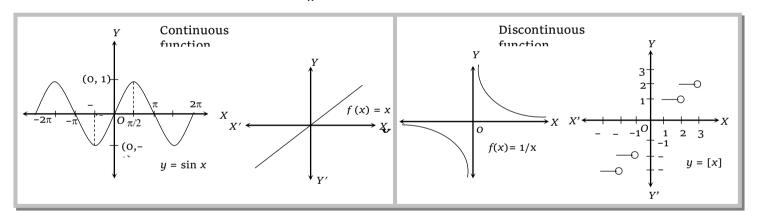
2.3 Continuity

Introduction

The word 'Continuous' means without any break or gap. If the graph of a function has no break, or gap or jump, then it is said to be continuous.

A function which is not continuous is called a discontinuous function.

While studying graphs of functions, we see that graphs of functions $\sin x$, x, $\cos x$, e^x etc. are continuous but greatest integer function [x] has break at every integral point, so it is not continuous. Similarly $\tan x$, $\cot x$, $\sec x$, $\frac{1}{x}$ etc. are also discontinuous function.



2.3.1 Continuity of a Function at a Point

A function f(x) is said to be continuous at a point x = a of its domain iff $\lim_{x \to a} f(x) = f(a)$. *i.e.* a function f(x) is continuous at x = a if and only if it satisfies the following three conditions :

(1) f(a) exists. ('a' lies in the domain of f)

- (2) $\lim_{x \to 1} f(x)$ exist *i.e.* $\lim_{x \to 1} f(x) = \lim_{x \to 1} f(x)$ or R.H.L. = L.H.L.
- (3) $\lim f(x) = f(a)$ (limit equals the value of function).

Cauchy's definition of continuity : A function f is said to be continuous at a point a of its domain D if for every $\varepsilon > 0$ there exists $\delta > 0$ (dependent on ε) such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

Comparing this definition with the definition of limit we find that f(x) is continuous at x = aif $\lim_{x \to a} f(x)$ exists and is equal to f(a) *i.e.*, if $\lim_{x \to a^-} f(x) = f(a) = \lim_{x \to a^+} f(x)$.

Heine's definition of continuity : A function f is said to be continuous at a point a of its domain D, converging to a, the sequence $\langle a_n \rangle$ of the points in D converging to a, the sequence $\langle f(a_n) \rangle$ converges to f(a)i.e. $\lim a_n = a \Rightarrow \lim f(a_n) = f(a)$. This definition is mainly used to prove the discontinuity to a function.

Note : Continuity of a function at a point, we find its limit and value at that point, if these two exist and are equal, then function is continuous at that point.

Formal definition of continuity : The function f(x) is said to be continuous at x = a, in its domain if for any arbitrary chosen positive number $\epsilon > 0$, we can find a corresponding number δ depending on ϵ such that $|f(x) - f(a)| < \epsilon \quad \forall x$ for which $0 < |x - a| < \delta$.

2.3.2 Continuity from Left and Right

Function f(x) is said to be

- (1) Left continuous at x = a if $\lim_{x \to a^{-0}} f(x) = f(a)$
- (2) Right continuous at x = a if $\lim_{x \to a} f(x) = f(a)$.

Thus a function f(x) is continuous at a point x = a if it is left continuous as well as right continuous at x = a.

