Class: XII SESSION : 2022-2023 CBSE SAMPLE QUESTION PAPER (THEORY) SUBJECT: PHYSICS

Maximum Marks: 70 Marks

Time Allowed: 3 hours.

General Instructions:

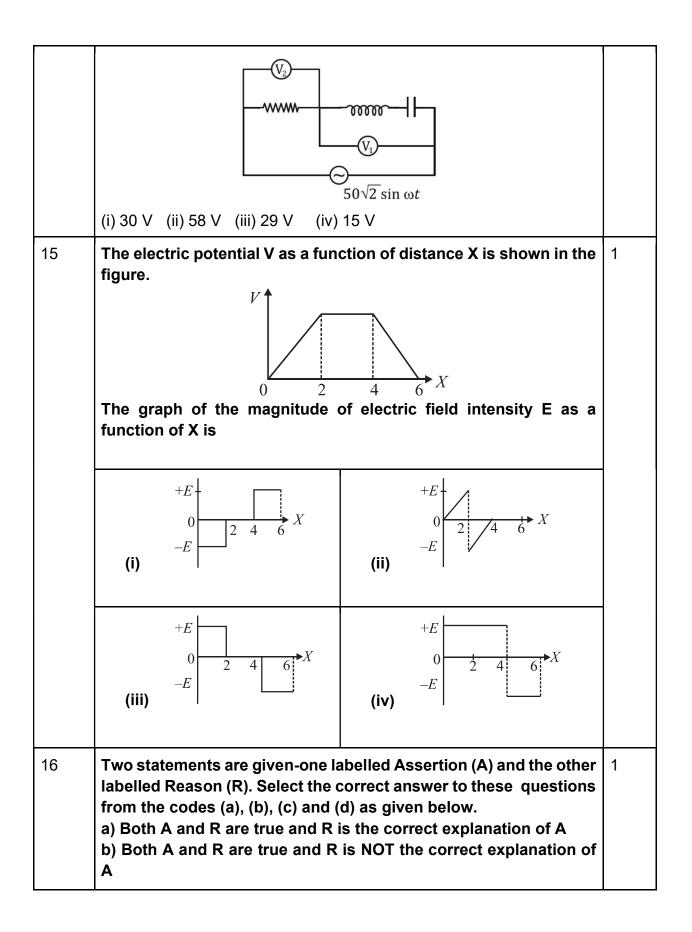
(1) There are 35 questions in all. All questions are compulsory

(2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All the sections are compulsory.

(3) Section A contains eighteen MCQ of 1 mark each, Section B contains seven questions of two marks each, Section C contains five questions of three marks each, section D contains three long questions of five marks each and Section E contains two case study based questions of 4 marks each.

(4) There is no overall choice. However, an internal choice has been provided in section B, C, D and E. You have to attempt only one of the choices in such questions.

5. Use of calculators is not allowed.

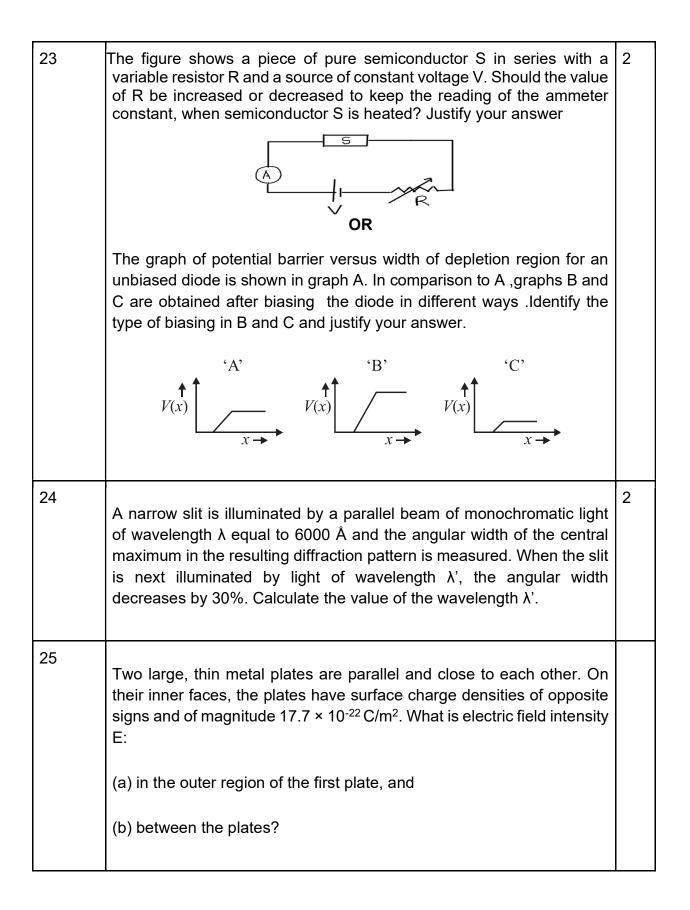

SECTION A

Q. NO.		MARKS
1	According to Coulomb's law, which is the correct relation for the following figure?	1
	(i) $q_1 q_2 > 0$ (i) $q_1 q_2 > 0$ (ii) $q_1 q_2 < 0$ (iii) $q_1 q_2 < 0$ (iv) $1 > q_1/q_2 > 0$	
2	The electric potential on the axis of an electric dipole at a distance 'r from it's centre is V. Then the potential at a point at the same distance on its equatorial line will be (i) 2V (ii) -V (iii) V/2 (iv) Zero	1

