5. QUADRATIC EQUATIONS

- 1. The sum of a number and its reciprocal is 50/7, then the number is
- 2. The roots of the equation $3x^2-2\sqrt{6x+2} = 0$ are _____
- 3. If $x^2 2x + 1 = 0$, then x + 1/x =_____
- 4. If 3 is a solution of $3x^2 + (k-1)x + 9 = 0$, then k =_____
- 5. The roots of $x^2-2x-(r^2-1)=0$ are _____
- 6. The sum of the roots of the equation $3x^2 - 7x + 11 = 0$ is _____
- 7. The roots of the equation $\frac{x^2 8}{x^2 + 20} = \frac{1}{2}$ are_____
- 8. The roots of the quadratic equation

$$\frac{9}{x^2 - 27} = \frac{25}{x^2 - 11}$$
 are _____

- 9. The roots of the equation $\sqrt{2x^2 + 9} = 9$ are _____
- 10. The two roots of a quadratic equation are 2 and -1. The equation is
- 11. If the sum of a quadratic equation $3x^2 + (2k+1)x (k+5) = 0$, is equal to the product of the roots, then the value of k is _____
- 12. The value of k for which 3 is a root of the equation $kx^2-7x+3 = 0$ is
- If the difference of the roots of the quadratic equation x²-ax+b is 1, then _____
- 14. The quadratic equation whose one root is $2-\sqrt{3}$ is _____
- 15. _____ is the condition that one root of the quadratic equation $ax^2 +bx+c$ is reciprocal of the other.
- 16. The roots of the quadratic equation x/p = p/x are _____
- 17. If the roots of the equation $12x^2+mx+5=0$ are real and equal then m is equal to _____
- 18. If the equation x^2-4x+a has no real roots, then _____

19. The discrimination of the quadratic equation $7\sqrt{3x^2+10x}-\sqrt{3=0}$ is

- 20. The value of $\sqrt{6+\sqrt{6+\sqrt{6+}}}$ is _____
- 21. Standard form of a quadratic equation is _____
- 22. The sum of a number and its reciprocal is 5/2. This is represented as
- 23. "The sum of the squares of two consecutive natural numbers is 25", is represented as _____
- 24. If one root of a quadratic equation is $7-\sqrt{3}$ then the other root is
- 25. The discriminant of $5x^2-3x-2 = 0$ is _____
- 26. The roots of the quadratic equation $x^2-5x+6 = 0$ are ____
- 27. If x = 1 is a common root of the equations $ax^2 + ax + 3 = 0$ and $x^2 + x + b = 0$ then the value of ab is _____
- 28. If the discriminant of the quadratic equation $ax^2 + bx + c = 0$ is zero, then the roots of the equation are _____
- 29. The product of the roots of the quadratic equation $\sqrt{2x^2-3x+5}\sqrt{2}=0$ is
- 30. The nature of the roots of a quadratic equation $4x^2-12x+9 = 0$ is
- 31. If the equation $x^2-bx+1 = 0$ does not possess real roots, then _____
- 32. If the sum of the roots of the equation $x^2-(k+6)x+2$ (2k-1) = 0 is equal to half of their product, then k =
- 33. If one root of the equation $4x^2-2x+(\lambda-4) = 0$ be the reciprocal of the other, then $\lambda =$ _____
- 34. If sin α and cos α are the roots of the equation $ax^2+bx+c = 0$, then $b^2 =$ ____
- 35. If the roots of the equation $(a^2+b^2)x^2-2b(a+c)x+(b^2+c^2) = 0$ are equal, then $b^2 = _$
- 36. The quadratic equation whose roots are -3, -4 is _____

37. If b²–4ac<0 then the roots of quadratic equation $ax^2+bx+c = 0$ are

ANSWERS

1) 1/7; 2)
$$\sqrt{2/3}$$
, $\sqrt{2/3}$; 3) 2; 4) -11;
5) 1-r, r +1; 6) 7/3; 7) ±6; 8) ±6; 9) x = ±6; 10) x²-x-2 = 0; 11) 4;
12) 2;
13) a²-4b = 1; 14) x²-4x+1 = 0; 15) a = c; 16) ±p; 17) 4 $\sqrt{15}$;
18) a>4; 19) 184;
20) 3; 21) ax²+bx+c = 0, a ≠ 0; 22) (x+1/x = 5/2); 23) x²+(x-1)² = 25; 24) 7+ $\sqrt{3}$; 25) 49; 26) 2, 3; 27) 3; 28) real and equal; 29) 5;
30) real and equal; 31) b²-4<0 (or) b²<4 (or) -2
34) a²+2ac; 35) ac; 36) x²+7x+12 = 0;
37) Not real or imaginary.