3)=0
           or, p = \frac{-6}{3}, -3 = -2, -3
           II. q^2 + 7q + 12 = 0
           or, q^2 + 4q + 3q + 12 = 0
           or, q(q+4)+3(q+4)=0
           or, (q+3)(q+4) = 0
           or, q = -3, -4
           Therefore, p \ge q
   (c) I. p = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}
9.
           II. 9q^2 - 12q + 4 = 0
           or, 9q^2 - 6q - 6q + 4 = 0
           or, 3q(3q-2)-2(3q-2)=0
           or, (3q-2)(3q-2)=0
```

or, $q = \frac{2}{3}$ Therefore, p = q10. (e) I. $p^2 + 13p + 42 = 0$ or, $p^2 + 7p + 6p + 42 = 0$ or, p(p+7) + 6(p+7) = 0or, (p+6)(p+7)=0or, p = -6, -7**II.** $q^2 = 36$ $q = \sqrt{36}$ $\therefore q = +6, -6$ Therefore, $p \leq q$. 11. (a) **I.** $x^2 + 3x + 2 = 0$ or, $x^2 + 2x + x + 2 = 0$ or, (x+2)(x+1) = 0or, x = -2, -1**II.** $2v^2 = 5v$ or, $2y^2 - 5y = 0$ or, v(2v-5) = 0or, $y=0, \frac{5}{2}$ Hence, y > x12. (c) **L** $2x^2 + 5x + 2 = 0$ or, $2x^2 + 4x + x + 2 = 0$ or, (x+2)(2x+1)=0or, $x = -2, -\frac{1}{2}$ **II.** $4v^2 = 1$ or $y^2 = \frac{1}{4}$ or, $y = \pm \frac{1}{2}$ Hence, $y \ge x$ (b) **L** $y^2 + 2y - 3 = 0 \Rightarrow (y - 1)(y + 3) = 0$ 13. or, y = 1, -3**II.** $2x^2 - 7x + 6 = 0$ or, $2x^2 - 4x - 3x + 6 = 0$ or, (2x-3)(x-2) = 0or, $x=2, \frac{3}{2}$ Hence, x > y14. (d) **I.** $x^2 - 5x + 6 = 0$ or, $x^2 - 3x - 2x + 6 = 0$ or, x(x-3) - 2(x-3) = 0or, (x-3)(x-2) = 0

or, x = 2, 3

II. $y^2 + y - 6 = 0$

or, $y^2 + 3y - 2y - 6 = 0$

or, y(y+3)-2(y+3)=0or, (v+3)(v-2)=0or, y = 2, -3Hence, $x \ge y$ 15. (b) **L** $p^2 - 7p = -12$ or, $p^2 - 7p + 12 = 0$ or, (p-3)(p-4) = 0or, p=3 or 4**II.** $q^2 - 3q + 2 = 0$ or, (q-2)(q-1)=0or, q = 1 or 2 Hence, p > q16. (a) **I.** $12p^2 - 7p = -1$ or, $12p^2 - 7p + 1 = 0$ or, (3p-1)(4p-1)=0or, $p = \frac{1}{4}$ or $\frac{1}{3}$ **II.** $6q^2 - 7q + 2 = 0$ or, (3q-2)(2q-1)=0or, $q = \frac{1}{2}$ or $\frac{2}{3}$ Hence, q > p17. (d) I. $p^2 - 8p + 15 = 0$ or, (p-3)(p-5)=0or, p=3 or 5II. $q^2 - 5q + 6 = 0$ or, (q-2)(q-3)=0or, q = 2 or 3Hence, p > q $2p^2 + 20p + 50 = 0$ 18. (c) **L** or, $p^2 + 10p + 25 = 0$ or, $(p+5)^2 = 0$ or, p = -5**II.** $q^2 = 25$ or, $q = \pm 5$ Hence, $p \leq q$ (b) **I**. $x^2 - 6x = 7$ 19. or, $x^2 - 6x - 7 = 0$ or, (x-7)(x+1)=0or, x = 7, -1**II.** $2v^2 + 13v + 15 = 0$ or, $2y^2 + 3y + 10y + 15 = 0$ or, (2y+3)(y+5)=0 or, $y=\frac{-3}{2},-5$ Hence, x > y(a) I $3x^2 - 7x + 2 = 0$ 20. or, $3x^2 - 6x - x + 2 = 0$ or, (x-2)(3x-1)=0or, x = 2, 1/3П. $2v^2 - 11v + 15 = 0$