3	The temperature (T) dependence of resistivity of materials A and material B is represented by fig (i) and fig (ii) respectively. Identify material A and material B.	1
	$ \begin{array}{c} \uparrow \\ \rho \\ \hline \\ T \\ \hline \\ fig. (i) \end{array} $ $ \begin{array}{c} \uparrow \\ \rho \\ \hline \\ T \\ fig. (ii) \end{array} $	
	 (i) material A is copper and material B is germanium (ii) material A is germanium and material B is copper (iii) material A is nichrome and material B is germanium (iv) material A is copper and material B is nichrome 	
4	Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry (i) 3A in clockwise direction (ii) 9A in clockwise direction (iii) 6 A in anti-clockwise direction (iv) 6 A in the clockwise direction.	1
5	A long straight wire of circular cross section of radius a carries a steady current I. The current is uniformly distributed across its cross section. The ratio of the magnitudes of magnetic field at a point distant a/2 above the surface of wire to that at a point distant a/2 below its surface is (i) 4:1 (ii) 1:1 (iii) 4:3 (iv) 3:4	1
6	If the magnetizing field on a ferromagnetic material is increased, its permeability (i) decreases (ii) increases (iii) remains unchanged (iv) first decreases and then increases	1

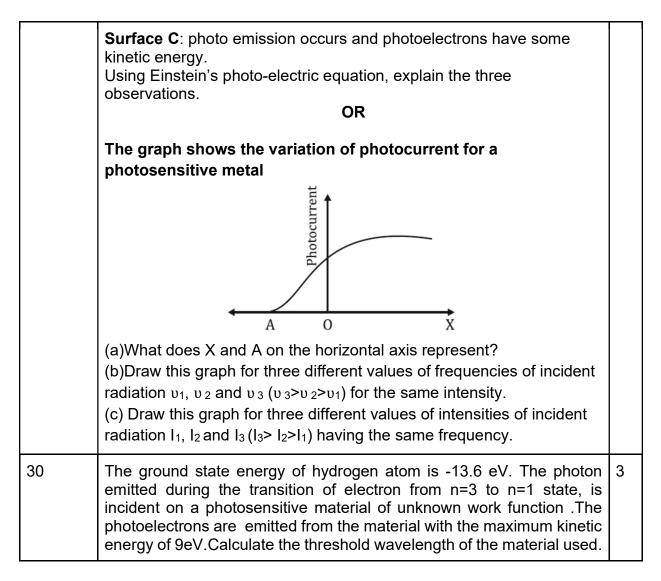
7	An iron cored coil is connected in series with an electric bulb with an AC source as shown in figure. When iron piece is taken out of the coil, the brightness of the bulb will	1
	 (i) decrease (ii) increase (iii) remain unaffected (iv) fluctuate 	
8	 Which of the following statement is NOT true about the properties of electromagnetic waves? (I) These waves do not require any material medium for their propagation (ii) Both electric and magnetic field vectors attain the maxima and minima at the same time (iii) The energy in electromagnetic wave is divided equally between electric and magnetic fields (iv) Both electric and magnetic field vectors are parallel to each other 	1
9	A rectangular, a square, a circular and an elliptical loop, all in the $(x-y)$ plane, are moving out of a uniform magnetic field with a constant velocity $\vec{v} = v\hat{i}$. The magnetic field is directed along the negative <i>z</i> -axis direction. The induced emf, during the passage of these loops, out of the field region, will not remain constant for (i) any of the four loops (ii) the circular and elliptical loops (iii) the rectangular, circular and elliptical loops (iv) only the elliptical loops	1

