Mathematics The Triangle and Its Properties

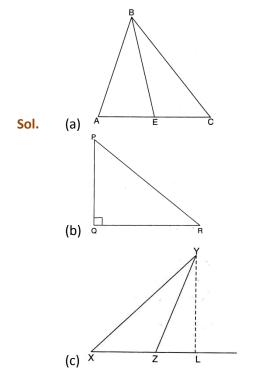
Exercise 6.1

Page No. 116

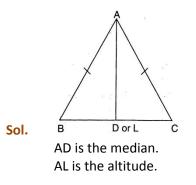
1. In $\triangle PQR$, **D** is the mid-point of QR.

PM is PD is Is *QM* = *MR*?

- Sol. \overrightarrow{PM} is the altitude. PD is the median. No! $QM \neq MR$.
- 2. Draw rough sketches for the following :
 - (a) In $\triangle ABC$, BE is a median.
 - (b) In $\triangle PQR, PQ$ and PR are altitudes of the triangle.
 - (c) In $\Delta XYZ, YL$ is an altitude in the exterior of the triangle.



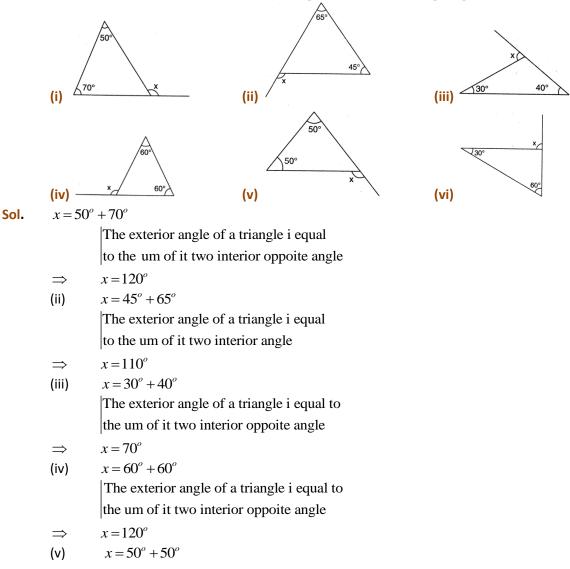
3. Verify by drawing a diagram if the median and altitude of an isosceles triangle can be same.



Exercise 6.2

Page No. 118

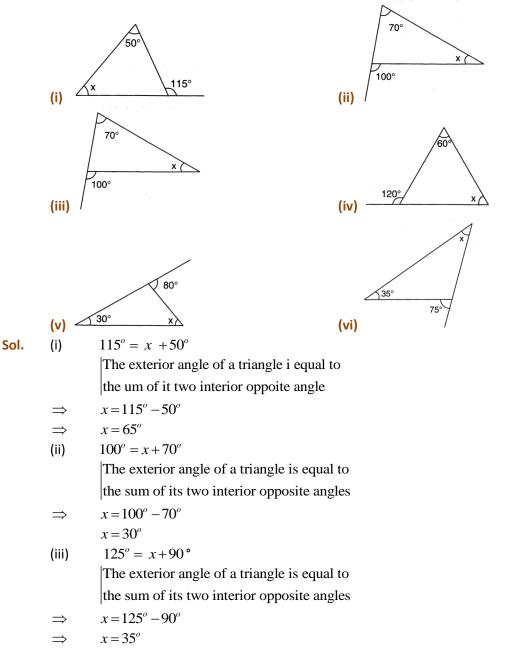
1. Find the value of the unknown exterior angle *x* in the following diagrams:



The exterior angle of a triangle i equal to the um of it two interior oppoite angle

$$\Rightarrow x = 100^{\circ}$$
(vi) $x = 30^{\circ} + 60^{\circ}$
The exterior angle of a triangle i equal to
the um of it two interior oppoite angle
 $\Rightarrow x = 90^{\circ}$

