Chapter 13

Limits and Derivatives

Miscellaneous Exercise

Question 1: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x + a)

Answer 1:

Let
$$f(x) = x + a$$
. Accordingly, $f(x + h) = x + h + a$

By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{x+h+a-x-a}{h}$$

$$= \lim_{h \to 0} \left(\frac{h}{h}\right)$$

$$= \lim_{h \to 0} (1)$$

$$= 1$$

Question 2: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(px + q)(\frac{r}{x} + s)$

Answer 2:

Let,
$$f(x) = (px + q)\left(\frac{r}{x} + s\right)$$

$$f'(x) = (px + q)\left(\frac{r}{x} + s\right) + \left(\frac{r}{x} + s\right)(px + q)$$

$$= (px + q)(rx^{-1} + s) + \left(\frac{r}{x} + s\right)(p)$$

$$= (px + q)(-rx^{-2}) + \left(\frac{r}{x} + s\right)p$$

$$= (px + q)\left(\frac{-r}{x^2}\right) + \left(\frac{r}{x} + s\right)p$$

$$= \frac{-pr}{x} - \frac{qr}{x^2} + \frac{pr}{x} + ps$$

$$= ps - \frac{qr}{x^2}$$

Question 3: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers)

Answer 3:

Let,
$$f(x) = (ax + b)(cx + d)^2$$

By product rule,

$$f'(x) = (ax + b)\frac{dd}{x}(cx + d)^{2} + (cx + d)^{2}(ax + b)$$

$$= (ax + b)\frac{d}{dx}(c^{2}x^{2} + 2cdx + d^{2}) + (cx + d^{2})\frac{d}{dx}(ax + b)$$

$$= (ax + b)\left[\frac{d}{dx}(c^{2}x^{2}) + \frac{d}{dx}(2cdx) + \frac{d}{dx}d^{2}\right] + (cx + d)^{2}\left[\frac{d}{dx}ax\frac{d}{dx}b\right]$$

$$= (ax + b)(2x^{2}x + 2cd) + (cx + d)^{2}a$$

$$= 2c(ax + b)(cx + d) + a(cx + d)^{2}$$

Question 4: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{ax+b}{cx+d}$

Answer 4:

Let
$$f(x) = \frac{ax+b}{cx+d}$$

$$f'(x) = \frac{(cx+d)\frac{d}{dx}(ax+b) - (ax+b)\frac{d}{dx}(cx+d)}{(cx+d)^2}$$

$$= \frac{(cx+d)(a) - (ax+b)(c)}{(cx+d)^2}$$

$$= \frac{acx + ad - acx - bc}{(cx+d)^2}$$

$$= \frac{ad - bc}{(cx+d)^2}$$

Question 5: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1+\frac{1}{x}}{1-\frac{1}{x}}$

Answer 5:

Let,
$$f(x) = \frac{1 + \frac{1}{x}}{1 - \frac{1}{x}} = \frac{\frac{x+1}{x}}{\frac{x-1}{x}} = \frac{x+1}{x-1}$$
, where $x \neq 0$

By quotient rule,

$$f'(x) = \frac{(x-1)\frac{d}{dx}(x+1) - (x+1)\frac{d}{dx}(x-1)}{(x-1)^2}, x \neq 0, 1$$

$$= \frac{(x-1)(1) - (x+1)(1)}{(x-1)^2}, x \neq 0, 1$$

$$= \frac{x-1-x-1}{(x-1)^2}, x \neq 0, 1$$

$$= \frac{-2}{(x-1)^2}, x \neq 0, 1$$

Question 6: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1}{ax^2+bx+c}$

Answer 6:

Let
$$f(x) = \frac{1}{ax^2 + bx + c}$$

By quotient rule,

$$f'(x) = \frac{(ax^2 + bx + c)\frac{d}{dx}(1) - (1)\frac{d}{dx}(ax^2 + bx + c)}{(ax^2 + bx + c)^2}$$
$$= \frac{(ax^2 + bx + c)(0) - (1)(2ax + b)}{(ax^2 + bx + c)^2}$$
$$= \frac{-(2ax + b)}{(ax^2 + bx + c)^2}$$

Question 7: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{ax+b}{px^2+ax+r}$

Answer 7:

Let,
$$f(x) = \frac{ax+b}{px^2+qx+r}$$

By quotient rule,

$$f'(x) = \frac{(px^2 + qx + r)\frac{d}{dx}(ax + b) - (ax + b)\frac{d}{dx}(px^2 + qx + r)}{(px^2 + qx + r)^2}$$

$$= \frac{(px^2 + qx + r)(a) - (ax + b)(2px + q)}{(px^2 + qx + r)^2}$$

$$= \frac{apx^2 + aqx + ar - 2apx^2 - aqx - 2bpx - bq}{(px^2 + qx + r)^2}$$

$$= \frac{-apx^2 - 2bpx + ar - bq}{(px^2 + qx + r)^2}$$

Question 8: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{px^2+qx+r}{ax+b}$

