
 

Exercise 6.1 
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1. In PQR , D is the mid-point of QR . 

PM is ……………… 
PD is ………………. 
Is ?QM MR  

Sol.  PM  is the altitude. 
PD is the median.                                     
No! QM MR . 

 
2. Draw rough sketches for the following : 

(a) In ABC , BE is a median. 
(b) In ,PQR PQ  and PR are altitudes of the triangle. 

(c) In ,XYZ YL  is an altitude in the exterior of the triangle. 

Sol. (a)  

 (b)  

(c)  
 

3. Verify by drawing a diagram if the median and altitude of an isosceles triangle can be same. 
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Sol.   
AD is the median. 
AL is the altitude. 
 

Exercise 6.2 
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1. Find the value of the unknown exterior angle x  in the following diagrams: 

(i)   (ii)   (iii)  

(iv)   (v)   (vi)  

Sol.  50 70o ox             

The exterior angle of a triangle i equal 

to the  um of it two interior oppoite angle
  

  120ox   
(ii)  45 65o ox    

The exterior angle of a triangle i equal

to the um of it two interior angle
 

  110ox   
(iii)    30 40o ox                   

The exterior angle of a triangle i equal to

the um of it two interior oppoite angle
 

  70ox    
(iv)         60 60o ox    

 The exterior angle of a triangle i equal to

the um of it two interior oppoite angle
 

  120ox   
(v)           50 50o ox                   



The exterior angle of a triangle i equal to

the um of it two interior oppoite angle
 

   100ox   
 (vi)  30 60o ox     

  
The exterior angle of a triangle i equal to

the um of it two interior oppoite angle
 

  90ox   
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2. Find the value of the unknown interior angle x  in the following figures: 

(i)    (ii)  

(iii)    (iv)  

(v)     (vi)  

Sol.  (i) 115   50o ox                       

          
The exterior angle of a triangle i equal to

the um of it two interior oppoite angle
 

  115 50o ox     

  65ox   

(ii)  100 70o ox                   

The exterior angle of a triangle is equal to

the sum of its two interior opposite angles
 

  100 70o ox    
30ox    

(iii)          125  90o x  °                  

The exterior angle of a triangle is equal to

the sum of its two interior opposite angles
 

  125 90o ox    
   35ox   



(iv) 120 60o ox                   

The exterior angle of a triangle is equal to

the sum of its two interior opposite angles
 

  120 60o ox    
   60ox   

(v)  80 30o ox   

The exterior angle of a triangle is equal to

the sum of its two interior opposite angles
 

  80 30o ox    
   50ox   

 (vi)        75 35o ox                   

The exterior angle of a triangle is equal to

the sum of its two interior opposite angles
 

  75 35
oox    

   40ox   
 

Exercise 6.3 
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1. Find the value of the unknown x  in the following diagrams: 

(i)  (ii)  (iii)  (iv)  

(v)  (vi)  

Sol.  (i) 50 60 180o o ox                   

By the angle sum property of a triangle  

   110 180o ox   

  180 110o ox    

  70ox   

(ii) 90 30 180o o ox                    

By the angle sum property of a triangle  

  120 180o ox   



 

   180 120o ox    

   60ox   

(iii)        30 110 180o o ox                  

          By the angle sum property of a triangle  

  140 180o ox   

  180 140o ox    

  40ox   

(iv)  50 180o ox x    

By the angle sum property of a triangle  

  2 50 180o ox   
  2 180 50o ox    

  2 130ox   

  
130

2

o

x   

  65ox   

(v)  180ox x x    

By the angle - sum property of a triangle  

  3 180ox   

   
180

3

o

x   

   60ox   

(vi)  2 90 180o ox x    

By the angle - sum property of a triangle  

  3 90 180o ox   
   3 180 90o ox    

   3 90ox   

   
90

3

o

x   

  30ox   
 
2. Find the values of the unknowns x  and y  in the following diagrams: 

(i)  (ii)   (iii)  

(iv)  (v)   (vi)  

Sol. (i) 50 120o ox    



 

By exterior angle property of a triangle ...(1)  

  120 50o ox    

  70ox      … (2) 

Again, 50 180o ox y    

  50 180o ox y    

By angle sum property of a triangle ...(4)  

  180 50o ox y    

  130ox y     

  70 130o oy    Using (2)  

  130 70o oy    

  60oy      … (5) 

(ii) 80oy    

Vertically opposite angles are equal ...(1)  

  50 180o ox y    

By angle sum property of a triangle  

  180 50o ox y    

  130ox y   
  80 130o ox    Using(1)  