	$\int x + \lambda, x < 3$					
Example: 1	3x-5, x>3					
	(a) 4	(b) 3	(c) 2	(d) 1		
Solution: (d)	L.H.L. at $x = 3$, $\lim_{x \to 3^{-}} f(x)$	$\lim_{x \to 3^{-}} (x + \lambda)$	$= \lim_{h \to 0} (3 - h + \lambda) = 3 + \lambda$	(i)		
	(a) 4 L.H.L. at $x = 3$, $\lim_{x \to 3^{-}} f(x)$ R.H.L. at $x = 3$, $\lim_{x \to 3^{+}} f(x)$	$x = \lim_{x \to 3^+} (3x - 5)$	$= \lim_{h \to 0} \{3(3+h) - 5\} = 4$	(ii)		
	Value of function $f(3) = 4$			(iii)		
	For continuity at $x = 3$					
	Limit of function = value of function $3 + \lambda = 4 \Rightarrow \lambda = 1$.					
Example: 2	If $f(x) = \begin{cases} x \sin \frac{1}{x}, x \neq 0 \\ k, x = 0 \end{cases}$ is continuous at $x = 0$, then the value of k is [MP PET 1999; AMU 1999; Rajasthan PET 2					
	(a) 1		(c) 0	(d) 2		
Solution: (c)	If function is continuous at $x = 0$, then by the definition of continuity $f(0) = \lim_{x \to 0} f(x)$					
	since $f(0) = k$. Hence, $f(0) = k = \lim_{x \to 0} (x) \left(\sin \frac{1}{x} \right)$					
	\Rightarrow k = 0 (a finite quantity lies between -1 to 1) \Rightarrow k = 0.					
	If $f(x) = \begin{cases} 2x+1 \text{ when } x < 1 \\ k \text{ when } x = 1 \text{ is continuous at } x = 1, \text{ then the value of } k \text{ is } \\ 5x-2 \text{ when } x > 1 \end{cases}$ [Rajasthan PET 2001]					
Example: 3	If $f(x) = \begin{cases} k & \text{when } x = \end{cases}$	1 is continuou	us at $x = 1$, then the value	e of k is [Rajasthan PET 2001]		
	5x-2 when $x=$	> 1				
	(a) 1	(b) 2	(c) 3	(d) 4		
Solution: (c)	Since $f(x)$ is continuous	s at $x = 1$,				
	$\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) =$	<i>f</i> (1)		(i)		
	Now $\lim_{x \to 1^-} f(x) = \lim_{h \to 0} f(1)$	$(-h) = \lim_{h \to 0} 2(1-h)$	$i+1=3$ <i>i.e.</i> , $\lim_{x\to 1^-} f(x)=3$			

	Similarly, $\lim_{x \to 1^+} f(x) = \lim_{h \to \infty} f(x) = \lim_{x \to 1^+} f(x) = \lim_$	$\int_{0}^{h} f(1+h) = \lim_{h \to 0} 5(1+h) - 2 i$.e., $\lim_{x \to 1^+} f(x) = 3$			
	So according to equation (i), we have $k = 3$.					
Example: 4	The value of <i>k</i> which m	akes $f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & x = \\ k, & x \end{cases}$	e^{0} continuous at $x = 0$ is e^{0}	[Rajasthan PET 1993; UPSEAT 19		
	(a) 8	(b) 1	(C) -1	(d) None of these		
Solution: (d)	n: (d) We have $\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin \frac{1}{x} =$ An oscillating number which oscillates l			veen –1 and 1.		
	Hence, $\lim_{x \to 0} f(x)$ does not	t exist. Consequently f	(x) cannot be continuous a	t $x = 0$ for any value of k .		
Example: 5	The value of <i>m</i> for which the function $f(x) = \begin{cases} mx^2, x \le 1 \\ 2x, x > 1 \end{cases}$ is continuous at $x = 1$, is					
	(a) 0	(b) 1	(c) 2	(d) Does not exist		
Solution: (c)	LHL = $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} m(1)$	$(-h)^2 = m$				
	RHL = $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} 2(1+h) = 2$ and $f(1) = m$					
	Function is continuous at $x = 1$, \therefore LHL = RHL = $f(1)$					
	Therefore $m = 2$.					
Example: 6	If the function $f(x) = \begin{cases} (\cos x)^{1/x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at $x = 0$, then the value of k is			e of k is		
	(a) 1	(b) -1	(c) 0	(d) e		

2.3.3 Continuity of a Function in Open and Closed Interval

Open interval : A function f(x) is said to be continuous in an open interval (*a*, *b*) iff it is continuous at every point in that interval.

Note: \Box This definition implies the non-breakable behavior of the function f(x) in the interval (a, b).

Closed interval : A function f(x) is said to be continuous in a closed interval [a, b] iff,

(1) f is continuous in (a, b)

(2) *f* is continuous from the right at 'a' i.e. $\lim_{x \to a^+} f(x) = f(a)$

(3) *f* is continuous from the left at '*b*' *i.e.* $\lim_{x \to a} f(x) = f(b)$.

