Measures of Central Tendency

EXERCISE - 23.1 Q1. (a) Calculate the arithmetic mean of 5.7, 6.6, 7.2, 9.3, 6.2 (b) The weight (in #g) of 8 new born babies are 3, 3.2, 3.4, 3.5, 4,3.6, 4.1, 3.2 find the mean weight of the babies. (a) Sum of 5 observations = 5.7+6.6+7.2+9.3+6.2=35.0 Sd. $Mean = \frac{350}{5} = 7$ (b) Sum of 8 weight = 3+3.2+3.4+3.5+4+3.6+4.1+3.2 = 28 Mean = 28 = 3.5 kg. The marks obtained by 15 students in a class test Q2. are 12, 14, 07, 09, 23, 11, 08, 13, 11, 19, 16, 24, 17,03, 20. find (i) The mean d their marks. 1 (ii) The mean of their marks when the marks of each Student increased by 4. (iii) The mean of their marks when 2 marks are deducted from the marks of each student. (iv) The mean of their marks when the marks of cach student are doubled.

Sol.
Sum q. marks q. 15 students = 12+14+7+9+23+11+8+
13+11+19+16+24+17+3+20
= 207
(i) Hean =
$$\frac{207}{15}$$
 = 13.8
(ii) By increasing 4 marks in each student then increase
marks = 15x 4 = 60
New sum = 207+60 = 267
New sum = $\frac{267}{15}$ = 17.8
(iii) By deducting 2 marks from each student, then
-total deduction = 15x 2 = 30
New sum = $\frac{207-30}{15}$ = 17.9
New mean = $\frac{177}{15}$ = 11-8
(iv) The marks being devibled of each student then
the new sum = $\frac{607}{15}$ = 27.6
G3 (a) The mean of the numbers 6.4.7.7.14 4.8.
Express y interms of a.
(b) The mean of the numbers 6.4.7.7.14 4.8.
Express y interms of a.
(a) Sum + 201-3, 8 and 15, find the ofth variate.
Sol. (a) Sum + number = $6+3+7+7+x+14 = 27+x+4y = (1)$
But mean of 5 numbers = 8
Sum = $8x5 = 40 = (11)$
from (1) 2 (11)
 $87+x+4 = 40$
 $\Rightarrow x+4 = 13 \Rightarrow 4 = 13 = 34 = 13 - x$

wrongly copied as 21 instead of 29. Find the correct mean

After leaving one girly the mean of 32 studenty

= $12\frac{15}{16} = \frac{207}{16}$ years. Total age 9 32 students = $\frac{207}{16} \times 32 = 414$ years. Hence the oge of girl = 429 - 414 = 15.

(b) Mean of marks = Incorrect marks of 40 studenty 40

 $= 18.2 = \frac{\chi}{40} = \chi = 728.$ As masks of one student was wrongly copied as 21 instead $d_{29} = 728 - 21 + 29 = 736$: correct mean = $\frac{736}{40} = 18.4$

Q5. Find the mean of 25 given numbers when the mean of 10 of them is 13 and the mean of the remaining numbers is 18.

Soli Mean of 10 numbers = 13
.: Sum = 13×10 = 130
and mean of remaining 15 numbers = 18
. Sum = 18×15 = 270
Notal Sum of 25 numbers = 130+270 = 400
Hean 4-25 numbers =
$$\frac{400}{25} = 16$$

ì

gb. Find the mean of the following distribution:

	Number	r 5	10	15	20	25	30	35
	Frequence	cy 1	2	5	6	3	2	1
Sol.		х	f		fx	_		
		5	1		5	• .		
		10	2		20			
		15	5		75			
		20	6		120			
		25	3		75			
		30	2		60			
		35	1		35			
		Total	20)	390			
	Mean	$\frac{\Sigma f_{X}}{\Sigma f}$	= <u>.390</u> .20	= 3 9	= 19.9	2	•	

	No. of matches	35	36	37	38	39	40	41
	No. of boxes	6	10	18	25	21	12	8
("		to th	e toto	y Eatro O Contei pto Erro	nty of	the lo	xo bores	
.d.	No. of	f matches	No	o. of boxes				
		(x)		(f)	fx			
		25		6	21	<u> </u>		
		35		6	21			
		35 36		10	36			
						D		
		36		10	36	0 6 -		
		36 37		10 18	360 660	D 6		
		36 37 38 39 40		10 18 25	360 660 950	0 6 - 0 9		
		36 37 38 39		10 18 25 21	360 660 950 819	0 6 0 9 0 8		

	Pocket mone	ey (in Rs.)	No	o. of			
501.	(x)			stu	dents		fx	
				((f)			
	60)			2	:	120	
	70)		6			420	
	80				040			
	90)		2	22	1	.980	
	10	0		2	24	2	400	
	11	0.			10		100	
	12	-			3		360	
	Tot	al		8	30	7	420	
	Hean = Efx	= 7	4 20 80	= 92	75			

Q8. Calculate the mean for the following distribution:

No. of heads	6	5	4	3	2	1	0
No. of tosses	20	25	160	283	338	140	34

calculate the mean for this distribution.

Sol.

No. of heads	No. of tosses	
(x)	(f)	fx
6	20	120
5	25	125
4	160	640
3	283	849
2	338	676
1	140	140
0	34	0
Total	1000	2550

S.

Mean =
$$\frac{2f_1}{5f} = \frac{2550}{1000} = 2.55$$

910 f

find	the	mean	for	-this	distribution:
1 11)0	INCE	mean	tor	-this	distribution:

Numbers	60	61	62	63	64	65	66
Cumulative	8	18	33	40	49	55	60
frequency							

2

Sol.

Numbers	Cumulative	frequency	
(x)	frequency	f	f.x
	c.f.		
60	8	8	480
61	18	10	610
62	33	15	930
63	40	7	441
64	49	9	576
65	55	6	390
66	60	5	330
Total		60	3757

$$Hean = \frac{2f_1}{2f} = \frac{3757}{60} = 62.616 = 62.62$$

911.

Category	A	B	С	D	E	F	G
Wages in Rs per dav	50	60	70	80	90	100	110
No. of workers	2	4	8	12	10	6	8

(i) Calculate the mean wage, correct to the warest

(i) If the no.of workers in each category is doubled, what would be the new mean wage?

Category	Wages (in Rs.) X	No. of workers f	f.x
А	50	2	100
В	60	4	240
С	70	8	560
D	80	12	960
Е	90	10	900
F	100	6	600
G	110	8	880
Total		50	4240

(i) Heav = $\frac{2}{5f} = \frac{4240}{50} = 84.80 = 85$ (ii) If the workers are doubled, then Total no. of workers = $50 \times 2 = 100$ Total wage also be doubled ... Total wage = 4240 × 2 = 8480 ... New mean = $\frac{8480}{100} = 84.80 = 85$

Q12.

The marke obtained by a set of studenty in an examination are given below:

Marks	5	10	15	20	25	30
No. of students	6	4	6	12	х	4

Given that the mean marks of the set is 18, calculate the numerical value of x.

sd.

Marks	No. of students	
(x)	(f)	fx
5	6	30
10	4	40
15	6	♦ 90
20	12	240
25	x	25x
30	4	120
Total	32+x	520+25x

*

.

Hean =
$$\frac{2f_{x}}{2f} = \frac{520 + 25x}{32 + x}$$

But mean = 18 (given)
 $\therefore \frac{520 + 25x}{32 + x} = \frac{18}{1}$
 $\Rightarrow 520 + 25x = 576 + 18x$
 $\Rightarrow 25x - 18x = 576 - 520$
 $\Rightarrow 7x = \frac{56}{7}$
 $\Rightarrow x = 8$.

		1						
Variate	5	6	7	8	9	10	11	12
Frequency	20	17	f	10	8	6	7	6

.

.

,

(x)	(f)	
5	20	100
6	17	102
7	fa	7f
8	10	80
9	8	72
10	6	60
11	7	77
12	6	72
Total	74+f	563 + 7f

Heat =
$$\frac{563 + 7f}{8f} = \frac{563 + 7f}{74 + f}$$

= $\frac{563 + 7f}{74 + f} = \frac{75}{10} = \frac{15}{2}$
= $2(563 + 7f) = 15(74 + f)$
= $1126 + 14f = 1110 + 15f$
= $f = 1126 - 1110$
=) $f = 16$.

i.

914 Find the value of the missing variate for the following distribution whose mean is 10:

Variate (x _i)	5	7	9	11	-	15	20
Frequency (f _i)	4	4	4	7	3	2	1

ì

let missing variate be x, then.

Variate	Frequency	
(x)	(f)	fx
5	4	20
7	4	28
9	4	36
11	7	77
х	3	3x
15	2	30
20	1	20
Total	25	211+3x

Hean =
$$\frac{2f_{\chi}}{2f} = \frac{\varrho(1+3\chi)}{\varrho(1+3\chi)}$$

Kut mean = 10 (given)
 $\frac{\varrho(1+3\chi)}{\varrho(1+3\chi)} = 10 = 211+3\chi = 250$
 $\Rightarrow 3\chi = 39 = \chi = 13$.
... Missing Valuate = 13.