  130 80o ox    

  50ox   

(iii)   50 60o ox     

By exterior-angle property of atriangle  


 110ox   


 110x   

50 60 180o o oy       

By angle-sum property of a triangle  

 
 110 180o oy    

 
 180 110o oy    

 
 70oy   

 (iv)  60ox     ….(1) 

  Vertically opposite angles are equal    

30 180o ox y     

By angles-sum property of triangle  

  180 30o ox y    

 
 150ox y   

 
 60 150o oy    Using (1)  

 
 150 60o oy    



 
 90oy   

 (v)  90oy     … (1) 

Vertically opposstie angles are equal  

180ox x y    By angle-sum property of a triangle  

  2 180ox y   

  2 90 180o ox    Using (1)  

  2 180 90o ox    

  2 90ox   

  
90

2

o

x   

  45ox   
(vi)  x y     … (1) 

180ox x y    Vertically oppostie angles are equal  

  2 180ox y    

By angle-sum property of a triangle  

   2 180ox x    Using (1)  

   3 180ox   

  
180

3
3

o

x   

  60ox      … (2) 

  60oy     Using (1)  

 

Exercise 6.4 
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1. Is it possible to have a triangle with the following sides? 

(i) 2 cm, 3 cm, 5 cm                 

(ii) 3 cm, 6 cm, 7 cm  

(iii) 6 cm, 3 cm, 2 cm.  

Sol. (i) 2 cm, 3 cm, 5 cm  

We have           2 3 5   
  Sum of the lengths of two sides = Length of the third side 
This is impossible since the sum of the lengths of any two sides of a triangle is greater than the length of the 
third side. 
(ii) 3 cm, 6 cm, 7 cm  

We see that       3 6 7   
6 7 3   
7 3 6   

Therefore, it is possible to have a triangle with side lengths 3 cm, 6 cm, 7 cm . 

(iii) 6 cm, 3 cm, 2 cm  

We see that       6 3 9 2    



3 2 5 6 /    
2 6 8 3    

Therefore, it is not possible to have a triangle with side lengths 6 cm, 3 cm, 2 cm . 

 
2. Take any point O in the interior of a triangle PQR. Is                                             

 
(i) ?OP OQ PQ   

(ii) ?OQ OR QR   

(iii) ?OR OP RP   
Sol.  (i) Yes! OP OQ PQ       … (1) 

Sum of the lengths of any two sides of a triangle 

is greater than the length of the third side
 … (2) 

(ii) Yes! OQ OR QR   

Sum of the length of any two side of a triangle is

greater than the length of the third side
 … (3) 

(iii) Yes! OR OP RP   

 Sum of the lengths of any two sides of a triangle is

greater than the length of the third side
 

 
3. AM is a median of a triangle ABC.                              

 
Is 2 ?AB BC CA AM    
(Consider the sides of triangles ABM  and AMC .) 

Sol.  In ABM ,  

 AB BM AM     
Sum of the length of any two side of a triangle 

is greater than the lenth of the third side
  

In ACM , 
CA CM AM     … (2) 

Sum of the lenths of any two sides of a triangle

is greater than the lenth of the third side
 

Sum (1) and (2), 
( ) ( )AB BM CA CM AM AM      

  ( ) 2AB BM CM CA AM     

  2AB BC CA AM    
 
4. ABCD is a quadrilateral, Is AB BC CD DA AC BD     ? 



   
Sol. In ABC , 
 AB BC AC     … (1) 

Sum of the length of any two sides of a triangle 

is greater than the lengthof the third side
  

In ,ACD  

CD DA AC     ... (2) 

Sum of the lengths of any two sides of a triangle 

is greater than the length of the third side
  

Adding (1) and (2), 
2AB BC CD DA AC     … (3) 

In ,ABD  

AB DA BD     … (4) 

Sum of the lenths of any two sides of a triangle

is greater than the lenth of the third side
 

In ABCD , 
BC CD BD     … (5) 

Sum of the lenths of any two sides of a triangle is

greater than the length of the third side
 

Adding (4) and (5), 
2AB BC CD DA BD     … (6) 

Adding (3) and (6), 
2[ ] 2( )AB BC CD DA AC BD      

  AB BC CD DA AC BD      
 

5. ABCD  is a quadrilateral. Is 
2( )AB BC CD DA AC BD     ? 

 
Sol. In ,OAB  

  OA OB AB     … (1) 

Sum of the lenth of any two sides of a triangle is

greater than the length of the third side. 
  