Example: 7 If the function
$$f(x) = \begin{cases} x + a^2 \sqrt{2} \sin x & , & 0 \le x < \frac{\pi}{4} \\ x \cot x + b & , & \frac{\pi}{4} \le x < \frac{\pi}{2} \\ b \sin 2x - a \cos 2x & , & \frac{\pi}{2} \le x \le \pi \end{cases}$$
 is continuous in the interval [0, π] then the values

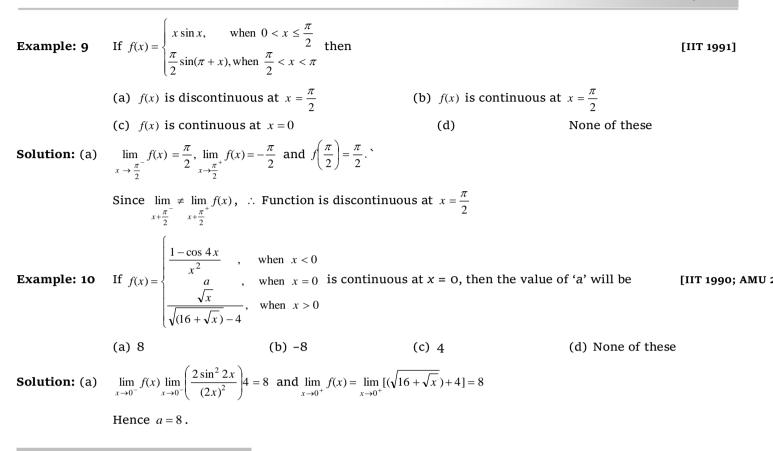
of (*a*, *b*) are

[Roorkee 1998]

(a)
$$(-1, -1)$$
 (b) $(0, 0)$ (c) $(-1, 1)$ (d) $(1, -1)$
Solution: (b) Since *f* is continuous at $x = \frac{\pi}{4}$; $\therefore f(\frac{\pi}{4}) = \int_{h \to 0}^{f} (\frac{\pi}{4} + h) = \int_{h \to 0}^{f} (\frac{\pi}{4} - h) \Rightarrow \frac{\pi}{4} (1) + b = (\frac{\pi}{4} - 0) + a^2 \sqrt{2} \sin(\frac{\pi}{4} - 0)$
 $\Rightarrow \frac{\pi}{4} + b = \frac{\pi}{4} + a^2 \sqrt{2} \sin \frac{\pi}{4} \Rightarrow b = a^2 \sqrt{2} \cdot \frac{1}{\sqrt{2}} \Rightarrow b = a^2$
Also as *f* is continuous at $x = \frac{\pi}{2}$; $\therefore f(\frac{\pi}{2}) = \lim_{x \to \frac{\pi}{2} \to 0} f(x) = \lim_{h \to 0} f(\frac{\pi}{2} - h)$
 $\Rightarrow b \sin 2\frac{\pi}{2} - a \cos 2\frac{\pi}{2} = \lim_{h \to 0} [(\frac{\pi}{2} - h) \cot(\frac{\pi}{2} - h) + b] \Rightarrow b \cdot 0 - a(-1) = 0 + b \Rightarrow a = b$.
Hence (0, 0) satisfy the above relations.
Example: 8 If the function $f(x) = \begin{cases} 1 + \sin \frac{\pi}{2} & for -\infty < x \le 1 \\ 6 \tan \frac{x\pi}{2} & for -3 \le x < 6 \end{cases}$ (MP PET 1998]
(a) 0, 2 (b) 1, 1 (c) 2, 0 (d) 2, 1
Solution: (c) \therefore The turning points for $f(x)$ are $x = 1, 3$.
So, $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} a(1 + h) + b = a + b$
 $\therefore f(x) is continuous at $x = 1$, so $\lim_{x \to 1^+} f(x) = f(1)$
 $\Rightarrow 2 = a + b$ (1)
Again, $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(3 - h) = \lim_{h \to 0} a(3 - h) + b = 3a + b$ and $\lim_{x \to 3^+} f(x) = \lim_{h \to 0} f(3 + h) = \lim_{h \to 0} \tan \frac{\pi}{12}(3 + h) = 6$
 $f(x)$ is continuous at $(-\alpha, 6)$, so it is continuous at $x = 3$ also, so $\lim_{x \to 3^+} f(x) = \lim_{h \to 0} f(x) = 6$
 $f(x)$ is continuous in $(-\alpha, 6)$, so it is continuous at $x = 3$ also, so $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} f(x) = b = 0$.
Trick : In above type of questions first find out the turning points. For example in above question the function at these points and if they are same then the function is i.e., in above problem.$