10	In a Young's double slit experiment, the path difference at a certain point on the screen between two interfering waves is $\frac{1}{8}$ th of the wavelength. The ratio of intensity at this point to that at the centre of a bright fringe is close to (i) 0.80 (ii) 0.74 (iii) 0.94 (iv) 0.85	1
11	The work function for a metal surface is 4.14 eV. The threshold wavelength for this metal surface is: (i) 4125 Å (ii) 2062.5 Å (iii) 3000 Å (iv) 6000 Å	1
12	The radius of the innermost electron orbit of a hydrogen atom is 5.3×10^{-11} m. The radius of the n = 3 orbit is (i) 1.01×10^{-10} m (ii) 1.59×10^{-10} m (iii) 2.12×10^{-10} m (iv) 4.77×10^{-10} m	1
13	 Which of the following statements about nuclear forces is not true? (i) The nuclear force between two nucleons falls rapidly to zero as their distance is more than a few femtometres. (ii) The nuclear force is much weaker than the Coulomb force. (iii) The force is attractive for distances larger than 0.8 fm and repulsive if they are separated by distances less than 0.8 fm. (iv) The nuclear force between neutron-neutron, proton-neutron and proton-proton is approximately the same. 	1
14	If the reading of the voltmeter V_1 is 40 V, then the reading of voltmeter V_2 is	1



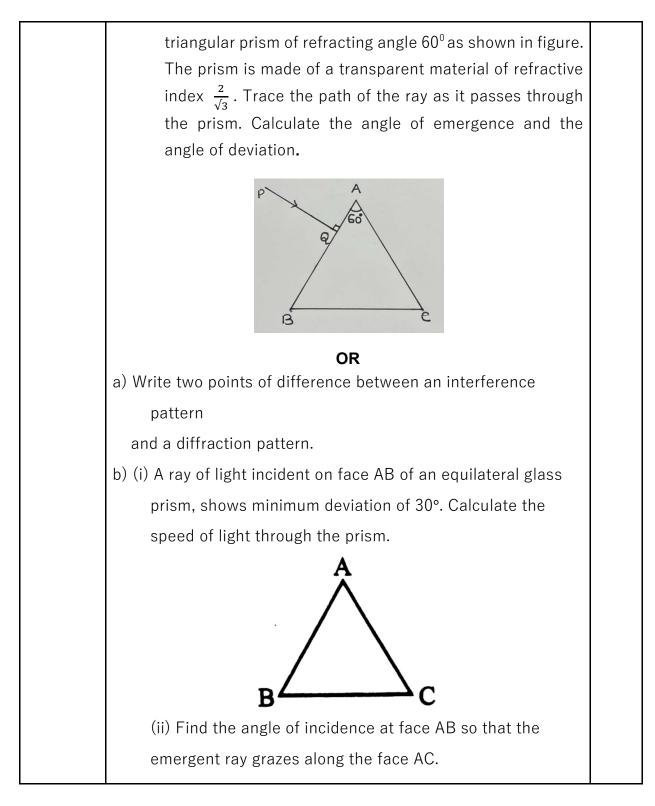
	 c) A is true but R is false d) A is false and R is also false ASSERTION(A): The electrical conductivity of a semiconductor increases on doping. REASON: Doping always increases the number of electrons in the semiconductor. 	
17	Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. a) Both A and R are true and R is the correct explanation of A b) Both A and R are true and R is NOT the correct explanation of A c) A is true but R is false d) A is false and R is also false	1
	ASSERTION:	
	In an interference pattern observed in Young's double slit experiment, if the separation (d) between coherent sources as well as the distance (D) of the screen from the coherent sources both are reduced to 1/3 rd , then new fringe width remains the same. REASON:	
	Fringe width is proportional to (d/D).	
18	Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. a) Both A and R are true and R is the correct explanation of A b Both A and R are true and R is NOT the correct explanation of A c) A is true but R is false d) A is false and R is also false Assertion(A) :	1
	The photoelectrons produced by a monochromatic light beam incident on a metal surface have a spread in their kinetic energies.	
	Reason(R) :	

The energy of electrons emitted from inside the metal surface, is lost in collision with the other atoms in the metal.