0,15. In an Examination taken by 50 candidates, the marks obtained are given in the table below. Calculate the mean marks.

Marks	0-10	10-20	20-30	30-40	40-50
No. of candidates	8	14	13	10	5

Sel ·

Marks	Class Mark	No of candidates	
	х	X	fx
0-10	5	8	40
10-20	15	14	210
20-30	25	13	325
30-40	35	10	350
40-50	45	5	225
Total		50	1150

Heav =
$$\frac{\xi f x}{\xi f} = \frac{1150}{50} = 23.$$

Q16. Find the mean of the following distribution:

Class - intervals	0-10	10-20	20-30	30-40	40-50
Frequency	10	6	8	12	5

Sol.

Class	Frequency	Class Mark	C. Law
	(f)	x	f. x
0-10	10	5	50
10-20	6	15	90
20-30	8	25	200
30-40	12	35	420
40-50	5	45	225
Total	41		985

Hean = $\frac{2f_x}{2f} = \frac{985}{41} = 24.024$. Q17. The frequency distribution of marks obtained by 40 Students of a class is as under. Calculate the arithmetic mean.

Marks	0-8	8-16	16-24	24-32	32-40	40-48
students	5	3	10	16	4	2

Marks	1	No. of students	(Class Mark		
		f		x		fx
0-8		5	8	4		20
8-16		3		12	1	36
16-24		10	9	20		200
24-32		16		28		448
32-40	- 0	4		36		144
40-48		2		44		88
Total		40				936
Arithmetic Hea	m of	the follo	wing	Frequer		
Find the mea	0-50	252 = 9 2f = 0 the -follo 50-100	26 40 wing 100-150	23.4 Frequer 150-200	ncy dietro 200-250	ibution 250-300
Find the mea	m of	the follo	wing	Frequer		
Find the new Class-intervals	0-50 4	-the -follo	100-150	Frequer 150-200	200-250 6	250-300
Find the new Class-intervals Frequency	0-50 4	-the -follo 50-100 8	100-150	Frequer 150-200 13	200-250 6	250-300 3
Find the mea Class-intervals Frequency Class-interva	0-50 4	-tte6010 50-100 8 Frequency	100-150	Frequeu 150-200 13 Class Mari	200-250 6	250-300 3 fx
Find the new Class-intervals Frequency Class-interva 0-50	0-50 4	-follo 50-100 8 Frequency 4	100-150	Frequent 150-200 13 Class Mark 25	200-250 6	250-300 3 fx 100
Find the mea Class-intervals Frequency Class-interva 0-50 50-100	0-50 4	4 8	100-150	Frequeu 150-200 13 Class Marl 25 75	200-250 6	250-300 3 fx 100 600
Find the mea Class-intervals Frequency Class-interva 0-50 50-100 100-150	0-50 4	tte -6010 50-100 8 Frequency 4 8 16	100-150	Frequer 150-200 13 Class Marl 25 75 125	200-250 6	250-300 3 fx 100 600 2000
Find the wea Class-intervals Frequency Class-interva 0-50 50-100 100-150 150-200	0-50 4	4 8 16 13	100-150	Frequen 150-200 13 Class Marl 25 75 125 175	200-250 6	250-300 3 fx 100 600 2000 2275

Weight (in gms)	80-84	85-89	90-94	95-99	100-104	105-109	110-114
No. of eggs	5	10	12	12	8	2	1
let assur Weight (in gr		No. of eggs		Class Ma	rk	$u_i = \frac{x - A}{h}$	A
		(1)		(x)		ר h	- fu
80-84		(f)	1				fu
80-84		5		82		⁻- s -2	- fu _i -15 -20
80-84 85-89 90 - 94		5 10				-j	-15
85-89	4	5		82 87		-3 -2	-15 -20
85-89 90 - 94		5 10 12		82 87 92		3 2 1 0 1	tu _i -15 -20 -12 0 8
85-89 90 - 94 95-99		5 10 12 12		82 87 92 97		3 2 1 0 1 2	tu _i -15 -20 -12 0 8 4
85-89 90 - 94 95-99 100- 104		5 10 12 12 8		82 87 92 97 102		3 2 1 0 1	tu _i -15 -20 -12 0 8

Hean =
$$A + hx \frac{2fu}{2f} = 97 + 5x \frac{-32}{50} = 97 - 3.2$$

= $93.8 = 94$ graps.

Q20

The following table gives the draily wages of so workers of a factory:

Wages (in Rs)	25-30	30-35	35-40	40-45	45-50	50-55	55-60
No. of workers	2	1	5	9	21	10	2

calculate the mean daily wage of a worker of the factory. If the daily wages of all the workers are increased by Rs.8, what will be the new mean daily wage of a worker?

Wages (in Rs.)	No. of workers (f)	Class Mark (x)	$u = \frac{x - A}{h}$	fu
25-30	2	27.5	-5	-6
30-35	1	32.5	-2	-2
35 - 40	5	37.5	-1	-5
40-45	9	42.5	0	0
45-50	21	47.5	1	21 20
50-55	10	52.5	2	20 6
55-60	2	57.5	3	-
Total	50			34

let assumed mean (A) = 42.5 and h=5
(i) Hean = $A + h \times \frac{2fu}{2f} = 42.5 + 5 \times \frac{34}{50}$
= 42.5+3.4 = 45.9
: Mean = Rs. 45.90
(ii) 2F Rs. 8 are increased to each worker, then
the increased part = 50x8 = 400
Total wages = RK. 45.9×50 + RX.400 = Rx. 2695
New mean = $\frac{2695}{50} = Rs. 53.90$.

921. The mean of the following distribution is 23.4. find the value of P:

Class- intervals	0-8	8-16	16-24	24-32	32-40	40-48
Frequency	5	3	10	р	4	2

	•
0	_V
	~
0	v.

Class	Class Mark	Frequency	11000
Interval	x	(f)	f. x
0 - 8	4	5	20
8 - 16	12	3	36
16 - 24	20	10	200
24 - 32	28	Р	28 p
32 - 40	36	4	144
40 - 48	44	2	88
		24 + p	488 + 28p

Mean =
$$a + h \times \frac{2f_{x}}{2f} = 23.4$$

 $\Rightarrow \frac{488 + 28P}{84 + P} = \frac{234}{10}$
 $\Rightarrow (488 + 28P) 10 = 234 (24 + P)$
 $\Rightarrow (488 + 280P) = 5616 + 234P$
 $\Rightarrow 46P = 736$
 $\Rightarrow P = 16$.

Q22. The following distribution shows the daily pocket allowance of a children of a locality. The mean pocket allowance is Rs. 18. find the value of f:

Daily pocket allowance (in	11-13	13-15	15-17	17-19	19-21	21-23	23-25
Rs)			_				
No. of children	3	6	9	13	f	5	4

sd.

Class	Class Mark	Frequency	
Interval	x	(f)	f. x
11 - 13	12	3	36
13 - 15	14	6	84
15 - 17	16	9	144
17 - 19	18	13	234
19-21	20	f	20f
21 - 23	22	5	110
23 - 24	24	4	96
		40 + f	704 + 20f

2

$$Hean = \frac{2fx}{2f} = \frac{704 + 20f}{49 + f} = 18$$

=> 704 + 20f = 18(40+f)
=> 704 + 20f = 720 + 18f
=> 2f = 16
=> f = 8

Q23. The mean of the following distribution is 50 and the Sum of all the frequencies is 120. find the values of P and V:

Class intervals	0-20	20-40	40-60	60-80	80-100
Frequency	17	р	32	q	19

8

			×	
2	p.	5	x	
.3		٠	w	

4

Class Interval	Class Mark x	Frequency (f)	f. x
0 - 20	L¢	17	170
20 - 40	30	р	30 p
40-60	50	32	1600
60-80	70	q	70q
80 - 100	90	19	1710
		68 + p + q	3480 + 30 p + 70q

Sum d all frequencies is 120
=>
$$68+P+9=120 => P+9=52$$
 ___(i)
Hean = $\frac{2fr}{2f} = \frac{3480+30P+709}{68+P+9} = 50$
=> $3480+30P+709 = 50(68+P+9)$
=> $3480+30P+709 = 50(68+P+9)$
=> $3480-3400 = 50P-30P+509 - 709$
=> $20P-209 = 80$
=> $P-9 = 4$ __________
Adding (i)2(ii) - $2P = 56$ => $P = 28$
put $P = 28$ in equation (ii) - $28 - 9 = 4 => 9 = 24$
 $Pt P = 28$ in equation (ii) - $28 - 9 = 4 => 9 = 24$
 P^{24} The mean of the following distribution is 57.6
and the Sum of all the frequencies is 50. find
the Value of P and 9:
Classes 0-20 20-40 40-60 60-80 80-100 100-12

ġ,

Frequency

Class	Class	Frequency	
Interval	Mark	(f)	f. x
	x		
0 - 20	10	7	70
20 - 40	30	р	30 p
40-60	50	12	600
60-80	70	q	70q
80 - 100	90	8	720
100 - 120	110	5	550
		32 + p + q	1940 + 30 p + 70q

sum of all frequencies is 50

> 32+P+9=50 => P+9=18

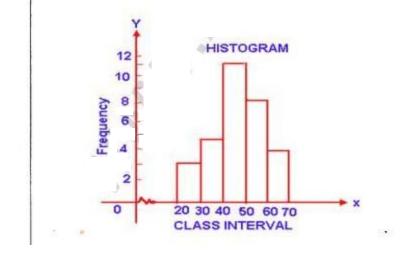
Now proceed as above question.