$$f(x) = \begin{cases} 1 + \sin\frac{\pi}{2}x \; ; \; -\infty < x \le 1, & f(1) = 2\\ ax + b \; ; \; 1 < x < 3 \; f(1) = a + b, f(3) = 3a + b\\ 6 \tan\frac{\pi x}{12} \; ; \; 3 \le x < 6 \; f(3) = 6 \end{cases}$$

Which gives 2 = a + b and 6 = 3a + b after solving above linear equations we get a = 2, b = 0.



2.3.4 Continuous Function

(1) A list of continuous functions :

Function $f(x)$	Interval in which $f(x)$ is continuous
(i) Constant <i>K</i>	(−∞, ∞)
(ii) x^n , (<i>n</i> is a positive integer)	(<i>−∞</i> , ∞)
(iii) x^{-n} (<i>n</i> is a positive integer)	$(-\infty, \infty) - \{0\}$
(iv) $ x - a $	(<i>−∞</i> , ∞)
(V) $p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$	$(-\infty, \infty)$
(vi) $\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial in	$(-\infty,\infty)$ - $\{x:q(x)=0\}$
x	
(vii) $\sin x$	$(-\infty, \infty)$
(viii) $\cos x$	$(-\infty, \infty)$
(ix) $\tan x$	$(-\infty, \infty) - \{(2n + 1)\pi/2 : n \in I\}$
(x) $\cot x$	$(-\infty, \infty) - \{n\pi : n \in I\}$
(xi) $\sec x$	$(-\infty, \infty) - \{(2n+1)\pi/2 : n \in I\}$

(xii) cosec x	$(-\infty, \infty) - \{n\pi : n \in I\}$
(xiii) e^x	$(-\infty, \infty)$
(xiv) $\log_e x$	(0,∞)

(2) **Properties of continuous functions :** Let f(x) and g(x) be two continuous functions at x = a. Then

(i) cf(x) is continuous at x = a, where c is any constant

(ii) $f(x) \pm g(x)$ is continuous at x = a.

(iii) f(x). g(x) is continuous at x = a.

(iv) f(x)/g(x) is continuous at x = a, provided $g(a) \neq 0$.

Important Tips

- $\overset{\circ}{=}$ A function f(x) is said to be continuous if it is continuous at each point of its domain.
- *[∞]* A function f(x) is said to be everywhere continuous if it is continuous on the entire real line R i.e. $(-\infty, \infty)$. eg. polynomial function e^x , $\sin x$, $\cos x$, constant, x^n , |x-a| etc.
- *The second second a continuous function is a continuous function.*
- The formula of the formula f(x) is continuous at x = g(a) then (fog) (x) is continuous at x = a.
- *Therefore For the second se*
- ^{*s*} *If* f(x) *is* a continuous function defined on [*a*, *b*] such that f(a) and f(b) are of opposite signs, then there is atleast one value of *x* for which f(x) vanishes. *i.e. if* f(a)>0, $f(b) < 0 \Rightarrow \exists c \in (a, b)$ such that f(c) = 0.

Therefore f(x) is continuous on [a, b] and maps [a, b] into [a, b] then for some $x \in [a, b]$ we have f(x) = x.

(3) **Continuity of composite function :** If the function u = f(x) is continuous at the point x = a, and the function y = g(u) is continuous at the point u = f(a), then the composite function y = (gof)(x) = g(f(x)) is continuous at the point x = a.

2.3.5 Discontinuous Function

(1) **Discontinuous function :** A function 'f' which is not continuous at a point x = a in its domain is said to be discontinuous there at. The point 'a' is called a point of discontinuity of the function.

The discontinuity may arise due to any of the following situations.

