Find Probability of Each Outcome Or a Die

Objective

To find experimental probability of each outcome of a die when it is thrown a large number of times.

Materials Required

- 1. Notebook
- 2. A fair die
- 3. Pen

Prerequisite Knowledge

Basic knowledge of probability and a fair die.

Theory

- 1. For basic knowledge of probability refer to Activity 33.
- 2. A fair die is small cube having dots, 1 to 6 on its faces.

Procedure

- 1. Firstly, divide the whole class in ten groups, say G₁, G₂, G₃,, G₁₀ of a suitable size.
- 2. Allow all groups to throw a die 100 times and ask them to note down the observations, i.e. the number of times the outcomes 1, 2, 3, 4, 5 or 6 come up.
- 3. If 1 appears in all the groups a times. Similarly, count the number of times each of 2, 3, 4, 5 and 6 has appeared. Denote them by b, c, d, e and f, respectively.
- 4. Now, find the probability of each outcome (E) by using the formula,

 $\mathsf{P}(\mathsf{E}) = \frac{Number \quad of \quad times \quad an \quad outcome \quad occurred}{Total \quad number \quad of \quad trials}$

Demonstration

- 1. There are 10 groups and all the groups throw a die 100 times. So, the total number of trials is 1000.
- 2. As, 1 has appeared a times. Hence, experimental probability of 1, P(1) = $\frac{a}{1000}$ similarly, experimental probability of 2, P(2) = $\frac{b}{1000}$ experimental probability of 3, P(3) = $\frac{a}{1000}$ experimental probability of 4, P(4) = $\frac{d}{1000}$ experimental probability of 5, P(5) = $\frac{e}{1000}$ and experimental probability of 6, P(6) = $\frac{f}{1000}$

Observations

Fill the results of your experiment in the table given below.

Outcome/Group	Number of times a number comes up on a die						Total
	1	2	3	4	5	6	
G1							100
G2							100
G3							100
G4							100
G5							100
G6							100
G7							100
G8							100
G9							100
G10					*,		100
Total	a =	b =	c =	d =	e =	f =	1000

Hence,

 $P(1) = \frac{1000}{1000}$ $P(2) = \frac{1000}{1000}$ $P(3) = \frac{1000}{1000}$ $P(4) = \frac{7}{1000}$ $P(5) = \frac{7}{1000}$ $P(6) = \frac{7}{1000}$

Result

We have got the experimental probability of each outcome of a die, when it is thrown a large number of times.

Application

The knowledge of probability is used by many statistical institutions in estimating/predicting next action based on available data.

Viva-Voce

Question 1. How will you define the term trial? Answer: A trial is an action which results in one or several outcomes.

Question 2.

What is the probability of an impossible event? **Answer:** 0

Question 3.

Does the sum of all the probabilities of all possible outcomes of an experiment more than 1? **Answer:**

No, it is equal to 1.

Question 4.

What are the name of scientists who worked on beginning of probability theory? **Answer:**

Pascal and Fermat.

Question 5.

What is the minimum probability of an event? **Answer:**

0

Question 6.

What is the sum of probabilities of an event and probability of complement of an event? **Answer:**

1

Question 7.

What do you mean by favourable outcomes?

Answer:

The outcomes which ensure the occurrence of an event are called favourable outcomes to the event.

Question 8.

What do you understand by a compound event? **Answer:**

A collection of two or more elementary events associated with a random experiment is called compound event.

Suggested Activity

Find the experimental probability of getting an even number on a die when it is thrown a large number of times.