Q25

The following table gives the lifetime in days of 100 electricity tubes of a certain make

Life time in days	No. of tubes
Less than 50	8
Less than 100	23
Less than 150	55
Less than 200	81
less than 250	93
Less than 300	100

Find the mean life time of electricity tubes.


Life time (in days)	e.f.	Frequency	Class Mark	$u = \frac{x-a}{h}$	fu
(Class intervals)		(f)	(x)		
0-50	8	8	25	-3	-24
50-100	23	15	75	-2	-30
100-50	55	32	125	-1	- 52
150-200	81	26	175	0	0
200-250	93	12	225	1	12
250-300	100	7	275	2	14
Total		100			-60

let assumed mean (A) = 1751 and h = 50 Mean = A+h × $\frac{5fu}{zf}$ = 175+50 × $\frac{-60}{100}$ = 175-30 = 145 days.

Q26.

ł

Using the information given in the adjoining histogram, calculate the mean connect to one decimal place.

Sd. From the histogram given we represent the information in the following table:

Class -interval	Frequency	Class Mark	(fx)
	(f)	(x)	
20-30	3	25	75
30-40	5	35	175
40 - 50	12	45	540
50-60	9	-55	495
60-70	4	65	260
Total	33		1545

Mean =
$$\frac{2f_x}{2f} = \frac{1545}{33} = 46.81 = 46.8$$

÷.

EXERCISE - 23.2

- Q1. A student scorred the following marks in 11 questions of a question paper: 3, 4, 7, 2, 5, 6, 1, 8, 2, 5, 7 find the median marks.
- Sd. Arranging in the ascending order 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8 Here n = 11 i.e., odd The middle term $= \frac{n+1}{2} = \frac{11+1}{2} = \frac{12}{2} = 6^{+1}$ term. Hedian = 5.
- Q2. (a) Find the median of the following set of numbers:
 9.0, 2.8, 5, 3, 5, 41, 5, 2, 7.
 (b) for the following set of numbers, find the median:
 10, 75, 3, 81, 17, 27, 4, 48: 12, 47, 9 and 15.

sol. (a) Arranging in ascending order: 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9
Here
$$n = 12$$
 which is even
Median = $\frac{1}{2} \left[\frac{n!!}{2} + term + \left(\frac{n}{2} + 1 \right)^{th} \right]$
 $= \frac{1}{2} \left[\frac{12}{2} + \left(\frac{12}{2} + 1 \right)^{th} \right]$
 $= \frac{1}{2} \left[\frac{6^{th}}{1} + 7^{th} \right]$
 $= \frac{1}{2} \left[\frac{14}{5} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5 \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + 1 + 5$

Hedian = Hean of \$ [n th term + (n +1)th term]

= Hean q. 6th and 7th term
=
$$\frac{15+17}{2}$$

= 16.
Q3. If 3.8,10, x, 14,16, 18, 20 are in ascending order and
their median is 13, Calculate the numerical value q.
x.
Sd. 3,8,10, x, 14,16,18, 20 are in ascending order.
and their median = 13
there n=8 which is even
Hedian = $\frac{1}{2} \left[\frac{n}{2}$ th term + $(\frac{n}{2}+1)^{th}$ term $1 \right]$
= $\frac{1}{2} \left[\frac{8}{8}$ th + $(\frac{8}{8}+1)^{th}$ term $1 \right]$
= $\frac{1}{2} \left[\frac{1}{2} (n+1) + \frac{1}{2} + \frac{1}{2$

95. Calculate the mean and the median of the numbers:
1,9,10,8,2,4,4,3,9,1,5,6,2,4
901. Writing in allerding order
1,1,2,2,3,4,4,4,5,5,8,9,9,10
there n=14 which is even
(1) Hean =
$$\frac{2}{51}$$
; $\frac{1}{14}$ (1+1+at a+3+3+4+4+4+5+5+8+9+9+9+10)
= $\frac{1}{14}$ (68) = $\frac{34}{74}$ = 4.86
(ii) Hedian = $\frac{1}{2}$ [$\frac{10}{2}$ therm + ($\frac{10}{2}$ +1)th term]
= $\frac{1}{8}$ [$\frac{11}{2}$ therm + ($\frac{10}{2}$ +1)th term]
= $\frac{1}{8}$ [$\frac{11}{2}$ therm + 8th term]
= $\frac{1}{8}$ [$\frac{11}{2}$ therm + 8th term]
= $\frac{1}{8}$ [$\frac{11}{2}$ therm + 8th term]
= $\frac{1}{8}$ [$\frac{1}{4}$ therm]
= $\frac{1}{8}$ [$\frac{1}{4}$ therm]
= $\frac{1}{8}$ [$\frac{1}{8}$ therm]
= $\frac{1}{8}$ [$\frac{1}{8}$ therm]
= $\frac{1}{7}$ therm]
= $\frac{1}{$

Hedian =
$$\frac{n+1}{2}$$
 th term = $\frac{7+1}{2}$ = 4th term = 3
 $\therefore \gamma = 3$
(iii) Hean of p and $\gamma = \frac{1}{2}(4+3) = 3.5$

Q7. Find the median for the following distribution:

Wages per day (in rupees)	38	45	48	55	62	65
No. of workers	14	8	7	10	6	2

50l.

writing the distribution in cumulative frequency table:

Wages per day	No. of workers	c.f.
(in Rs.)	(f)	
38	14	14
45	8	22
48	7	29
55	10	39
62	6	45
65	2	47

Here n: 17 which is odd Median = $\frac{h+1}{2}$ th term = $\frac{47+1}{2}$ = 24^{th} term = 48 (. Here all the Observations from 23 to 29 are equal to 48) . Median = Rs. 48

Q8. Find the median for the following distribution:

Marks	35	45	50	64	70	72
No. of students	3	5	8	10	5	5

÷

sol writing the distribution in cumulative frequency table:

Marks	No. of students (f)	c.f.
35	3	3
45	5	8
50	8	16
64	10	26
70	5	31
72	5	36

Here
$$n = 3b$$
 which is even
Hedian = $\frac{1}{2} \left[\frac{3b}{2} + term + (\frac{3b}{2} + 1)^{th} + term \right]$
 $= \frac{1}{2} \left[18^{th} + term + 19^{th} + term \right]$
 $= \frac{1}{2} \left(64 + b4 \right)$
Hedian = 64.

Qq. Harks obtained by 70 students are given below:

Marks	20	70	50	60	75	90	40
No. of students	8	12	18	6	9	5	12

calculate the median marks.

(Hint: Arrange the variates in ascending order)

sd. Arranging the variality in ascending order and in C.f. table.

Marks	No. of students (f)	c.f.
20	8	8
40	12	20
50	18	38
60	6	44
70	12	56
75	9	65
90	5	70

Here n=10 which is even

Q10.

calculate the mean and median for the following distribution:

Number	5	10	15	20	25	30	35
Frequency	1	2	5	6	3	2	1

6d.

ł

writing the distribution in C.F table

Number	Frequency	c.f.	fx
(x)	(f)		
5	1	1	5
10	2	3	20
15	5	8	75
20	6	14	120
25	3	17	75
30	2	19	60
35	1	20	35
Total	20		390

(i) Hean =
$$\frac{2f\chi}{2f} = \frac{390}{20} = 19.5$$

(ii) Here n=0 which is even
Median = $\frac{1}{2} \left(\frac{n}{2} + \frac{1}{2} + \frac{n}{2} +$

301. (i) Hedian =
$$\frac{n+1}{2}$$
 term = $\frac{(9+1)}{2}$ = 10^{th} term = 31
(ii) lower quartile $(Q_1) = \frac{n+1}{4} = \frac{(9+1)}{4} = 5$ term = 27
(iii) upper quartile $(Q_3) = 3(\frac{n+1}{4}) = 3(\frac{19+1}{4}) = 15$ th term = 41
(iv) inter quartile range = $Q_3 - Q_1 = 41 - 27 = 14$

Variate	15	18	20	22	25	27	30
Frequency	4	6	8	9	7	8	6

;

sd. wring frequency in distribution in C.F. table:

Variates	Frequency (f)	c.f.
15	4	4
18	6	10
20	8	18
22	9	27
25	7	34
27	8	42
30	6	48

03: For the following frequency distribution, find: (i) the median (ii) lower quartile (iii) upper quartile.