(i) $\lim_{x \to a^+} f(x)$ or $\lim_{x \to a^-} f(x)$ or both may not exist

(ii) $\lim_{x \to \infty} f(x)$ as well as $\lim_{x \to \infty} f(x)$ may exist, but are unequal.

(iii) $\lim_{x \to a^+} f(x)$ as well as $\lim_{x \to a^-} f(x)$ both may exist, but either of the two or both may not be equal to f(a).

Important Tips

A function *f* is said to have removable discontinuity at x = a if $\lim_{x+a^+} f(x) = \lim_{x+a^-} f(x)$ but their common value is not equal to f(x).

[Roorkee 1988]

Such a discontinuity can be removed by assigning a suitable value to the function f at x = a.

- The $\int_{x \to a}^{\infty} f(x)$ does not exist, then we can not remove this discontinuity. So this become a non-removable discontinuity or essential discontinuity.
- If f is continuous at x = c and g is discontinuous at x = c, then
 (a) f+g and f g are discontinuous
 (b) f.g may be continuous
- The f and g are discontinuous at x = c, then f + g, f g and fg may still be continuous.
- Point functions (domain and range consists one value only) is not a continuous function.

The points of discontinuity of $y = \frac{1}{u^2 + u - 2}$ where $u = \frac{1}{x - 1}$ is Example: 11 (b) $\frac{-1}{2}$, 1, -2 (c) $\frac{1}{2}$, -1, 2 (a) $\frac{1}{2}$, 1, 2 (d) None of these **Solution:** (a) The function $u = f(x) = \frac{1}{x-1}$ is discontinuous at the point x = 1. The function $y = g(x) = \frac{1}{u^2 + u - 2} = \frac{1}{(u + 2)(u - 1)}$ is discontinuous at u = -2 and u = 1when $u = -2 \Rightarrow \frac{1}{x-1} = -2 \Rightarrow x = \frac{1}{2}$, when $u = 1 \Rightarrow \frac{1}{x-1} = 1 \Rightarrow x = 2$. Hence, the composite y = g(f(x)) is discontinuous at three points $= \frac{1}{2}, 1, 2$. The function $f(x) = \frac{\log(1 + ax) - \log(1 - bx)}{x}$ is not defined at x = 0. The value which should be assigned to Example: 12 f at x = 0 so that it is continuous at x = 0, is (a) *a*−*b* (b) a+b(c) $\log a + \log b$ (d) $\log a - \log b$ **Solution:** (b) Since limit of a function is a+b as $x \to 0$, therefore to be continuous at x=0, its value must be a+bat $x = 0 \Rightarrow f(0) = a + b$.

Example: 13 If $f(x) = \begin{cases} \frac{x^2 - 4x + 3}{2}, \text{ for } x \neq 1 \\ 2 \end{cases}$, for $x = 1 \end{cases}$, then [IIT 1972] (a) $\lim_{x \to 1^+} f(x) = 2$ (b) $\lim_{x \to 1^-} f(x) = 3$ (c) f(x) is discontinuous at x = 1 (d) None of these

Solution: (c) $f(1) = 2, f(1+) = \lim_{x \to 1+} \frac{x^2 - 4x + 3}{x^2 - 1} = \lim_{x \to 1+} \frac{(x-3)}{(x+1)} = -1$

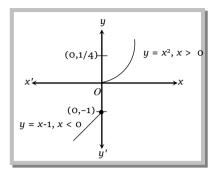
 $f(1-) = \lim_{x \to 1-} \frac{x^2 - 4x + 3}{x^2 - 1} = -1 \Rightarrow f(1) \neq f(1-).$ Hence the function is discontinuous at x = 1.

Example: 14 If $f(x) = \begin{cases} x - 1, x < 0 \\ \frac{1}{4}, x = 0 \end{cases}$, then

(a)
$$\lim_{x \to 0^+} f(x) = 1$$

(b) $\lim_{x \to 0^-} f(x) = 1$
(c) $f(x)$ is discontinuous at $x = 0$
(d) None of these

Solution: (c) Clearly from curve drawn of the given function f(x), it is discontinuous at x = 0.