$$\begin{array}{c} \hline a, & 2p^2 - (p - 2)p - 15 = 0 \\ c, & (2p - 5)(p - 3) = 0 \\ c, & (2p - 5)(p - 3) = 0 \\ c, & (2p - 5)(p - 3) = 0 \\ c, & (2p - 5)(p - 3) = 0 \\ c, & (2p - 5)(p - 3) = 0 \\ c, & (2p - 5)(p - 3) = 0 \\ c, & (2p - 5)(p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 1)(3p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 2)(2p - 1) = 10 \\ c, & (2p - 2)(2p - 1) = 0 \\ c, & (2p - 3)(2p - 1) = 10 \\ c, & (2p - 3)(2p - 1) = 10 \\ c, & (2p - 3)(2p - 1) = 10 \\ c, & (2p - 3)(2p - 1) = 10 \\ c, & (2p - 3)(2p - 1) = 10 \\ c, & (2p - 3)(2p - 1) = 10 \\ c, & (2p - 3)(2p - 1) = 10 \\ c, & (2p - 3)(2p - 1) = 0 \\ c, & (2p - 3)(2p$$

33.	(b)	I.	$3P^2 - 10P + 7 = 0$
			$3P^2 - 3P - 7P + 7 = 0$
			3P(P-1) - 7(P-1) = 0
			$\Rightarrow (2\mathbf{P} - 7)(\mathbf{P} - 1) = 0$
			$\Rightarrow (31 - 7)(1 - 1) = 0$ $\Rightarrow D = 7/2 - 1$
		п	$\rightarrow P = 1/3, 1$ 150 ² - 220 + 8 = 0
		11.	15Q - 22Q + 8 = 0
			$15Q^2 - 10Q - 12Q + 8 = 0$
			5Q(3Q-2)-4(3Q-2)=0
			(5Q-4)(3Q-2)=0
			4 2
			$\Rightarrow Q = \frac{1}{5}, \frac{1}{3}$
			∴ P>0
34	(d)	T	$20P^2 - 17P + 3 = 0$
51.	(u)	1.	$20P^2 - 12P - 5P + 3 = 0$
			5P(AP-1) - 3(AP-1) = 0
			31(41-1)=3(41-1)=0 $\Rightarrow D=2/5 1/4$
		п	$\rightarrow P = 3/5, 1/4$ $200^2 00 + 1 = 0$
		Ш.	$20Q^2 - 9Q + 1 = 0$
			$20Q^2 - 4Q - 5Q + 1 = 0$
			4Q(5Q-1)-1(5Q-1)=0
			(4Q-1)(5Q-1)=0
			\Rightarrow Q=1/4, 1/5
			$\therefore P \ge Q$
35.	(a)	I.	$20P^2 + 31P + 12 = 0$
			$20P^2 + 16P + 15P + 12 = 0$
			5P(4P+3)+4(4P+3)=0
			_3
			$\therefore P = -4/5, \frac{3}{4}$
		Π	$210^2 + 230 + 6 = 0$
		11,	21Q + 23Q + 0 = 0 $210^2 + 140 + 00 + 6 = 0$
			$21Q^{2} + 14Q + 9Q + 0 = 0$
			(2(3Q+2)+3(3Q+2)=0)
			(7Q+3)(3Q+2)=0
			\Rightarrow Q=-3/7,-2/3
26	()	P	$\therefore Q > P$
30.	(c)	Fro	n1:
		If √	2304 = a
		then	$a = \pm 48$
		(Do	not consider -48 as value of <i>a</i>)
		Aga	in,
		From	тП:
		If b^2	$2 = 2304$ then $b = \pm 48$
		Hen	$\operatorname{ce} a = b.$
37.	(b)	I.	$12a^2 - 7a + 1 = 0$
		II.	$15b^2 - 16b + 4 = 0$
		Sum	n of the two values of a , i.e., $(a_1, +a_2)$