Variate	25	31	34	40	45	48	50	60
Frequency	3	8	10	15	10	9	6	2

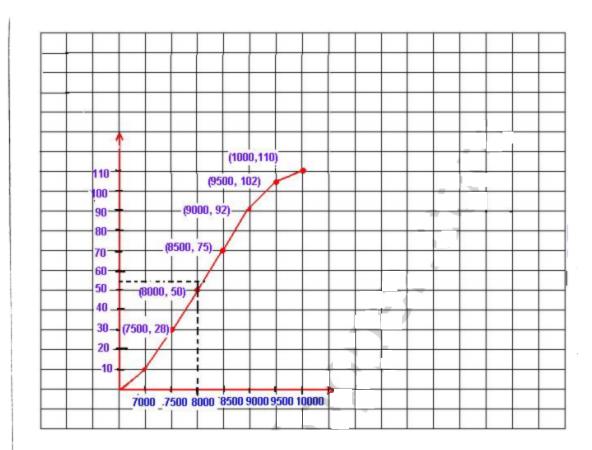
60) ·

.

writing the distribution in CF table:

Variates	Frequency (f)	c.f.
25	3	3
31	8	11
34	10	21
40	15	36
45	10	46
48	9	55
50	6	61
60	2	63

there
$$n=63$$
 which is odd
(i) median $= \frac{63+1}{2}$ there $= 32^{th}$ term $= 40$
(ii) lower quartile $(G_3) = \frac{n+1}{4} = \frac{63+1}{4} = 16^{th}$ term $= 34$
(iii) upper quartile $(G_3) = \frac{3(n+1)}{4} = \frac{3(63+1)}{4} = 48^{th}$ term $= 48$
Q14. We graph paper for this question.
The table given below shows the worthly wages of
Some factory workers.
(i) Using the table, calculate the cumulative frequencies
of workers.
(ii) Draw the cumulative frequency Curve.
Use a cm = Re 500. Starting the origin at Re6500 on
a-axis, and 2cm = 10 workers on y-axis
(iii) Use your graph to write down the median
wage in Re.


Wage	es in Rs.	6500-7000	7000-7500	7500-8000	8000-8500	8500-9000	9000-9500	9500-10000
frequ	ency	10	18	22	25	17	10	8

501.

.

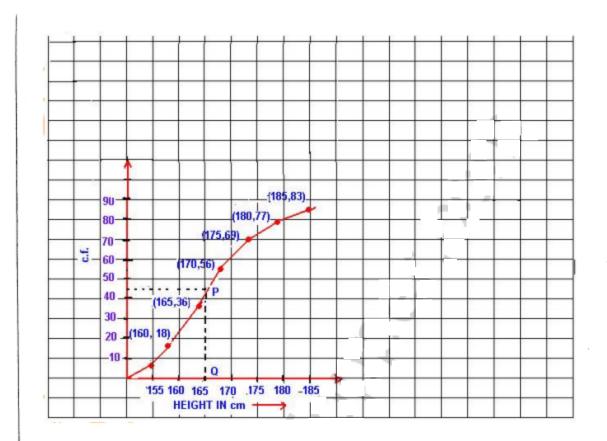
writing the distribution in cumulative frequency table.

Wages (in Rs).	Frequency	(c.f.)
6500-7000	10	10
7000-7500	18	28
Z500-8000	22	50
8000-8500	25	75
8500-9000	17	92
9000-9500	10	102
9500-10000	8	110

Now taking points (7000,10), (7500,28), (8000,50), (8500,75), (9000,92), (9500,102), (10,000,110) on the graph and join them in free hand to form an ogive (CF Curve) as Shown. D = 110 which is even

Median = $\frac{1}{2} \left[\frac{1}{2} + \frac{1}$

Take a point A(55.5) on Y-aris and through draw a line parallel to x-aris which meets the Curve at P. draw a thar on x-aris which meets x-aris at Q. which represents Rs. B100 .: Hence median = 8100. ars. The following table shows the distribution of the heights of a group of factory workers:

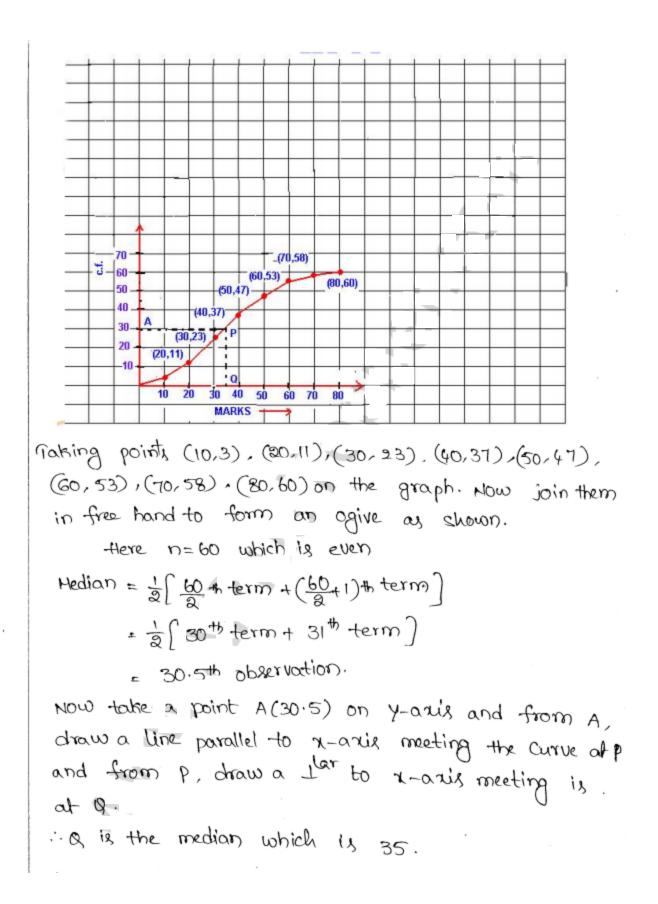

Height (cm)	150-155	155-160	160-165	165-170	170-175	175-180	180-185
No. of workers	6	12	18	20	13	8	6

(i) Determine the cumulative frequencies (ii) Draw the C.F Curve on a graph paper. Use 2000 = 5cm height on one aris and 2000 = 10 workers on the other. (iii) From your graph, write down the median height in cm.

sol.

Representing the distribution in CF distribution:

Height (cm)	No. of workers (f)	c.f.
1 <mark>5</mark> 0-155	6	6
155-160	12	18
160-165	18	36
165-170	20	56
170-175	13	69
175-180	8	77
180-185	6	83

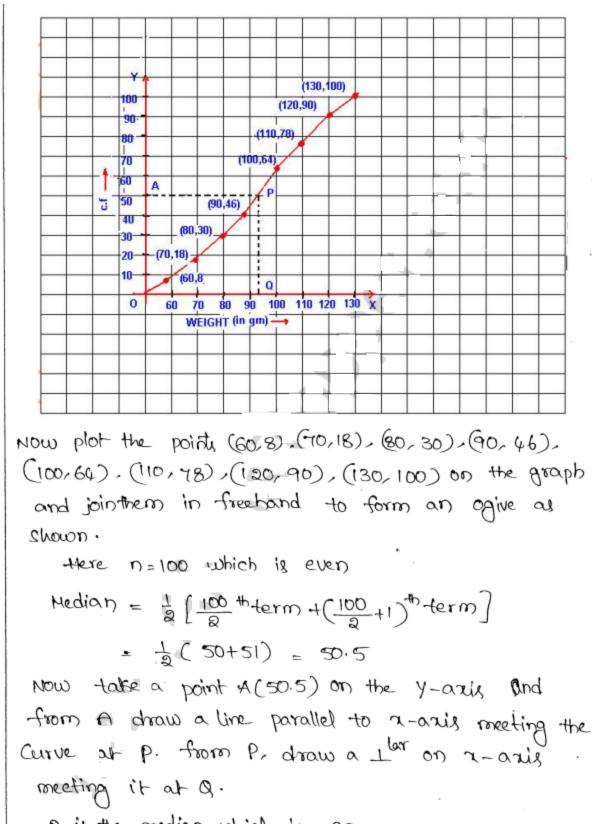

Here n=83 which is even Now taking points (155,5) (160,18), (165,36), (170,56), (175,69), (180,77), (85,83) on the graph. Now join them with free hand to form the ogive or CF surve as shown.

