
In this Chapter
 » Introduction
 » Linear Search
 » Binary Search
 » Search by Hashing

Chapter

6.1 IntroductIon

We store many things in our home and find them
out later as and when required. Sometimes we
remember the exact location of a required item.
But, sometimes we do not remember the exact
location and in that case we need to search for
the required item. A computer also stores lots of
data to be retrieved later as and when demanded
by a user or a program.

Searching means locating a particular
element in a collection of elements. Search result
determines whether that particular element is
present in the collection or not. If it is present,
we can also find out the position of that element
in the given collection. Searching is an important
technique in computer science. In order to design
algorithms, programmers need to understand the
different ways in which a collection of data can be
searched for retrieval.

6 Searching

“Even though most people won't be directly
involved with programming, everyone is affected

by computers, so an educated person should have
a good understanding of how computer hardware,

software, and networks operate.”

— Brian Kernighan

Chpater-6.indd 81 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing82

6.2 LInear Search

Linear search is the most fundamental and the simplest
search method. It is an exhaustive searching technique
where every element of a given list is compared with
the item to be searched (usually referred to as ‘key’).
So, each element in the list is compared one by one
with the key. This process continues until an element
matching the key is found and we declare that the
search is successful. If no element matches the key and
we have traversed the entire list, we declare the search
is unsuccessful i.e., the key is not present in the list.
This item by item comparison is done in the order, in
which the elements are present in the list, beginning at
the first element of the list and moving towards the last.
Thus, it is also called sequential search or serial search.
This technique is useful for collection of items that are
small in size and are unordered.

Given a list numList of n elements and key value K,
Algorithm 6.1 uses a linear search algorithm to find the
position of the key K in numList.

Algorithm 6.1 : Linear Search
LinearSearch(numList, key, n)
Step 1: SET index = 0

Step 2: WHILE index < n, REPEAT Step 3

Step 3: IF numlist[index]= key THEN
 PRINT “Element found at position”, index+1
 STOP
 ELSE
 index = index+1

Step 4: PRINT “Search unsuccessful”

Example 6.1 Assume that the numList has seven elements
[8, -4, 7, 17, 0, 2, 19] so, n = 7. We need to search for the key,
say 17 in numList. Table 6.1 shows the elements in the given
list along with their index values.

Table 6.1 Elements in numList alongwith their index value

Index in numList 0 1 2 3 4 5 6

Value 8 -4 7 17 0 2 19

The step-by-step process of linear search using
Algorithm 6.1. is given in Table 6.2.

Activity 6.1

Consider a list of 15
elements:
L=[2,3,9,7,-
6,11,12,17,45,23,29,
31,-37,41,43].
Determine the number
of comparisons
linear search
makes to search
for key = 12.

Chpater-6.indd 82 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing 83

Observe that after four comparisons, the algorithm
found the key 17 and will display ‘Element found at
position 4’.

Let us now assume another arrangement of the
elements in numList as [17, 8, -4, 7, 0, 2, 19] and search
for the key K=17 in numList.
Table 6.3 Elements in numList alongwith their index value

Index in numList 0 1 2 3 4 5 6

Value 17 8 -4 7 0 2 19

Table 6.2 Linear search for key 17 in numList of Table 6.1

index index < n numList[index]= key index=index+1

0 0 < 7 ? Yes 8 = 17? No 1

1 1 < 7 ? Yes -4 = 17? No 2

2 2 < 7 ? Yes 7 = 17? No 3

3 3 < 7 ? Yes 17 = 17? Yes

Table 6.4 Linear search for key 17 in numList given in Table 6.3

index index < n
numList[index]=

key
index=index+1

0 0 < 7 ? Yes 17 = 17? Yes 1

From Table 6.4, it is clear that the algorithm had
to make only 1 comparison to display ‘Element found
at position 1’. Thus, if the key to be searched is the
first element in the list, the linear search algorithm
will always have to make only 1 comparison. This is
the minimum amount of work that the linear search
algorithm would have to do.

Let us now assume another arrangement of the
elements in numList as [8, -4, 7, 0, 2, 19, 17] and search
for the key K =17 in numList.

On a dry run, we can find out that the linear search
algorithm has to compare each element in the list till
the end to display ‘Element found at position 7’. Thus,
if the key to be searched is the last element in the
list, the linear search algorithm will have to make n
comparisons, where n is the number of elements in the
list. This is in fact the maximum amount of work the
linear search algorithm would have to do.