Let $f(x) = \begin{cases} (1+|\sin x|)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6} < x < 0\\ b, & x = 0 \end{cases}$, then the values of a and b if f is continuous at x = 0, are $e^{\frac{\tan 2x}{\tan 3x}}, & 0 < x < \frac{\pi}{6} \end{cases}$ Example: 15

respectively

(a)
$$\frac{2}{3}, \frac{3}{2}$$
 (b) $\frac{2}{3}, e^{2/3}$ (c) $\frac{3}{2}, e^{3/2}$ (d) None of these
(a) $f(x) = \begin{cases} (1+|\sin x|)^{\frac{a}{|\sin x|}} ; -\left(\frac{\pi}{6}\right) < x < 0 \\ b ; x = 0 \\ \frac{\tan 2x}{e^{\frac{\tan 2x}{\tan 3x}}} ; 0 < x < \left(\frac{\pi}{6}\right) \end{cases}$

Solution: ()

For f(x) to be continuous at x = 0

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x) \Rightarrow \lim_{x \to 0} (1 + |\sin x|)^{\frac{a}{|\sin x|}} = e^{\lim_{x \to 0^{-}} \left(|\sin x| \frac{a}{|\sin x|} \right)} = e^{a}$$

Now, $\lim_{x \to 0^{+}} e^{\tan 2x / \tan 3x} = \lim_{x \to 0^{+}} e^{\left(\frac{\tan 2x}{2x} \cdot 2x\right) / \left(\frac{\tan 3x}{3x} \cdot 3x\right)} = \lim_{x \to 0^{+}} e^{2/3} = e^{2/3}.$
 $\therefore e^{a} = b = e^{2/3} \Rightarrow a = \frac{2}{3} \text{ and } b = e^{2/3}.$

Example: 16 Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y and f(e) = 1, then

(a)
$$f(x) = \text{In } x$$
 (b) $f(x)$ is bounded (c) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ (d) $xf(x) \to 1$ as $x \to 0$
Solution: (a) Let $f(x) = \text{In } (x), x > 0$ $f(x) = \text{In } (x)$ is a continuous function of x for every positive value of x .

$$f\left(\frac{x}{y}\right) = \operatorname{In}\left(\frac{x}{y}\right) = \operatorname{In}(x) - \operatorname{In}(y) = f(x) - f(y).$$

Let $f(x) = [x] \sin\left(\frac{\pi}{[x+1]}\right)$, where [.] denotes the greatest integer function. The domain of f is and Example: 17 the points of discontinuity of f in the domain are (a) $\{x \in R \mid x \in [-1, 0)\}, I - \{0\}$ (b) $\{x \in R \mid x \notin [1,0)\}, I - \{0\}$ (c) { $x \in R | x \notin [-1, 0)$ }, $I - \{0\}$ (d) None of these Solution: (c) Note that [x + 1] = 0 if $0 \le x + 1 < 1$ *i.e.* [x+1] - 0 if $-1 \le x < 0$. Thus domain of *f* is $R - [-1, 0] = \{x \notin [-1, 0)\}$ We have $\sin\left(\frac{\pi}{|x+1|}\right)$ is continuous at all points of R - [-1, 0) and [x] is continuous on R - I, where Idenotes the set of integers. Thus the points where f can possibly be discontinuous are....., $-3, -2, -1, 0, 1, 2, \dots$. But for $0 \le x < 1, [x] = 0$ and $\sin\left(\frac{\pi}{[x+1]}\right)$ is defined. Therefore f(x) = 0 for $0 \le x < 1$. Also f(x) is not defined on $-1 \le x < 0$. Therefore, continuity of f at 0 means continuity of f from right at 0. Since f is continuous from right at 0, f is continuous at 0. Hence set of points of discontinuities of f is $I - \{0\}$. If the function $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}, (x \neq 0)$ is continuous at each point of its domain, then the value of Example: 18 *f*(0) is [Rajasthan PET 2000] (b) 1/3 (c) 2/3 (d) - 1/3 **Solution:** (b) $f(x) = \lim_{x \to 0} \left(\frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \right) = f(0)$, $\left(\frac{0}{0} \text{ form} \right)$ Applying L-Hospital's rule, $f(0) = \lim_{x \to 0} \frac{\left(2 - \frac{1}{\sqrt{1 - x^2}}\right)}{\left(2 + \frac{1}{2}\right)} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$ **Trick**: $f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \Rightarrow \lim_{x \to 0} \frac{2 - \frac{\sin^{-1} x}{x}}{2 + \frac{\tan^{-1} x}{x}} = \frac{2 - 1}{2 + 1} = \frac{1}{3}.$ The values of A and B such that the function $f(x) = \begin{cases} -2\sin x, & x \le -\frac{\pi}{2} \\ A\sin x + B, & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \cos x, & x \ge \frac{\pi}{2} \end{cases}$, is continuous everywhere Example: 19 are