Hedian = $\frac{n+1}{2}$ th observation = $\frac{83+1}{2}$ = 42nd observation. Take a point A(42) on Y-axis and from A; draw a horizontal line parallel to x-axis meeting the Curve at P. from P draw a line $\frac{1}{2}$ to x-axis which meets it at Q. ... Q is the median which is 166.5cm. 016. Using the data given below construct the cumulative frequency table and draw the ogive. from the ogive, determine the median.

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of students	3	8	12	14	10	6	5	2

sol. Representing the distribution in cumulative frequency distribution.

Marks	No. of students (f)	c.f.
0-10	3	3
10-20	8	11
20-30	12	23
30-40	14	37
40-50	10	47
50-60	6	53
60-70	5	58
70-80	2	60

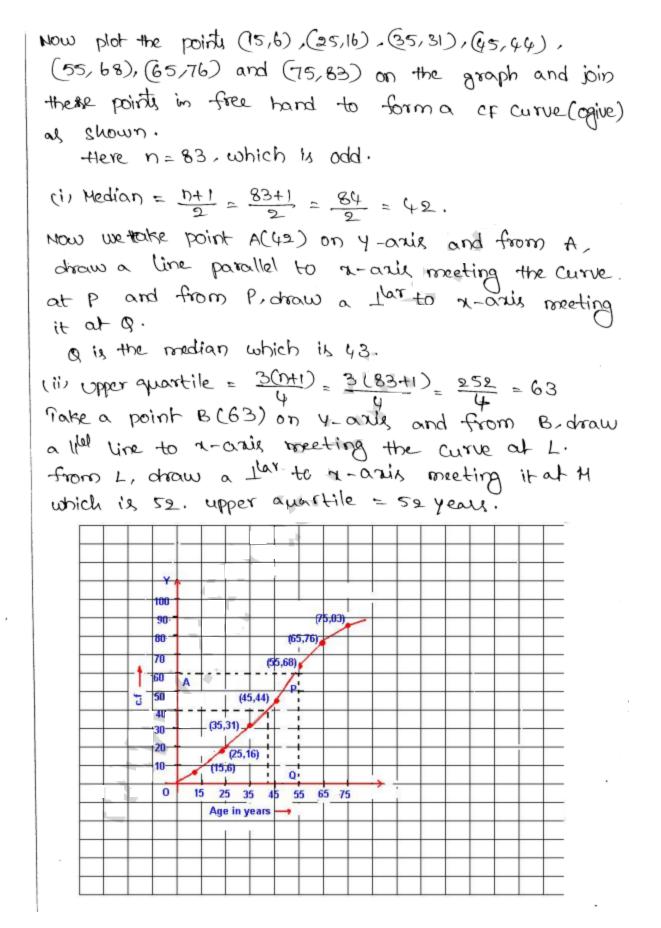


1917. Use graph paper for this question. The following table shows the weights in gm of a Sample of 100 potatoes taken from a large consignment:

Weight (gm)	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130
Frequency	8	10	12	16	18	,14	12	10

(i) Calculate the cumulative frequencies. (ii) Draw a CF curve and from it determine the median weight of potatoes.

Weight (gm)	Frequency	c.f.
50-60	В	8
60-70	10	18
70-80	12	30
80-90	16	46
90-100	18	64
100-120	14	78
110-120	12	90
120-130	10	100

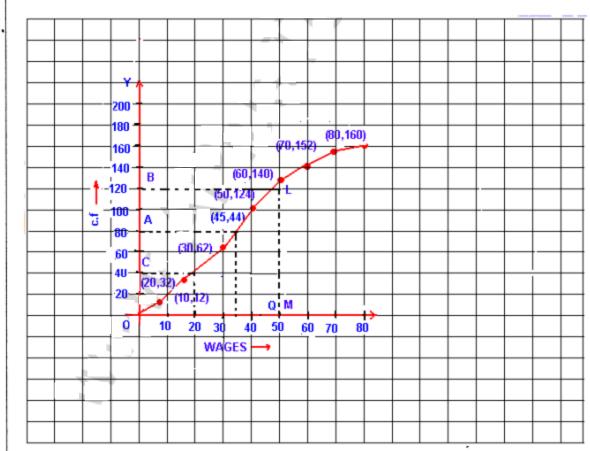

Q is the median which is 93.gm.

Attempt this question on graph paper. Q18.

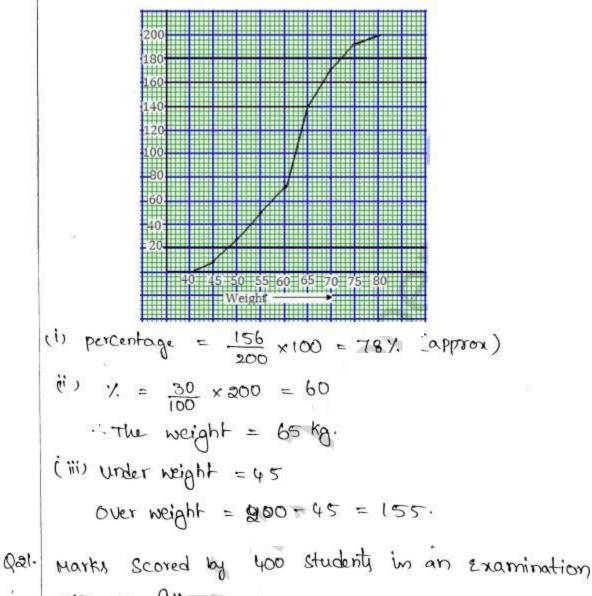
Age (yrs)	5-15	15-25	25-35	35-45	45-55	55-65	65-75
No. of casualties	6	10	15	13	24	8	7
due to accidents							

- (i) Construct the less than' CF curve for the above data, using 2cm = 10 years, on one aris and 2cm = 10 Casualties on the Other. (ii) From your graph determine . (A) The median (b) The upper quartile.

Age	No. of Casualties	Cumulative Frequency
Less than 15	6	6
Less than 25	10	16
Less than 35	15	31
Less than 45	13	44
Less than 55	24	68
Less than 65	8	76
Less than 75	7	83


0,19. The daily wages of 160 workers in a building project are given below:

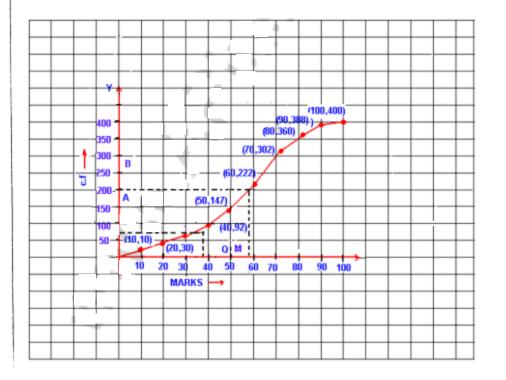
Weight (kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80
Frequency	5	17	22	45	51	31	20	9


Using a graph paper, draw an ogive for the above distribution. Use your ogive to estimate: (i) The median wage of the workers. (ii) The upper quartile wage of the workers. (iii) The lower quartile wage of the workers. (iv) the percentage of workers who earn more than Rs. 45 a day.

Wages in Rs. per day	Number of workers	Cumulative Frequency
0-10	12	12
10-20	20	32
20-30	30	62
30-40	38	100
40-50	24	124
50-60	16	140
60-70	12	152
70-80	8	160

Sd.

Now plot the pointy (10, 12)-(20, 32)-(30, 62)-(40, 100), (50, 124), (60, 140), (70, 152), (80, 160) on the graph and join them in free hand to form an ogive as shown. Here n=160 which is even (i) Median = $\frac{1}{2} \left[\frac{n}{2} + \left(\frac{n}{2} + 1 \right) \right] = \frac{1}{2} \left[\frac{160}{2} + \left(\frac{160}{2} + 1 \right) \right]$ $=\frac{1}{2}(80+81) = 80.5$ Now take a point A (80,5) on Y-asis and from A, draw a 11th line to 2-anis meeting the curve at P and from p, draw a that to re- anis meeting it at g Hedian = R. 34.3 or Rs. 34.30. (ii) (a) upper quartile = $\frac{3n}{4} = \frac{3\times160}{6} = 120$ Take point B(120) on Y-axis and from B. drawa line 1/4 to 2-axis meeting the curve at L and from L. draw a line that to x-axis meeting it at M and H is the upper quartile. upper quartile M= 47 or RJ. 47 (b) lower quartile = $\frac{n}{4} = \frac{160}{4} = 40$ Take a point ((40) on Y-axis and from C, drawn a line 11th to x-axis meeting the curve at R and From R, draw a line 1ter to x-axis meeting it at S. Sie the lower quartile which is Re. 25.