Activity 6.2

In the list : L = [7,-1,
11,32,17,19,23,29,31,
37,43]
Determine the number
of comparisons
linear search takes
to search for key
= 43.

Chpater-6.indd 83 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing84

Let us now assume another case, where the key
being searched is not present in the list. For example,
we are searching for key = 10 in the numList.

In this case also, the algorithm has to compare each
element in the list till the end to display ‘Element is
not found in the list’. Thus, if the key is not present in
the list, the linear search algorithm will have to make
n comparisons. This again is a case where maximum
work is done. Let us now understand the program of
a Linear Search. It takes a list of elements and the key
to be searched as input and returns either the position
of the element in the list or display that the key is not
present in the list.

Program 6-1 Linear Search

def linearSearch(list, key): #function to perform the search
 for index in range(0,len(list)):
 if list[index] == key: #key is present
 return index+1 #position of key in list
 return None #key is not in list
#end of function

list1 = [] #Create an empty list
maximum = int(input("How many elements in your list? "))
print("Enter each element and press enter: ")
for i in range(0,maximum):
 n = int(input())
 list1.append(n) #append elements to the list
print("The List contents are:", list1)

key = int(input("Enter the number to be searched:"))
position = linearSearch(list1, key)
if position is None:
 print("Number",key,"is not present in the list")
else:
 print("Number",key,"is present at position",position)

Output
How many elements in your list? 4
Enter each element and press enter:
12
23
3
-45
The List contents are: [12, 23, 3, -45]
Enter the number to be searched:23
Number 23 is present at position 2

Chpater-6.indd 84 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing 85

6.3 BInary Search

Consider a scenario where we have to find the meaning
of the word Zoology in an English dictionary. Where do
we search it in the dictionary?

1. in the first half?
2. around the middle?
3. in the second half?
It is certainly more prudent to look for the word in the

second half of the dictionary as the word starts with the
alphabet ‘Z’. On the other hand, if we were to find the
meaning of the word Biology, we would have searched
in the first half of the dictionary.

We were able to decide where to search in the
dictionary because we are aware of the fact that all words
in an English dictionary are placed in alphabetical order.
Taking advantage of this, we could avoid unnecessary
comparison through each word beginning from the first
word of the dictionary and moving towards the end till
we found the desired word. However, if the words in the
dictionary were not alphabetically arranged, we would
have to do linear search to find the meaning of a word.

The binary search is a search technique that makes
use of the ordering of elements in the list to quickly
search a key. For numeric values, the elements in the
list may be arranged either in ascending or descending
order of their key values. For textual data, it may
be arranged alphabetically starting from a to z or
from z to a.

In binary search, the key to be searched is compared
with the element in the middle of a sorted list. This
could result in either of the three possibilities:

i) the element at the middle position itself matches
the key or

ii) the element at the middle position is greater than
the key or

iii) the element at the middle position is smaller than
the key

If the element at the middle position matches the
key, we declare the search successful and the searching
process ends.

noteS

Chpater-6.indd 85 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing86

If the middle element is greater than the key it means
that if the key is present in the list, it must surely be
in the first half. We can thus straight away ignore the
second half of the list and repeat the searching process
only in the first half.

If the middle element is less than the key, it means
if the key is present in the list, it must be in the second
half. We can thus straight away ignore the first half of
the list and repeat the searching process only in the
second half. This splitting and reduction in list size
continued till the key is either found or the remaining
list consists of only one item. If that item is not the
key, then the search is unsuccessful as the key is not
in the list.

Thus, it is evident that unlike linear search of
elements one-by-one, we can search more efficiently
using binary search provided the list from which we
want to search is arranged in some order. That is, the
list needs to be sorted.

If the list to be searched contains an even number
of elements, the mid value is calculated using the floor
division (//) operator. If there are 10 elements in the list,
then the middle position (mid) = 10//2 = 5. Therefore,
the sixth element in the list is considered the middle
element as we know that the first element in list has
index value 0. If required, the list is further divided into
two parts where the first half contains 5 elements and
the second half contains 4 elements.

