119

Total No. of Questions-21

Total No. of Printed Pages-2

Regd. No.

Part III

PHYSICS

Paper I

(English Version)

Time: 3 Hours

Max. Marks: 60

SECTION A

 $10 \times 2 = 20$

- Note :— (i) Answer ALL questions.
 - (ii) Each question carries TWO marks.
 - (iii) ALL are very short answer type questions.
- 1. What is the discovery of C.V. Raman ?
- 2. How can systematic errors be minimised or eliminated?
- 3. How is average velocity different from instantaneous velocity?
- 4. Give an example where the velocity of an object is zero but its acceleration is not zero.
- 5. Two forces of magnitudes 3 units and 5 units act at 60° with each other. What is the magnitude of their resultant?
- 6. According to Newton's third law, every force is accompanied by an equal and opposite force. How can a movement ever take place?
- 7. What is magnus effect?
- 8. Why are drops and bubbles spherical?
- 9. What is latent heat of fusion?
- 10. State Newton's law of cooling.

SECTION B

 $6 \times 4 = 24$

- Note:—(i) Answer any SIX questions.
 - (ii) Each question carries FOUR marks.
 - (iii) ALL are short answer type questions.
- 11. Show that the trajectory of an object thrown at certain angle with the horizontal is a parabola.

- 12. State Newton's second law of motion. Hence derive the equation of motion F = ma from it.
- 13. Distinguish between centre of mass and centre of gravity.
- 14. Define vector product. Explain the properties of a vector product with two examples.
- 15. What is escape velocity? Obtain an expression for it.
- 16. Explain the concept of elastic potential energy in a stretched wire and hence obtain the expression for it.
- 17. In what way is the anomalous behaviour of water advantageous to aquatic animals?
- 18. How specific heat capacity of monoatomic, diatomic gases can be explained on the basis of law of equipartition of energy?

SECTION C

 $2 \times 8 = 16$

- Note:—(i) Answer any TWO questions.
 - (ii) Each question carries EIGHT marks.
 - (iii) ALL are long answer type questions.
- 19. Develop the notions of work and kinetic energy and show that it leads to work-energy theorem.

Consider a drop of mass 1.00 g falling from a height of 1.00 km. What is the work done by the gravitational force,?

(Take $g = 10 \text{ ms}^{-2}$)

- 20. Show that the motion of a simple pendulum is simple harmonic and hence derive an equation for its time period. What is seconds pendulum?
- 21. Explain reversible and irreversible processes. Describe the working of Carnot engine. Obtain an expression for the efficiency.