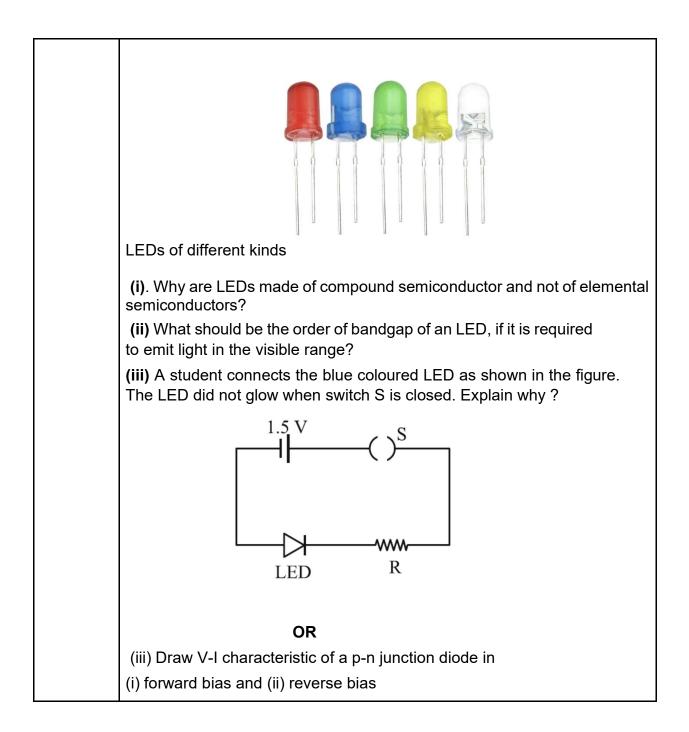

SECTION B

19	 Electromagnetic waves with wavelength (i) λ₁ is suitable for radar systems used in aircraft navigation. (ii) λ₂ is used to kill germs in water purifiers. (iii) λ₃ is used to improve visibility in runways during fog and mist conditions. Identify and name the part of the electromagnetic spectrum to which these radiations belong. Also arrange these wavelengths in ascending order of their magnitude. 	2
20	A uniform magnetic field gets modified as shown in figure when two specimens A and B are placed in it. (a) (b) (i)Identify the specimen A and B. (ii) How is the magnetic susceptibility of specimen A different from that of specimen B?	2
21	What is the nuclear radius of ¹²⁵ Fe ,if that of ²⁷ Al is 3.6 fermi?.	2
	OR	
	The short wavelength limit for the Lyman series of the hydrogen spectrum is 913.4 A ⁰ . Calculate the short wavelength limit for the Balmer series of the hydrogen spectrum.	
22	A biconvex lens made of a transparent material of refractive index 1.25 is immersed in water of refractive index 1.33. Will the lens behave as a converging or a diverging lens? Justify your answer.	2

SECTION C


26	Two long straight parallel conductors carrying currents I_1 and I_2 are separated by a distance d. If the currents are flowing in the same direction, show how the magnetic field produced by one exerts an attractive force on the other. Obtain the expression for this force and hence define 1 ampere.	3
27.	The magnetic field through a circular loop of wire, 12cm in radius and 8.5 Ω resistance, changes with time as shown in the figure. The magnetic field is perpendicular to the plane of the loop. Calculate the current induced in the loop and plot a graph showing induced current as a function of time. $B(T) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	3
28	An a.c. source generating a voltage $\mathcal{E} = \mathcal{E}_0 \sin \omega t$ is connected to a capacitor of capacitance C. Find the expression for the current I flowing through it. Plot a graph of \mathcal{E} and I versus ωt to show that the current is ahead of the voltage by $\pi/2$. OR An ac voltage $V = V_0 \sin \omega t$ is applied across a pure inductor of inductance <i>L</i> . Find an expression for the current <i>i</i> , flowing in the circuit and show mathematically that the current flowing through it lags behind the applied voltage by a phase angle of $\frac{\pi}{2}$. Also draw graphs of <i>V</i> and <i>i</i> versus ωt for the circuit.	
29	Radiation of frequency 10 ¹⁵ Hz is incident on three photosensitive surfaces A, B and C. Following observations are recorded: Surface A : no photoemission occurs Surface B : photoemission occurs but the photoelectrons have zero kinetic energy.	3