Page No. 119

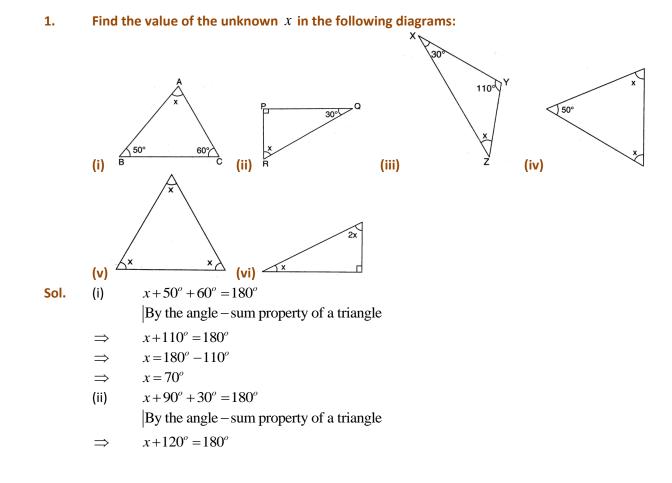


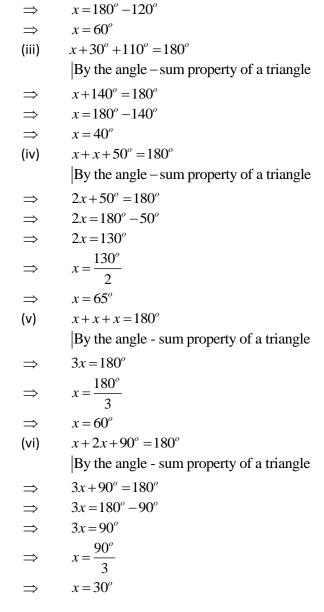
(iv)	$120^{\circ} = x + 60^{\circ}$			
	The exterior angle of a triangle is equal to			
	the sum of its two interior opposite angles			
\Rightarrow	$x = 120^{\circ} - 60^{\circ}$			
\Rightarrow	$x = 60^{\circ}$			
(v)	$80^{\circ} = x + 30^{\circ}$			
	The exterior angle of a triangle is equal to			
	the sum of its two interior opposite angles			
\Rightarrow	$x = 80^{\circ} - 30^{\circ}$			
\Rightarrow	$x = 50^{\circ}$			
(vi)	$75^{\circ} = x + 35^{\circ}$			
	The exterior angle of a triangle is equal to			
	the sum of its two interior opposite angles			
\Rightarrow	$x = 75^{\circ} - 35^{\circ}$			

 $\Rightarrow x = 40^{\circ}$

Exercise 6.3

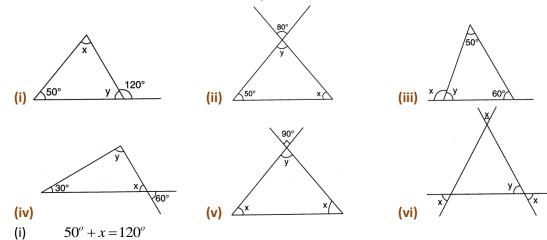
Page No. 121





2. Find the values of the unknowns *x* and *y* in the following diagrams:

Sol.



By exterior – angle property of a triangle ...(1) $x = 120^{\circ} - 50^{\circ}$ \Rightarrow $x = 70^{\circ}$... (2) \Rightarrow Again, $x + y + 50^{\circ} = 180^{\circ}$ $x + y + 50^{\circ} = 180^{\circ}$ \Rightarrow By angle - sum property of a triangle ...(4) $x + y = 180^{\circ} - 50^{\circ}$ \Rightarrow $x + y = 130^{\circ}$ \Rightarrow $70^{\circ} + y = 130^{\circ}$ Using (2) \Rightarrow \Rightarrow $y = 130^{\circ} - 70^{\circ}$ $y = 60^{\circ}$ \Rightarrow ... (5) $y = 80^{\circ}$ (ii) Vertically opposite angles are equal ...(1) $x + 50^{\circ} + y = 180^{\circ}$ \Rightarrow By angle – sum property of a triangle $x + y = 180^{\circ} - 50^{\circ}$ \Rightarrow $x + y = 130^{\circ}$ \Rightarrow $x + 80^{\circ} = 130^{\circ}$ Using(1) \Rightarrow $x = 130^{\circ} - 80^{\circ}$ \Rightarrow $x = 50^{\circ}$ \Rightarrow $x = 50^{\circ} + 60^{\circ}$ (iii) By exterior-angle property of atriangle \Rightarrow $x = 110^{\circ}$ \Rightarrow x = 110 $y + 50^{\circ} + 60^{\circ} = 180^{\circ}$ By angle-sum property of a triangle \Rightarrow $y + 110^{\circ} = 180^{\circ}$ \Rightarrow $y = 180^{\circ} - 110^{\circ}$ \Rightarrow $y = 70^{\circ}$ (iv) $x = 60^{\circ}$(1) Vertically opposite angles are equal $x + 30^{\circ} + y = 180^{\circ}$ By angles-sum property of triangle $x + y = 180^{\circ} - 30^{\circ}$ \Rightarrow $x + y = 150^{\circ}$ $60^{\circ} + y = 150^{\circ}$ \Rightarrow Using (1) \Rightarrow $y = 150^{\circ} - 60^{\circ}$