		_	(-7) 7
		=	$\frac{1}{12} = \frac{7}{12}$
		Simi	12 12 ilarly
		SIIII	narry, a of the two values of b
		Sull	i of the two values of <i>U</i> ,
		i.e.	$(b_1 + b_2) = \frac{-(-16)}{-(-16)} = \frac{16}{-(-16)}$
		· · · · ,	15 15

Since $\frac{7}{12} < \frac{16}{15}$ Therefore, a < b, Now check the equality of root $(12 \times 4 - 15 \times 1)^2 = \{12 \times (-16) - 15 \times (-7)\}$ $\{(-7) \times 4 - (-16) \times 1\}$ $\Rightarrow 33^2 = \{-87\}\{-12\}$ \Rightarrow 1089 = 1044, which is not true. Therefore, our answer should be a < b. $a^2 + 9a + 20 = 0$ 38. (b) **L** Break 9 as F_1 and F_2 , so that $F_1 \times F_2 = 20$ and F_1 $+F_2 = 9.$ Therefore, $F_1 = 5, F_2 = 4$ Now one value of $a = \frac{-5}{1} = -5$ other value of $a = \frac{-20}{5} = -4$ $2b^2 + 10b + 12 = 0$ П. The two parts of 10, ie $F_1 = 6$ and $F_2 = 4$:. Value of $b = \frac{-6}{2} = -3$ and $\frac{-12}{6} = -2$ Obviously b > a. If general form of quadratic equation is $ax^2 + bx + c = 0,$ then split b into two parts so that $b_1 + b_2 = b$ and $b_1 \times b_{2e} = a \times c$ Now say b_1 as F_1 and b_2 as F_2 . Then the values of 'x' will be $\frac{-F_1}{a}$ and $\frac{-C}{F_1}$ or $\frac{-F_2}{a}$ and $\frac{-C}{F_2}$ 39. (a) **L** 3a+2b=14**II.** a + 4b = 13Substract equation I from equation II after multiplying II by 3. We get 3a + 12b - 3a - 2b = 39 - 14 $\Rightarrow 10b = 25$ $\Rightarrow b=2.5$ Put value of *b* in equation II. We set $a + 4 \times 2.5 = 13$. Therefore, a = 3. Thus, a > b $a^2 - 7a + 12 = 0$ (e) **I**. 40. Here, $F_1 = -4$ and $F_2 = -3$ Now, values of $a = \frac{-(-4)}{1} = 4$ and $\frac{-12}{-4} = 3$

II.

 $b^2 - 9b + 20 = 0$

Here $F_1 = -5$ and $F_2 = -4$

Now, values of $a = \frac{-(-5)}{1} = 5$ and $\frac{-20}{5} = 4$ Thus $b \ge a$. 41. (b) $\frac{5}{28} \times \frac{9}{8} p = \frac{15}{14} \times \frac{13}{16} a$ or, $\frac{45p}{224} = \frac{195q}{224}$ or, 3p = 13q $\therefore p > q$ (b) (i) p-7=0 or, p=742 (ii) $3q^2 - 10q + 7 = 0$ or, $3q^2 - 3q - 7q + 7 = 0$ or, 3q(q-1) - 7(q-1) = 0or, (3q-7)(q-1) or, q = 1 or, $\frac{7}{3}$ $\therefore p > q$ (c) (i) $4p^2 2 = 16; p = \sqrt{4} = 2$ 43. (ii) $q^2 - 10q + 25 = 0 \Rightarrow (q-5)(q-5) = 0$ or, $q = 5 \cdot q > p$ or, $4p^2 - 4p - p + i = 0$ (e) (i) $4p^2 - 5p + 1 = 0$ 44 or, 4p(p-1) - 1(p-1) = 0or, (4p-1)(p-1) = 0or, p = 1 and $p = \frac{1}{4}$ (ii) $q^2 - 2q + 1 = 0$ $\Rightarrow (q-1)(q-1)=0$ or, q = 1 $\therefore q \ge p$ (c) $q=5, 6 \& p=\frac{3}{2}, 2$ 45. II. $p^2 + 9p = 2p - 12$ (c) I. $4q^2 + 8q = 4q + 8$ 46. or, $q^2 + q - 2 = 0$ or, $p^2 + 7p + 12 = 0$ or, (q-1)(q+2) = 0or, (p+p)(p+(c)) = 0 $\therefore q = 1 \text{ or } -2$ $\therefore p = -3 \text{ or } -4$ Hence, q > p(c) I. $2p^2 + 40 = 18p$ II. $q^2 = 13q - 42$ 47. or, $q^2 - 13q + 42 = 0$ or, $p^2 - 9p + 20 = 0$ or, (p-4)(p-5) = 0 or, (q-7)(q-6) = 0 $\therefore p = 4 \text{ or } 5$ $\therefore q = 6 \text{ or } 7$ Hence, q > p48. (d) I. $6q^2 + \frac{1}{2} = \frac{7}{2}q$ II. $12p^2 + 2 = 10p$ or, $12q^2 - 7q + 1 = 0$ or, $6p^2 - 5p + 1 = 0$

or $\left(q-\frac{1}{4}\right)\left(q-\frac{1}{2}\right)=0$ or, $\left(p-\frac{1}{2}\right)\left(p-\frac{1}{2}\right)=0$ $\therefore q = \frac{1}{4} \text{ or } \frac{1}{3} \qquad \therefore p = \frac{1}{3} \text{ or } \frac{1}{2}$ Hence, $p \ge q$ (b) **L** $v^2 - 6v + 9 = 0$ 49. or, $(y-3)^2 = 0$ or, y = 3**II.** $x^2 + 2x - 3 = 0$ or, x = 1, -3Hence, v > x(a) **L** $x^2 - 5x + 6 = 0$ 50. or, (x-3)(x-2) = 0 or, x = 2, 3**II.** $2y^2 - 3y - 5 = 0$ or, $y=1, -\frac{5}{2}$ Hence, x > v51. (c) **L** $x = \sqrt{256} = 16$ **II.** $y = (-4)^2 = 16$ Hence, x = y(b) **L** $x^2 - 6x + 5 = 0$ or, x = 1, 552. **II.** $y^2 - 13y + 42 = 0$ or, (y-7)(y-6) = 0 or, y = 6, 7Hence, y > x53. (b) **L** $x^2 + 3x + 2 = 0$ or, (x+2)(x+1) = 0or. x = -2 or. -1**II.** $y^2 - 4y + 1 = 0$ or, $y = 2 + \sqrt{3}$ Hence, y > x54. (d) 3x - 5y = 5...(i) And $\frac{x}{x+y} = \frac{5}{7} \implies 7x = 5x + 5y$ $\Rightarrow 2x = 5y$...(ii) From (i) and (ii), x = 5 and y = 2 $\therefore x-y=3$ 55. (d) Let the number be x. $\therefore \quad \frac{5}{7} \times \frac{4}{15} \times x - \frac{2}{5} \times \frac{4}{9} \times x = 8$ or, $x = \frac{8 \times 315}{12} = 210$ \therefore Half of the number = 105 (a) Let the two-digit number be 10x + y. 56. Then, (10x+y) - (10y+x) = 36or. x - v = 457. (c) Reqd no. = $\frac{2}{5} \times 200 - \frac{3}{5} \times 125$ = 80 - 75 = 5(e) $(x-1)=2 \Rightarrow x=3$ 58. 59. (d) Let the no. be x.