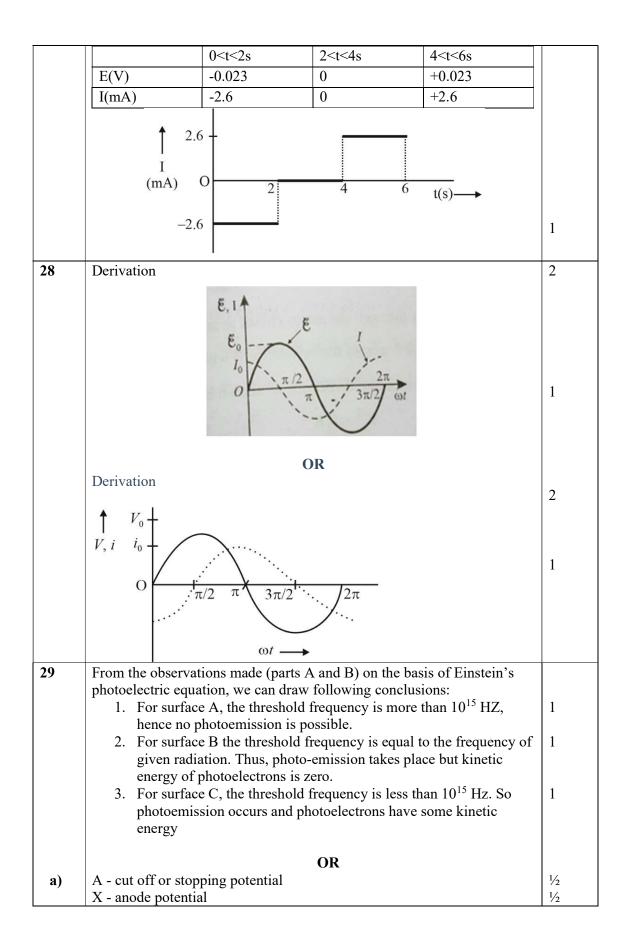
SECTION D

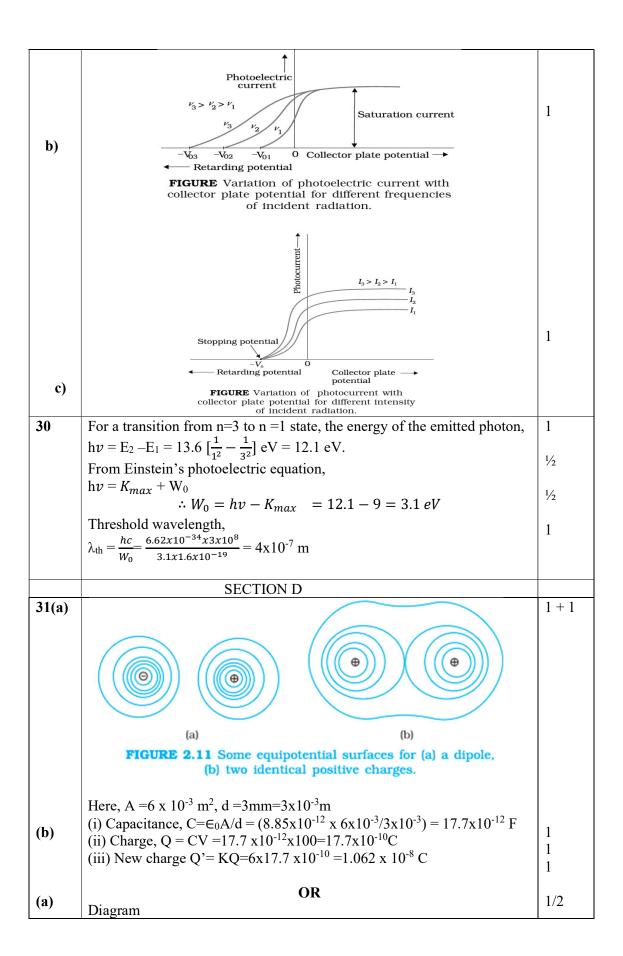

31	 (a)Draw equipotential surfaces for (i)an electric dipole and (ii) two identical positive charges placed near each other. (b) In a parallel plate capacitor with air between the plates, each plate has an area of 6 x 10⁻³m² and the separation between the plates is 3 mm. (i) Calculate the capacitance of the capacitor. (ii) If the capacitor is connected to 100V supply, what would be the the charge on each plate? (iii) How would charge on the plate be affected if a 3 mm thick mica sheet of k=6 is inserted between the plates while the voltage supply remains connected ?. 	5
----	---	---

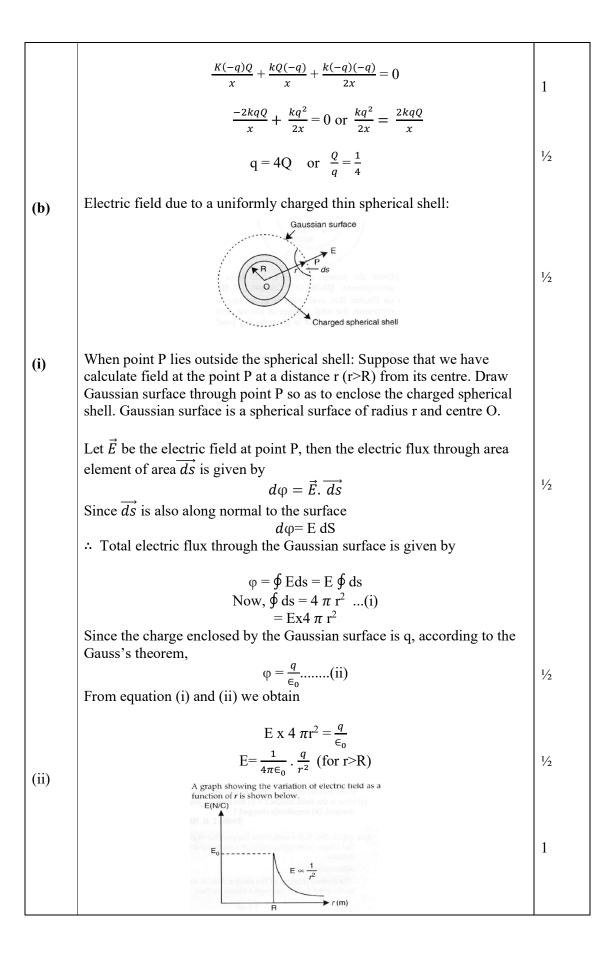
	OR (a)Three charges –q, Q and –q are placed at equal distances on a straight line. If the potential energy of the system of these charges is zero, then what is the ratio Q:q? (b)(i) Obtain the expression for the electric field intensity due to a uniformly charged spherical shell of radius R at a point distant r from the centre of the shell outside it. (ii) Draw a graph showing the variation of electric field intensity E with r, for r > R and r < R.	
32	(a) Explain the term drift velocity of electrons in a conductor .Hence obtain the expression for the current through a conductor in terms of drift velocity. (b) Two cells of emfs E_1 and E_2 and internal resistances r_1 and r_2 respectively are connected in parallel as shown in the figure. Deduce the expression for the (i) equivalent emf of the combination (ii) equivalent internal resistance of the combination (iii) potential difference between the points A and B. $\int_{E_2,r_2}^{E_1,r_1}$	5
	OR	
	 (a) State the two Kirchhoff's rules used in the analysis of electric circuits and explain them. (b) Derive the equation of the balanced state in a Wheatstone bridge using Kirchhoff's laws. 	
33	 a) Draw the graph showing intensity distribution of fringes with phase angle due to diffraction through a single slit. What is the width of the central maximum in comparison to that of a secondary maximum? b) A ray PQ is incident normally on the face AB of a 	5