It is interesting to note that the intermediate
comparisons which do not find the key still give us
information about the part of the list where the key
may be found! They reveal whether the key is before or
after the current middle position in the list, and we use
this information to narrow down or reduce our search
area. Thus, each unsuccessful comparison reduces the
number of elements remaining to be searched by half,
hence the name binary search. Let us now discuss the
algorithm of binary search.

Given a list numList of n elements and key value K,
Algorithm 6.2 shows steps for finding position of the
key K in the numList using binary search algorithm.

Activity 6.3

Consider the numList
[17, 8, -4, 7, 0, 2,
19]. Sort it using
the sort() function of
Python’s Lists. Now
apply binary search
to search for the
key 7. Determine
the number
of iterations
required.

Activity 6.4

Consider a list [-4, 0,
2, 7, 8, 17, 19]. Apply
binary search to find
element -4. Determine
the number of key
comparisons
required.

We are using the
term iteration and

not comparison
in binary search,

because after
every unsuccessful

comparison, we
change the search

area redefining
the first, mid and

last position before
making subsequent

comparisons.

Chpater-6.indd 86 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing 87

Algorithm 6.2: Binary Search
BinarySearch(numList, key)
Step 1: SET first = 0, last = n-1

Step 2: Calculate mid = (first+last)//2

Step 3: WHILE first <= last REPEAT Step 4

Step 4: IF numList[mid] = key

 PRINT “Element found at position”,
 " mid+1
 STOP
 ELSE
 IF numList[mid] > key, THEN last
 = mid-1
 ELSE first = mid + 1

Step 5: PRINT “Search unsuccessful”

Example 6.2 Consider a sorted list comprising of 15 elements:
numList = [2,3,5,7,10,11,12,17,19,23,29,31,3
7,41,43]

We need to search for the key, say 17 in numList. The
first, middle and last element identified in numList
alongwith their index values are shown in Table 6.5.

Table 6.5 Elements in sorted numList alongwith their index value

first mid last

Index in
numList

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Value 2 3 5 7 10 11 12 17 19 23 29 31 37 41 43

Table 6.6 Working of binary search using steps given in Algorithm 6.2.

first last mid numList[mid] == K key < Lmid?

first <=
last

At Start
0 14 (0+14)//

2=7
Not known Not known 0 <= 14?

True

Iteration
1

0 14 7 17 = 17?
Yes

Key is
found. The

search
terminates

Note that the algorithm had to make only 1 iteration
to display ‘Element found at position 8’. This is because
the key being searched is the middle element in the list.
Thus, binary search requires only 1 iteration when the
key to be searched is the middle value in the list. This

The binary search
algorithm does
not change the

list. Rather, after
every pass of the
algorithm, the

search area gets
reduced by half.
That is, only the

index of the element
to be compared with
the key changes in

each iteration.

Chpater-6.indd 87 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing88

is the minimum amount of work binary search would
have to do to confirm that a key is present in the list.

Now, let us search for key 2 in the list.
numList = [2,3,5,7,10,11,12,17,19,23,29,3
1,37,41,43]

In the first iteration, we have the mid value as 17. As
2 is smaller than the mid value (17), we have to search
for the first half of the list in the second iteration. We
now consider only 7 elements. As 2 is smaller than the
new mid value (7), we have to search for the first half of
the remaining list in the third iteration. We now consider
only 3 elements. Observe that the number of elements
in the numList is halved each time. It reduces from 15
elements in iteration 1 to 7 elements in iteration 2,
and to 3 elements in iteration 3. In the 3rd iteration,
the algorithm finds that key 2 is smaller than the
new mid value (3), we have to search in the first half
of the remaining list. The list now has only 1 element
in the fourth iteration and on comparison, it is found
that the element is the same as key. Hence, the search
terminates successfully and returns the position of key.
Steps followed for binary search are given in Table 6.7.

Table 6.7 Searching key = 2 in the numList using binary search

first last mid numList]
mid] == K K < numList[mid] first <= last

At Start 0 14 (0+14)//2=
7

Not known Not known True

Iteration 1
0 14 (0+14)//2=

7
17 = 2?

No
2 < 17?

True
0 <= 14?

True

Iteration 2
0 6 (0+6)//2= 3 7 = 2?

No
2 < 7?
True

0 <= 6?
True

Iteration 3
0 2 (0+2)//2= 1 3 = 2?

No
2 < 3?
True

0 <= 2?
True

Iteration 4
0 0 (0+0)//2= 0 2 = 2?