Then, $x - \frac{x}{3} = \frac{2}{3}x$ or, $\frac{2}{2}x = \frac{2}{2}x$ So, can't be determined is the correct choice. (b) Let the cost of a pen and a pencil be $\not\in$ 'x' and $\not\in$ 'y' 60. respectively. We have to find (x - y). From the question, $2x + 3y = 86 \dots$ (i) 4x + y = 112(ii) Subtracting (i) from (ii), we get 2x - 2y = 26 or, x - y = 13(a) Let the two-digit no. be 10x + y. 61. Then, (10x + y) - (10y + x) = 36or, 9(x-y) = 36or, x - v = 4(d) Suppose the two-digit number is 62. 10 x + vThen, 10 v + x = 20x + v/2or 20y + 2x = 40x + y or, y = 2x(b) $9A^2 = 12A + 96 \Rightarrow 3A^2 - 4A - 32 = 0$ 63. $\therefore A = \frac{4 \pm \sqrt{16 + 384}}{6} = 4, -\frac{8}{2}$ $B^2 = 2B + 3 \Rightarrow B^2 - 2B - 3 = 0$ $\therefore B = \frac{2 \pm \sqrt{4 + 12}}{2} = 3, -1$ \therefore 5 A + 7B = 5 × 4 + 7 × 3 = 20 + 21 = 41 (e) Let the original number of sweets be x. 64. According to the question, $\frac{x}{140} - \frac{x}{175} = 4$ or, $175x - 140x = 4 \times 140 \times 175$ or, $x = \frac{4 \times 140 \times 175}{35} = 2800$ (a) Let the two-digit number be 10 x + y. 65. $10x + y = 7(x + y) \Rightarrow x = 2y...(i)$ 10(x+2)+y+2=6(x+y+4)+4or $10x + y + 22 = 6x + 6y + 28 \Rightarrow 4x - 5y = 6$...(ii) Solving equations (i) and (ii), we get x = 4 and y = 2(a) Ratio of Ramani's savings in NSC and PPF = 3:266.

His savings in PPF = $\frac{2}{5} \times 150000 = 60000$

68. (c) Let x be the first number and y be the second number.

$$\frac{1}{5}x = \frac{5}{8}y$$
 $\therefore \frac{x}{y} = \frac{25}{8}$ (i)

x + 35 = 4y or, $\frac{25}{8}y + 35 = 4y$ $\therefore y=40$ 68. (e) Let the original number be 10 x + vv = 2x + 1...(i)and (10y + x) - (10x + y) = 10x + y - 1or, 9y - 9x = 10x + y - 1or, 19x - 8y = 1...(ii) Putting the value of (i) in equation (ii) we get, 19x - 8(2x + 1) = 1or, 19x - 16x - 8 = 1or, 3x = 9 or, x = 3So, $y = 2 \times 3 + 1 = 7$ \therefore original number = $10 \times 3 + 7 = 37$ (d) In case I: Let the no. of children = x. 69 Hence, total no. of notebooks distributed $\frac{1}{2}x x$ or $\frac{x^2}{2}$(i) In case II: no. of children = $\frac{x}{2}$ Now, the total no. of notebooks $= 16 \times \frac{x}{2}$(ii) Comparing (i) & (ii), we get $\frac{x^2}{2} = 8x$ or, x=64Hence, total no. of notebooks $=\frac{64\times64}{8}=512$ 70. (a) Let the positive integer be x. Now, $x^2 - 20x = 96$ or, $x^2 - 20x - 96 = 0$ or, $x^2 - 24x + 4x - 96 = 0$ or, x(x-24) + 4(x-24) = 0or, (x-24)(x+4)=0or, x = 24, -4 $x \neq -4$ because x is a positive integer (a) Let $\frac{1}{2}$ of the no. = 10x + v71. and the no. = 10V + W From the given conditions, W = x and V = y - 1Thus the no. = $10(y-1) + x \dots (A)$ $2(10x + y) = 10(y - 1) + x \implies 8y - 19x = 10...(i)$ ·. Again, from the question, $V + W = 7 \implies v - 1 + x = 7$ $\therefore x+y=8...(ii)$ Solving equations (i) and (ii), we get x = 2 and y = 6. From equation ((A), Number = 10(y-1) + x = 52

72. (e) Suppose the two-digit number be
$$10x + y$$
.