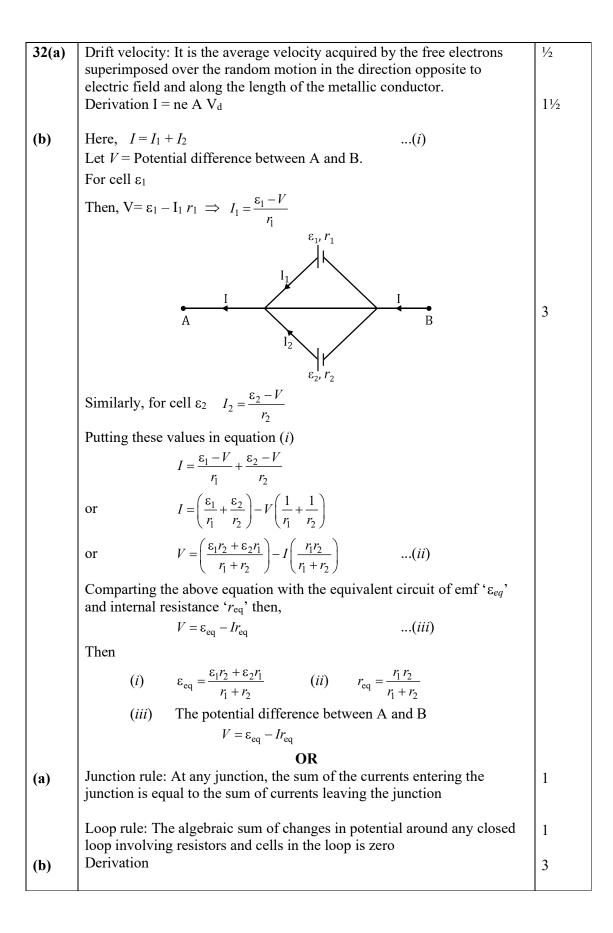
SECTION E

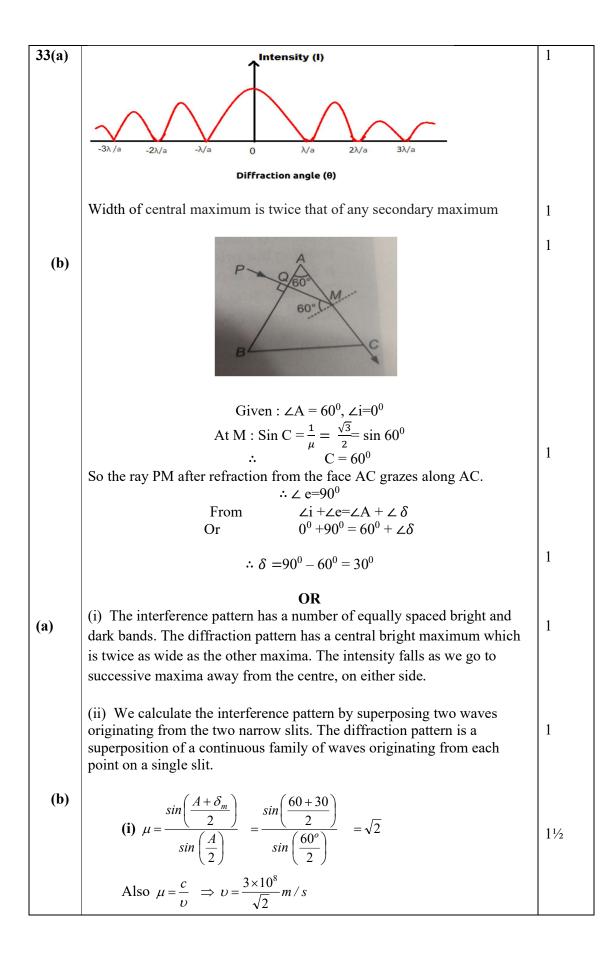
34	Case Study :
	Read the following paragraph and answer the questions.
	A number of optical devices and instruments have been designed and developed such as periscope, binoculars, microscopes and telescopes utilising the reflecting and refracting properties of mirrors, lenses and prisms. Most of them are in common use. Our knowledge about the formation of images by the mirrors and lenses is the basic requirement for understanding the working of these devices.
	(i) Why the image formed at infinity is often considered most suitable for viewing. Explain
	(ii) In modern microscopes multicomponent lenses are used for both the objective and the eyepiece. Why?
	(iii) Write two points of difference between a compound microscope and an astronomical telescope
	OR
	(iii) Write two distinct advantages of a reflecting type telescope over a refracting type telescope.
35	Case study: Light emitting diode.
	Read the following paragraph and answer the questions
	LED is a heavily doped P-N junction which under forward bias emits spontaneous radiation. When it is forward biased, due to recombination of holes and electrons at the junction, energy is released in the form of photons. In the case of Si and Ge diode, the energy released in recombination lies in the infrared region. LEDs that can emit red, yellow, orange, green and blue light are commercially available. The semiconductor used for fabrication of visible LEDs must at least have a band gap of 1.8 eV. The compound semiconductor Gallium Arsenide – Phosphide is used for making LEDs of different colours.




