2. Multiplication and Division of Integers

• Multiplication of integers

Rules for the product of integers:

- (i) The product of two positive integers is always positive.
- (ii) The product of one positive integer and one negative integer is always negative.

For example,
$$5 \times (-9) = -(5 \times 9) = -45$$

- (iii) The product of two negative integers is always positive.
- (iv) If the number of negative integers in a product is even, then the product is a positive integer. If the number of negative integers in a product is odd, then the product is a negative integer.

For example,
$$(-1) \times (-2) \times (-3) = -6$$
, $(-7) \times (-2) = 14$ etc.

• Division of integers

• To divide a positive integer by a negative integer or a negative integer by a positive integer, the division is carried out as in whole numbers and then a negative sign (–) is put before the quotient.

For example, $(12) \div (-4) = (-12) \div 4 = -3$

• When a negative integer is divided by another negative integer or a positive integer is divided by another positive integer, a positive quotient is obtained.

For example, $(-6) \div (-3) = 6 \div 3 = 2$

Properties of Division

Property 1: If a and b are two integers, then $a \div b$ might not be an integer.

Property 2: If a is an integer and $a \neq 0$, then $a \div a = 1$.

Property 3: If a is an integer and $a \neq 0$, then $a \div 1 = a$

Property 4: If a is an integer and $a \neq 0$, then $0 \div a = 0$

Property 5: If a is a non-zero integer, then $a \div 0$ is not defined.

Property 6: If a, b and c are non-zero integers, then

$$(a \div b) \div c \neq a \div (b \div c)$$
 except when $c = 1$

Note: when c = 1, $(a \div b) \div c = a \div (b \div c)$

Property 7: If a, b and c are integers, such that

(i) a > b and c is positive, then $(a \div c) > (b \div c)$