SETTLING VELOCITY

(i)
$$V_S = \frac{g}{18}(G-1)\frac{d^2}{v}$$
 for d < 0.1 mm

where, V_S = Velocity of settlement of particle or settling velocity in m/sec.

d = Diameter of the particle in meter.

G = Specific gravity of the particle.

 $v = \text{Kinematic viscosity of water in } m^2/\text{sec.}$

$$v = \frac{Y}{\delta}$$
 Y = Dynamic viscosity
$$\delta = Density$$

(ii)
$$V_S = \sqrt{\frac{\frac{4}{3}g \cdot (G-1)d}{C_D}}$$
 where, $C_D = Coefficient of drag = $\frac{24}{R_e}$$

→ For laminar flow

$$R_e$$
 = Reynolds number = $\frac{\delta v_s d}{Y} = \frac{V_s d}{v}$

$$C_D = \frac{24}{R_e} + \frac{3}{(R_e)^{0.5}} + 0.34$$
 $C_D = \frac{18.5}{R_e^{0.6}}$ \longrightarrow for transition flow.

$$C_D = 0.34 + 0.4$$
 for turbulent flow.

(iii)
$$V_S = \left[\frac{g(G-1)}{13.88} \frac{d^{1.6}}{v^{0.6}} \right]^{0.714}$$
 0.1 mm < d < 1.0 mm.

(iv) Newtons Equation for Turbulent Settling

$$V_S = 1.8\sqrt{gd(G-1)}$$
 for d > 1 mm

(v) Modified Hazen's Equation for Transition Zone

(a)
$$V_S = 60 \cdot 6d(G-1) \cdot \left(\frac{3T+70}{100}\right)$$
 For $0.1 < d < 1$ mm

Where T = Temperature in °C

(b) Putting G = 2.65 for Inorganic Solids
$$V_S = d(3T + 70)$$

(c) Putting G = 1.2 for Organic Solids
$$V_S = 0.12d(3T + 70)$$

CRITICAL SCOUR VELOCITY IN CONSTANT VELOCITY HORIZONTAL FLOW GRIT CHAMBER (V_H)

$$V_{H} = 3 \text{ to } 4.5\sqrt{\text{gd}(G-1)}$$

PROPORTIONAL FLOW WEIR

 $x = \frac{2BV_h}{C_d \cdot \sqrt{2g} \cdot \pi \sqrt{y}}$ $b = 1.467 B V_h$

where, B = Width of channel.

V_h = Horizontal flow velocity.

 C_d = Coefficient of discharge.

x and y are coordinates on weir profile.

PARABOLICALLY OR V-SHAPED GRIT CHAMBER PROVIDED WITH A PARSHALL FLUME

(i) Parshall Flume $Q = 2.264W(H_a)^{3/2}$

where, W = Width of the throat in meter.

Q = Flow in (m³/sec) through Parshall flume.

H_a = Depth of flow in upstream leg of flume of one third portion in meter.

(ii) Parabolic Grit Channel

$$\boxed{Q = C_1 \cdot \int_{y=0}^{y=y} x \, dy} \text{ where } \boxed{V_h = \frac{Q}{\int_{0}^{y} x \, dy} = C_1}$$

 $Q = C_2 y^n$

where, n=Discharge coefficients of the control section.

$$Y^{n-1} = \frac{C_1}{C_2} \cdot X$$

= 1.5 for parshall flume.

= 1 for proportional flow weir.

- Aerated Grit Channels Detention period = 3 minutes
- Detritus Tank Detention period = 3 to 4 minutes

SKIMMING TANK

- (i) Detentions Period = 3 to 5 minutes.
- (ii) Amount of compressed air required = 300 to 6000 m³ per million litre of sewage.
- (iii) Surface Area,

$$A = 0.00622 \frac{q}{v_r}$$

where, q = Rate of flow of sewage in m³/day.

V_r = Min. rising velocity of greasy material to be removed in m/min

= 0.25 m/min mostly.

Vacuators

Vacuum Pressure = 0 to 25 cm of Hg For 10 to 15 minutes.