 \Rightarrow $y = 90^{\circ}$ $y = 90^{\circ}$ (v) ... (1) Vertically opposstie angles are equal $x + x + y = 180^{\circ}$ |By angle-sum property of a triangle $2x + y = 180^{\circ}$ \Rightarrow $2x + 90^\circ = 180^\circ$ Using (1) \Rightarrow $2x = 180^{\circ} - 90^{\circ}$ \Rightarrow $2x = 90^{\circ}$ \Rightarrow $x = \frac{90^{\circ}}{2}$ \Rightarrow $x = 45^{\circ}$ \Rightarrow ... (1) (vi) x = y $x + x + y = 180^{\circ}$ [Vertically oppostie angles are equal $2x + y = 180^{\circ}$ \Rightarrow By angle-sum property of a triangle $2x + x = 180^{\circ}$ Using (1) \Rightarrow $3x = 180^{\circ}$ \Rightarrow $3x = \frac{180^\circ}{3}$ \Rightarrow $x = 60^{\circ}$... (2) \Rightarrow Using (1) $y = 60^{\circ}$ \Rightarrow

Exercise 6.4

Page No. 126

1. Is	s it possible	to have a	a triangle with	the following sid	les?
--------------	---------------	-----------	-----------------	-------------------	------

(i) 2 cm, 3 cm, 5 cm

(ii) 3 cm, 6 cm, 7 cm

(iii) 6 cm, 3 cm, 2 cm.

Sol. (i) 2 cm, 3 cm, 5 cm

We have 2+3=5

 \Rightarrow Sum of the lengths of two sides = Length of the third side This is impossible since the sum of the lengths of any two sides of a triangle is greater than the length of the third side.

(ii) **3 cm, 6 cm, 7 cm**

We see that 3+6>76+7>3

7+3>6

Therefore, it is possible to have a triangle with side lengths $3\,cm,\,6\,cm,\,7\,cm\,.$

(iii) 6 cm, 3 cm, 2 cm

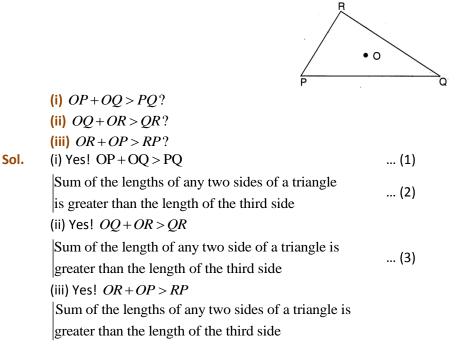
We see that 6+3=9>2

 $3 + 2 = 5 \ge 6$

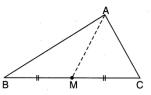
$$2 + 6 = 8 > 3$$

Therefore, it is not possible to have a triangle with side lengths $\, 6 \, \mathrm{cm}, \, 3 \, \mathrm{cm}, \, 2 \, \mathrm{cm}$.

