Sector of a circle

Generally sector implies minor sector

Length of arc

$$\widehat{AB} = \frac{\theta}{360^{\circ}} \times 2\pi r$$
e.g. $\theta = 60^{\circ}$, $r = 3 \text{ m}$

$$\widehat{AB} = \frac{60^{\circ}}{360^{\circ}} \times 2\pi \times 3$$

 $= \pi m$

Area of sector

AOBP =
$$\frac{\theta}{360^{\circ}} \times \pi r^2$$

e.g. $\theta = 60^{\circ}$, $r = 3 \text{ m}$
Area = $\frac{60^{\circ}}{360^{\circ}} \times \pi \times 3^2$
= $\frac{3\pi}{2}$ m

Area of segment (APB) =

Area of sector (AOB) - Area of $\triangle AOB$

AREAS RELATED TO CIRCLES

Citcumference Area = πR²

Some Important Formulas :

- 1. Heron's formula : Area of a triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ Where s = Semi-perimeter and a, b, c are the sides of the triangle.
- 2. Area of a triangle = $\frac{1}{2}$ × base × altitude
- 3. Area of an equilateral triangle = $\frac{\sqrt{3}}{4}$ a².
- 4. Area of a rectangle = Length × breadth
- 6. Area of a square of side 'a' = a^2 .
- 7. Length of diagonal of a square of a side 'a' = $\sqrt{2}a$.
- 8. Area of a parallelogram = Base × Height
- 9. Area of a rhombus = $\frac{1}{2}d_1d_2$.

Where d₁ and d₂ are the lengths of its diagonals.

Note:

- If two circles touch each other externally, then the distance between their centres is equal to sum of their radii.
- If two circles touch each other internally, then the distance between their centres is equal to difference of their radii.
- The distance moved by a rotating wheel in one revolution is equal to the circumference of the wheel.

e.g. A I I III B

Area of combination of plane figures

i.

$$r+r+r+r = length of square$$

 $\Rightarrow 4r = 2 : r = 1/2$

$$\Rightarrow 4r = 2 \; ; \; r = 1/2$$
Area of shaded reg. = Area of square
$$- \text{ Area of 4 circles}$$

$$= (2 \times 2) - 4 \times \frac{\pi(1)^2}{4}$$

 $= 4 - \pi$

Sol.

Area of square ABCD = $10 \times 10 = 100 \text{ cm}^2$ Ar. (R₁) + Ar. (R₃)

= Ar. square - Ar. two semicircle of radius 5cm

$$= 100 - 2\left(\frac{1}{2}\pi(5)^2\right) = 100 - 25\pi$$

similarly Ar. (R₂) + Ar. (R₄)= $100 - 25\pi$ So, Area of the shaded region

- = Ar. square $(Ar. R_1 + Ar. R_2 + Ar. R_3 + Ar. R_4)$
- $= 100 (100 25\pi + 100 25\pi)$
- = $(50\pi 100)$ sq. units