SEDIMENTATION TANK

- (i) Overflow rate = 40000 to 50000 lit/m² day for plain sedimentation.
 - = 50000 to 60000 lit/m²/day for sedimentation with coagulation.
 - = 25000 to 35000 lit/m²/day for secondary sedimentation tank
- (ii) Depth ~ 2.4 to 3.6 m.
- (iii) Detention time = 1 to 2 hour.
- (iv) Width = 6.0 m
- (v) Length = 4 to 5 times width
- (vi) Velocity of flow $V_f = 0.3$ m/min.
- (vii) $V = \frac{Q}{BH}$

where, V = Flow velocity

B = Width of the Basin

H = Depth of sewage in the tank.

(viii)
$$\frac{V}{V_S} = \frac{L}{H}$$

(ix) $V_S = \frac{Q}{BL}$

Detention Time

- ¥ ____
- (a) $t = \frac{BLH}{Q}$ For rectangular Tank
- (b) $t = \frac{d^2(0.011d + 0.785 H)}{Q}$ for circular tank

where d = Dia of the tank

H = Vertical depth of wall or side water depth

Displacement Efficiency (η)

$$\eta = \frac{\text{Flowing through period}}{\text{Detention period}}$$

TRICKLING FILTER

(a) Conventional Trickling Filter or Low Rate Trickling Filter

$$\eta(\%) = \frac{100}{1 + 0.0044\sqrt{u}}$$

where, η = Efficiency of the filter and its secondary clarifier, in terms of % of applied BOD

u = Organic loading in kg/ha-m/day applied to the filter (called unit organic loading)

(b) High Rate Trickling Filter

(i)
$$F = \frac{\left(1 + \frac{R}{I}\right)}{\left(1 + 0.1 \frac{R}{I}\right)^2}$$

where, F = Recirculation factor

$$\frac{R}{I}$$
 = Recirculation ratio

(ii)
$$\eta(\%) = \frac{100}{1 + 0.0044 \sqrt{\frac{Y}{VF}}}$$

where, Y = Total organic loading in

kg/day applied to the filter i.e. the total BOD in kg.

$$\frac{Y}{VF}$$
 = Unit organic loading in kg/Ha-m/day

V = Filter volume in Ha-m.

 $\eta\%$ = % efficiency of single stage high rate trickling filter.

(iii)
$$\eta'(\%) = \frac{100}{1 + \frac{0.0044}{1 - \eta} \sqrt{\frac{Y'}{V'F'}}}$$

where,

 η' = Final efficiency in the two stage filter.

Y' = Total BOD in effluent from first stage in kg/day.

F' = Recirculation factor for second stage filter

V' = Volume in second stage filter in ha-m.

Characteristics	Conventional or Standrad rate filters	High rate filters	
(2)	(3)	(4)	
Depth of filter media	Varies between 1.6 to 2.4 m.	Varies between 1.2 to 1.8 m.	
Size of filter media	25 to 75 mm.	25 to 60 mm.	
Land required	More land area is required, as	Less land area is required as the	
	the filter loading is less.	filter loading is more.	

Cost of operation	It is more for treating equal quantity of sewage.	It is less for treating equal quantity of sewage.
Method of operation	Continuous application, less flexible requiring less skilled supervision.	Continuous application, more flexible, and more skillful operation is required.
Type of effluent produced	The effulent is highly nitrified and stabilized, with BOD in effluent ≤ 20 ppm or so.	The effluent is nitrified up to nitrite stage only and is thus less stable, and hence it is slightly inferior quality. BOD in effluent ≥ 30 ppm. or so.
Doing interval	It generally varies between 3 to 10 minutes. The sewage is generally not applied continuously but is applied at intervals.	It is not more than 15 seconds, and the sewage is thus applied continuously.
Filter loading values	THE RESERVE THE STATE OF	patistant start derland
(i) Hydraulic loading	Varies between 20 to 44 M.L. per day	Varies between 11 to 330 M.L. per hectare day.
(ii) Organic loading	Varies between 900 to 2200 kg of BOD_5 per hectare-metre of filter media per day.	Varies between 6000 to 18,000 kg of BOD ₅ per hectare metre of filter media per day.
Recirculation system	Not provided generally.	Always provided for increasing hydraulic loading.
Quality of secondary sludge produced	Black, highly oxidised with slight particles.	Brown, not fully oxidised with fine particles.