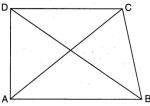
2. Take any point O in the interior of a triangle PQR. Is



3. AM is a median of a triangle ABC.

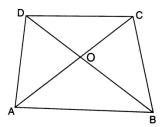


Is AB + BC + CA > 2AM? (Consider the sides of triangles $\triangle ABM$ and $\triangle AMC$.) Sol. In $\triangle ABM$, AB + BM > AMSum of the length of any two side of a triangle is greater than the lenth of the third side In $\triangle ACM$, CA + CM > AM... (2) Sum of the lenths of any two sides of a triangle is greater than the lenth of the third side Sum (1) and (2), (AB+BM)+(CA+CM) > AM+AMAB + (BM + CM) + CA > 2AM \Rightarrow AB + BC + CA > 2AM \Rightarrow



Sol. In $\triangle ABC$, AB + BC > AC... (1) Sum of the length of any two sides of a triangle is greater than the length of the third side $\ln \Delta ACD.$ CD + DA > AC... (2) Sum of the lengths of any two sides of a triangle is greater than the length of the third side Adding (1) and (2), AB + BC + CD + DA > 2AC... (3) In $\triangle ABD$, AB + DA > BD... (4) Sum of the lenths of any two sides of a triangle is greater than the lenth of the third side In $\triangle ABCD$, BC + CD > BD... (5) Sum of the lenths of any two sides of a triangle is greater than the length of the third side Adding (4) and (5), AB + BC + CD + DA > 2BD... (6) Adding (3) and (6), 2[AB+BC+CD+DA] > 2(AC+BD)AB + BC + CD + DA > AC + BD \Rightarrow

5. ABCD is a quadrilateral. Is AB+BC+CD+DA < 2(AC+BD)?



Sol. In $\triangle OAB$,

OA + OB > AB ... (1) Sum of the lenth of any two sides of a triangle is greater than the length of the third side. In $\triangle OBC, OB + OC > BC$... (2)

Sum of the lengths of any two sides of a triangle is greater than the length of the third side In $\triangle OCA, OC + OA > CA$... (3) Sum of the lengths of any two sides of a triangle is greater than the length of the third side In $\triangle OAD, OA + OD > AD$... (4) Sum of the lengths of any two sides of a triangle is greater than the length of the third side Adding (1), (2), (3) and (4), 2(OA + OB + OC + OD) > AB + BC + CD + DAAB + BC + CD + DA < 2 \Rightarrow (OA + OB + OC + OD)AB+BC+CD+DA < 2 (OA+OC+OB+OD) \Rightarrow

 $\Rightarrow \qquad AB + BC + CD + DA < 2(AC + BD).$

Page No. 127

- 6. The lengths of two sides of a triangle are 12 cm and 15 cm between what two measures should the length of the third side fall?
- **Sol.** Let *x cm* be the length of the third side.
 - : Sum of the lengths of any two sides of a triangle is greater than the length of the third side.
 - .: We should have

$$12+15 > x \implies 27 > x \implies x < 27$$

$$15 + x > 12 \implies x > 12 - 15 \implies x > -3$$

$$x+12>15 \implies x>15-12 \implies x>3$$

$$x > -3$$
 and $x > 3 \implies x > 3$

 \therefore The length of the third side should be any length between 3 cm and 27 cm.

Exercise 6.5

Page No. 130

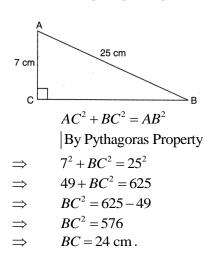
1. PQR is a triangle right-angled at P. If PQ = 10 cm and PR = 24 cm, find QR.

Sol.

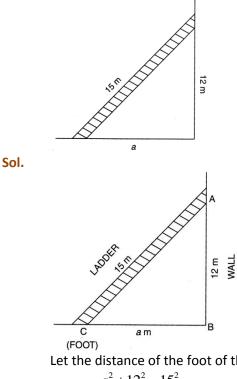
 $QR^{2} = 10^{2} + 24^{2}$ $QR^{2} = 10^{2} + 24^{2}$ P = 100 + 576 = 676 QR = 26 cm

2. ABC is a triangle right-angled at C. If AB = 25 cm and AC = 7 cm, find BC

Sol.



3. A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.



Let the distance of the foot of the ladder from the wall be a m. Then, $a^2 + 12^2 = 15^2$ By Pythagoras Property $\Rightarrow a^2 + 144 = 225$ $\Rightarrow a^2 = 225 - 144$ $\Rightarrow a = 81$

$$\Rightarrow a=9$$

Hence, the distance of the foot of the ladder from the wall is 9 m.