Then we have been given
 $10x + y - (10y + x) = 9$
 $\Rightarrow 9x - 9y = 9$
 $\Rightarrow x - y = 1$

Hence, the required difference = 1

Note that if the difference between a two-digit number and the number obtained by interchanging the digits is D, then the difference between the two digits of the

number =
$$\frac{D}{9}$$

73. (c) Suppose the number is N.

Then N -
$$\frac{3}{5}N = 50$$

 $\Rightarrow \frac{2N}{5} = 50, \quad \therefore N = \frac{50 \times 5}{2} = 125$

74. (d) Let the original fraction be $\frac{x}{y}$.

Then
$$\frac{x+2}{y+1} = \frac{5}{8}$$
 or, $8x - 5y = -11$ (i)

Again, $\frac{x+3}{y+1} = \frac{3}{4}$ or, 4x - 3y = -9(ii)

Solving, (i) and (ii) we get x = 3 and y = 7

. fraction =
$$\frac{3}{7}$$

75. (d) On solving equation we get x = 7, y = 4, z = 1176. (e) Let the number = x

Then, $x^2 + x = 182$ or, $x^2 + x - 182 = 0$ or, x + 14x - 13x - 182 = 0or, x (x + 14) - 13 (x + 14) = 0or, (x - 13)(x + 14) = 0or, x = 13 (negative value is neglected) 77 (c) Let the no of balls = b

Rate =
$$\frac{450}{h}$$

$$(b+5)\left(\frac{450}{b}-15\right) = 450$$

or, $450-15b+\frac{2250}{b}-75=450$
or, $b^2+5b-150=0$
or, $(b+15)(b-10)=0$
or, $b=10$ (Neglecting negative value)
78. (b) $n^4-10n^3+36n^2-49n+24$
 $1-10+36-49+24=2$

$$x - \left[\frac{12x}{100} + \frac{5x}{4} + \frac{10x}{100}\right] = 15$$

$$x - \left[\frac{48x + 300x + 40x}{400}\right] = 15 \quad \therefore x = 500$$

(a) Let the first, second, third and fourth numbers be a, b,
c and d respectively.
According to the question,

Let 'x' be the total number of students in college

$$+b+c+d=64$$
(i)

and
$$a + 3 = b - 3 = 3c = \frac{d}{3}$$

i.e., $a + 3 = b - 3 \implies b = a + 6$ (ii)

Also,
$$c = \frac{a+3}{3}$$
 and $d = 3 (a+3)$

 $\begin{bmatrix} 12\mathbf{x} & 3\mathbf{x} & 10\mathbf{x} \end{bmatrix}$

Solving the above eqns, we get

a = 9, b = 15, c = 4 and d = 36

а

79.

80.

(b)

- \therefore Difference between the largest and the smallest numbers = 36 4 = 32
- 81. (d) Let the no. of boys and girls in the classroom is x each. From the question, 2(x-8)=x $\therefore x=16$

$$\therefore$$
 Number of boys and girls = $16 + 16 = 32$

82. (d)
$$x - y = \frac{1}{9} \{ (10x + y) - (10y + x) \} = \frac{1}{9}$$

 $(9x - 9y) = x - y$

84. (e)
$$2x+y=15 \Rightarrow y=15-2x$$
.....(i)
 $2y+z=25 \Rightarrow 2(15-2x)+z=25$ [from (i)]
 $\Rightarrow 4x-z=5$(ii)
and $2z+x=26$(iii)
Combining equation (ii) and (iii), we get $z=11$

85. (d)
$$P(P-3) < 4(P-3)$$
;
 $P(P-3) - 4(P-3) < 0$
 $(P-3)(P-4) < 0$
This means that when
 $(P-3) > 0$ then $(P-4) < 0$ (i)
or, when $(P-3) < 0$ then $(P-4) > 0$ (ii)
From (i),
 $P > 3$ and $P < 4$
 $\therefore 3 < P < 4$
From (ii)
 $P < 3$ and $P > 4$
86. (d) $P+R+2Q=59$;
 $Q+R+3P=68$
and $P+3(Q+R)=108$
Solving the above two equations, we get $P=12$ years.