Dunbar Filter

Surface loading = 2500 MI/m²/day.

BOD removed = 85%

Sludge and its Moisture Content

$$V = V_1 \left[\frac{100 - P_1}{100 - P} \right]$$

V₁ = Volume of sludge at moisture content P₁%

V = Volume of sludge at moisture content P%

SLUDGE DIGESTION TANK

(i) When the change during digestion is linear.

(a)
$$V = \left(\frac{V_1 + V_2}{2}\right)t$$

where, V = Volume of digestion in m³.

V₁ = Raw sludge added per day (m³/day)

V₂ = Equivalent digested sludge produced per day on completion of digestion, m³/day.

t = Digestion period in day.

(b)
$$V = \left(\frac{V_1 + V_2}{2}\right)t + V_2T$$
 with monsoon storage

where, $T = Number of days for which digested sludge <math>(V_2)$ is stored (monsoon storage)

(ii) When the change during digestion is parabolic

(a)
$$V = \left[V_1 - \frac{2}{3}(V_1 - V_2)\right]t$$
 without monsoon storage

(b)
$$V = \left[V_1 - \frac{2}{3}(V_1 - V_2)\right]t + V_2T$$
 without monsoon storage

Type of raw	kg. of volatile solids	Per capita
sludge to be digested	present per cu. m. of	capacity in
Slydge //oluma Index (S V	sludge per month	cum/capita
Primary sludge	etric BO 8 Localina of	0.021
Mixture of primary sludge	7.36	0.036
and secondary sludge	Inc. (10.88RM a.2) (Co.	DIBITW THE RE
from trickling filters (humus tanks)	to a transplant of V	rask in militar
Mixture of primary sludge and	5.76	0.061
secondary activated sludge	Ac at dos = y	
Chemically coagulated sludge	I'S I THEREST IN THE	ate in mydday

DESTRUCTION AND REMOVAL EFFICIENCY (DRE)

$$DRE = \frac{W_{in} - W_{out}}{W_{in}} \times 100$$

where, $W_{in} = Mass fill rate of one POHC (Principal organic Hazardous constituent) in the waste stream.$

W_{out} = Mass emissionrate of the same POHC present in the exhaust emission prior to release to the atmosphere.

AERATION TANK

(i) Detention period, $t = \frac{V}{Q}$

where $V = Volume of the tank in m^3$

Q = Quantity of waste water flow into the aeration tank excluding the quantity of recycled sludge (m³/day)

(ii) Volumetric BOD Loading or Organic Loading, (U) $u = \frac{QY_0}{V}$

where, $QY_O = Mass$ of BOD applied per day to the aeration tank through influent sewage in gm.

V = Volume of aeration tank in m³.

 $Q = Sewage flow into the aeration tank in <math>m^3$.

Y_O = BOD₅ in mg/lit (or gm/m³) of the influent sewage

(iii) $\frac{F}{M} = \frac{QY_0}{VV}$ where, $\frac{F}{M}$ = Food (F) to Microorganism (M) ratio

QY_O = Daily BOD applied to the aeration system in gm.

 $Y_0 = 5$ day BOD of the influent sewage in mg/lit.

Q = Flow of influent sewage in m³/day.

X_t = MLSS (Mixed liquor suspended solids) in mg/lit.

V = Volume of the Aeration Tank (lit).

 $M = X_{\bullet}V = Total microbial mass in the system in gm.$

(iv) Sludge Age (θ_C)

(a) $\theta_{C} = \frac{\text{Mass of suspended solids (MLSS)}}{\text{Mass of solids leaving the system}}$ per day

(b) $\theta_{C} = \frac{VX_{T}}{Q_{w}X_{R} + (Q - Q_{w})X_{E}}$

where,

X_T = Concentration of solids in the influent of the Aeration Tank called the MLSS i.e. mixed liquor suspended solids in mg/lit.

