• Let us remember :

• Complete the Table by naming the each triangle with different names shown in the figure :

No.	Vertices of Triangle	Name of Triangle	Angles	Sides
(1)	X, Y and Z	ΔXYZ	∠XYZ	$\overline{XY}, \overline{YZ}, \overline{ZX}$
			∠YZX	
			ZZXY	
(2)				
(3)				
(4)				

- Activity 1: Make such shapes that by taking four match-sticks closed figures are obtained.
 - Keep it in mind that two black ends of match-sticks do not touch each other

Now, think how many sides are formed?

How many angles are formed?

Let us learn new :

Examining the following figures, answer the given questions:

Join the opposite vertices in figures from (5) and (9) and write the line-segment so formed :

No.	(5)	(6)	(7)	(8)	(9)
Line-segment	$\overline{AC}, \ \overline{BD}$				

- (1) How many vertices are there in above each figure?
- (2) In the above each figure are there any three vertices in only one line?
- (3) How many sides are there in each figure?
- (4) How many angles are there in each figure?
- (5) is the figure in which line-segments intersect.
- (6) is the figure in which line-segments do not intersect.

Examine the following figures and understand:

Understand :

In the above figure (10) and (11)

• A, B, C, D are the vertices of a quadrilateral.

- \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} are the sides of quadrilateral.
- ∠ABC, ∠BCD, ∠CDA, ∠DAB are the angles.
- \bullet \overline{AC} and \overline{BD} are their diagonals.
- A closed figure made by four line-segments having four angles and not intersecting each other at any point except the end points is a quadrilateral.
- ☐ ABCD can be written as in set form as under :

 \square ABCD = \overline{AB} \cup \overline{BC} \cup \overline{CD} \cup \overline{DA}

- Therefore, a quadrilateral is the union of four line-segments.
- Each line-segment which is formed by connecting opposite vertices of a quadrilateral is called a diagonal.
- If the diagonals of a quadrilateral intersect each other than that quadrilateral is called a convex quadrilateral.
- If the diagonals of a quadrilateral do not intersect each other then that quadrilateral is called a concave quadrilateral.
- Each quadrilateral contains four sides, four angles and two diagonals.

Here, we will discuss about the convex quadrilateral.

In the figure, D, E, F, G are the vertices of a quadrilateral, therefore, its name is given quadrilateral DEFG. Symbolically it is written as \square DEFG.

(12)

Read as: Quadrilateral DEFG

- Naming of quadrilateral :
 - \square ABCD
 - \square BCDA
 - \Box CDAB
 - \square DABC

□ ADCB □ DCBA

□ CBAD

□BADC

 A quadrilateral can be given name by two methods as clockwise and anticlockwise.

(13)

• Fill the details of the Table on the basis of above figures (12) and (13):

Figures	Sides	Angles	Diagonals	Diagonals	intersect ?
(12)					
(13)					

Remember the following:

- A quadrilateral is formed with four coplanar points.
- Among four distinct coplanar points no three are colinear in a quadrilateral.
- A quadrilateral in which diagonals do not intersect is called a concave quadrilateral according to given figure.
- Here, \overline{AC} and \overline{BD} are diagonals.

1. By studying the given figure, write all the possible quadrilaterals formed in your notebook. Out of these write informations of any three in the table:

Η		G
J	$\langle \rangle$	L
E		F

No.	Name of quadrilateral	Sides	Angles	Diagonals
1.	□EFGH	EF, FG, GH, HE	∠EFG, ∠FGH, ∠GHE, ∠HEF	FH,EG

2. Write all the possible methods of writing names of the following quadrilaterals:

3. Draw and give names of such a quadrilateral whose vertices are S, T, U and V.

*

• The opposite sides and opposite angles, adjacent sides and the adjacent angles of a quadrilateral:

In figure (14), \overline{PQ} and \overline{RS} are opposite sides.

 \overline{QR} and \overline{PS} are opposite sides.

∠P and ∠R are opposite angles.

∠Q and ∠S are opposite angles.

Therefore, two pairs of opposite sides are obtained. Similarly two pairs of opposite angles are obtained.

Now, The adjacent sides of \overline{PQ} are \overline{PS} and \overline{QR} .

The adjacent sides of \overline{QR} are \overline{PQ} and \overline{RS} .

The adjacent sides of \overline{RS} are \overline{QR} and \overline{SP} .

The adjacent sides of \overline{PS} are \overline{PQ} and \overline{RS} .

The adjacent angles of $\angle P$ are $\angle Q$ and $\angle S$.

The adjacent angles of $\angle Q$ are $\angle P$ and $\angle R$.

The adjacent angles of $\angle R$ are $\angle Q$ and $\angle S$.

The adjacent angles of $\angle S$ are $\angle P$ and $\angle R$.

Therefore, four pairs of adjacent sides are obtained. Similarly four pairs of adjacent angles are obtained.

