Exercise 13.6

Question :1 The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm. How many litres of water can it hold? (1000 $cm^3 = 1L$)

Ans.:

Let the radius of the cylindrical vessel be r

Height (h) of vessel = 25 cm

Circumference of vessel = 132 cm

$$2\prod r = 132 \text{ cm}$$

$$r = \frac{132 \times 7}{2 \times 22}$$

$$=21$$
 cm

Volume of cylindrical vessel = $\pi r^2 h$

$$= \frac{22}{7} \times 21 \times 21 \times 25$$

 $= 34650 \text{ cm}^3$

$$= \left(\frac{34650}{1000}\right) \text{ litres}$$

= 34.65 litres

Question: 2 The inner diameter of a cylindrical wooden pipe is 24 cm and its outer diameter is 28 cm. The length of the pipe is 35 cm. Find the mass of the pipe, if 1 cm³ of wood has a mass of 0.6 g.

Ans.: Inner radius $(r_1) = 24/2 = 12$ cm

Outer radius $(r_2) = 28/2 = 14$ cm

Height (h) = Length = 35 cm

Volume = $\pi (r_2^2 - r_2^1) h$

$$= 22/7 \times (14^2 - 12^2) \times 35$$

- $= 110 \times 52$
- $= 5720 \text{ cm}^3$

Mass of 1 cm 3 wood = 0.6 g

Mass of 5720 cm³ wood = (5720×0.6) g

- = 3432 g
- = 3.432 kg

Question :3 A soft drink is available in two packs - (i) a tin can with a rectangular base of length 5 cm and width 4 cm, having a height of 15 cm and (ii) a plastic cylinder with a circular base of diameter 7 cm and height 10 cm. Which container has greater capacity and by how much?

Ans.: The tin can will be cuboidal in shape while the plastic cylinder will be cylindrical in shape

Length (1) of tin can = 5 cm

Breadth (b) of tin can = 4 cm

Height (h) of tin can = 15 cm

Capacity of tin can = $1 \times b \times h$

 $= (5 \times 4 \times 15) \text{ cm}^3$

 $= 300 \text{ cm}^3$

Radius (r) of circular end of plastic cylinder = 3.5 cm

Height (H) of plastic cylinder = 10 cm

The capacity of plastic cylinder = $\pi r^2 H$

$$= (22/7) \times 3.5 \times 3.5 \times 10$$

$$= 11 \times 35$$

$$= 385 \text{ cm}^3$$

Clearly, plastic cylinder has the greater capacity

Difference in capacity = $(385 - 300) = 85 \text{ cm}^3$

Question :4 If the lateral surface of a cylinder is 94.2 cm^2 and its height is 5 cm, then find (i) radius of its base (ii) its volume. (Use $\pi = 3.14$)

Ans.: (i) Height (h) of cylinder = 5 cm

Let radius of cylinder be r

CSA of cylinder = 94.2 cm^2

$$2\pi rh = 94.2$$

$$(2 \times 3.14 \times r \times 5) = 94.2$$

$$r = \frac{94.2}{2 \times 3.14 \times 2}$$

$$=\frac{94.2}{31.4}$$

$$r = 3$$
 cm

(ii) Volume of cylinder = $\pi r^2 h$

$$=(3.14\times(3)^2\times5)$$

$$= 3.14 \times 9 \times 5 = 3.14 \times 45$$

$$= 141.3 \text{ cm}^3$$

Question :5 It costs Rs 2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting is at the rate of Rs 20 per m², find (i) inner curved surface area of the vessel,

- (ii) Radius of the base,
- (iii) Capacity of the vessel

Ans.:

Rs 20 is the cost of painting 1 m² area Rs 2200 is the cost of painting = ($\frac{1}{20}$ × 2200) m²

$$= 110 \text{ m}^2$$

Therefore, the inner surface area of the vessel is 110 m²

(ii) Let the radius of the base of the vessel be r

Height (h) =
$$10 \text{ m}$$

Surface Area = $2\pi rh$ = 110 m²

$$=2\times\frac{22}{7}\times r\times 10=110$$

$$= r = \frac{7}{4} m$$

$$r = 1.75 \text{ m}$$

(iii) Volume = $\pi r^2 h$

$$=\frac{22}{7} \times 1.75 \times 1.75 \times 10$$

$$= 96.25 \text{ m}^3$$

The capacity of the vessel is 96.25 m³ or 96250 litres

Question :6 The capacity of a closed cylindrical vessel of height 1 m is 15.4 litres. How many square metres of metal sheet would be needed to make it?

Ans.: Let the radius of the circular end be "r".

The volume of cylindrical vessel = 15.4 litres

1 litre =
$$1/1000 \text{ m}^3$$

= 0.0154 m^3
 $r^2h = 0.0154 \text{ m}^3$
 $(\frac{22}{7} \times r \times r \times 1) \text{ m} = 0.0154 \text{ m}^3$
 $r = 0.07 \text{ m}$
TSA of vessel = $2\pi r (r + h)$

$$=2\times\frac{22}{7}\times0.07~(0.07+1)$$

$$= 0.44 \times 1.07$$

$$= 0.4708 \text{ m}^2$$

Height (h) of cylindrical vessel = 1 m

Therefore, the metal sheet would be required to make the cylindrical vessel is 0.4708 m²

Question :7 A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and the diameter of the graphite is 1 mm. If the length of the pencil is 14 cm, find the volume of the wood and that of the graphite

Ans.:

Concept Used: Volume of the wood = Volume of a pencil – volume graphite

Volume of Cylinder = $\pi r^2 h$

Where r = radius of the cylinder and h = height of the cylinder

Given: Diameter of pencil = 7 mm

Diameter of graphite = 1 mm

Length of the pencil = 14 cm

Assumption: Let r^1 be the radius of pencil, r^2 be the radius of graphite and h be the height of pencil.

Explanation:

Radius

Radius (pencil), r_1 mm = 0.35 cm

Radius (graphite), r_2 mm = 0.05 cm

Height (Pencil), h = 14 cm

Volume of wood in pencil = $\pi (r_1^2 - r_2^2) h$

$$= 22/7 [(0.35)^2 - (0.05)^2 \times 14]$$

$$= 22/7 (0.1225 - 0.0025) \times 14$$

$$= 44 \times 0.12$$

$$= 5.28 \text{ cm}^3$$

Volume of graphite = $\pi r_2^2 h$

$$= 22/7 \times (0.05)^2 \times 14$$

$$= 44 \times 0.0025$$

$$= 0.11 \text{ cm}^3$$

Hence, The volume of wood in pencil is 5.28 cm³ and volume of graphite in pencil is 0.11 cm³.

Question :8 A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm. If the bowl is filled with soup to a height of 4 cm, how much soup the hospital has to prepare daily to serve 250 patients?

Ans.: Radius (r) of cylindrical bowl = $\frac{7}{2}$ = 3.5cm

Height (h) of bowl, up to which bowl is filled with soup = 4 cm Volume of soup in 1 bowl = $\pi r^2 h$

$$=\frac{22}{7}*3.5*3.5*4$$

 $= (11 \times 3.5 \times 4)$

 $= 154 \text{ cm}^3$

Volume of soup given to 250 patients = (250×154) cm³

 $= 38500 \text{ cm}^3$

= 38.5 litres.