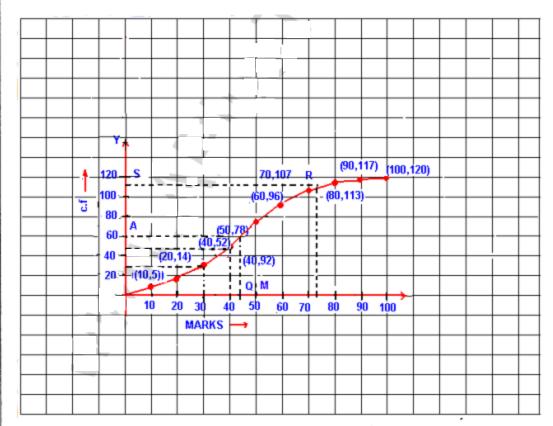
are as followne:

0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
10	20	22	40	55	75	80	58	28	12
	10	10 _ 20	10 20 22	10 20 22 40	10 20 22 40 55	10 20 22 40 55 75	10 20 22 40 55 75 80	10 20 22 40 55 75 80 58	10 20 22 40 55 75 80 58 28

Draw the ogive and from it determine: (i) The median mark, and (ii) The pass marks if BO!! of the students pass examination.

Marks Number of Cumulative Frequency students 0 - 1010 10 10 - 2020 30 20-30 22 52 30-40 40 92 147 40-50 55 75 50-60 222 302 60-70 80 70-80 58 360 80-90 28 388 12 90-100 400

sol. Representing the given data in the C.F table as given below:


822. The marks obtained by 120 students in a mathematics test are given below:

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No. of	5	9	16	22	26	18	11	6	4	3
students							-	_		

Draw an ogive for the given distribution on a graph sheet. Use a Suitable scale for your ogive. Use your ogive to estimate: (i) The median (ii) The lower median (iii) The no.of students who obtained more than 75% marks in the test. (iv) The no.of students who did not pass in the test if the pass percentage was 40:

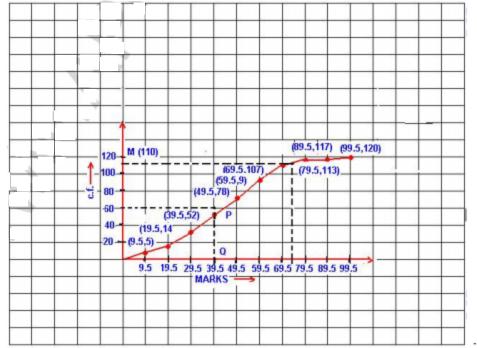
Marks	Number of student	Cumulative Frequency
0-10	5	5
10-20	9	14
20-30	16	30
30-40	22	52
40-50	26	78
50-60	18	96
60-70	11	107
70-80	6	113
80-90	4	117
90-100	3	120

sol. Representing the given data in CF table as given below:

,

Now we plot the points (10,5), (20,14), (30,30), (40,52), (50,78), (60,96), (70,107), (80,113), (90,117) and (100,120) on the graph and join the points in free hand to form an ogive as shown. Here n= 120 which is an even number (i) Hedian = $\frac{1}{2} \left[\frac{120}{2} + \frac{(120)}{2} + 1 \right] = \frac{1}{2} (60+61) = 60.5$ Now take a point A(60.5) on Y-axis and from A abraw a parallel to x-ands meeting the the curve in p and from P. draw a that to x-axis meeting it at Q. .: Q is the median which is 43.00 (Approx). (ii) lower quartile = $\frac{h}{4} = \frac{120}{4} = 30$ Now take a point B(30) on Y-and & from B, drawa line 11⁶⁰ to 2-azis meeting the curve in L and from L draw a ther to x-anis meeting it at M. ." It is the lower quartile which is 30. (iii) Take a point c(75) on x-anis t from c drow a line 1to it meeting the curve at R. from R, draw a line 11th to x-axis meeting y-axis at S. .: S shows 110 students getting below 75% and 120-110=10 students getting morethan 75% marks. (iv) pass percentage is 40%. Now take a point D(40) on 2-anis and from D draw a 1th to x-anis meeting the Curve at and from E. draw a line 11th to x-axis meeting the Y-axis at F. , F Shows 52. . No. of students who could not get 40% and failed in the Examination are 52.

Q23. Draw an ogive for the following frequency distribution. Use your ogive to estimate: (i, The median (ii, The no.f. students who obtained more than 75% marks. (Use square paper to solve this question)


Marks	0-9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-99
No. of	5	9	16	22	26	18	11	6	4	3
students	0.00	182								

ડન

Representing the given data in of table as given below:

Marks	Number of students	Cumulative Frequency
0.5-9.5	5	5
9.5-19.5	9	14
19.5-29.5	- 16	30
29.5-39.5	22	52
39.5-49.5	26	78
49.5-59.5	18	96
59.5-69.5	11	107
69.5-79.5	6	113
79.5-89.5	4	117
89.5-99.5	3	120

Now plot the points (9.5,5), (19.5,14), (29.5,30),
(39.5,52), (49.5,78), (59.5,96), (69.5,107),
(719.5,113), (89.5,117), (99.5,120) on the graph and
join them in freehand to form an ogive as shown.
there
$$n = 120$$
 which is even.
(i, Hedian = $\frac{1}{2}\left[\frac{n}{2} + (\frac{n}{2} + 1)\right] = \frac{1}{2}\left[\frac{120}{2} + (\frac{120}{2} + 1)\right]$
 $= \frac{1}{2}\left[60+61\right] = \frac{101}{2} = 60.5=$
Now take a point A(60.5) on Y-axis and from A;
draw line 11⁶⁴ to x-axis meeting the Curve at P
and from P, draw a \perp^{lar} to 2 -axis meeting it in Q.
(i) No. of students who get more than 75% marks. now
get a point B(75) on x-axis meeting the Y-axis as draw a
line \perp^{lax} to x-axis meeting the Y-axis as M
 \therefore M shows (120-110) = 10 students getting more than
75% marks.

.

,

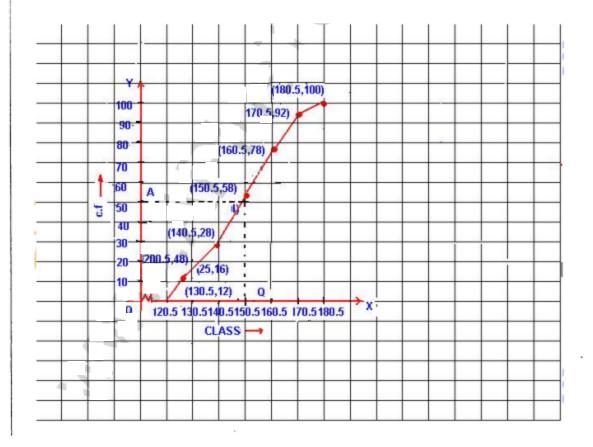
924 100 pupils in a school have heights as tabulated below:

Height (in cm)	121-130	131-140	141-150	151-160	161-170	171-180
No. of pupils	12	16	30	20	14	8

Draw the ogive for the above data and from it determine the median (use graph paper)

Sel.

Representing the given dela in cumulative frequency table (in continuous distribution).


Height in cm	No. of pupils	c.f.
120.5- 130.5	12	12
130.5-140.5	16	28
140.5-150.5	30	58
150.5-160.5	20	78
160.5-170.5	14	92
170.5-180.5	8	100

there n=100 which is an even number.

 $Median = \frac{1}{2} \left(\frac{n}{2} + \left(\frac{n}{2} + 1 \right) \right] = \frac{1}{2} \left[\frac{100}{2} + \left(\frac{100}{2} + 1 \right) \right]$ $= \frac{1}{2} \left(\frac{50 + 51}{2} = \frac{101}{2} = 50.5 \right]$

Now plot the points (130.5, 12), (140.5, 28), (150.5, 58), (160.5, 78), (170.5, 92) and (180.5, 100) on the graph and join them in free hand to form an ogive as Shown.

Now take point a(so.s) on y-axis and from A draw a line 11⁶⁴ to x-axis meeting the Curve at P and from P, draw a line \perp^{tar} to x-axis meeting it at Q. $\therefore Q(147.5)$ is the median.

B1. Find the mode of the following sets of (i) 5, 2, 0, 1, 2, 3, 5, 3(ii) 5, 7, 6, 8, 9, 0, 6, 8, 1, 8(ii) 9, 0, 2, 8, 5, 3, 5, 4, 1, 5, 2, 7

- Sol. (1) The number 3 occurs maximum times lie mode = 3 (ii) The number 8 occurs marinum times ine, mode = 8 (iii) The number 5 occurs maximum time, i.e. mode = 5
- Q2. Calculate the mean. the median and the mode of the numbers: 3,2,6,3,3,1,1,2.