Practice 2

Fill in the following blanks on the basis of given figure:

- (1) is the opposite side of \overline{AB} .
- (2) \overline{AD} is the opposite side of
- (3) The adjacent sides of \overline{AB} are and
- (4) and are the adjacent sides of \overline{BC} .
- (5) The adjacent sides of \overline{CD} are and
- (6) and are the adjacent sides of \overline{DA} .
- (7) Write opposite angle of $\angle A$.
- (8) Which are the adjacent angles of ∠D?
- (9) Which are the adjacent angles of $\angle A$?
- (10) ∠A and ∠C are the adjacent angles of which angle?

- Activity 2 :
 - First of all take a quadriangular paper of any measure.
 - Make the triangular from quadriangular shape by folding from the mid of dotted line.
 - Measure all the three angles of triangular region respectively by protector.
 - After measuring the angles of both triangular regions, open the fold.

Now, there will be four angles of quadrilateral instead of six angles of two triangles.

 $m \angle 7 + m \angle 2 + m \angle 8 + m \angle 5 = \dots$

Sum of measures of angles of 2nd triangular region

180°

• Activity 3: Draw different types of quadrilaterals in chart paper. Cut with the help of scissors. Measure all four angles of each quadrilateral with the help of protractor and write in Table:

360°

Name of quadrilateral	measure of ∠1		$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4$

Problems on the basis of measures of angles of quadrilateral:

Example 1: The measures of three angles of a quadrilateral are 85°, 35° and 160° respectively. Find measure of its fourth angle.

The sum of measures of three angles of quadrilateral:

$$85^{\circ} + 35^{\circ} + 160^{\circ} = 280^{\circ}$$

The measures of all four angles

of a quadrilateral is 360°.

Measure of fourth angle = $360^{\circ} - 280^{\circ} = 80^{\circ}$

The measure of fourth angle is 80°.

$$m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 360^{\circ}$$

∴
$$85^{\circ} + 35^{\circ} + 160^{\circ} + m \angle 4 = 360^{\circ}$$

∴ $280^{\circ} + m \angle 4 = 360^{\circ}$
∴ $m \angle 4 = 360^{\circ} - 280^{\circ}$

$$\therefore 280^{\circ} + m \angle 4 = 360^{\circ}$$

$$m \angle 4 = 360^{\circ} - 280^{\circ}$$

$$m \angle 4 = 80$$

Example 2: The measure of three angles of a quadrilateral are equal. If measure of each angle is 95°, then find measure of its fourth angle.

Suppose □ ABCD is a quadrilateral.

$$\therefore m \angle A + m \angle B + m \angle C + m \angle D = 360^{\circ}$$

$$\therefore$$
 95° + 95° + 95° + $m\angle D = 360°$

$$285^{\circ} + m\angle D = 360^{\circ}$$

$$m \angle D = 360^{\circ} - 285^{\circ}$$

$$m \angle D = 75^{\circ}$$

The measure of fourth angle is 75°.

Example 3: The measure of three angles of a quadrilateral are equal. If measure of fourth angle is 105°, then find the measure of each equal angle.

The sum measures of all three equal angles

$$= 360^{\circ}$$
 – measure of fourth angle

$$= 360^{\circ} - 105^{\circ}$$

The measure of each equal angle = $\frac{255}{3}$ = 85

The measure of each equal angle = 85°

or

Suppose the measures of three equal angles is x^{th} . Now,

$$m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 360^{\circ}$$

$$x^{\circ} + x^{\circ} + x^{\circ} + 105^{\circ} = 360^{\circ}$$

$$\therefore 3x^{\circ} + 105^{\circ} = 360^{\circ}$$

$$3x^{\circ} + 105^{\circ} = 360^{\circ}$$

$$3x^{\circ} = 360^{\circ} - 105^{\circ} = 255^{\circ}$$

$$x^{\circ} = \frac{255}{3} = 85^{\circ}$$

$$\therefore x^{\circ} = \frac{255}{3} = 85^{\circ}$$

The measure of three angles of a quadrilateral are 75°, 65° and 120° respectively, 1. then find the measure of fourth angle of the quadrilateral.

- 2. The measure of two adjacent angles of a quadrilateral are 80° and 100°. If remaining angles have equal measure then find the measures of equal angles.
- 3. In \square MNOP, $m \angle N$ is 10° more, $m \angle O$ is 20° more, and $m \angle P$ is 30° more than $m \angle M$, then find the measures of all four angles.
- 4. In \square DEFG, $m \angle D = 120^{\circ}$ and $m \angle F = 140^{\circ}$. If $m \angle E = m \angle G$, then find the measures of both angles.
- 5. If the measures of all four angles of a quadrilateral are equal, then find the measure of each angle.
- 6. One angle of a quadrilateral is a right angle and the measure of other angle is 110°. If remaining two angles are of equal measures, then find the measures of each equal angle.
- Types of quadrilateral :

See and understand:

No.	Figure and name	Definition	Characteristics
1.	Parallelogram A C	If both the pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is called a parallelogram. AD BC and AB CD	 Diagonals bisect each other. Diagonals are not of equal measures. The measures of opposite sides are equal. The measures of opposite angles are equal.
2.	Rhombus S P Q	If all the sides of a parallelogram are equal, then it is called a rhombus. \[\overline{QR} \ \overline{PS} \] and \[\overline{PQ} \ \overline{SR} \] \[QR = RS = SP = PQ \]	 Diagonals are not of equal measurement. Diagonals bisect each other at right angles.