V = Volume of Aerator

Q_w = Volume of wasted sludge per day

 X_R = Concentration of solids in the returned sludge or in the wasted sludge (both being equal) in mg/lit.

Q = Sewage inflow per day.

 X_E = Concentration of solids in the effluent in mg/lit.

(v) Sludge Volume Index (S.V.I)

$$SVI = \frac{V_{ob}}{X_{ob}} \times 1000$$
 where, $X_{ob} = Concentration of suspended solids in the mixed liquor in mg/lit.$

 V_{ob} = Settled sludge volume in ml/lit.

S.V.I. = Sludge volume index in ml/gm.

(vi) Sludge Recycle and Rate of Return Sludge

 $\begin{aligned} &Q_R.X_R = (Q+Q_R)\times t\\ &\frac{Q_R}{Q} = \frac{X_t}{X_R-X_t} \end{aligned} \text{ where, } Q_R = \text{Sludge recirculation rate in m}^3/\text{day.}\\ &X_t = \text{MLSS in the aeration tank in mg/lit.}\\ &X_R = \text{MLSS in the returned or wasted sludge in mg/lit.} \end{aligned}$

$$X_R = \frac{10^6}{\text{S.V.I}}$$
 S.V.I = Sludge volume index in ml/gm.

Specific substrate utilization rate

$$U = \frac{Q(Y_0 - Y_E)}{V.X_t}$$

$$\frac{1}{\theta_C} = \alpha_y U - k_e$$

 $\alpha_{\rm y}$ = 1 for MLSS and 0.6 for MLVSS, $\rm k_{\rm e}$ = 0.06

Oxygen Requirement of the Aeration Tank

$$O_{2(\text{required})} = \left[\frac{Q(Y_O - Y_E)}{f} - 1.42Q_W \cdot X_R\right] gm/day$$

where,
$$f = \frac{BOD_5}{BOD_U} \simeq \frac{5 \text{ day BOD}}{\text{Ultimate BOD}} = 0.68$$

Oxygen Transfer Capacity (N)

$$N = \frac{N_{S} \cdot (D_{S} - D_{L}) \cdot (1.024)^{T - 20 \circ C} \cdot \alpha}{9.17}$$

where, $N = Oxygen transferred under field conditions in kg <math>O_2/k$.wh (Or MJ)

 $N_S = Oxygen transfer capacity under standard conditions in kg <math>O_2/kwh$ (or MJ)

D_S = Dissolved oxygen-saturation value for sewage at operating temperature.

D₁ = Operation D-O level in Areation tank usually 1 to 2 mg/lit.

T = Temperature in °C

 α = Correction factor for oxygen transfer for sewage usually 0.8 to 0.85.

OXIDATION PONDS

- Depth → 1.0 to 1.8 m.
- Detention period → 2 to 6 weeks.
- Organic loading → 150 to 300 kg/ha/day.
 Under hot condition → 60 to 90 kg/ha/day.
 Under cold conditions.
- Length to width ratio = 2
- Sludge Accumulation = 2 to 5 cm/year
- Minimum depth to be kept = 0.3 m.

For Inlet Pipe Design

Assume v = 0.9 m/s

Assume flow for 8 hrs.

For Outlet Pipe Design

Dia of outlet = 1.5 dia of inlet pipe

SEPTIC TANK

- Detention time = 12 to 36 hr.
- Sludge accumulation rate = 30 lit/cap/year.
- Sewage flow = 90 to 150 lit/capita/day.
- Cleaning period = 6 to 12 months
- Length to width ratio = 2 to 3 m.
- Depth = 1.2 to 1.8 m
- Width ≮ 0.9 m.
- Free board = 0.3 m.

Volume of septic tank = (Sewage flow × Detention time) + (Sludge accumulation rate) × Cleaning rate