106 Func	tions, Limits, Continu	lity and				
	(a) $A = 0, B = 1$	(b) $A = 1, B = 1$	(c) $A = -1, B = 1$	(d) $A = -1, B = 0$		
Solution: (c)	For continuity at all $x \in R$, we must have $f\left(-\frac{\pi}{2}\right) = \lim_{x \to (-\pi/2)^-} (-2\sin x) = \lim_{x \to (-\pi/2)^+} (A\sin x + B)$					
	$\Rightarrow 2 = -A + B$		(i)			
	and $f\left(\frac{\pi}{2}\right) = \lim_{x \to (\pi/2)^-} (A \sin x +$	$B) = \lim_{x \to (\pi/2)^+} (\cos x)$				
	$\Rightarrow 0 = A + B$		(ii)			
	From (i) and (ii), $A = -1$ as					
Example: 20	If $f(x) = \frac{x^2 - 10x + 25}{x^2 - 7x + 10}$ for x	$x \neq 5$ and f is continuous	at $x = 5$, then $f(5) =$	[EAMCET 2001]		
	(a) 0	(b) 5	(c) 10	(d) 25		
Solution: (a)	$f(5) = \lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x^2 - 10x + 25}{x^2 - 7x + 10} = \lim_{x \to 5} \frac{(x - 5)^2}{(x - 2)(x - 5)} = \frac{5 - 5}{5 - 2} = 0.$					
Example: 21	In order that the function $f(x) = (x + 1)^{\cot x}$ is continuous at $x = 0$, $f(0)$ must be defined as					
			[UPSI	EAT 2000; Haryana CEE 2001]		
	(a) $f(0) = \frac{1}{e}$	(b) $f(0) = 0$	(c) $f(0) = e$	(d) None of these		
Solution: (c)	For continuity at 0, we mu	st have $f(0) = \lim_{x \to 0} f(x)$				
	$= \lim_{x \to 0} (x+1)^{\cot x} = \lim_{x \to 0} \left\{ (1+x)^{\frac{1}{2}} \right\}$) ()	$\left(\frac{x}{\tan x}\right) = e^1 = e \; .$			
Example: 22	The function $f(x) = \sin x $	is		[DCE 2002]		
	(a) Continuous for all <i>x</i>		(b) Continuous only at certain points			
	(c) Differentiable at all po	ints	(d)	None of these		
Solution: (a)	It is obvious.					
Example: 23	If $f(x) = \begin{cases} \frac{1-\sin x}{\pi-2x}, & x \neq \frac{\pi}{2} \\ \lambda, & x = \frac{\pi}{2} \end{cases}$ b	be continuous at $x = \frac{\pi}{2}$, t	then value of λ is	[Rajasthan PET 2002]		
	(a) -1	(b) 1	(c) 0	(d) 2		
Solution: (c)	(c) $f(x)$ is continuous at $x = \frac{\pi}{2}$, then $\lim_{x \to \pi/2} f(x) = f(0)$ or $\lambda = \lim_{x \to \pi/2} \frac{1 - \sin x}{\pi - 2x}$, $\left(\frac{0}{0} \text{ form}\right)$					
	Applying L-Hospital's rule, $\lambda = \lim_{x \to \pi/2} \frac{-\cos x}{-2} \Rightarrow \lambda = \lim_{x \to \pi/2} \frac{\cos x}{2} = 0.$					
Example: 24	4 If $f(x) = \frac{2 - \sqrt{x+4}}{\sin 2x}$; $(x \neq 0)$, is continuous function at $x = 0$, then $f(0)$ equals [MP PET					
	(a) $\frac{1}{4}$	(b) $-\frac{1}{4}$	(c) $\frac{1}{8}$	(d) $-\frac{1}{8}$		
Solution: (d)	If $f(x)$ is continuous at $x =$	0, then, $f(0) = \lim_{x \to 0} f(x) =$	$\lim_{x \to 0} \frac{2 - \sqrt{x+4}}{\sin 2x} \qquad , \left(\frac{0}{0} \text{ form}\right)$	n)		