Answer 8:

Let,
$$f(x) = \frac{px^2 + qx + r}{ax + b}$$

By quotient rule,

$$f'(x) = \frac{(ax+b)\frac{d}{dx}(px^2+qx+r)-(px^2+qx+r)\frac{d}{dx}(ax+b)}{(ax+b)^2}$$

$$= \frac{(ax+b)(-px+q)-(px^2+qx+r)(a)}{(ax+b)^2}$$

$$= \frac{2apx^2+aqx+2bpx+bq-apx^2-aqx-ar}{(ax+b)^2}$$

$$= \frac{apx^2+2bpx+bq-ar}{(ax+b)^2}$$

Question 9:Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a}{x^4} - \frac{b}{x^2} + \cos x$

Answer 9:

Let,
$$f(x) = \frac{a}{x^4} - \frac{b}{x^2} + \cos x$$

$$f'(x) = \frac{d}{dx} \left(\frac{a}{x^4}\right) - \frac{d}{dx} \left(\frac{b}{x^2}\right) + \frac{d}{dx} (\cos x)$$

$$= a \frac{d}{dx} (x^{-4}) - b \frac{d}{dx} (x^{-2}) + \frac{d}{dx} (\cos x)$$

$$= a(-4x^{-5}) - b(-2x^{-3}) + (-\sin x)$$

$$\left[\frac{d}{dx} (x^n) = nx^{n-1} and \frac{d}{dx} (\cos x) = -\sin x\right]$$

$$= \frac{-4a}{x^5} + \frac{2b}{x^3} - \sin x$$

Question 10: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $4\sqrt{x} - 2$

Answer 10:

Let,
$$f(x) = 4\sqrt{x} - 2$$

$$f'(x) = \frac{d}{dx} (4\sqrt{x} - 2) = \frac{d}{dx} (4\sqrt{x}) - \frac{d}{dx} (2)$$

$$= 4 \frac{d}{dx} (x^{\frac{1}{2}}) - 0 = 4 (\frac{1}{2} x^{\frac{1}{2} - 1})$$

$$= (2x^{\frac{1}{2}}) = \frac{2}{\sqrt{x}}$$

Question 11: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a+bsinx}{c+dcosx}$

Answer 11:

Let,
$$f(x) = \frac{a + b \sin x}{c + d \cos x}$$

By quotient rule,

$$f'(x) = \frac{(c+d\cos x)\frac{d}{dx}(a+b\sin x) - (a+b\sin x)\frac{d}{dx}(c+d\cos x)}{(c+d\cos x)^2}$$

$$= \frac{(c+d\cos x)(b\cos x) - (a+b\sin x)(-d\sin x)}{(c+d\cos x)^2}$$

$$= \frac{cb\cos x + bd\cos^2 x + ad\sin x - bd\sin^2 x}{(c+d\cos x)^2}$$

$$= \frac{bc\cos x + ad\sin x + bd(\cos^2 x + \sin^2 x)}{(c+d\cos x)^2}$$

$$= \frac{bc\cos x + ad\sin x + bd}{(c+d\cos x)^2}$$

Question 12: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): x4 (5 sin $x - 3 \cos x$)

Answer 12:

Let
$$f(x) = x4 (5 \sin x - 3 \cos x)$$

By product rule,

$$f'(x) = x^4 \frac{d}{dx} (5sinx - 3cosx) + (5sinx - 3cosx) \frac{d}{dx} (x^4)$$
$$= x^4 \left[5 \frac{d}{dx} (sinx) - 3 \frac{d}{dx} (cosx) \right] + [5sinx - 3cosx] \frac{d}{dx} (x^4)$$

$$= x^{4}[5\cos x - 3(-\sin x)] + (5\sin x - 3\cos x)(4x^{3})$$

$$= x^3[5x\cos x + 3x\sin x + 20\sin x - 12\cos x]$$

Question 13: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(x2 + 1) \cos x$

Answer 13:

Let
$$f(x) = (x2 + 1) \cos x$$

By product rule,

$$f'(x) = (x^2 + 1)\frac{d}{dx}(\cos x)\cos x \frac{d}{dx}(x^2 + 1)$$
$$= (x^2 + 1)(-\sin x) + \cos x(2x)$$
$$= -x^2\sin x - \sin x + 2x\cos x$$

Question 14: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (ax2 + sin x) (p + q cos x)

Answer 14:

Let
$$f(x) = (ax2 + \sin x) (p + q \cos x)$$

By product rule,

$$f'(x) = (ax^2 + sinx)\frac{d}{dx}(p + qcosx) + (p + qcosx)\frac{d}{dx}(ax^2 + sinx)$$
$$= (ax^2 + sinx)(-qsinx) + (p + qcosx)(2ax + cosx)$$

$$= -qsinx(ax^2 + sinx) + (p + qcosx)(2ax + cosx)$$

Question 15: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{4x+5sinx}{3x+7cosx}$

Answer 15:

Let
$$f(x) = \frac{4x + 5sinx}{3x + 7cosx}$$

By quotient rule,

$$f'(x) = \frac{(3x+7\cos x)\frac{d}{dx}(4x+5\sin x) - (4x+5\sin x)\frac{d}{dx}(3x+7\cos x)}{(3x+7\cos x)^2}$$

$$= \frac{(3x+7\cos x)\left[4\frac{d}{dx}(x)+5\frac{d}{dx}(\sin x)\right] - (4x+5\sin x)\left[3\frac{d}{dx}x+7\frac{d}{dx}\cos x\right]}{(3x+7\cos x)^2}$$

$$= \frac{(3x+7\cos x)(4+5\cos x) - (4x+5\sin x)(3-7\sin x)}{(3x+7\cos x)^2}$$

$$= \frac{12x+15x\cos x+28\cos x+35\cos^2 x-12x+28x\sin x-15\sin x+35\sin^2 x}{(3x+7\cos x)^2}$$

$$= \frac{15x\cos x+28\cos x+28x\sin x-15\sin x+35(\cos^2 x+\sin^2 x)}{(3x+7\cos x)^2}$$

$$= \frac{35+15x\cos x+28\cos x+28x\sin x-15\sin x}{(3x+7\cos x)^2}$$

Question 16: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x^2 cos(\frac{\pi}{4})}{sinx}$

Answer 16:

Let
$$f(x) = \frac{x^2 cos(\frac{\pi}{4})}{sinx}$$

By quotient rule,

$$f'(x) = \cos\frac{\pi}{4} \cdot \left[\frac{\sin x \frac{d}{dx}(x^2) - x^2 \frac{d}{dx}(\sin x)}{\sin^2 x} \right]$$
$$= \cos\frac{\pi}{4} \cdot \left[\frac{\sin x \cdot 2x - x^2 \cos x}{\sin^2 x} \right]$$
$$= \frac{x \cos\frac{\pi}{4} [2\sin x - x \cos x]}{\sin^2 x}$$

Question 17: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x}{1+tanx}$

Answer 17:

Let
$$f(x) = \frac{x}{1 + tanx}$$

$$f'(x) = \frac{(1+tanx)\frac{d}{dx}(x) - x\frac{d}{dx}(1+tanx)}{(1+tanx)^2}$$

$$f'(x) = \frac{(1+tanx) - x \cdot \frac{d}{dx}(1+tanx)}{(1+tanx)^2} \dots (1)$$

Let, $g(x) = 1 + \tan x$, accordingly, $g(x + h) = 1 + \tan (x + h)$

By first principle,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \left[\frac{1 + \tan(x+h) - 1 - \tan x}{h} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h)\cos x - \sin c\cos(x+h)}{\cos(x+h)\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h-x)}{\cos(x+h)\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sinh}{\cos(x+h)\cos x} \right]$$

$$= \left\{ \lim_{h \to 0} \frac{\sinh}{h} \right\} \cdot \left\{ \lim_{h \to 0} \frac{1}{\cos(x+h)\cos x} \right\}$$

$$= 1 \times \frac{1}{\cos^2 x} = \sec^2 x$$

$$= \frac{d}{dx} (1 + \tan x) = \sec^2 x \dots (2)$$

From (i) and (ii), we obtain

$$= f'(x) = \frac{1 + tanx - xsec^2x}{(1 + tanx)^2}$$

Question 18: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x}{\sin^n x}$

Answer 18:

Let
$$f(x) = \frac{x}{\sin^n x}$$

By quotient rule,

$$f'(x) = \frac{\sin^n x \frac{d}{dx} x - x \frac{d}{dx} \sin^n x}{\sin^{2n} x}$$

It can be easily shown that $\frac{d}{dx}sin^n x = nsin^{n-1}xcosx$

Therefore,

$$f'(x) = \frac{\sin^n x \frac{d}{dx} x - x \frac{d}{dx} \sin^n x}{\sin^{2n} x}$$
$$= \frac{\sin^n 1 - x (n \sin^{n-1} x \cos x)}{\sin^{2n} x}$$
$$= \frac{\sin^{n-1} x (\sin x - n x \cos x)}{\sin^{2n} x}$$

siny nysosy		
$=\frac{sinx-nxcosx}{sin^{n+1}x}$		
Stit X		