Sd. Arranging in abcending order (1), 2, 2, 3, 3, 3, 6
(i) Hean =
$$\frac{5\pi}{n} = \frac{(+(+2+2+3+3+3+3+6))}{8} = \frac{31}{8} = 2.625$$

(ii) Here $n = 8$ which is even
Hedian = $\frac{1}{2} \left(\frac{n}{8} + \left(\frac{n}{8} + 1 \right) \right) = \frac{1}{2} \left(\frac{8}{2} + \left(\frac{8}{8} + 1 \right) \right)$
 $= \frac{1}{8} \left((+++5+b) \right) = \frac{1}{8} \left(2+3 \right) = 2.5$
(iii) Here 3 occurs maximum times

Sol. Arranging in ascending order 1, 2, 3, 3, 3, 4, 5, 5, 6, 7
(i) Mean =
$$\frac{5\chi_i}{n} = \frac{1+2+3+3+3+4+5+5+6+7}{10} = \frac{39}{10} = 3.9^{-10}$$

(ii) Here n=10 which is even
Median = $\frac{1}{2} \left(\frac{10}{8} + 1 + \frac{10}{8} + 1 \right)^{-1} + \frac{10}{8} + 1 = \frac{1}{2} \left(5^{10} + 6^{10} + \frac{10}{8} + 1 \right)^{-1}$

÷

(iii) Here 3 Occurs maximum times. Hole = 3.
(iii) Here 3 Occurs maximum times. Hole = 3.
(i) Scored the following masks in various class task
chaning a term, each test being marked out of 30:
(5, 17, 16, 7, 10, 12, 14, 16, 19, 12, 16
(i) what are his median marks?
(ii) Heddel marks is 16 as it occurs to maximum times.
(ii) Here n=11 which is odd
Median =
$$(\frac{n+1}{2})^{th}$$
 term = $\frac{11+1}{2t} = 6^{th}$ term.
.: Hedian = 15
(iii) Nean = $\frac{2\pi i}{n} = \frac{7+10+12+13+14+15+16+16+16+17+19}{11}$
(iii) Here n=15
(iii) Here n=16
(iii) Here n=16
(iii) Here n=16
(i) Mean = $\frac{2\pi i}{n} = \frac{0+0+2+2+3+3+3+4+5+5+5+5+6+6+7+8}{16}$
(i) Mean = $\frac{2\pi i}{n} = \frac{0+0+2+2+3+3+3+4+5+5+5+5+6+6+7+8}{16}$
(ii) Mean = $\frac{1}{2} \left(\frac{16}{2} + (\frac{16}{2}+1)\right) = \frac{1}{2} (5^{th} + 9^{th} terms)$
 $= \frac{1}{5} (4+5) = 4 \cdot 5$
(iii) Here 5 occurs in maximum times
.: mode = 5

	15	17	20	21	25	28]	
	6	7	23	18	6	4		
He	re 20 0	ccurs i	n mari	โลนต	times	نر 23	3 time	q
	Mode	= 20 ·						
	ulate the ollowing			nedian	and t	na mo	de of -	the
N	o. of goals		0					
	0.010			1	2	3	4	
	o. of matches	3	2	4	7	6	8	
N	ting the	given	2 distribu	4	7 DCF	6 Nistribu	8 ition:	
N	ting the	giver) pals (x)	2 distribu	4 xtion in matches(7 DCF	6 Sistribu c.f.	8 ition : fx	
N	ting the	giver) Dals (x) 0	2 distribu	4 Intion in matches(7 DCF	6 Nistribu c.f. 2	8 tion: fx 0	
N	ting the	given oals (x) 0	2 distribu	4 Intion in matches(2 4	7 DCF	6 1/2 6	8 tion : fx 0 4	
N	ting the	giver) Dals (x) 0 1	2 distribu	4 rtion in matches(2 4 7	7 DCF	6 vistribu c.f. 2 6 13	8 tion : fx 0 4 14	
N	ting the	giver) pals (x) 0 1 2	2 distribu	4 ation in matches(2 4 7 6	7 DCF	6 vistribu c.f. 2 6 13 19	8 (tion : fx 0 4 14 18	
N	ting the	giver) Dals (x) 0 1	2 distribu	4 rtion in matches(2 4 7	7 DCF	6 vistribu c.f. 2 6 13	8 tion : fx 0 4 14	

Find the mode for the following distribution.

(i) Mean =
$$\frac{2fx}{2f} = \frac{83}{30} = 2.77$$

(ii) Here n=30 which is an even number
Median = $\frac{1}{8}\left[\frac{n}{8} + \left(\frac{n}{8} + 1\right)\right] = \frac{1}{2}\left[\frac{30}{8} + \left(\frac{30}{8} + 1\right)\right]$
 $= \frac{1}{8}\left(15^{th} + 16^{th} \text{ terms}\right) = \frac{1}{8}(3+3) = 3$
(iii) frequency of 4 is maximum i.e, 8
 \therefore Mode = 4.

Q8. At a shooting competition, the scores of a competitor. Were as given below:

Score	0	1	2	3	4	5
Number of shots	0	3	6	4	7	5

(i, what was his modal score? (ii) what was his median scole? (iii) what was his total scole? (iv) what was his mean scole? writing the distribution in cf table:

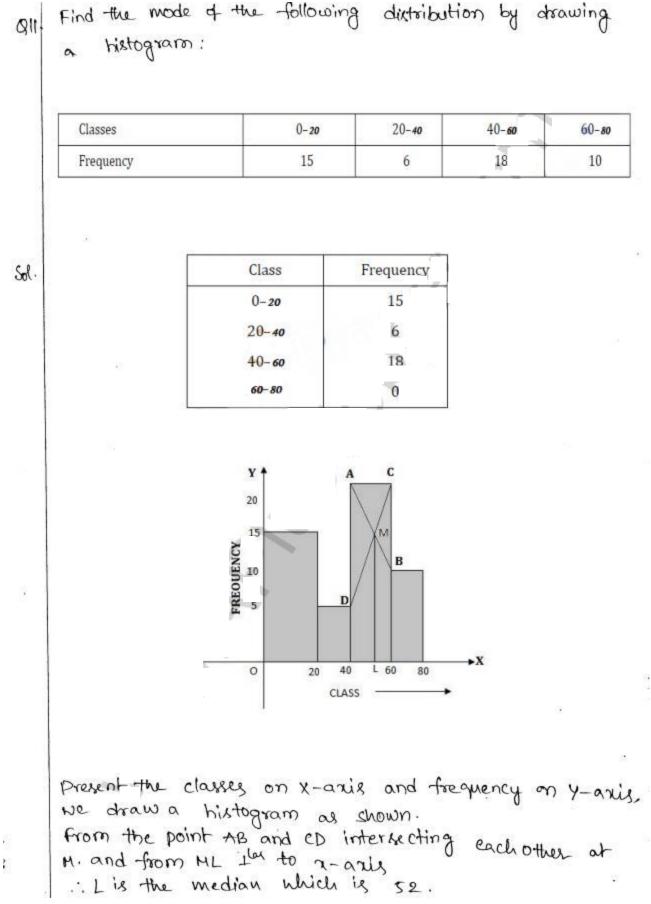
Sd.

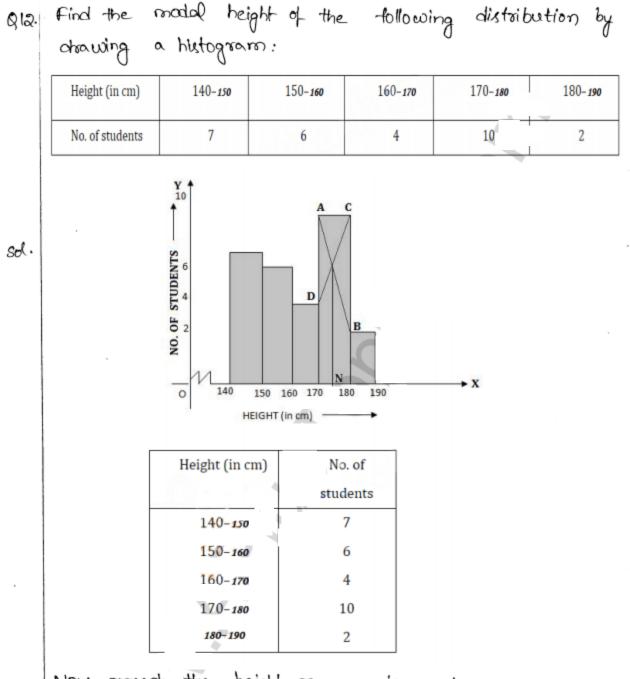
Score	No.of shots	c.f.	f.x.
(x)	(f)		
0	0	0	0
1	3	3	3
2	6	9	12
3	4	13	12
4	7	20	28
5	5	25	25
Total	25		80