Using L-Hospital's rule,
$$f(0) = \lim_{x \to 0} \frac{\left(-\frac{1}{2\sqrt{x+4}}\right)}{2\cos 2x} = -\frac{1}{8}$$
.
Example: 25 If function $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 1-x & \text{if } x \text{ is rational} \end{cases}$, then $f(x)$ is continuous at number of points
(a) ∞ (b) 1 (c) \circ (d) None of these
Solution: (c) At no point, function is continuous.
Example: 26 The function defined by $f(x) = \begin{cases} \left(x^2 + e^{\frac{1}{2-x}}\right)^{-1} & x \neq 2, \text{ is continuous from right at the point } x = 2, \text{ then } x = 2 \end{cases}$
(a) \circ (b) 1/4 (c) -1/4 (d) None of these
Solution: (b) $f(x) = \left[x^2 + e^{\frac{1}{2-x}}\right]^{-1}$ and $f(2) = k$
If $f(x)$ is continuous from right at $x = 2$ then $\lim_{x \to 2^2} f(x) = f(2) = k$
If $f(x)$ is continuous from right at $x = 2$ then $\lim_{x \to 2^2} f(x) = f(2) = k$
 $x = \lim_{x \to 2^2} \left[x^2 + e^{\frac{1}{2-x}}\right]^{-1} = k \Rightarrow k = \lim_{k \to 0} f(2+h) \Rightarrow k = \lim_{k \to 0} \left[(2+h)^2 + e^{\frac{1}{2-(2+h)}}\right]^{-1}$
 $\Rightarrow k = \lim_{k \to 0} \left[4+h^2+4h+e^{-1/h}\right]^{-1} \Rightarrow k = [4+0+0+e^{-x}]^{-1} \Rightarrow k = \frac{1}{4}$.
Example: 27 The function $f(x) = \frac{1-\sin x + \cos x}{1+\sin x + \cos x}$ is not defined at $x = \pi$. The value of $f(\pi)$, so that $f(\pi)$ is continuous at $x = \pi$, is
(a) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (c) -1 (d) 1

Solution: (c) $\lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{2 \cos^2 \frac{x}{2} - 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2} \cos \frac{x}{2}} = \lim_{x \to \pi} \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} = \lim_{x \to \pi} \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)$ $\therefore \text{ At } x = \pi, \ f(\pi) = -\tan \frac{\pi}{4} = -1.$ Example: 28 If $f(x) = \begin{cases} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x} & \text{, for } -1 \le x < 0\\ 2x^2 + 3x - 2 & \text{, for } 0 \le x \le 1 \end{cases}$ is continuous at x = 0, then k =[EAMCET 2003]

(a) -4 (b) -3 (c) -2 (d) -1
(c) L.H.L.
$$= \lim_{x \to 0^{-}} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} = k$$

Solution:

R.H.L. =
$$\lim_{x \to 0^+} (2x^2 + 3x - 2) = -2$$

Since it is continuous, hence L.H.L = R.H.L \Rightarrow k = -2.

| **v** |

Example: 29 The function
$$f(x) = |x| + \frac{|x|}{x}$$
 is

[Karnataka CET 2003]

- (a) Continuous at the origin
- (b) Discontinuous at the origin because |x| is discontinuous there
- (c) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
- (d) Discontinuous at the origin because both |x| and $\frac{|x|}{x}$ are discontinuous there

Solution: (c) |x| is continuous at x = 0 and $\frac{|x|}{x}$ is discontinuous at x = 0

 $\therefore f(x) = |x| + \frac{|x|}{x}$ is discontinuous at x = 0.