87. (a) Let the ages of Harish and Seema be *x* and *y* respectively.
According to the question,

$$x.y=240$$
(i)
 $2y-x=4$ (ii)
Solving equations (i) and (ii), we get
 $y=12$ years

Algebraic Expression & Inequalities

88.	(e)	5P9 + 3R7 + 2Q8 = 1114					
		For the maximum value of Q , the values of P and R should be the minimum i.e. zero each					
		Now $500 + 307 + 208 = 1114$					
		100, 507 + 507 + 208 - 1114					
		or, $816 + 2Q8 = 1114$					
		or, $2Q8 = (1114 - 816 =)298$					
		So, the required value of Q is 9.					

89. (e)
$$\frac{2}{5} \times \frac{1}{4} \times \frac{3}{7} \times x = 15$$

$$\therefore \quad \frac{x}{2} = \frac{5 \times 7 \times 2 \times 5}{2} = 25 \times 7 = 175$$

90. (d) Let, the two-digit no. be xy, i.e. 10x + y then,

$$x + y = \frac{1}{11} \left[(10x + y) + (10y + x) \right] = x + y$$

Thus we see that the difference of x and y can't be determined.

Hence, the answer is data inadequate.

91. (c) Let the fraction be $\frac{x}{y}$ then

$$\frac{x+1}{y+2} = \frac{2}{3}$$
 or, $3x+3 = 2y+4$ or, $3x = 2y+1$ I

Also, we have

92.

93.

$$\frac{x+5}{y+1} = \frac{5}{4}$$

or, $4x + 20 = 5y + 5$
or $4x = 5y - 15 \dots$ II

From I and II, we get
$$\frac{2y+1}{y} = \frac{5y-15}{y}$$

3 4
or,
$$8y+4=15y-45$$

∴ $y=7$ and $x = \frac{2y+1}{3} = \frac{2 \times 7+1}{3} = \frac{15}{3} = 5$
∴ Reqd original fraction $=\frac{x}{y} = \frac{5}{7}$
(d) Let the no. be $10x + y$
then $y = x + 2$ or $y - x = 2$ (i)
 $(10y+x) - (10x+y) = 18$
or, $9y - 9x = 18$
 $y - x = 2$ (ii)
From eq. (i) and (ii) we can't get any conclusion.
(d) $2x + y = 17 \Rightarrow y = 17 - 2x$ (i)
 $y + 2z = 15 \Rightarrow 17 - 2x + 2z = 15$

$$y+2z=15 \Rightarrow 17-2x+2z=15$$

$$\Rightarrow 2x-2z=2 \Rightarrow x-z=1 \dots \text{(ii)}$$

and $x+z=9 \dots \text{(iii)}$
Solving equations (i) and (ii), we get

x = 5, z = 4 $\therefore y = 17 - 2x = 17 - 10 = 7$ $4x + 3y + z = 4 \times 5 + 3 \times 7 + 4$ =20+21+4=45

94. d y

94. (c) Let the numerator and denominator be x and y
respectively. Then
$$\frac{x+2}{y+3} = \frac{7}{9}$$

or, 9 (x+2)=7 (y+3)
or 9x-7y=3(i)
 $\frac{x-1}{y-1} = \frac{4}{5}$
 $\Rightarrow 5x-4y=1$ (ii)
Solving (i) and (ii), we get
 $x=5, y=6$
Reqd fraction = 5/6
95. (a) $3n^2 - 18n + 24 = 0$
or, $n^2 - 6n + 8 = 0$ or, $(n-4)(n-2) = 0$
 $\therefore n=4, 2$
 $\therefore n>4$
96. (d) R-M=7000 and S-M=3000
Here, S + M + R can be found only when one more
equation in terms of S and R is given. Therefore, Can't
be determined is the correct answer.