(i) Model scale is 4 as it occurs in maximum times
ie. 7. Mode = 4
(ii) Here
$$D=85$$
 which is an odd Dumber.
Hedian = $\frac{25+1}{2}$ = 13^{th} term
thence median = 3
(iii) total scale = 80
(iv) Hean = $\frac{25\pi}{25}$ = $\frac{80}{25}$ = $3\cdot2$
(v) Hean = $\frac{25\pi}{25}$ = $\frac{80}{25}$ = $3\cdot2$
(v) Hean = $\frac{5\pi}{25}$ = $\frac{80}{25}$ = $3\cdot2$
(v) Heat = $\frac{5\pi}{25}$ = $\frac{80}{25}$ = $3\cdot2$
(v) Heat = $\frac{5\pi}{25}$ = $\frac{60-8}{25}$ = $\frac{65\cdot8}{70-7}$ = $\frac{75\cdot8}{20}$ = $\frac{80-8}{25}$ = $\frac{85\cdot8}{10}$
(in R)
Norkers 5 = $\frac{5}{20}$ = $\frac{10}{10}$ = $\frac{9}{6}$ = $\frac{12}{8}$
Calculate :
(i) the weat
(ii) the wodal class
(iii) the wodal class
(iv) The wodal class = $\frac{10}{10}$ = $\frac{10}{9}$ = $\frac{8}{12}$ = $\frac{12}{8}$

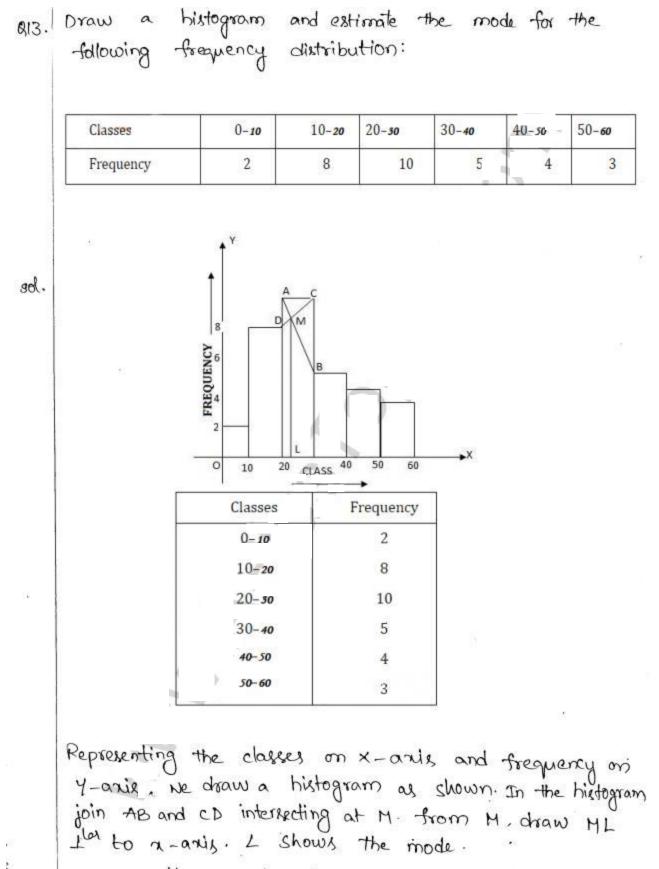
Weekly wages	No. of workers	Class marks	c.f.	f.x.
	(f)	(x)		
50- <i>ss</i>	5	52.5	5	262.5
55-60	20	57.5	25	1150.0
60-65	10	62.5	35	625.0
65-70	10	67.5	45	675.0
70-75 75-80	9	72.5	54	652.0
80-85	6	77.5	60	465.0
<i>85</i> -90	12	82.5	72	990.0
	8	87.5	80	700.0
Total	80			5520

(i) Mean = $\frac{2f_{\pi}}{2f} = \frac{5520}{80} = 69$ (ii) Model Class: -frequency & Class 55-60 is maximum if 20 Class 55-60 is the model class. (iii) No. of workers getting weekly wages below Re. 80 = 60 (iv) No. of workers getting above Re. 65 and below Rs. 85 as weekly wages = 702-35 = 37.


calculate the mean of the distribution given below:


Marks	0-9	10- <i>1</i> 9	20- 29	30- 59	40-49	50- <i>5</i> 9
Frequency	4	6	12	6	7	5

Alko stale (i) The median class (ii) The modal class. sd. Representing the given distribution in CF table:


Class	Class	Frequency	C.f.	Class Mark	f.x
(before adjustment)	(after adjustment)	(f)	(x)		
0-9	0.5-9.5	4	4	4.5	18.0
10-19	9.5-19.5	6	10	14.5	87.0
20-29	19.5-29.5	12	22	24.5	294.0
50-59	29.5-39.5	6	28	34.5	207.0
40-49	39.5- 49.5	7	35	44.5	311.5
50–59 Total	49.5- <i>5</i> 9.5	5	40	54.5	272.5
		40			1190.0

(i) Mean =
$$\frac{2fx}{2f} = \frac{1190}{40} = 29.75$$

(ii) Here $n = 40$, which is even
Mediau = $\frac{1}{8} \left[\frac{40}{2} + 1 + \left(\frac{40}{8} + 1 \right)^{th} \text{ term} \right]$
= $\frac{1}{8} \left(20^{th} + 21^{th} \text{ terms} \right)$
.'. Median classes are $20 - 29$
(iv) Frequency of the classes $20 - 29$ is greatest
.'. Model class is $20 - 29$.

Now present the height on n-anis and no. of students (frequency) on Y-anis and draw a histogram as shown. In the histogram join AB and CD intersecting at M. from M, draw MN to x-anis. N shows the mode. .: thence mode = 174 cm.

: Hence mode = 23.

Q14. IQ of 50 studenty way recorded as follows:

IQ score	80-90	90- <i>10</i> 0	100-110	110- <i>12</i> 0	120-150	130-140
No. of students	6	9	16	13	4	2

praw a histo gram for the above data and estimate the mode.

sd.

IQ Score No. of	students
80- <i>90</i>	6
90- <i>10</i> 0	9
100-110	16
110-120	13
120-150	4
130-140	2

Representing the IQ scale on x-axie and no.of students on y-axie we draw a histogram as shown. join AB and CD intersecting each other at M. from M chraw. ML I^{CA} to X-anus. L is the mode which is 107

Q15. The daily profits in Rs. of 100 shops in a market are distributed as follows:

(in	fit per shop Rs)	001-0	100- <i>200</i>	200- <i>300</i>	300- <i>400</i>	400-500	500-600
	of shops	12	18	27	20	17	6
Draw Papi	er and e	A SdoHs15 0 100 200	C M B L 300 400	500 600	iven a	bove, or	n 9 1 0
		PF	ROFIT IN Rs				
u.		- E).					
Si internet and			p (in	No. of shops			
N		Profit per sho	p (in	No. of shops 12			
X		Profit per sho Rs.)	p (in			21	
		Profit per sho Rs.) 0- <i>10</i> 0	p (in	12		25	
		Profit per shop Rs.) 0-100 100-200	p (in	12 18		25	
		Profit per shop Rs.) 0-100 100-200 200-300	p (in	12 18 27		25	

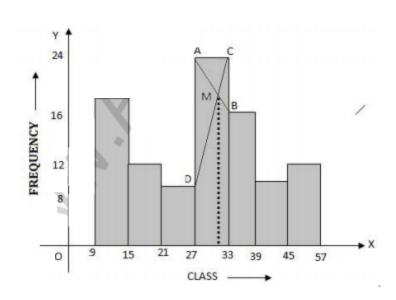
Representing profit per shop on 2-anix and no of shops on Y-anix. We draw a dishistogram as shown. join AB and CD intersecting each other at M. -from H. draw HL I^{leq} to 2-aniz. I is the mode which is R. 260.

Draw a histogram for the following distribution:

Wt.(in kg)	40-44	45- <i>4</i> 9	50- <i>54</i>	55-59	60- 6 4	65- 69
No. of students	2	8	12	10	6	4

Sol. We write the given distribution in continuous form:

Wt. In kg.	No. of students		
39.5- 44.5	2		
44.5- 49.5	8		
49.5- <i>54.5</i>	12		
54.5- <i>5</i> 9.5	10		
59.5- 64.5	6		
64.5-69.5	4		


Representing the Weight (in kg) on x-axis and no of students on y-axis. We draw a histogram as shown. Now join AB and CD intersecting each other at M. from M. draw ML L^{last} to x-axis. L is the mode which is 51.5 kg.

Q17. Find the mode of the following distribution by drawing a histogram.

Mid value	12	18	24	30	36	42	48
Frequency	20	12	8	24	16	8	12

Sol.

J/A

Mid value	Class	Frequency
12	9-15	20
18	15-21	12
24	21-27	8
30	27-33	- 24
36	55-39 59-45	16
42	45-51	8
48		12

Representing class on 2 anis and frequency on y-aniswe draw a histogram as shown. join AB and CD intersecting eachother at M. from M. draw ML 1^{lar} to 2-anis. I shows the mode which is 30.5 and class is 27-33.