Yes
Key found, search
Terminates, return

position as (mid+1)=1

As we can see, the binary search algorithm had to
make 4 iterations to narrow down the list to a single
element and decide that the search key is the first
element of list. This is clearly the maximum work
required to find a key in the given list.

Activity 6.5

 For L = [2,3,5,7,10,1
1,12,17,19,23,29,31,
37,41,43]. Fill up the
Table 6.8 for the given
key values 2, 43, 17
and 9. What do you
infer from Table 6.8
regarding performance
of both the
algorithms in
different cases?

Chpater-6.indd 88 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing 89

Program 6-2 Binary Search

def binarySearch(list, key):
 first = 0
 last = len(list) - 1
 while(first <= last):
 mid = (first + last)//2
 if list[mid] == key:
 return mid
 elif key > list[mid]:
 first = mid + 1
 elif key < list[mid]:
 last = mid - 1
 return -1

list1 = [] #Create an empty list
print ("Create a list by entering elements in ascending order")
print ("press enter after each element, press -999 to stop")
num = int(input())
while num!=-999:
 numLIST.append(num)
 num = int(input())
n = int(input("Enter the key to be searched: "))
pos = binarySearch(numList,n)
if(pos != -1):
 print(n,"is found at position", pos+1)
else:
 print (n,"is not found in the list ")

Output
Create a list by entering elements in ascending order
press enter after each element, press -999 to stop
1
3
4
5
-999
Enter the number to be searched: 4
4 is found at position 3

Second run of the program with different data:
Create a list by entering elements in ascending order
press enter after each element, press -999 to stop
12
8
3
-999
Enter the number to be searched: 4
4 is not found in the list

Chpater-6.indd 89 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing90

6.3.1 Applications of Binary Search

• Binary search has numerous applications including
– searching a dictionary or a telephone directory,
finding the element with minimum value or maximum
value in a sorted list, etc.

• Modified binary search techniques have far reaching
applications such as indexing in databases,
implementing routing tables in routers, data
compression code, etc.

6.4 Search By haShIng

Hashing is a technique which can be used to know the
presence of a key in a list in just one step. The idea is if
we already know the value at every index position in a
list, it would require only a single comparison to check
the presence or absence of a key in that list. Hashing
makes searching operations very efficient. A formula
called hash function is used to calculate the value at an
index in the list.

Thus, a hash function takes elements of a list one
by one and generates an index value for every element.
This will generate a new list called the hash table. Each
index of the hash table can hold only one item and the
positions are indexed by integer values starting from 0.
Note that the size of the hash table can be larger than
the size of the list.

A simple hash function that works with numeric
values is known as the remainder method. It takes
an element from a list and divides it by the size of the
hash table. The remainder so generated is called the
hash value.

h(element) = element % size(hash table)
 We can easily implement a hash table using a

Python’s List. Let us consider an empty hash table
having 10 positions as shown in Table 6.8:

Suppose a list has
more than one
element whose
modulo division
results in same
remainder value. In
such situations, what
kind of hashing may
be useful?

Table 6.8 An Empty hash table with 10 positions

Index/
position

0 1 2 3 4 5 6 7 8 9

Value None None None None None None None None None None

Let us consider a list of numbers (34, 16, 2, 93,
80, 77, 51). We can use the hash function remainder

Chpater-6.indd 90 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing 91

Now, to search for a key, we can calculate its index
using the hashing function and compare the element at
that index with the key to declare whether the element is
present in the list or not. This search operation involves
just one comparison and hence the same amount of
time is always required to search a key irrespective of
the size of the list.

method explained earlier to create a hash table as
shown in Table 6.9.