Class: XII SESSION : 2022-2023 MARKING SCHEME CBSE SAMPLE QUESTION PAPER (THEORY) SUBJECT: PHYSICS


Q.no		Marks
	SECTION A	
1	(ii) q ₁ q ₂ <0	1
2	(iv) zero	1
3	(ii) material A is germanium and material B is copper	1
4	(iv) 6A in the clockwise direction	1
5	(iii) 4:3	1
6	(i) decreases	1
7	(ii) increase	1
8	(iv) Both electric and magnetic field vectors are parallel to each other.	1
9	(ii) the circular and elliptical loops	1
10	(iv) 0.85	1
11	(iii) 3000 Å	1
12	(iv) 4.77 X 10 ⁻¹⁰ m	1
13	(ii) The nuclear force is much weaker than the Coulomb force .	1
14	(i) 30 V	1
15	(i)	1
16	c) A is true but R is false	1
17	c) A is true but R is false	1
18	a) Both A and R are true and R is the correct explanation of A	1
	SECTION B	
19	λ_1 -Microwave	1/2
	λ_2 - ultraviolet	1/2
	λ_{3-} infrared	1/2
	Ascending order - $\lambda_2 < \lambda_3 < \lambda_1$	1/2
20	A - diamagnetic	1/2
	B- paramagnetic	1/2
	The magnetic susceptibility of A is small negative	1/2
	and that of B is small positive.	1/2
21	From the relation $R = R_0 A^{1/3}$, where R_0 is a constant and A is the mass	1/2
	number of a nucleus	
	$R_{Fe}/R_{Al} = (A_{Fe}/A_{Al})^{1/3}$	
	$=(125/27)^{\frac{1}{3}}$	1/2
	$R_{Fe} = 5/3 R_{Al}$	
	$=5/3 \times 3.6$	1/2
	= 6 fermi	1/2
	OR	
	Given short wavelength limit of Lyman series	


	T	
	$\frac{1}{\lambda_L} = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)$ $\frac{1}{913.4 \text{ Å}} = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)$	1⁄2
	$\lambda_{\rm L} = \frac{1}{R} = 913.4 \text{ Å}$	1/2
	For the short wavelength limit of Balmer series $n_1=2, n_2 = \infty$ $\frac{1}{\lambda_B} = R\left(\frac{1}{2^2} - \frac{1}{\infty}\right)$	1/2
	$\lambda_B = \frac{4}{R} = 4 \ge 913.4 \text{ Å}$ = 3653.6 Å	1⁄2
22	$= 3653.6 \text{ Å}$ $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2
	$\frac{1}{f} = \left(\frac{\mu_m}{\mu_w} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1⁄2
	$\frac{\frac{\mu_m}{\mu_w}}{\frac{\mu_m}{\mu_m}} = \frac{1.25}{1.33}$ $\frac{\frac{\mu_m}{\mu_m}}{\frac{\mu_m}{\mu_m}} = 0.98$	1⁄2
	μ_w The value of $(\mu - 1)$ is negative and 'f' will be negative. So it will behave like diverging lens.	1/2
23	To keep the reading of ammeter constant value of R should be increased	1
	as with the increase in temperature of a semiconductor, its resistance decreases and current tends to increase.	1
	OR	
	B - reverse biased In the case of reverse biased diode the potential barrier becomes higher	1/2
	as the battery further raises the potential of the n side.	1⁄2
	C -forward biased	1⁄2
	Due to forward bias connection the potential of P side is raised and hence the height of the potential barrier decreases.	1/2
24	Angular width $2\varphi = 2\lambda/d$	1⁄2
	Given $\lambda = 6000$ Å In Case of new λ (assumed λ ' here),	1/2
	angular width decreases by 30% New angular width = 0.70 (2 φ) 2 $\lambda^2/4 = 0.70 X (2 \lambda/4)$	1/2
	$2 \lambda'/d = 0.70 X (2 \lambda/d)$ $\therefore \lambda' = 4200 \text{ Å}$	1/2