No.	Figure and Name	Definition	Characteristics			
3.	Rectangle L O N	If all the angles of a parallelogram are right angles, then the parallelogram is called a rectangle. $\overline{LO} \parallel \overline{MN}, \overline{LM} \parallel \overline{ON}$ $m\angle L = m\angle M =$ $m\angle N = m\angle O = 90^{\circ}$	 Diagonals are equal in measures. Diagonals bisect each other. 			
4.	Square D F	If the measures of four angles and four sides are equal, then that parallelogram is called a square. $\overline{DG} \parallel \overline{EF}, \overline{DE} \parallel \overline{GF}$ $\overline{DG} = \overline{GF} = \overline{FE} = \overline{ED}$ $m\angle D = m\angle E = m\angle F$ $= m\angle G = 90^{\circ\circ}$	 The measures of diagonals are equal. Diagonals bisect each other at right angles. 			
5.	Trapezium B E C D	If in a quadrilateral one and only one pair of opposite sides are parallel then such quadrilateral is called a trapezium. BE CD	 The measures of diagonals are not equal. Diagonals do not bisect each other. 			

Remember :

- The name of a quadrilateral can be given by two ways : clockwise and anti-clockwise.
- The quadrilateral name can be written by starting with any vertex.
- Each quadrilateral has two pairs of opposite sides and two pairs of opposite angles.
- Each quadrilateral has four pairs of adjacent sides and four pairs of adjacent angles.
- The sum of the measures of all our angles of any quadrilateral is 360°.

Therefore, for $\square ABCD$, $m \angle A + m \angle B + m \angle C + m \angle D = 360^{\circ}$

- 1. Draw such a quadrilateral whose diagonals are \overline{DG} and \overline{EF} . Name it. How many types can it be named? Write all the names.
- 2. Make figure of \square XYZW and write its all pairs of adjacent sides and adjacent angles.
- \angle S is a right angle in \Box STUV. If $m\angle$ T = $m\angle$ U and $m\angle$ V = 80°, then find **3**. $m \angle T$ and $m \angle U$.
- In \square PQRS, $m \angle Q$ is 10° less, $m \angle R$ is 20° less and $m \angle S$ is 30° less, then $m \angle P$, 4. then find measure of each angle.
- The measure of an angle of a quadrilateral is 120th. The measures of remaining 5. angles are equal, then find the measure of each angle.
- Answer the following questions: **6.**
 - (1) Write the number of sides, angles and diagonals of a quadrilateral.
 - What is the sum of measures of four angles of quadrilateral?
 - What is the sum of measures of three angles of a square?
 - Which quadrilaterals have equal measures of four sides?

Answers

Practice 2

- (1) \overline{CD}
- $(2) \overline{BC}$
- $(3) \overline{BC}, \overline{AD}$
- $(4) \overline{AB}, \overline{CD}$ $(5) \overline{BC}, \overline{AD}$

- (6) \overline{AB} , \overline{CD}
- (7) ∠C
- (8) ∠A, ∠C
- (9) $\angle B$, $\angle D$ (10) $\angle B$ and $\angle D$

Practice 3

- $(1) 100^{\circ}$
- $(2) 90^{\circ}, 90^{\circ}$

(3) 75°, 85°, 95°, 105°

- (4) 50°, 50°
- (5) 90°, 90°, 90°, 90°
- (6) 80°. 80°

Exercise

- \square DEGF, \square EGFD, \square GFDE, \square FDEG, \square DFGE, \square FGED, \square GEDF, \square EDFG 1.
- 2. (1) \overline{XY} and \overline{ZW}
- (2) \overline{YZ} and \overline{XW}
- (3) The adjacent angles of $\angle X$ are $\angle W$ and $\angle Y$. The adjacent angles of $\angle Y$ are $\angle X$ and $\angle Z$. The adjacent angles of $\angle Z$ are $\angle Y$ and $\angle W$. The adjacent angles of $\angle W$ are $\angle Z$ and $\angle X$.
- $m \angle T = 95^{\circ}$, $m \angle U = 95^{\circ}$ 3.
- **4.** 105°, 95°, 85°, 75° **5.** 80°, 80°, 80°

- 6. (1) 4, 4, 2
- (2) 360^a
- (3) 270^a (4) Square, Rhombus