Table 6.9 hash function element % 10 applied on the elements of list

Element 34 16 2 93 80 77 51

Hash Value 34%10=4 16%10=6 2%10=2 93%10=3 80%10=0 77%10=7 51%10=1

Table 6.10 hash table generated for elements given in Table 6.10

index 0 1 2 3 4 5 6 7 8 9

Value 80 51 2 93 34 None 16 77 None None

Program 6-3 Use of hashing to find a key in the given list L

#Function to check if a key is present or not
def hashFind(key,hashTable):
 if (hashTable[key % 10] == key): #key is present
 return ((key % 10)+1) #return the position
 else:
 return None #key is not present
#end of function

#create hashTable with 10 empty positions
hashTable=[None, None, None, None, None, None, None, None, None,
None]
print("We have created a hashTable of 10 positions:")
print(hashTable)

L = [34, 16, 2, 93, 80, 77, 51]
print("The given list is", L[::])

Apply hash function
for i in range(0,len(L)):
 hashTable[L[i]%10] = L[i]

After computing the hash values, each element is
inserted at its designated position in the hash table
shown in Table 6.10

Chpater-6.indd 91 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing92

print("The hash table contents are: ")
for i in range(0,len(hashTable)):
 print("hashindex=", i," , value =", hashTable[i])

key = int(input("Enter the number to be searched:"))

position = hashFind(key,hashTable)
if position is None:
 print("Number",key,"is not present in the hash table")
else:
 print("Number ",key," present at ",position, " position")

Output:
We have created a hashTable of 10 positions:
[None, None, None, None, None, None, None, None, None, None]
The given list is [34, 16, 2, 93, 80, 77, 51]
The hash table contents are:
hashindex= 0 , value = 80
hashindex= 1 , value = 51
hashindex= 2 , value = 2
hashindex= 3 , value = 93
hashindex= 4 , value = 34
hashindex= 5 , value = None
hashindex= 6 , value = 16
hashindex= 7 , value = 77
hashindex= 8 , value = None
hashindex= 9 , value = None
Enter the number to be searched:16
Number 16 present at 7 position

6.4.1 COLLISION
The hashing technique works fine if each element of the
list maps to a unique location in the hash table. Consider
a list [34, 16, 2, 26, 80]. While applying the
hash function say, list [i]%10, two elements (16 and
26) would have a hash value 6. This is a problematic
situation, because according to our definition, two or
more elements cannot be in the same position in the
list. This situation is called collision in hashing.

We must have a mechanism for placing the other
items with the same hash value in the hash table. This
process is called collision resolution. Collision can be
resolved in many ways, but it is beyond the scope of this
book to discuss collision resolution methods.

Chpater-6.indd 92 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing 93

noteSIf every item of the list maps to a unique index in
the hash table, the hash function is called a perfect
hash function. If a hash function is perfect, collision will
never occur.

Apart from modulo division method, hash functions
may be based on several other techniques like integer
division, shift folding, boundary folding, mid-square
function, extraction, radix transformation, etc.
Again, it is beyond the scope of this book to discuss
these methods.

The time taken by different hash functions may be
different, but it remains constant for a particular hash
function. The advantage of hashing is that the time
required to compute the index value is independent of
the number of items in the search list. It is to remember
that the cost of computing a hash function must be
small enough to make a hashing-based searching more
efficient than other search methods.

Summary

• Searching means trying to locate a particular
element called key in a collection of elements.
Search specifies whether that key is present in the
collection or not. Also, if the key is present, it tells
the position of that key in the given collection.

• Linear search checks the elements of a list, one at
a time, without skipping any element. It is useful
when we need to search for an item in a small
unsorted list, but it is slow and time-consuming
when the list contains a large number of items.
The time taken to search the list increases as the
size of the list increases.

• Binary search takes a sorted/ordered list and
divides it in the middle. It then compares the
middle element with the key to be searched. If
the middle element matches the key, the search
is declared successful and the program ends. If
the middle element is greater than the key, the
search repeats only in the first half of the list.
If the middle element is lesser than the key, the
search repeats only in the second half of the list.

Chpater-6.indd 93 11-09-2020 16:39:20

2021–22

Computer SCienCe - ClaSS Xii SearChing94

exercISe
1. Using linear search determine the position of 8, 1, 99

and 44 in the list:
 [1, -2, 32, 8, 17, 19, 42, 13, 0, 44]

 Draw a detailed table showing the values of the
variables and the decisions taken in each pass of linear
search.

2. Use the linear search program to search the key with
value 8 in the list having duplicate values such as [42,
-2, 32, 8, 17, 19, 42, 13, 8, 44]. What is the
position returned? What does this mean?

3. Write a program that takes as input a list having a mix
of 10 negative and positive numbers and a key value.

noteS This splitting and reduction in list size continue
till the key is found or the remaining list consists
of only one item.