25	Surface charge density of plate A = +17.7 × 10 ⁻²² C/m ² Surface charge density of plate B = -17.7 × 10 ⁻²² C/m ² (a) In the outer region of plate I, electric field intensity E is zero. (b)Electric field intensity E in between the plates is given by relation $E = \frac{\sigma}{\epsilon_0}$ Where, $\epsilon_0 = \text{Permittivity of free space} = 8.85 \text{ x} 10^{-12} \text{ N}^{-1} \text{ C}^2 \text{ m}^{-2}$	1/2 1/2
	$\therefore E = \frac{17.7 \ x \ 10^{-22}}{8.85 \ x \ 10^{-1}}$	1/2 1/2
	Therefore, electric field between the plates is $2.0 \times 10^{-10} \text{ N/C}$	72
	SECTION C	
26	Diagram Derivation The ampere is the value of that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section, and placed one metre apart in vacuum, would exert on each of these conductors a force equal to 2×10^{-7} newtons per metre of	¹ / ₂ 1 ¹ / ₂ 1
	length.	
27	Area of the circular loop = πr^2	
	$= 3.14 \times (0.12)^2 \text{ m}^2 = 4.5 \times 10^{-2} \text{ m}^2$	
	$E = -\frac{d\varphi}{dt} = -\frac{d}{dt} (BA) = -A \frac{dB}{dt} = -A \cdot \frac{B_2 - B_1}{t_2 - t_1}$	1/2
	For $0 < t < 2s$	
	$E_1 = -4.5 \times 10^{-2} \times \left\{\frac{1-0}{2-0}\right\} = -2.25 \times 10^{-2} \text{ V}$	
	:. $I_1 = \frac{E_1}{R} = \frac{-2.25 \times 10^{-2}}{8.5} \text{ A} = -2.6 \times 10^{-3} \text{ A} = -2.6 \text{ mA}$	1/2
	For $2s < t < 4s$,	
	$E_2 = -4.5 \times 10^{-2} \times \left\{\frac{1-1}{4-2}\right\} = 0$	1/2
	$\therefore I_2 = \frac{E_2}{R} = 0$	
	For $4s < t < 6s$,	
	$I_3 = -\frac{4.5 \times 10^{-2}}{8.5} \times \left\{\frac{0-1}{6-4}\right\} A = 2.6 \text{ mA}$	1/2

	(ii) At face AC, let the angle of	1
	incidence be r_2 . For grazing ray,	
	$e = 90^{\circ}$	
	$\Rightarrow \mu = \frac{1}{\sin r_2} \Rightarrow r_2 = \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) = 45^{\circ}$	11⁄2
	Let angle of refraction at face AB be r_1 .	
	Now $r_1 + r_2 = A$	
	$\therefore r_1 = A - r_2 = 60^\circ - 45^\circ = 15^\circ$	
	Let angle of incidence at this face be <i>i</i>	
	$\mu = \frac{\sin i}{\sin r_1} \implies \sqrt{2} = \frac{\sin i}{\sin 15^\circ}$	
	$\therefore i = \sin^{-1} \left(\sqrt{2} \cdot \sin 15^o \right) = 21.5^0$	
	SECTION E	
34(i)	When the image is formed at infinity, we can see it with minimum strain	1
	in the ciliary muscles of the eye.	1
(ii)	The multi-component lenses are used for both objective and the eyepiece to improve image quality by minimising various optical aberrations in lenses.	1
(iii)	(a)The compound microscope is used to observe minute nearby objects	1
	whereas the telescope is used to observe distant objects.	
	(b) In compound microscope the focal length of the objective is lesser	1
	than that of the eyepiece whereas in telescope the focal length of the	
	objective is larger than that of the eyepiece.	
(iii)	(a) The image formed by reflecting type telescope is brighter than that formed by refracting telescope.	1
	(b) The image formed by the reflecting type telescope is more magnified	1
	than that formed by the refracting type telescope.	
35(i)	LEDs are made up of compound semiconductors and not by the	1
	elemental conductor because the band gap in the elemental conductor has	-
	a value that can detect the light of a wavelength which lies in the infrared	
	(IR) region.	
(ii)	1.8 eV to 3 eV	1
(iii)	LED is reversed biased that is why it is not glowing. OR	2
	V-I Characteristic curves of pn junction diode in forward biasing and reverse biasing.	1+1