Lounters

Introduction

- . It is a sequential circuit forming by the cascading of FFs.
- Counter are basically used for
 - (i) Counting of the number of clock pulses applied
 - (ii) Frequency division
 - (iii) Timers
 - (iv) Frequency measurement
 - (v) Waveform generation
- Counters are classifed as:
 - (i) Asynchronous counter
 - (ii) Synchronous counter

Remember:

If N = total number of states and 'n' = number of FFs then

n≥3.32 log₁₀N or n≥ log₂N

- If $N = 2^n$, then we get BINARY COUNTER.
- If $N < 2^n$, then we get NON-BINARY COUNTER.

MOD number

- The "MOD-number" indicates the number of states in counting sequence.
- For n-FFs, counter will have 2ⁿ different states and then this Counter is said to be "MOD-2" Counter".
- MOD number indicates the frequency division factor obtained from the Last FF.
- It would be capable of counting upto (2n 1) before returning to zero state.

Note:

- In "MOD-N Counter", if applied input frequency is "f", then output frequency is f/N.
- If two counters are cascaded with MOD-M followed by MOD-N, then number of overall states of combined counter is (M × N) and counter is called "MOD-MN" counter.

Asynchronous (Series) Counter

Binary Ripple Counter

- In ripple counter with n-FFs there are 2ⁿ possible states.
- With n-FFs the maximum count that can be counted by this counter is (2ⁿ - 1).
- If input frequency is 'f' then output frequency is $\frac{f}{2^n}$.
- It is also known as 2ⁿ: 1 scalar divider.

For proper operation of the ripple counter:

$$f_{CLK} \le \frac{1}{n t_{pd(FF)}}$$

Maximum CLK frequency:

$$f_{\text{CLK,m}} = \frac{1}{n \, t_{\text{pd(FF)}}}$$

Disadvantage of Ripple Counter:

Decoding error is present due to propagation delay of FFs i.e. t_{pd(FF)}.

Up/Down Counter

An "Up/Down Counter" can count in any direction depending upon the control input.

For determination of Up/Down Counter:

Triggering with	CLK connection in	Access as
(-ve) edge	Q m	UP Counter
(-ve) edge	ā ·	Down Counter
(+ve) edge	Q	Down Counter
(+ve) edge	Q	UP Counter

Non-Binary Ripple Counter

Decade Counter or Mod-10 Counter

- Used states = 10 and unused states = 6
- For down counter, Mod Number = 2ⁿ N.
- Output frequency of MOD-10 counter = f/10.
- Clear and preset is used in non binary ripple counter.
- Clear is used to reset counter without clock.
- Preset is used to set counter.
- When decade counter counts from 0 to 9 then it is known as BCD counter.

Synchronous (Parallel) Counters

Ring Counter

It is SISO shift register.

Remember:

- Ring counter is a non-self starting counter.
- With 'n' FFs, there are n-states present in ring counter.
- With 'n' FFs, maximum count possible in ring counter is (2^{n-1}) .
- Decoding is very easy in Ring counter, because there is no aid of extra circuit.

In a 4-bit ring counter:

Used states = 4

Unused states = $2^4 - 4 = 12$

 In a ring counter if CLK frequency is "f" the FFs output frequency is "f/N" (where N = Number of states = modulus of the counter).

Twisted-Ring Counter

Also known as Johnson Counter or Switch Tail Ring Counter

Remember:

- With 'n' FFs there are '2n' states in this counter.
- With 'n' FFs the maximum count by this counter is (2ⁿ 1).
- In normal "Johnson Counter" with 'n' FFs and the input frequency is 'f' then output frequency of FFs is "f/2n"
- In a "Counter" if a feedback connection is used the number of possible states will decreases.

Synchronous-Series Carry Counter

□ Clock frequency

$$f_{CLK} \le \frac{1}{t_{pd(FF)} + (n-2) t_{pd(AND-gate)}}$$

Remember:

 Total delay of this counter is much lower than an asynchronous counter with same number of FFs.

Synchronous-Parallel Carry Counter

It is the "Fastest Counter".

Clock frequency:

$$f_{CLK} = \frac{1}{t_{pd(FF)} + t_{pd(AND gate)}}$$