• In binary search, comparisons that do not find the
key still give us idea about the location where the
key may probably be found! They reveal whether
the key is before or after the current middle position
in the list, and we can use this information to
narrow down or reduce our searching efforts.

• Hash based searching requires only one key
comparison to discover the presence or absence
of a key, provided every element is present at its
designated position decided by a hash function.
It calculates the position of the key in the list
using a formula called the hash function and the
key itself.

• When two elements map to the same slot in the
hash table, it is called collision.

• The process of identifying a slot for the second
and further items in the hash table in the event of
collision, is called collision resolution.

• A perfect hash function maps every input key
to a unique index in the hash table. If the hash
function is perfect, collisions will never occur.

Chpater-6.indd 94 11-09-2020 16:39:21

2021–22

Computer SCienCe - ClaSS Xii SearChing 95

Apply linear search to find whether the key is present in
the list or not. If the key is present it should display the
position of the key in the list otherwise it should print
an appropriate message. Run the program for at least 3
different keys and note the result.

4. Write a program that takes as input a list of 10 integers
and a key value and applies binary search to find
whether the key is present in the list or not. If the key is
present it should display the position of the key in the
list otherwise it should print an appropriate message.
Run the program for at least 3 different key values and
note the results.

5. Following is a list of unsorted/unordered numbers:
 [50, 31, 21, 28, 72, 41, 73, 93, 68, 43, 45, 78,

5, 17, 97, 71, 69, 61, 88, 75, 99, 44, 55,9]

• Use linear search to determine the position of 1, 5,
55 and 99 in the list. Also note the number of key
comparisons required to find each of these numbers
in the list.

• Use a Python function to sort/arrange the list in
ascending order.

• Again, use linear search to determine the position of
1, 5, 55 and 99 in the list and note the number of
key comparisons required to find these numbers in
the list.

• Use binary search to determine the position of 1, 5,
55 and 99 in the sorted list. Record the number of
iterations required in each case.

6. Write a program that takes as input the following
unsorted list of English words:

 [Perfect, Stupendous, Wondrous, Gorgeous, Awesome,
Mirthful, Fabulous, Splendid, Incredible,
Outstanding, Propitious, Remarkable, Stellar,
Unbelievable, Super, Amazing].

• Use linear search to find the position of Amazing,
Perfect, Great and Wondrous in the list. Also
note the number of key comparisons required to find
these words in the list.

• Use a Python function to sort the list.
• Again, use linear search to determine the position of

Amazing, Perfect, Great and Wondrous in the
list and note the number of key comparisons required
to find these words in the list.

• Use binary search to determine the position of
Amazing, Perfect, Great and Wondrous in the
sorted list. Record the number of iterations required
in each case.

noteS

Chpater-6.indd 95 11-09-2020 16:39:21

2021–22

Computer SCienCe - ClaSS Xii SearChing96

7. Estimate the number of key comparisons required in
binary search and linear search if we need to find the
details of a person in a sorted database having 230
(1,073,741,824) records when details of the person being
searched lies at the middle position in the database.
What do you interpret from your findings?

8. Use the hash function: h(element)= element%11
to store the collection of numbers: [44, 121, 55,
33, 110, 77, 22, 66] in a hash table. Display the
hash table created. Search if the values 11, 44, 88
and 121 are present in the hash table, and display the
search results.

9. Write a Python program by considering a mapping of list
of countries and their capital cities such as:

 CountryCapital= {'India':'New Delhi','UK':
 'London','France':'Paris',
 'Switzerland': 'Berne',
 'Australia': 'Canberra'}

Let us presume that our hash function is the length
of the Country Name. Take two lists of appropriate size:
one for keys (Country) and one for values (Capital). To put
an element in the hash table, compute its hash code by
counting the number of characters in Country, then put
the key and value in both the lists at the corresponding
indices. For example, India has a hash code of 5. So, we
store India at the 5th position (index 4) in the keys list,
and New Delhi at the 5th position (index 4) in the values
list and so on. So that we end up with:

hash index = length
of key - 1 List of Keys List of Values

0 None None

1 UK London

2 None None

3 Cuba Havana

4 India New Delhi

5 France Paris

6 None None

7 None None

8 Australia Canberra

9 None None

10 Switzerland Berne

 Now search the capital of India, France and the USA
in the hash table and display your result.

noteS

Chpater-6.indd 96 11-09-2020 16:39:21

2021–22