In ,C OB OC BC       … (2) 



 

Sum of the lengths of any two sides of a triangle

is greater than the length of the third side
 

In ,OCA OC OA CA      … (3) 

Sum of the lengths of any two sides of a triangle is

greater than the length of the third side
 

In ,OAD OA OD AD       … (4) 

Sum of the lengths of any two sides of a triangle is

greater than the length of the third side
 

Adding (1), (2), (3) and (4), 
2(OA OB OC OD) AB BC CD DA        

  AB BC CD DA 2     
(OA OB OC OD)    

   AB BC CD DA 2     (OA OC OB OD)    

       AB BC CD DA 2(AC BD)     . 
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6. The lengths of two sides of a triangle are 12 cm and 15 cm between what two measures should the length 

of the third side fall? 
Sol.  Let  x cm  be the length of the third side. 

  Sum of the lengths of any two sides of a triangle is greater than the length of the   third side. 
  We should have 

12 15 x    27 27x x    
15 12x     12 15 3x x     

12 15x     15 12 3x x     
3x   and 3x     3x   

 The length of the third side should be any length between 3 cm and 27 cm. 
 

Exercise 6.5 
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1. PQR is a triangle right-angled at P. If 10 cmPQ   and  PR 24 cm , find QR . 

Sol.   

 
2 2 210 24QR    

By Pythagoras Property  

   100 576 676    
   26 cmQR   



 
2. ABC is a triangle right-angled at C. If AB 25 cm  and AC 7 cm,  find BC 

Sol.         

 
2 2 2AC BC AB   

 By Pythagoras Property       

  2 2 27 25BC   

  249 625BC   

  2 625 49BC    

  2 576BC   
  24 cmBC  . 
 

3. A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance 
a. Find the distance of the foot of the ladder from the wall. 

 
Sol.   

 
Let the distance of the foot of the ladder from the wall be a  m. Then, 

2 2 212 15a    

By Pythagoras Property  

          2 144 225a    

          2 225 144a    
            81a   
          9a   
Hence, the distance of the foot of the ladder from the wall is 9 m. 
 



4. Which of the following can be the sides of a right triangle? 
(i) 2.5 cm ,              6.5 cm ,           6 cm . 
(ii) 2 cm ,                2 cm ,            5 cm . 
(iii) 1.5 cm ,              2 cm ,            2.5 cm . 
In the case of right-angled triangles, identify the right angles. 

Sol.  (i)  2.5 cm, 6.5 cm, 6 cm  

We see that 
2 2(2.5)2 6 6.25 36 42.25 (6.5)     Therefore, the given lengths can be the sides of a right 

triangle. Also, the angle between the lengths, 2.5 cm and 6 cm is a right angle. 
(ii)  2 cm, 2 cm, 5 cm  

 2 2 4 5/    

 The given lengths cannot be the sides of a triangle 

 
The sum of the lengths of any two sides of a

triangle is greater than the third side
  

(iii)  1.5 cm, 2 cm, 2.5 cm  

We find that 
2 2 21.5 2  2.25 4 6.25  2.5      

Therefore, the given lengths can be the sides of a right triangle. Also, the angle between the lengths 1.5 cm 
and 2 cm is a right angle. 
 

5. A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m 
from the base of the tree. Find the original height of the tree. 

Sol.         

 
AC CD                   

 Given  

In right angled triangle DBC, 
2 2 2DC BC BD   

by Pythagoras Property                         
2 25 12                                            

25 144                                        
169                                     

   13DC   
   13AC   
   13 5 18AB AC BC      

Therefore, the original height of the tree 18 m . 
 



6. Angles Q and R of a PQR  are 25o  and 65o . Write which of the following is true: 

 
(i) 2 2PQ QR RP   

(ii) 2 2 2PQ RP QR   

(iii) 2 2 2RP QR PQ   

Sol.  (ii) 2 2 2PQ RP QR   is true.                  

      
7. Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm. 
Sol.   

 
In right-angled triangle DAB, 

2 2 2AB AD BD   

  2 2 240 41AD   

  2 2 241 40AD    

  2 1681 1600AD    

  2 81AD   
  9AD   
 Perimeter of the rectangle  

2( )AB AD   

2(40 9)   

2(49) 98 cm   

Hence, the perimeter of the rectangle is 98 cm. 
 

8. The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.        

 
Sol.  Let ABCD be a rhombus whose diagonals BD and AC are of lengths 16 cm and 30 cm respectively. Let the 

diagonals BD and AC intersect each other at O.                            
Since the diagonals of a rhombus bisect each other at right angles. Therefore                                            

BO OD 8 cm,   

AO OC 15 cm,   

90oAOB BOC COD DOA     In right-angled triangle AOB. 
2 2 2AB OA OB   

By Pythagoras Property  



 

         2 2 2AB OA OB   

    2 2 2 AB 15 + 8  

  2 225 64AB    

  2 289AB   
  17 cmAB   
Therefore, perimeter of the rhombus ABCD 

4 side 
4  AB 
4 17 cm   
68 cm  

Hence, the perimeter of the rhombus is 68 cm. 




