Congruence

Exercise 59:

Solution 1:

In figure (1), seg AB and seg CD are congruent since they are of the equal length. Similarly, in figure (3), seg GH and seg EF are congruent since they are of the equal length.

Solution 2:

The pair of congruent line segments are: Seg SP and Seg VK Seg MP and Seg AL Seg UV and Seg MG

Exercise 60:

Solution 1:

- 1. m∠DEF = 30°
- 2. m∠XYZ = 130°
- 3. m∠GHI = 90°
- 4. m∠STU = 90°
- 5. m∠VSK = 30°
- 6. m∠PQR = 130°

Angles of equal measures are congruent. Hence, the pairs of congruent angles are: $m\angle DEF = m\angle VSK = 30^{\circ}$ $\angle DEF \cong \angle VSK$ $\angle XYZ$ and $\angle PQR = 130^{\circ}$ $\angle XYZ \cong \angle PQR$ $\angle GHI$ and $\angle STU = 90^{\circ}$ $\angle GHI \cong \angle STU$

Solution 2:

Angles of equal measures are congruent. Hence, the pairs of congruent angles are : $m \angle J = m \angle D = 42^{\circ}$ Hence, $\angle J \cong \angle D$ $m \angle M = m \angle I = 105^{\circ}$ Hence, $\angle M \cong \angle I$ $m \angle S = m \angle F = 54^{\circ}$ Hence, $\angle S \cong \angle F$ $m \angle W = m \angle H = 113^{\circ}$ Hence, $\angle W \cong \angle H$ $m \angle B = m \angle Y = 90^{\circ}$ Hence, $\angle B \cong \angle Y$

Exercise 61:

Solution 1:

Let \triangle CDE and \triangle STU be the triangles as given below.

One to one correspondence between the vertices of \triangle CDE and \triangle STU can be written in six different ways as follows:

	The correspondence between vertices
(1)	$C \leftrightarrow S, D \leftrightarrow T, E \leftrightarrow U$
(2)	$C \leftrightarrow S, D \leftrightarrow U, E \leftrightarrow T$
(3)	$C \leftrightarrow T, D \leftrightarrow S, E \leftrightarrow U$
(4)	$C \leftrightarrow T, D \leftrightarrow U, E \leftrightarrow S$
(5)	$C \leftrightarrow U, D \leftrightarrow T, E \leftrightarrow S$
(6)	$C \leftrightarrow U, D \leftrightarrow S, E \leftrightarrow T$

Solution 2:

Pairs of corresponding sides: Side DH and side BS Side HP and side SC Side DP and side BC Pairs of corresponding angles: $\angle D$ and $\angle B$ $\angle H$ and $\angle S$ $\angle P$ and $\angle C$

Solution 3:

The given one to one correspondence between the vertices is shown above using arrows.

Exercise 62:

Solution 1:

The correspondence between the components of $\triangle ABC$ and $\triangle SML$ can be written using symbols as follows:

	Pairs of congruent corresponding angles
(1)	$\angle A \cong \angle S$
(2)	$\angle B \cong \angle L$
(3)	$\angle C \cong \angle M$

	Pairs of congruent corresponding sides
(1)	Side AB \cong Side SL
(5)	Side BC \cong Side LM
(6)	Side AC \cong Side SM

Solution 2:

Figure	Congruent corresponding angles	Congruent corresponding sides
(1)	$\angle M \cong \angle A$	Side MG ≅ Side AC
	$\angle G \cong \angle C$	Side GK ≅ Side CD
	$\angle K \cong \angle D$	Side MK \cong Side AD
(2)	$\angle L \cong \angle D$	Side LM \cong Side DG
	$\angle M \cong \angle G$	Side MK \cong Side GC
	$\angle K \cong \angle C$	Side LK \cong Side DC
(3)	$\angle A \cong \angle P$	Side AV \cong Side PN
	$\angle V \cong \angle N$	Side VZ ≅ Side NJ
	$\angle Z \cong \angle J$	Side AZ \cong Side PJ
(4)	$\angle P \cong \angle R$	Side PN ≅ Side RM
	$\angle N \cong \angle M$	Side NK ≅ Side MD
	$\angle K \cong \angle D$	Side PK ≅ Side RD

Solution 3:

Figure (1): In \triangle PQR and \triangle XYZ, Side QR \cong Side YZ Side PQ \cong Side XZ Side PR \cong Side XY P \leftrightarrow X, Q \leftrightarrow Z and R \leftrightarrow Y Thus, \triangle PQR and \triangle XYZ are congruent by the correspondence PQR \leftrightarrow XZY.

Figure (2): In $\triangle ABC$ and $\triangle DEF$, Side $AC \cong$ Side DF Side $AB \cong$ Side F Side $BC \cong$ Side DE $A \leftrightarrow F, B \leftrightarrow E$ and $C \leftrightarrow D$ Thus, $\triangle ABC$ and $\triangle DEF$ are congruent by the correspondence ABC \leftrightarrow FED.

Exercise 63:

Solution 1:

From the identical marks it can be observed that each side of \Box XYZW is congruent to each side of \Box PQRS.

Hence, we have 16 pairs of identical sides.

Also, since all the angles are right angles, we have 16 pairs of congruent angles.

• two pairs of congruent segments:

Seg YZ \cong Seg QR and Seg XW \cong Seg PS

• two pairs of congruent angles:

 $\angle Y \cong \angle Q \text{ and } \angle Z \cong \angle R$

• The statement \Box XYZW $\cong \Box$ PQRS is true.

The four sides of \Box PQRS are congruent to the corresponding four sides of \Box XYZW and the four angles of \Box PQRS are congruent to the corresponding four angles of \Box XYZW. Hence, the statement \Box XYZW \cong \Box PQRS is true.

Solution 2:

From the identical marks it can be observed that there are 8 pairs of identical sides. Also, there are 16 pairs of congruent angles since all the angles are right angles.

- Two pairs of congruent segments: Seg GF ≅ Seg NM and Seg DG ≅ Seg KN
- Two pairs of congruent angles:
 ∠E ≅ ∠L and ∠G ≅ ∠N
- The statement \Box DEFG $\cong \Box$ KLMN is true.

The four sides of \Box DEFG are congruent to the corresponding four sides of \Box DEFG and the four angles of \Box KLMN are congruent to the corresponding four angles of \Box DEFG. Hence, the statement \Box DEFG $\cong \Box$ KLMN is true.

Solution 3:

Pairs of congruent quadrilaterals are: $\square ABCD \cong \square PGHK \dots [figure (1) and figure (7)]$ $\square SMLK \cong \square EFGH \dots [figure (2) and figure (8)]$ $\square PQRS \cong \square FAXD \dots [figure (4) and figure (6)]$

Exercise 64:

Solution 1:

Congruent circles are:

- Figure (1) and figure (7).
 Figure (2) and figure (5).
 Figure (3) and figure (8).
 Figure (4) and figure (6).