5.4 Operations with Matrices

532. Two matrices A and B are equal if, and only if, they are both
of the same shape mxn and corresponding elements are
equal.

533. Two matrices A and B can be added (or subtracted) of, and
only if, they have the same shape mxn . If
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535. Multiplication of Two Matrices
Two matrices can be multiplied together only when the
number of columns in the first is equal to the number of
rows in the second.
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Transpose of a Matrix
If the rows and columns of a matrix are interchanged, then

the new matrix is called the transpose of the original matrix.
If A is the original matrix, its transpose is denoted AT or

~

A.

The matrix A is orthogonal if AA" =1.

If the matrix product AB is defined, then

(AB)' =B"A".

Adjoint of Matrix

If A is a square nxnmatrix, its adjoint, denoted by adjA,
is the transpose of the matrix of cofactors C;; of A:

adjA=|c,[.

Trace of a Matrix
If A is a square nxnmatrix, its trace, denoted by tr A, is

defined to be the sum of the terms on the leading diagonal:
trA=a, +a,, +...+a.

Inverse of a Matrix
If A is a square nxn matrix with a nonsingular determinant
det A, then its inverse A™" is given by

detA

If the matrix product AB is defined, then
(AB)'=B'A".

If A isasquare nxn matrix, the eigenvectors X satisfy
the equation

AX =2AX,

while the eigenvalues A satisfy the characteristic equation
|A—1I|=0.



