Verify the Algebraic Identity $a^3+b^3 = (a+b)(a^2-ab+b^2)$

OBJECTIVE

To verify the algebraic identity $a^3+b^3 = (a+b)(a^2-ab+b^2)$.

Materials Required

- 1. Acrylic sheets
- 2. Geometry box
- 3. Adhesive/Cello-tape
- 4. Cutter
- 5. Scissors

Prerequisite Knowledge

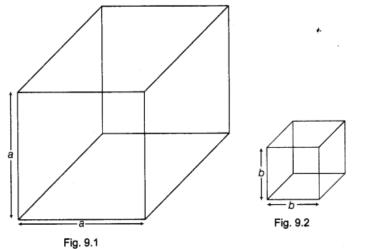
- 1. Concept of cuboid and its volume.
- 2. Concept of cube and its volume.

Theory

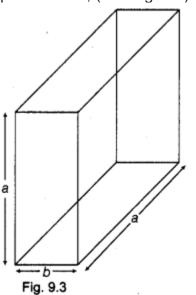
- 1. For concept of cuboid and its volume refer to Activity 7.
- 2. For concept of cube and its volume refer to Activity 7.

Procedure

1. Make a cube of side a units and another cube of side b units by using acrylic sheets and cello-tape/adhesive, (see Fig. 9.1 and 9.2)



2. Make a cuboid of dimensions a x a x b using acrylic sheet and cellotape/adhesive, (see Fig. 9.3)



3. Make a cuboid of dimensions a x b x b using acrylic sheet and cellotape/adhesive, (see Fig. 9.4)

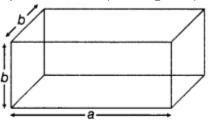
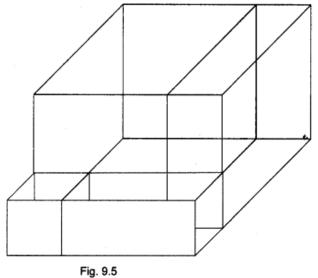
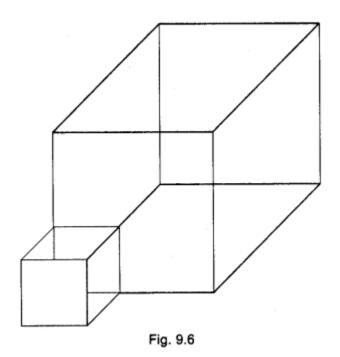


Fig. 9.4

4. Arrange these cubes and cuboids as shown in Fig. 9.5.



5. On removing cuboids of dimensions a x a x b and a x b x b from the solid obtained in Fig. 9.5, to get another solid as shown in Fig. 9.6.



Demonstration

In Fig. 9.1, volume of cube of side a units = a^3 In Fig. 9.2, volume of cube of side b units = b^3 In Fig. 9.3, volume of cuboid of dimensions a, a and b = a^2b In Fig. 9.4, volume of cuboid of dimensions a, b and b = ab^2 Volume of the solid obtained in Fig. 9.5 = Total volume of all cubes and cuboids = $a^3 + b^3 + ab^2 + a^2b = a^2(a + b) + b^2(a + b)$ = $(a + b) (a^2 + b^2)$

After removing cuboids of volume $a^{2}b$ (i.e. $a \ge a \ge b$) and ab^{2} (i.e. $a \ge b \ge b$) from solid obtained in Fig. 9.6. So, volume of solid in Fig. 9.6 = $(a + b) (a^{2} + b^{2}) - a^{2}b - ab^{2}$ = $(a + b) (a^{2} + b^{2}) - ab (a + b) = (a + b) (a^{2} + b^{2} - ab)$ Also, volume of solid in Fig. 9.6 = a^{3} + b^{3} Hence, $a^{3}+b^{3} = (a+b) (a^{2}-ab+b^{2})$. Here, volume is in cubic units.

Observation

On actual measurement, we get $a = \dots, b = \dots,$ So, $a^3 = \dots, b^3 = \dots, a + b = \dots,$ $(a + b) a^2 = \dots, (a + b)b^2 = \dots,$ $a^2b = \dots, ab^2 = \dots,$ $ab(a + b) = \dots,$ Hence, $a^3+b^3 = (a+b) (a^2-ab+b^2).$

Result

The algebraic identity $a^3+b^3 = (a+b)(a^2-ab+b^2)$ has been verified.

Application

The identity can be used in simplification and factorization of algebraic expressions.

Viva Voce

Question 1:

What is the expanded form of $a^3 + b^3$? **Answer:** Expanded form of $a^3+b^3 = (a+b) (a^2-ab+b^2)$.

Question 2:

What is the condition which satisfy the condition $a^3 + b^3 = 0$? Answer:

a = -b

Question 3:

For evaluating $(90)^3 + (10)^3$, which identity you should follow? **Answer:** $a^3+b^3 = (a+b) (a^2-ab+b^2)$ will be appropriate.

Question 4:

How would you express (a+b)(a² -ab+b²) in shortest form? **Answer:** a³+ b³.

Question 5:

What is the degree of an algebraic identity a³ +b³? **Answer:** The degree of given algebraic identity is 3.

Question 6:

Let a and b be the edges of two cubes. Is $a^3 + b^3$ equal to the sum of volumes of cubes? **Answer:**

Yes

Suggested Activity

By taking a = 3 and b = 7, verify the identity $a^3 + b^3$.