4. Which of the following can be the sides of a right triangle?

(i) 2.5 cm,	6.5 cm ,	6 cm •
(ii) 2 cm ,	2 cm ,	5 cm .
(iii) 1.5 cm,	2 cm ,	2.5 cm

In the case of right-angled triangles, identify the right angles.

Sol. (i) **2.5 cm, 6.5 cm, 6 cm**

We see that

 $(2.5)2+6^2 = 6.25+36 = 42.25 = (6.5)^2$ Therefore, the given lengths can be the sides of a right triangle. Also, the angle between the lengths, 2.5 cm and 6 cm is a right angle.

(ii) $2 \,\mathrm{cm}, 2 \,\mathrm{cm}, 5 \,\mathrm{cm}$

 $\therefore \qquad 2+2=4 \ge 5$

... The given lengths cannot be the sides of a triangle

The sum of the lengths of any two sides of a

triangle is greater than the third side

(iii) **1.5 cm**, **2 cm**, **2.5 cm**

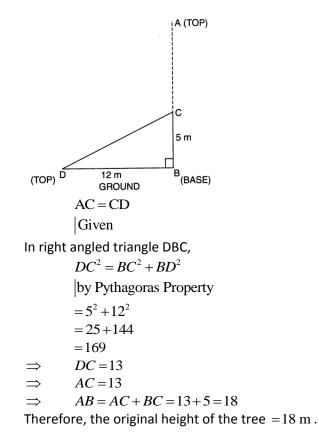
We find that

$$1.5^2 + 2^2 = 2.25 + 4 = 6.25 = 2.5^2$$

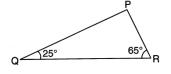
Therefore, the given lengths can be the sides of a right triangle. Also, the angle between the lengths 1.5 cm and 2 cm is a right angle.

5. A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.

Sol.



6. Angles Q and R of a ΔPQR are 25° and 65° . Write which of the following is true:

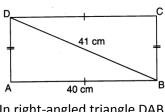


(i)
$$PQ^{2} + QR^{2} = RP^{2}$$

(ii) $PQ^{2} + RP^{2} = QR^{2}$
(iii) $RP^{2} + QR^{2} = PQ^{2}$
(ii) $PQ^{2} + RP^{2} = QR^{2}$ is true.

Sol.

7. Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm. Sol.



In right-angled triangle DAB, $AB^2 + AD^2 = BD^2$

$$AB^{2} + AD^{2} = BD^{2}$$

$$\Rightarrow 40^{2} + AD^{2} = 41^{2}$$

$$\Rightarrow AD^{2} = 41^{2} - 40^{2}$$

$$\Rightarrow AD^{2} = 1681 - 1600$$

$$\Rightarrow AD^{2} = 81$$

$$\Rightarrow AD = 9$$

$$\therefore \text{ Perimeter of the rectangle}$$

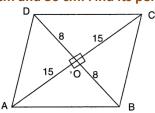
$$= 2(AB + AD)$$

$$= 2(40 + 9)$$

$$-2(40+7)$$

= 2(49) = 98 cm Hence, the perimeter of the rectangle is 98 cm.

8. The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.



Sol. Let ABCD be a rhombus whose diagonals BD and AC are of lengths 16 cm and 30 cm respectively. Let the diagonals BD and AC intersect each other at O.

Since the diagonals of a rhombus bisect each other at right angles. Therefore

BO = OD = 8 cm, AO = OC = 15 cm, $\angle AOB = \angle BOC = \angle COD = \angle DOA = 90^{\circ}$ In right-angled triangle AOB. $AB^2 = OA^2 + OB^2$ |By Pythagoras Property $\Rightarrow AB^{2} = OA^{2} + OB^{2}$ $\Rightarrow AB^{2} = 15^{2} + 8^{2}$ $\Rightarrow AB^{2} = 225 + 64$ $\Rightarrow AB^{2} = 289$

 \Rightarrow AB = 17 cm

Therefore, perimeter of the rhombus ABCD

=4 side =4 AB

 $=4\times17$ cm

$$= 68 \text{ cm}$$

Hence, the perimeter of the rhombus is 68 cm.