97. (c) Let the no. be N.
Now, $\frac{3N}{5} - \frac{N}{2} = 30$ or, $\frac{N}{10} = 30$
or, N=300
 80% of N=240
98. (b) Let the two-digit no. be $10x + y$.
Then, $(10x + y) - (10y + x) = 27$
or, $x-y=3$
99. (a) $F+S=4S$
or, $F=3S \Rightarrow F: S=3:1$
The ages of father and son = 56 years
 \therefore Son's age $=\frac{1}{4} \times 56 = 14$ years
100. (d) Let the number be x.
 $2 \times \frac{1}{2} \times \frac{5}{2} \times x = 6$

100. (d) Let the number be
$$x$$
.

$$\therefore \quad \frac{-5}{5} \times \frac{-4}{4} \times \frac{-5}{8} \times x = 6$$

$$\therefore \quad x = \frac{6 \times 5 \times 4 \times 8}{2 \times 1 \times 5} \times \frac{1}{2} = 48$$

101. (a) Let the two-digit number be 10x + y.

Then
$$x + y = \frac{1}{5}(10x + y - 10y - x)$$

or, $x + y = \frac{9}{5}(x - y)$
or, $4x - 14y = 0 \Rightarrow \frac{x}{y} = \frac{7}{2}$

$$\frac{x+y}{x-y} = \frac{7+2}{7-2} = \frac{9}{5}$$
 i.e., $x-y = 5k$

Here k has the only possible value, k = 1. Because the difference of two single-digit numbers will always be of a single digit.

102. (c)
$$J = \frac{2}{5}A$$
, $P = \frac{1}{4} \times \frac{2}{5}A = \frac{1}{10}A$
 $\frac{1}{10}A - 200 = 600$ $\therefore \frac{1}{10}A = 800$
 $A = ₹ 8,000$
103. (a) For *Q* to be maximum. *P* and *R* will also be maximum,
i.e., $P = R = 9$.
So, by putting the value of P and R in
 $5P9 - 7Q2 + 9R6 = 823$, we get $Q = 7$
104. (d) Let the two-digit no. be $10x + y$.
According to question,
 $(10x + y) - (10y + x) = 54$
 $9x - 9y = 54$ $x - y = 6$
105. (c) Let the two numbers be *x* and *y*.
 $\therefore xy = 192, x + y = 28$ (i)
 $(x + y) = 7(2 + y)^2 + 4x = 700 + 16$

$$\therefore \quad (x-y)^2 = (x+y)^2 - 4xy = 784 - 768 = 16$$

:
$$x-y=4$$
(ii)

Combining (i) and (ii), x = 16, and y = 12.

106. (e) Let the present ages of Mr. Ramesh and his son be x and y respectively.

Algebraic Expression & Inequalities

 \therefore x = 4y and (x + 10) = 2(y + 10) Solving the above two equations, we get x = 20 years and y = 5 years

- 107. (e) Let the total number of discs of 2 kg and 5 kg be 'a' and 'b' respectively. Then, a + b = 21 and 5b = 2aSolving the above two equations, we get a = 15, b = 6 \therefore Weight of all discs together $= 15 \times 2 + 6 \times 5 = 60$ kg
- 108. (a) No. of 10-year periods = 6 $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times B = 64 B$
- 109. (b) Let the middle no.=x

$$(x-2)+x+(x+2) = \frac{176}{4}-14$$
 or,

$$3x = \frac{120}{4}$$
 or, $x = 10$

110. (d) number of tables and chairs and tripled, so price is $12,090 \times 3 = 36,000$

111. (a) Price of 39 pencils =
$$\frac{4263.05}{253} \times 39 \approx ₹650$$

112. (c) Percentage of marks obtained by Sundari in first and second papers is 40% and 80% respectively. Percentage of marks obtained by Kusu in first and second papers is 50% and 90%, respectively. Percentage of marks obtained by Jyoti in first and second papers is 30% and 90% respectively.

From the above, we see that Jyoti's progress is maximum.